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The Basic Problem

Many financial problems have unhedgeable risk

Optimal trade execution (sell a large block of shares)

→ Maximize average price received, minimize risk, taking into
account price impact

Long term asset liability management (insurance)

→ Match liabilities with minimal risk

Minimum variance hedging of contingent claims (with real
market constraints)

→ Liquidity effects, different rates for borrowing/lending

Pension plan investments.

Wealth management products
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Risk-reward tradeoff

All these problems (and many others) involve a tradeoff between
risk and reward.

A classic approach is to use some sort of utility function

But this has all sorts of practical limitations

→ What is the utility function of an investment bank?
→ What risk aversion parameter should be selected by the

Pension Investment Committee?

Alternative: mean-variance optimization

When risk is specified by variance, and reward by expected
value

→ Non-technical managers can understand the tradeoffs and
make informed decisions
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Multi-period Mean Variance

Some issues:

Standard formulation not amenable to use of dynamic
programming

Variance as risk measure penalizes upside as well as downside

Pre-commitment mean variance strategies are not time
consistent

I hope to convince you that multi-period mean variance
optimization is

Intuitive

Can be modified slightly to be (effectively) a downside risk
measure

Motivating example: Wealth Management (target date fund)
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Example: Target Date (Lifecycle) Fund with two assets
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = (µ− λκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− λdt

1 with probability λdt,

log J ∼ N (µJ , σ
2
J). ; κ = E [J − 1]
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Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d , e) generates a new state

b → B+

B+ = e

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

− e︸︷︷︸
B+

− d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time

6 / 29



Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest
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Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (1)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t))

E
c(·)
t,x [·]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [·]︸ ︷︷ ︸
Risk

= Variance ” ” ” ” ”

Mean Variance (MV) problem: for fixed λ find control c(·) which
solves:

sup
c(·)∈Z

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at time t

−λ Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at time t

}
,

Z = set of admissible controls ; T = target date

• Varying λ ∈ [0,∞) traces out the efficient frontier
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Embedding( Zhou and Li (2000), Li and Ng (2000) )

Equivalent formulation:1 for fixed λ, if c∗(·) solves the standard
MV problem,

→ ∃γ such that c∗(·) minimizes

inf
c(·)∈Z

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (2)

Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier

1We are determining the optimal pre-commitment strategy
(Basak,Chabakauri: 2010; Bjork et al: 2010). See (Wang and Forsyth (2012))
for a comparison of pre-commitment and time consistent strategies.
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Equivalence of MV optimization and target problem

MV optimization is equivalent2 to investing strategy which3

Attempts to hit a target final wealth of γ/2

There is a quadratic penalty for not hitting this wealth target

From (Li and Ng(2000))

γ

2︸︷︷︸
wealth target

=
1

2λ︸︷︷︸
risk aversion

+ E
c(·)
x0,t=0[Wa(T )]︸ ︷︷ ︸
expected wealth

Intuition: if you want to achieve E [Wa(T )], you must aim
higher

2Vigna, Quantitative Finance, to appear, 2014
3Strictly speaking, since some values of γ may not represent points on the

original frontier, we need to construct the upper convex hull of these points
(Tse, Forsyth, Li (2014), SIAM J. Control Optimization)
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HJB PIDE

Determination of the optimal control c(·) is equivalent to
determining the value function

V (x , t) = inf
c∈Z

{
E c
t,x [(Wa(T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV ,

JV ≡
∫ ∞
0

p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)
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HJB PIDE II

The optimal control c(·) is given by solving the impulse control
HJB equation:

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

if (s + b > 0) or s = 0 (3)

Along with liquidation constraint if insolvent

V (s, b, t) = V (0, (s + b), t)

if (s + b) ≤ 0 and s 6= 0 (4)

Easy to generalize the above equation to handle the discrete
rebalancing case.

13 / 29



Computational Domain4

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ­∞, +∞]

(0,0)

+∞

­∞

+∞

4If µ > r it is never optimal to short S
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Well behaved utility function

Definition (Well-behaved utility functions)

A utility function Y (W ) is a well-behaved function of wealth W if
it is an increasing function of W .

Proposition

Pre-commitment MV portfolio optimization is equivalent to
maximizing the expectation of a well-behaved quadratic utility
function if

Wa(T ) ≤ γ

2
. (5)

Obvious, since value function V (x , t) is

V (x , t) = sup
c∈Z

{
E x ,t
c [Y (Wa(T )]

}
Y (W ) = −(W − γ/2)2
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Dynamic MV Optimal Strategy

Theorem (Vigna (2014))

Assuming that (i) the risky asset follows a pure diffusion (no
jumps), (ii) continuous re-balancing, (iii) infinite leverage
permitted, (iv) trading continues even if bankrupt: then the
optimal self-financing MV wealth satisfies

Wa(t) ≤ F (t) ; ∀t

F (t) =
γ

2
e−r(T−t) = discounted wealth target

↪→ MV optimization maximizes a well behaved quadratic utility
Result can be generalized5 to the case of

Realistic constraints: finite leverage and no trading if insolvent

But, we must have continuous rebalancing and no jumps

5Dang and Forsyth (2013)
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Global Optimal Point

Examination of the HJB equation allows us to prove the following
result

Lemma (Dang and Forsyth (2013))

The value function V (s, b, t) is identically zero at

V (0,F (t), t) ≡ 0 ; F (t) =
γ

2
e−r(T−t) , ∀t

Since V (s, b, t) ≥ 0

V (0,F (t), t) = 0 is a global minimum

Any admissible policy which allows moving to this point is an
optimal policy

Once this point is attained, it is optimal to remain at this
point
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Movement of Globally Optimal Point

S

B

Liquidate

W = 0

V(0, F(t) ) = 0

F(t) = e
­r(T­t)

(γ/2)

Increasing
(T­t)

W = F(t)

Move to optimal
point
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Optimal semi-self-financing strategy

Theorem (Dang and Forsyth (2013))

If Wa(t) > F (t),6 t ∈ [0,T ], the optimal MV strategy is7

Withdraw cash Wa(t)− F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

Corollary (Well behaved utility function)

In the case of discrete rebalancing, and/or jumps, the optimal
semi-self-financing MV strategy is

Equivalent to maximizing a well behaved quadratic utility
function

6F (t) is the discounted wealth target
7A similar semi-self-financing strategy for the discrete rebalancing case was

first suggested in (Cui, Li, Wang, Zhu (2012) Mathematical Finance).
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Intuition: Multi-period mean-variance

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account

Optimal control for the target problem ≡ optimal control for the
Mean Variance problem

This strategy dominates any other MV strategy (Cui et all (2012))

→ And the investor receives a bonus in terms of a free cash flow
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What happens if we win the lottery?

Classic Mean Variance

If you win the lottery, and exceed your wealth target

Since gains > target are penalized.
→ Optimal strategy: lose money!

Precommitment, semi-self-financing optimal strategy

If you win the lottery, and exceed your wealth target

→ Invest F (t)8 in a risk-free account
→ Withdraw any remaining cash from the portfolio
→ No incentive to act irrationally

8F (t) is the discounted target wealth
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Numerical Method

We solve the HJB impulse control problem numerically using a
finite difference method

We use a semi-Lagrangian timestepping method

Can impose realistic constraints on the strategy

Maximum leverage, no trading if insolvent
Arbitrarily shaped solvency boundaries

Continuous or discrete rebalancing

Nonlinearities

Different interest rates for borrowing/lending
Transaction costs

Regime switching (i.e. stochastic volatility and interest rates)

We can prove9 that the method is monotone, consistent, `∞ stable

→ Guarantees convergence to the viscosity solution

9Dang and Forsyth (2014) Numerical Methods for PDEs
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Numerical Examples

initial allocated wealth (Wa(0)) 100
r (risk-free interest rate) 0.04450
T (investment horizon) 20 (years)

qmax (leverage constraint) 1.5
discrete re-balancing time period 1.0 (years)

mean downward jumps mean upward jumps
µ (drift) 0.07955 0.12168

λ (jump intensity) 0.05851 0.05851
σ (volatility) 0.17650 0.17650

mean log jump size -0.78832 0.10000
compensated drift 0.10862 0.10862

23 / 29



Efficient Frontier: discrete rebalancing

Std Dev

E
xp

 V
al

0 200 400 600 800
200

400

600

800

1000

1200 semi-self-financing 
+ free cash
(upward jump)

semi-self-financing 
(upward jump)

self-financing
(upward jump)

downward jump

Figure: T = 20 years, Wa(0) = 100.
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Example II

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham10, most investors should

Pick a fraction p of wealth to invest in an index fund (i.e.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

10Benjamin Graham, The Intelligent Investor
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Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy
Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.
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Optimal semi-self-financing asset allocation

Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

We do this by determining the value of γ/2 (the wealth
target) by Newton iteration

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
Semi-self-financing 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
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Cumulative Distribution Functions
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Optimal
Allocation

Risky Asset
Proportion = 1/2

E [WT ] = 816.62 for both
strategies

Optimal policy: ↑W risk off;
↓W (t) risk on

Optimal allocation gives up
gains � target in order to
reduce variance and
probability of shortfall.

Investor must pre-commit to
target wealth
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Conclusions

Pre-commitment mean variance strategy

Equivalent to quadratic target strategy

Semi-self-financing, pre-commitment mean variance strategy

Minimizes quadratic loss w.r.t. a target
Dominates self-financing strategy
Extra bonus of free cash-flow

Example: target date fund
Optimal strategy dominates simple constant proportion
strategy by a large margin

→ Probability of shortfall ' 3 times smaller!

But

→ Investors must pre-commit to a wealth target

Optimal stochastic control: teaches us an important life
lesson

Decide on a life target ahead of time and stick with it
If you achieve your target, do not be greedy and want more
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