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Outline

Need to guarantee numerical scheme converges to viscosity
solution

Sufficient conditions (Barles, Souganidis (1991))

Monotone, consistent (in the viscosity sense) and `∞ stable

Examples known where seemingly reasonable (non-monotone)
discretizations converge to incorrect solution

One stochastic factor, several path dependent factors

Easy to construct a monotone scheme

→ Forward-backward differencing, semi-Lagrangian timestepping,
policy iteration

But suppose we have two (or more) stochastic factors

→ Not so easy to construct monotone schemes if we have
nonzero correlation

2 / 29



Example: two factor uncertain volatility

Suppose we have two stochastic factors S1, S2 (equities).

Risk neutral processes:

dS1 = rS1 dt + σ1S1 dW1,

dS2 = rS2 dt + σ2S2 dW2,

r = risk free rate

σi = volatility

Wk=1,2 = Wiener processes

(1)

where

d [W1,W2] = ρ dt

ρ = correlation (2)
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HJB PDE

No arbitrage value of a contingent claim U(S1,S2, τ = T − t)

Uτ = L(σ1, σ2, ρ) U

where

L(σ1, σ2, ρ) U

=
σ2

1S2
1

2
US1S1 +

σ2
2S2

2

2
US2S2 + r US1 + r US2 − rU

+ ρσ1σ1S1S2 US1S2︸ ︷︷ ︸
cross derivative term

And we have the initial condition

U(S1, S2, 0) = W(S1, S2) = payoff
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Uncertain Volatilities, Correlation
Suppose σ1, σ2, ρ are uncertain

Define the set of controls Q

Q = {σ1, σ2, ρ}
With the set of admissible controls Z

Z = [σ1,min, σ1,max]× [σ2,min, σ2,max]× [ρmin, ρmax]

σ1,min ≥ 0, σ2,min ≥ 0

− 1 ≤ ρmin ≤ ρmax ≤ 1.

Worst case cost of hedging, short, LQ ≡ L(σ1, σ2, ρ)

Uτ = sup
Q∈Z
LQU

Worst case cost of hedging, long

Uτ = inf
Q∈Z
LQU
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Discretization

Localize computational domain

(S1, S2) ∈ [0, (S1)max]× [0, (S2)max] = Ω

Define a set of nodes, timesteps

{(S1)1, (S1)2, . . . , (S1)N1} ; {(S2)1, (S2)2, . . . , (S2)N2}
τn = n∆τ, n = 0, . . . ,Nτ

And a discretization parameter h

max
(S1,S2)∈Ω

min
i ,j

∣∣(S1,S2)− ((S1)i , (S2)j)
∣∣ = O(h)

∆τ = O(h)
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First Attempt: Fixed Stencil

Finite difference of cross-derivative term (seven point stencil)

We approximate the cross-partial derivative at ((S1)i, (S2)j , τ
n) using one of the following stencils, as illus-164

trated in Figure 4.1, depending on the sign of ρ. For ρ ≥ 0, we use165

∂2U
∂S1∂S2

≈
2Un

i,j + Un
i+1,j+1 + Un

i−1,j−1

Δ+(S1)iΔ+(S2)j +Δ−(S1)iΔ−(S2)j
−

Un
i+1,j + Un

i−1,j + Un
i,j+1 + Un

i,j−1

Δ+(S1)iΔ+(S2)j +Δ−(S1)iΔ−(S2)j
. (4.4)

For ρ < 0, we use166

∂2U
∂S1∂S2

≈ −
2Un

i,j + Un
i+1,j−1 + Un

i−1,j+1

Δ+(S1)iΔ−(S2)j +Δ−(S1)iΔ+(S2)j
+

Un
i+1,j + Un

i−1,j + Un
i,j+1 + Un

i,j−1

Δ+(S1)iΔ−(S2)j +Δ−(S1)iΔ+(S2)j
. (4.5)
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(b) ρ < 0

Figure 4.1: The seven-point stencil for ρ ≥ 0 and ρ < 0. The seven points used in the stencil depend on the
sign of ρ.

Standard three point differences are used for the ∂2U
∂S1∂S1

and ∂2U
∂S2∂S2

terms. First order partial derivatives167

in (2.5a) are approximated with second order central differencing as much as possible. Algorithm A.1 in168

Appendix A shows how to select central, forward and backward differencing to minimize the appearance of169

negative coefficients in the discretization (Wang and Forsyth, 2008). The linear differential operator L in170

(2.5a) is discretized to form the discrete linear operator LQ
f .171

LQ
f Un

i,j = (αS1
i,j − γi,j)Un

i−1,j + (βS1
i,j − γi,j)Un

i+1,j + (αS2
i,j − γi,j)Un

i,j−1 + (βS2
i,j − γi,j)Un

i,j+1

+ 1ρ≥0(γi,jUn
i+1,j+1 + γi,jUn

i−1,j−1) + 1ρ<0(γi,jUn
i+1,j−1 + γi,jUn

i−1,j+1)

− (αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r)Ui,j ,
(4.6)

where αS1
i,j , β

S1
i,j , α

S2
i,j , β

S2
i,j , and γi,j are defined in Appendix A. The notation LQ

f indicates that the equation172

coefficients are functions of the control Q.173

The positive coefficient condition (Forsyth and Labahn, 2007) is174

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, βS2

i,j − γi,j ≥ 0,

γi,j ≥ 0, αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r ≥ 0, 1 ≤ i < N1, 1 ≤ j < N2.
(4.7)

Due to the presence of the γi,j term in (4.6), the discretization does not ensure that the positive coefficient175

condition (4.7) is satisfied even if our choice of the seven-point operator ensures that γi,j ≥ 0. However,176

our algorithm makes the positive coefficient condition hold on as many grid nodes as possible with a fixed177

stencil. Only when the cross derivative term disappears in the HJB equation (2.5a) can we guarantee that178

the positive coefficient condition always holds for a fixed stencil.179

Remark 4.1. It is possible to carry out a logarithmic transformation on equation (2.5a). In the new180

coordinate system (logS1, logS2), the diffusion tensor becomes constant for a fixed control. If we discretize the181

6

Other terms:

Three point second derivative finite difference

Central/forward/backward for first derivative terms

Try to produce a positive coefficient scheme
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Positive Coefficient Scheme
Un
i ,j ≡ approximate solution at ((S1)i , (S2)j , τ

n)

Discretization operator LQ
f (fixed stencil)1

LQ
f Un

i,j = (αS1

i,j − γi,j)Un
i−1,j + (βS1

i,j − γi,j)Un
i+1,j

+ (αS2

i,j − γi,j)Un
i,j−1 + (βS2

i,j − γi,j)Un
i,j+1

+ 1ρ≥0(γi,jUn
i+1,j+1 + γi,jUn

i−1,j−1)

+ 1ρ<0(γi,jUn
i+1,j−1 + γi,jUn

i−1,j+1)

− (αS1

i,j + βS1

i,j + αS2

i,j + βS2

i,j − 2γi,j + r)Un
i,j

Definition 1 (Positive Coefficient Discretization)
LQ
f is a positive coefficient discretization if ∀Q ∈ Z

(Red terms) ≥ 0 ;

true by construction︷ ︸︸ ︷
αSk

i,j , β
Sk

i,j , γi,j ≥ 0

1Note that α, β, γ are functions of the control Q. 8 / 29



Monotone Schemes

Consider fully implicit timestepping:

Un+1
i ,j = Un

i ,j + ∆τ max
Q∈Z
LQf Un+1

i ,j (3)

which we can write as

Gi ,j(Un+1
i ,j ,Un

i ,j ,Un+1
i+1,j , . . .) = Un+1

i ,j − Un
i ,j −∆τ max

Q∈Z
LQf Un+1

i ,j = 0 (4)

Definition 2 (Monotone Scheme)

Scheme (3) is monotone if Gi ,j(Un+1
i ,j ,Un

i ,j ,Un+1
i+1,j , . . .) is a

nonincreasing function of neighbours of Un+1
i ,j , i.e. (Un

i ,j ,Un+1
i+1,j , . . .).

Theorem 3 (Positive Coefficient Scheme)

A positive coefficient scheme is monotone.
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Conditions for a Positive Coefficient Scheme: Fixed Stencil

Recall that the positive coefficient property has to hold ∀Q ∈ Z
(i.e. αi ,j , βi ,j , γi ,j are functions of Q)

The problem is the cross-derivative term

For general Z, this requires severe restrictions on the grid
spacing

Restricted grid may not allow for fine spacing near strike

May be impossible to satisfy

See Reisinger (2016) for a discussion of this.

Alternative: wide stencil method
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Wide Stencil Method

Wide stencil

Grid spacing O(h)

At each node, do virtual rotation2

→ Choose rotation angle so that local diffusion tensor is diagonal,
no cross-derivative term,

→ Finite difference on virtual rotated grid

Values are interpolated from real grid

Size of virtual stencil O(
√

h)

We interpolate data for stencil from actual grid
Stencil size is O(

√
h) → guarantees consistency

2Debrebant and Jakobsen (2013); Reisinger and Rotaetxe Arto (2016);
factor the diffusion tensor
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Local Rotation

S1

S2

θi,j

√

h

b

b

b

b

b

Note: local rotation angle θi ,j depends on

Node location, i.e. (Si ,Sj)

Control Q at this node
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Wide Stencil II

Why is this called a wide stencil method?

Size of (virtual) stencil O(
√

h)

Grid spacing O(h)

Relative stencil length

√
h

h
→∞ as h→ 0

What happens near the boundaries?

Simple application of wide stencil

→ Stencil may require data outside computational domain
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Wide Stencil: near boundaries

If we need data S1 > (S1)max or S2 > (S2)max

Localization

→ Use artificial boundary conditions at (S1)max, (S2)max based on
asymptotic form of solution

Use same asymptotic form for data needed from wide stencil

Errors small if (S1)max, (S2)max sufficiently large

But, what about near S1 = 0,S2 = 0?

Wide stencil may need data for S1 < 0 or S2 < 0

Solution:

Shrink stencil arm so that we do not go outside domain
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Shrink Stencil Arm

h

h
1/2

if (S1)i >
√

h or (S2)j >
√

h) ⇒ discretization is consistent O(
√

h)
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What about lower left corner?

h
h
1/2

O(h)

h
1/2

h
1/2

Discretization of 2nd order derivative inconsistent here O(1)

Region (S1,S2) ∈ [0,
√

h]× [0,
√

h]

Equation coefficient O(h) → consistent discretization of PDE!
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Are we just lucky in this case?

If Fichera condition → boundary condition required

We use the necessary specified boundary condition → no
interpolation error at the truncated stencil points in the
rotated stencil → consistent

If PDE degenerates in both directions near the corner, and no
boundary conditions required (this talk)

Equation coefficient tends to zero → consistent

Conjecture 1

Truncating the stencil near the boundary is always consistent.

Proof.
(Maybe)
If no boundary condition required in one direction, but boundary
condition required in the other direction, then the virtual local grid
rotates to align with original grid (as h→ 0) ⇒ consistent
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Convergence of wide stencil method LQ
w

Lemma 4 (Ma and Forsyth (2017))

The fully implicit wide stencil scheme

Un+1
i ,j = Un

i ,j + ∆τ sup
Q∈Z
LQwUn+1

i ,j

is consistent (in the viscosity sense), `∞ stable and monotone.

Theorem 5 (Convergence)

The wide stencil method converges to the viscosity solution of the
uncertain volatility HJB PDE.

Proof.
The HJB PDE satisfies the strong comparison property (Guyon
and Henry-Labordere (2011)). Result follows from Lemma 4 and
(Barles and Souganidis (1993)).
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Hybrid Method

Algorithm 1 Hybrid Discretization Method (LQH )i ,j

1: for i = 1, . . . ,N − 1; j = 1, . . . ,N2 do
2: if (LQf )i ,j monotone ∀Q ∈ Z then

3: Use fixed stencil at this node (LQH )i ,j = (LQf )i ,j
4: else
5: Use wide stencil at this node (LQH )i ,j = (LQw )i ,j
6: end if
7: end for

Fixed stencil used as much as possible (more accurate).

We do not enforce any grid conditions

We simply check to see if the monotonicity conditions are
satisfied at a given node

Algorithm 1 only done once at start
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Fully Implicit Timestepping

Un+1
i,j = Un

i,j + ∆τ sup
Q∈Z
LQ
H Un+1

i,j

sup
Q∈Z

[
−(1−∆τLQ

H ) Un+1
i,j + Un

i,j

]
= 0

Define:

Un =
(
Un

1,1,Un
2,1, . . . ,Un

N1,1, . . . ,U
n
1,N2

, . . . ,Un
N1,N2

)
Un
` = Un

i ,j , ` = i + (j − 1)N1.

Similarly the vector of optimal controls is

Q = (Q1,1, . . . ,QN1N2)

The nonlinear algebraic equations are then3

sup
Q∈Z

{
−A(Q)Un+1 + C(Q)

}
= 0, (5)

A(Q) = matrix of discretized equations ; C(Q) = rhs vector
3Row ` of A,C depends only on Q`
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Policy Iteration4

Algorithm 2 Policy Iteration

1: Let (Û)0 = Initial estimate for Un+1

2: for k = 0, 1, 2, . . . until converge do

3: Qk
` = argmax

Q`∈Z

{
−[A(Q)]Ûk + C(Q)

}
`

4: Solve [A(Qk)]Ûk+1 = C(Qk)
5: if converged then
6: break from the iteration
7: end if
8: end for

4Use ILU-PCG method to solve matrix, complexity = O((N1N2)5/4), due to
shrunk stencil near boundary and fixed stencil nodes.
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Policy Iteration II

Let (Û)0 = Initial estimate for Un+1

for k = 0, 1, 2, . . . until converge do

Qk
` = argmax

Q`∈Z

{
−[A(Q)]Ûk + C(Q)

}
`

Solve [A(Qk )]Ûk+1 = C(Qk )
if converged then

break from the iteration
end if

end for

Theorem 6 (Convergence of Policy Iteration)

If ∀Q ∈ Z, [A(Q)] is an M matrix, then Policy iteration converges
to the unique solution of equation (5).

For wide stencil nodes

The rotation angle is a function of Q
→ The stencil changes at each policy iteration

But, we can still prove policy iteration converges!
• Positive coefficient → A(Q) is an M matrix
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Numerical Example (nonconvex payoff)

Butterfly on maximum (worst case short)

Smax = max(S1,S2),

Payoff = max(Smax − K1, 0) + max(Smax − K2, 0)

− 2 max(Smax − (K1 + K2)/2, 0).

Parameter Value

Time to expiry (T ) 0.25
r 0.05
σ1 [.3, .5]
σ2 [.3, .5]
ρ [.3, .5]
K1 34
K1 46
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Grid/timesteps

Refine Level Timesteps S1 nodes S2 nodes ∂Z nodes
1 25 91 91 24
2 50 181 181 46
3 100 361 361 90
4 200 721 721 178

For fixed stencil, analytic expression for global maximum of
objective function on ∂Z.

For wide stencil5, need to discretize control and do linear search6

on ∂Z.

5The policy iteration matrix is a discontinuous function of the control in
this case.

6The cost of the linear search far exceeds the cost of solving the matrix at
each Policy iteration
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Convergence study

Hybrid Scheme Pure Wide Stencil

Refine Value Diff Value Diff

1 2.7160 2.6371
2 2.6946 0.0214 2.6397 0.0026
3 2.6880 0.0066 2.6650 0.0252
4 2.6862 0.0018 2.6744 0.0094

Table : Butterfly call on max of two, worst case short, value at
(S1 = S2 = 40, t = 0)

Refine Average policy itns per step Fraction Fixed
Hybrid Scheme Pure Wide (Hybrid)

1 4.0 3.7 0.38
2 3.8 3.7 0.42
3 3.6 3.6 0.44
4 3.3 3.3 0.45

Table : Fraction fixed is not small, consistent with analysis in Reisinger
(2016).
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Rotation vs. Factoring7

Construct virtual local grid with no cross-derivative terms:

Rotate the local grid

Factor the diffusion tensor

Let the diffusion tensor be

D =
1

2

(
σ2

1S2
1 ρσ1σ2S1S2

ρσ1σ2S1S2 σ2
2S2

2

)
(6)

Factoring D

D =
1

2
CTC (7)

Define virtual coordinate system using columns of C
→ the cross-derivative terms are eliminated

7If you are a stochastic process person, factoring is natural, if you are a
PDE person, rotation is natural
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Rotation vs. Factoring II

Numerical tests:

Refine Rotation Factoring

1 2.7160 2.8518
2 2.6946 2.7733
3 2.6880 2.7282
4 2.6862 2.7085

Table : Butterfly call on max of two, worst case short, value at
(S1 = S2 = 40, t = 0). Hybrid scheme.

Rotation seems to converge faster than factoring

Rotated grid→ orthogonal
Factored grid → non-orthogonal

27 / 29



Summary: Uncertain Volatility

Cross derivative term → difficult to construct monotone
scheme

Wide stencil method

→ Unconditionally monotone, but only first order

Hybrid scheme: use fixed stencil as much as possible

→ Multi-d generalization of central differencing as much as
possible

Empirical results:

Local grid rotation better than factoring
Hybrid better than pure wide stencil

Conjecture: truncation of rotated stencil near boundary
always consistent
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Conclusions

Wide stencil idea can be easily combined with
semi-Lagrangian timestepping if control appears in diffusion
and first order terms
→ See portfolio allocation example (Ma and Forsyth (2016))

Similar method for multi-factor impulse control

Implicit discretization, no timestep restriction due to stability
Policy iteration rapidly convergent
Matrix easy to solve with an iterative method (M-matrix, local
orthogonal grid)8

Low accuracy control → accurate value function

Challenges:
Higher dimensions
Wide stencil only 1st order
Solution of local optimization (need global optimum to O(h))9

8But see Reisinger and Rotaetxe Arto (2016). Note that we use rotation
and ILU(1).

9Currently: discretize control, exhaustive search, most costly part of
algorithm
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