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Numerical methods for optimal decumulation of a
defined contribution pension plan

Peter A. Forsyth and
George Labahn

Abstract The decumulation of a defined contribution (DC) pension plan is well known
to be one of the hardest problems in finance. We model this decumulation challenge as
an optimal stochastic control problem. The control problem is solved, at each rebalanc-
ing date, by alternatively solving a linear partial-integro differential equation (PIDE)
followed by an optimization step. We solve the PIDE by using a d-monotone Fourier
method, which ensures that monotonicity holds to O (§). We allow for the use of leverage
(i.e. borrowing to invest in stocks), as well as minimum constraints on bond holdings.
We pay particular attention to minimizing wrap-around error, an issue which is endemic
for Fourier methods and central to the effective use of these methods for optimal control
problems. Rather unexpectedly, we find that restricting the portfolio equity fraction to a
maximum of 50% does not reduce portfolio efficiency noticeably. This may be a useful
strategy for risk-averse retirees.

Keywords: decumulation, stochastic control, risk
JEL codes: G11, G22
AMS codes: 91G, 65N06, 65N12, 35Q93

1 Introduction

In developed countries, there is a strong and growing shift from Defined Benefit (DB)
pension plans to Defined Contribution (DC) plans. The private sector, and increasingly
government institutions, are unwilling to take on the balance sheet liabilities of a DB
plan (Thinking Ahead Institute, 2024).

Under a DC plan, the employer and employee contribute to a (usually) tax advantaged
account, which is typically invested in a mix of stocks and bonds. Upon retirement, the
employee is now responsible for both choosing an investment strategy and deciding on a
withdrawal schedule. Although it is often advocated that retirees should buy annuities,
these are unpopular with DC plan holders (Peijnenburg et al.l 2016)) for numerous valid
reasons (MacDonald et al., 2013)). In particular, annuities are generally overpriced, lack
true inflation protection and retirees have no access to capital in the event of emergencies.
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2 Peter A. Forsyth and George Labahn

Since it is usually challenging to fund a reasonable lifestyle investing solely in riskless
assets, the retiree is now exposed to both investment risk and longevity risk. This problem
of funding retirement from accumulated DC capital, also known as the decumulation
problem, has been termed “the nastiest, hardest problem in finance,” by Nobel Laureate
William Sharpe (Ritholz, [2017).

There have been several suggestions for DC plan spending rules (Anarkulova et al.
2025). Probably the most ubiquitous rule is the four per cent rule (Bengenl [1994). This
rule suggests that retirees can withdraw four per cent of their initial capital (at age 65)
annually, adjusted for inflation. Based on historical US data, an investor who invested in
a portfolio of 50% bonds and 50% stocks (rebalanced annually), and followed the four
per cent rule, would have never run out of savings over any thirty year historical period.

However, the four per cent rule has many critics. For example, rolling thirty year
periods have high correlations. In addition, a fixed withdrawal schedule, as well as a
constant weight stock allocation is somewhat simplistic. In order to better stress test
spending rules, |/Anarkulova et al.| (2025) use block bootstrap resampling of historical
data, to generate a distribution of outcomes. We will also use block bootstrap resampling
to test our results in this paper.

Decumulation strategies are naturally posed as a problem in optimal stochastic con-
trol. The controls in this case are the stock/bond split on each rebalancing date and
the (real) annual withdrawal amounts. In our case we impose maximum and minimum
constraints on the withdrawal amounts and also impose constraints on the maximum
stock allocation.

1.1 Our Contributions

In this paper, we consider the same scenario posed inBengen|(1994). Our objective func-
tion is to maximize total withdrawals over a thirty year period (with minimum/maximum
annual constraints) and minimize the risk of running out of savings before year thirty.

An optimal stochastic control problem used for decumulation is solved at each re-
balancing date, by alternatively solving a linear partial-integro differential equation
(PIDE) followed by an optimization step. The PIDE is solved by using a §-monotone
Fourier method, which ensures that monotonicity holds to O(¢), an important property
for control problems. The 6—monotone technique generalizes the method described in
Forsyth and Labahn| (2019). Our basic dynamic programming technique is similar to
the high-level description in [Forsyth| (2022), but here we delve much deeper in de-
scribing the numerical methods. In particular, we focus on such issues as wrap-around
errors in Fourier methods or Partial-Integro Differential Equations (PIDEs), and the 2-d
¢-monotone Green’s function approximation.

Previous studies for decumulation have imposed no-shorting and no-leverage con-
straints on stock investments. In this paper, we relax the no-leverage constraint on the
stock investment and also investigate more restrictive investments in stocks. For exam-
ple, a risk averse retiree may wish to restrict the maximum fraction invested in equities
to be significantly less than one.

Rather surprisingly, we find that restricting the maximum fraction in stocks to be
50% does not lower the efficient frontier by a large amount. The most significant effect
of the 50% restriction, compared to allowing a maximum stock fraction of up to 130%
(leverage) is that the time for the median withdrawals to reach the maximum is delayed
by one year. This may be an acceptable trade-off for risk averse investors.

From the numerical point of view, when solving optimal control problems using
Fourier methods, wrap-around error can be significant, due to the possible instantaneous
movement to domain boundaries at reallocation times (Lippal 2013} [Ignatieva et al.|
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Numerical methods for optimal decumulation of a defined contribution pension plan 3

2018 [Alonso-Garcca et al.l [2018). We show that our technique reduces wrap-around
error to almost machine level precision.

1.2 Organization of this Chapter

The rest of this paper is organized as follows. In the next section we state our problem
setting followed by a mathematical formulation of our model in Section [3] The latter
section includes information on the stochastic processes followed by bonds and stocks
along with a description of our control set. Section 4] describes our conflicting risk and
reward measures, Expected Shortfall and Expected Withdrawals, while Section [5]1ooks
at how one maximizes these conflicting measures, something which is initially set up
as a pre-commitment problem which is not implementable. Section [6] then discusses
how one can formulate our problem into an (implementable) dynamic program, one
which is solved by a PIDE between withdrawal time intervals. Section [7] then shows
how one can solve these PIDEs using Green’s functions and Fourier analysis. The wrap
around problem that comes with using Fourier analysis and periodicity is addressed in
the next section. That section also includes the resulting numerical algorithm for solving
our optimal control decumulation problem. Section [9 then presents an example along
with its numerical solution followed in the next section by tests of robustness of our
numerical example. The paper ends with a conclusion along with an Appendix providing
extra details regarding the wraparound error discussed earlier.

2 Problem Setting

As noted in |Anarkulova et al.| (2025), retirees have a revealed preference for spending
rules, such as that advocated by [Bengen| (1994). Spending rules (such as the four per
cent rule) are popular with retirees as they are simple to implement, have an intuitive
interpretation, and the rolling 30 year backtests in[Bengen|(1994) are easy to understand.

In this paper we restrict attention to the scenario outlined in|Bengen|(1994)), that is, we
consider a 65-year old retiree who desires fixed minimum annual (real) cash flows over
a 30 year time horizon. We also impose an upper limit (a cap) on maximum withdrawals
in any year. From the CPM2014 table from the Canadian Institute of ActuarieqT] the
probability that a 65-year old Canadian male attains the age of 95 is about 0.13. In
spite of this relatively low probability of achieving the age of 95, assuming a 30 year
time horizon is considered a prudent approach for minimizing the risk of exhausting
savings. In addition, observe that we will not mortality weight future cash flows, as is
done when averaging over a population for pricing annuities. Mortality weighting may
not be meaningful for an individual investor, since it reflects population averages, rather
than the circumstances of an individual retiree.

Since we allow investing in risky assets, with a minimum cash withdrawal each year,
it is possible to exhaust savings[?] In this case, we continue to withdraw funds from
the portfolio, which is equivalent to borrowing cash. In such circumstances, we assume
that withdrawals continue, something which can be viewed as borrowing against other
resources. This debt accumulates at the borrowing rate. Essentially, we are assuming
that the investor has other assets, for example real estate, which can be used as a hedge
of last resort. In this case, this debt could then be funded using a reverse mortgage, with
real estate as collateral (Pfeiffer et al.,|[2013)).

Twww.cia-ica.ca/docs/default-source/2014/214013e.pdf.

2 Ignoring the trivial and unlikely case where investing in riskless assets can fund 30 year minimum
withdrawals.
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4 Peter A. Forsyth and George Labahn

Itis important to note that an implicit assumption here is that real estate is not fungible
with other financial assets, except as a last resort. This mental separation of assets is
a common aspect of behavioral finance (Shefrin and Thaler, |1988)). Real estate in this
case has a dual role: if market returns are exceptionally strong, or the retiree passes away
earlier then expected, this property can be a bequest. If market returns are poor, or in the
case of extreme longevity, then real estate can be used to fund expenses if the retirement
account is exhausted.

3 Mathematical Formulation

We assume that the investor has access to two funds: a broad market stock index fund
and a constant maturity bond index fund. Let S(¢) and B(¢) denote the real (inflation
adjusted) amounts invested in the stock index and the bond index, respectively, at time
t with T being the investment horizon. These amounts will evolve over time, depending
on the investor’s asset allocation, and changes in the real unit prices of the assets. In the
absence of an investor determined control such as cash withdrawals or rebalancing, any
changes in S(¢) and B(t) result from asset price evolution. We model the stock index
as following a jump diffusion, which permits modelling both continuous stochastic
processes as well as market jumps.

We model the real returns of a constant maturity bond index as a stochastic process
(see for example, |Lin et al.}|2015; MacMinn et al.,[2014). This avoids the need to model
bond prices and inflation separately. As done in[MacMinn et al.| (2014), we assume that
the constant maturity bond index follows a jump diffusion process, with justification
being found in Forsyth et al.| (2022, Appendix A).

3.1 The Diffusion Processes.

For any time 7 let

S(t) = EILH(}+ S(t—€) and S(t) = EILII(}+ S(t+e€)

denote the values of S the instant before ¢~ and the instant after t* time 7. Such notation
will also be used for any other time dependent function. We let £° be a random number
representing a jump multiplier, that is, when a jump occurs, S(z) = £°S(¢7). The use
of a jump process accounts for non-normal asset returns. As in (Kou} 2002} Kou and
Wang] |2004), we assume that log(£*) follows a double exponential distribution with u*
the probability of an upward jump and 1 — u* the probability of a downward jump. The
density function for y = log & is

FE) = unje M 1ys0+ (1 - u')nse™ 1,4 . (1)

We also define s

w1 -u
+ —
nf -1 7]5 +1

v =E[£ 1] = I, )

where E[-] is the expectation. In the absence of control, S(t) evolves according to

asio) _

S0 = (;f —A;yjf) di+osdzs +d| > (& -1, 3)

S
7T

i=1
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where (1 is the (uncompensated) drift rate, o is the volatility, dZ° is the increment of
a Wiener process, 77 is a Poisson process with positive intensity parameter A%, and the
&7 are i.i.d. positive random variables having distribution . Moreover, &7, 7}, and Z°
are assumed to all be mutually independent.

Similarly, let the amount in the bond index the instant before ¢ be B(¢~). In the
absence of investor intervention, B(¢) evolves as

b

dB(t) _(»
B(t7) ( A

LYe+ il oy ) di oAz d| Y =D ] @)

i=1

where the terms in equation (@) are defined analogously to equation (3). In particular,

nf is a Poisson process with positive intensity parameter /llé, and the density function

for y = log £ is
FP) = ubnle M ys0+ (1 - ub)nle™ 1,4

and yb = E[£P —1]. Again &7, 7P, and Z? are assumed to all be mutually independent.
£ g i y p

The term u21p(,-)<0y in equation (4) represents the extra cost of borrowing, that is,
the spread.

The diffusion processes are correlated, that is, dZ* -dzb = Psp dt. However, contrary
to common belief, an analysis of historical data suggests that the stock and bond jump
processes are essentially uncorrelated (see |[Forsyth| (2020b) for empirical justification).
We make this assumption in this work.

We define the investor’s total wealth at time ¢ as

Total wealth = W(r) = S(¢) + B(¢).

In case of insolvency, the portfolio is liquidated, trading stops and any outstanding debt
accrues interest at the borrowing rate.

3.2 The Set of Controls.

Consider a set of discrete times
T ={tr=0<t1 <tr<...<tyy =T}

where we assume that t; — t;_; = At = T/M is constant. Here 7y = 0 is the inception
time of the investment and 7 is the set of withdrawal/rebalancing times, as defined
in equation @I} At each rebalancing time #;, i = 0,1,..., M — 1, the investor first
withdraws an amount of cash ¢; from the portfolio, and then afterwards rebalances the
portfolio. At ¢y, = T the portfolio is liquidated and no cash flow occurs. This is enforced
by specifying gps = 0.
Let
W(t7) = S(7) + B(t;)

denote the instant before withdrawals and rebalancing at ¢;, we then have that W(¢}) is
given by
W) =W(t)-qi:ieT,

with W(t},) = W(t;,) since g = 0.

Typically, DC plan savings are held in a tax-advantaged account, with no taxes
triggered by rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect
other transaction costs, to be small, and hence can be ignored. It is possible to include
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transaction costs, but at the expense of increased computational cost (van Staden et al.|
2018).

Let X (t) = (S(¢),B(¢)), t € [0,T] denote the multi-dimensional controlled under-
lying process and x = (s, b) the realized state of the system. The rebalancing control
pi(+) is the fraction invested in the stock index at the rebalancing date t;, that is,

_ _ S(tF)
Di (X(ti )) =p (X(1; )Ji) = m .

Let g;(-) be the amount withdrawn at time 7;, that is, g; (X(17)) = ¢ (X(1]).1;).
Formally, the controls depend on the state of the investment portfolio, before the rebal-
ancing occurs, that is, p;(-) = p (X(¢7),#;) and g;(-) = q (X(¢]),t;) t; € T, where
7 is the set of rebalancing times. However, it will be convenient to note that in our
case, we find the optimal control p;(-) amongst all strategies with constant wealth (after
withdrawal of cash). Hence, with some abuse of notation, we will now consider p;(-)
to be function of wealth after withdrawal of cash, where we use the shorthand notation
W and W for the variables representing wealth the instant before and instant after ;.
Using a similar shorthand notation for S; and B; we then have

pi(:) = p(W(), ;) = pi(W})
ST =pi(W) W
Bf = (1-p;(W)) W} .

Note that the control for p;(-) depends only W;. Since p;(-) = p;(W; — ¢;), it follows
that

qi(-) = q:(W;)
which we discuss further in Section [6]

A control at time ¢; is then given by the pair (g;(-), p;(-)) where the notation (-)
denotes that the control is a function of the state. Let Z represent the set of admis-
sible values of the controls (¢;(-), p;(-)). We impose no-shorting, bounded leverage
constraints (assuming solvency) along with maximum and minimum values for the
withdrawals. In addition we apply the constraint that in the event of insolvency due to
withdrawals (W (¢]) < 0), or in the case of leverage, trading ceases and debt (negative
wealth) accumulates at the appropriate borrowing rate of return (that is, a spread over
the bond rate). We also specify that the stock assets are liquidated at t = 1.

We can then define our controls by

[gmin,gmax] €T 5 ti#Fw ity s W 2 Gmax
Zg(Wi 1) = § [qmin, max(qmin, W) ti €T 5t # ity W) < Gmax > ()
{0} ti=ty
[0, pmax] i €T 5 ti #tar s WS >0
Z,(Wit) =140} eT s ti#wty: WH<0. (6)
{0} i =1Itm

The rather complicated expression in equation (5)) imposes the assumption that as wealth
becomes small, the retiree first tries to avoid insolvency as much as possible and in the
event of insolvency, withdraws only gpip.

The set of admissible values for (g¢;, p;),t; € 7, can then be written as

(qi-pi) € ZW; Wit) = Zg(Wi 1) x Zp(Wioti) @)
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For implementation purposes, we have written equation (7)) in terms of the wealth after
withdrawal of cash. However, we remind the reader that since Wl.+ = W[ —q;, the controls
are formally a function of the state X (#;) before the control is applied.

The admissible control set A can then be written as

A= {(Qispi)OSisM 1 (pinqi) € Z(Wi_,W;r,li)}

with an admissible control £ € A written as

P ={(qi().pi(})) : i=0,....M}.

We also define P,, = P;, C P as the tail of the set of controls in [#,, #y+1, - . -, far], that
is,
Pn={(qn(), Pn())s- -5 (gm (). pm ()}

and A,,, the tail of the admissible control set, as
An = {(Qi,Pi)nsisM : (qi,pi) € Z(W;, W;r,li)} ,

so that P,, € A,,.

4 Risk and Reward

In this section we consider our measures of risk and reward for our retiree. In this case
the retiree is primarily concerned with the risk of depleting savings while at the same
time hoping to maximize the cash withdrawals from his plan.

4.1 Risk: Expected Shortfall (ES)

Two typical measures of financial tail risk of an investment portfolio are Value at Risk
(VAR) and Conditional Value of risk (CVAR), with the latter also known as Expected
Shortfall. Expected Shortfall is an alternative to value at risk that is more sensitive to
the shape of the tail of the loss distribution.

Suppose

Wa
/ gWr) dWr = a,

(e8]

where g(Wr) be the probability density function of wealth Wz at¢ = T. Then W7, can be
viewed as the Value at Risk (VAR) at level « since the probability of wealth being more
than W}, is 1 — a. For example, if @ = .01, then 99% of the outcomes have Wy > W7,.
If W}, is sufficiently large, this suggests very low risk of running out of savings. The
Expected Shortfall (ES) at level « is then

*

1 (o4
ES, = p Wr g(Wr) dWr , )

—00

which is the mean of the worst « fraction of outcomes. Typically @ € {.01,.05}.
The definition of ES in equation (8) uses the probability density of the final wealth
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8 Peter A. Forsyth and George Labahn

distribution, not the density of loss. Hence in our case, a larger value of ES, that is, a
larger value of average worst case terminal wealth, is desired. []

Define X, =X (ta ). Given an expectation under control P, Ep|[-], then as noted
by |[Rockafellar and Uryasev| (2000), the expected shortfall at level @ has the alternate
formulation as

. 1
ESq(Xy.15) = sup E,0 " |W* + = min(Wr - W*,0) | . 9)
w* @

The admissible set for W* in equation (9) is over the set of possible values for Wr-.

The notation ES, (X ,#;) emphasizes that ES,, is as seen at (X, 7, ), that is, the
pre-commitment ES . A strategy based purely on optimizing the pre-commitment value
of ES,, at time zero is time-inconsistent. As such it has been termed by many as non-
implementable, since the investor has an incentive to deviate from the time zero pre-
commitment strategy at¢ > 0. However we consider the pre-commitment strategy merely
as a device to determine an appropriate level of W* in equation (9). If we fix W* for all
positive ¢, then this strategy is the induced time-consistent strategy (Strub et al., [2019;
Forsyth, [2020aj (Cui et al.l 2022) and hence is implementable. For further discussion
of the relationship between time consistent and pre-commitment strategies, see (Vignal,
2014; Menoncin and Vigna, 2017} [Vigna, 2017} |Strub et al., 2019} [Forsyth, [2020a}
Bjork et al., 2021} |Cui et al., [2022). In particular, see Forsyth| (2020a)) for discussion of
the induced time consistent policy resulting from the use of ES risk.

An alternative measure of risk could be based on variability of withdrawals (Forsyth
et al.,2020). However, we note that we have constraints on the minimum and maximum
withdrawals, so that variability is mitigated. We also assume that given these constraints,
the retiree is primarily concerned with the risk of depleting savings, something which
is well measured by ES.

4.2 Reward: Expected Total Withdrawals (EW)

We will use expected total withdrawals as a measure of reward in the following. More
precisely, we define EW (expected withdrawals) as

M
_ _ X+7+
EW(Xg.15) = E0" Zqi], (10)

=0

where we assume that the investor survives for the entire decumulation period. This is
consistent with the scenario in|Bengen|(1994) .

We remark that there is no discounting term in equation (I0) as all quantities are real,
that is, inflation-adjusted. It is straightforward to introduce discounting, but we view
setting the real discount rate to zero to be a reasonable and conservative choice. See
Forsyth! (2022)) for further comments.

5 Maximizing Conflicting Measures: Problem EW-ES

Expected withdrawals (EW) and expected shortfall (ES) are two conflicting measures.
We handle this by using a scalarization technique to find the Pareto points for this bi-
objective optimization problem, that is, the set of points where one objective cannot be

3 In practice, the negative of W}, is often the reported VAR. and the negative of ES is commonly
referred to as Conditional Value at Risk (CVAR).
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improved without worsening the other. For a given scalarization parameter x > 0, the
goal is to then find the control £y that maximizes

EW(X;,15) + K ESa(Xy,15) -

More precisely, we define the pre-commitment EW-ES problem (PCES;,(x)) prob-
lem in terms of the value function J(s, b, #;) derived from @]) and :

M
1

Z qi + K(W* + — min(Wy — W, 0)) + eWr
a

i=0

J (s,b,15) = sup sup{E};g’t"_ X(t5) = (s,b) l}

PoeA W*

(11
(S(2), B(1)) follows processes (B) and @); ¢ T
W; =W, —qe; X7 = (S, Bp)
W, =|S, +B,
subjectto { ¢ ( ¢ {) (12)

S, =pc(OW}; By =(1=pe())W;
(qe()spe()) € ZWW, , W/ te)
t=0,....M;treT

Note that we have added an extra term E ig o [eWr] to equation . If we have a
maximum withdrawal constraint, and if W, > W* as t — T, then the controls become
ill-posed. In this fortunate state for the investor, we can break investment policy ties
either by setting € < 0, which will force investments in bonds, or by setting € > 0, which
will force investments into stocks. Choosing |€| < 1 ensures that this term only has an
effect if W, > W* and t — T. See |Forsyth! (2022) for more discussion of this.

We can interchange the sup sup(+) [*in equation to represent the value function
as

M
1
Z q; + K(W* + — min(Wy — W*, 0))+ eWr
a
i=0

W* PyeA

X(ty) = (s,b)l}.
13)

J (s,b,15) = sup sup {E;(,ﬂ’t"

Since the inner supremum in equation (I13)) is a continuous function of W* and the
optimal value of W* in equation (13) is bounded, [] we can define

M
1

Z ai + K(W* + — min(Wy — W*, 0))+eWT
a

W*(s,b) = argmax{ sup {E;g,to
i=0

w* PoeA

X(t5) = (s, b)l} .
(14)

Given ‘W*(s,b) from equation (14), then the optimal control £* which solves Problem
(13)) is the same control which solves

4Llet F = SUP (4. b) e AXB f(a,b),then Ve > 0, 3(a*,b*) € Ax B, s.t. f(a*,b*) > F — €. Then
F > sup,ca suppeg f(a,b) > sup,ey, f(a*,b) > f(a*,b*) > F — €. Hence, € — 0 implies
SUP,ea SUPpep f(a, b) = F. Similarly sup, g sup,ca f(a,b) =F.

5 This is the same as noting that a finite value at risk exists.
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M
8 0 & miny W 0. Oy
a

" B Xttt
J (s,b,15) = sup {Epg ‘o
i=0

PoeA

X(1y) = (s,b)l}.
15)
Hence Problem (T3)) is the induced time consistent policy for Problem (13). We refer

the reader to [Forsyth| (2020a)) for an extensive discussion concerning pre-commitment
and time consistent expected shortfall strategies.

6 Formulation as a Dynamic Program

We can use the method in [Forsyth| (2020a)) to determine our value function. Write
as
J(s,b,ty) =supd(s,b,W*,07),
W

where 0(s, b, W*, t) is defined as

M
1 .
Z qi + K(W* + p min((Wr — W*),O)) + eWr

i=n

- _ Xtotr
o(s,b,W*,t,)) = sup E,"
P’leﬂrl "

X(t;) = (s, b, W*)l}

(16)
(S(2), B(1)) follows processes (3)) and @); ¢ T
W)=W; —q¢: X} = (S}, B;,W")
W, =[S, +B,
subjectto { ¢ ( ¢ 5) (7

S, =pc(OW;; By =(1=pe()W}
(qe()spe(r)) € ZWW, , W[, te)
l=n,....M; tr €T

The original problem (T3] has therefore been decomposed into two steps:

1. For given initial cash Wy, and a fixed value of W*, solve problem (I6) using dynamic
programming in order to determine 9(0, Wy, W*,07).
2. Solve problem by maximizing over W*

J(0,Wp,07) = sup v(0,Wo, W*,07) . (18)
e

6.1 Dynamic Programming Solution of Problem (16)

We give a brief overview of the method described in detail in (Forsyth| 2022). We apply
the dynamic programming principle to z,, € 7~

o(s,b,W*,t,)=  sup { sup
quq (w™,tn) pEZp(w_ ~q>tn)

where w™ = (s +b) . (19)

g+i((w” —q)p, (w™ —¢q)(1 —p),W*JZ)} }

If we set
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h(w, t,, W) = [ sup  B(wp,w(l - p),W*, ¢} ] (20)
PG.ZI,(LU,I")

then equation (I9) becomes

o(s,b,W",t,)) = sup {q +
qgeZy(w,ty)

h((w™ - Q),W*JZ)]}
withw™ = (s +b). 21

This approach effectively replaces a two dimensional optimization for (¢, p,), by two
sequential one dimensional optimizations. From equations (20) and (1)), the optimal
pair (gn, pn) satisfies

gn=qn(w ,W*)  where w” =(s+b)

Pn = pn(w, W) where w=w" —gq, .
In other words, the optimal withdrawal control ¢, is only a function of total wealth
before withdrawals while the optimal control p, is a function only of total wealth
after withdrawals. If a withdrawal results in W* > 0, then the optimal control for p

is determined along lines of constant wealth in the (s, b) plane while if a withdrawal
results in W* < 0, then stocks are liquidated (p = 0). This is illustrated in Figure [T}

2000 -
1500 . _ ®
1000

500

Optimal Allocation
along this line

-500

1000 | \

Amount in Bonds: b

Liquidate
1500 - |Stocks s+b<0
Insolvent
2000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Amount in Stocks: s

Fic. 1: Schematic of withdrawal controls.

Att =T, we have

min((s+b —W*),0)
a

(s, b, W*,T") :K(W*+ ) +e(s+b)
while at points in between rebalancing times, that is when ¢ ¢ 7, standard arguments
from SDEs (B{f4), and [Forsyth| (2022) give

$)2 2 +00 b 2b2
O + (02) s + (1° ~ ey i) shs + Ay / i(e’s, b, 1) f*(y) dy + %%b

—00

+00

+ (1 + <oy = A%y 2)bip + 2% / 5(s, " b, 1) f* (y) dy = (A% + A2)0 + pspo o sbis, =0 .

—o00

(22)
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It is convenient to consider the two cases b > 0 and b < 0 separately. For b > 0, we
solve

U + (O_s2)252 bgs + (u* — /l‘;y‘;)sﬁs + /12 ‘[:O i(e’s,b,t)f*(y) dy + %ﬁbb
+ (,ub - /l};yg)bf)b + /l];g /+°° u(s,e”b, t)fb(y) dy — (/l‘; + /l’;)f) + psb(rscrbsbf)sb =0,
b>0,5>0. - (23)
When b < 0, it is convenient to re-write equatio in terms of debt b = —b. Letting
(s, b,1) =0(s,b,1),b < 0,b = —b in equation li we obtain
b + (0-S2)2s2 Dss + (U = A%y ) sbs + A% '[:0 0(e”s, b, 1) f5(y) dy + (O-bzﬂﬁgl;

+00

+ (b + b - /lléyg)l;f),; + /l?E / 0(s,e”b, 1) fP(y) dy - (/ls§ + /12)13 + pst'SO'bslaf)S,; =0,

—00

b>0,s>0. (24

Note that equation is now amenable to a transformation of the form £ = log b
since b > 0, something required when using a Fourier method (Forsyth and Labahn,
2019; |[Forsyth 2022)) to solve equation @])

After rebalancing, if b > 0, then b cannot become negative, since b = 0 is a barrier
in equation @]} However, b can become negative after withdrawals, in which case b
remains in the state b < 0. There equation (24) applies, unless there is an injection of
cash to move to a state with b > 0. The terminal condition for equation (24) is

min((s — b — W*),0)
a

0(s, b, W*, T*) = k[ W* + +e(s—b):b>0.

7 The 6-Monotone Fourier Method

The 6-monotone Fourier method originated with the work of Forsyth and Labahn|(2019)),
where it was applied to one dimensional problems in stochastic control. In the following,
we give a sketch showing how to extend those methods to work for two dimensional
problems.

We illustrate this method by focusing on equation (23). Since » > 0, s > 0 we can let
x1 =logs,x; =logh, v =T -t withov(xy,x2,7) = 0(e*, e*2, T —71). Then converts
to

( O_S)2 0 by2

\} S \) \} \) (O— )
br = 5 Uxx + (1 = A%y, +/l‘§/ v(x1 +y,x2, 7)) (y) dy + 5w

+ (1" = A%y 2y, + 2% / o(x1,x2 +y,0) 2 (y) dy = (X + %)+ pspo* vy, .
(25)

The exact solution of equation (25) can be written as
(e8] (o)
v(xl,xz,T+AT)=/ / g(x1 —z1,x2 — 22, A7) v(21, 22, 7) dz1 dzo,  (26)

where g(x1,x2, A7) is the Green’s function of equation (Garroni and Menaldi|
1992).
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Remark 1 (Form of Green’s function) Note that the Green’s function for equation ([23)
is of the form g(x1,x2, 21, 22) = g(x1 — z1, X2 — 22), that is a function of the differences.
Intuitively, we can view the Green’s function as a scaled probability density f, and
this means that f(x1,x3)|(z1,z2) depends only on the difference, f(x,x2)|(z1,22) =
f(x1—z1,x2—22). See[Forsyth and Labahn|(2019)) for more discussion of this observation.

The Fourier transform pair for the Green’s function is given as
(o9 (o8] . X
G(wi, w2, AT) = / / g(x1,x2, AT) e 2FIWIX1 o =202 )y
-0 J —00
g(x1,x2,AT) = / / G (w1, wy, AT)2TWIX1 2R oy dey . (27)
—00 J—00

where i = V—1. Standard techniques then give the Fourier Transform of the Green’s
function G (w1, w,, At) for equation as

G (w1, W, AT) = ¥ (@1@)AT (28)
where
o’ 2 s\2 ) _
P on) =~ T @ron? + (10 = a5, - 5 rion) + 1 F )
b\2 b\2 -
—(O— ) (2rw))? + (ub - /12:72’ - ﬂ) (2miw,y) +/lléFb(a)1)
&7 ¢ 2 ¢
~(Xy +22) = psp° 0 (21w) (212). (29)

Here ﬁ(wl),ﬁ((ul) are the complex conjugates of the Fourier transforms of the
density functions f°, f?:

_ us 1—u®
N —_
F (Lt)]) 1 2miw + 1 2miw
S + S
™ n
b b
u 1-u
b —
F ((UZ) - 1 2riwy 1 2riwy
b + ’IJ
m ()

7.1 Localization

Define

Q = [(XDmin> (X1)max] X [(*2)min> (X2)max] -

As is typically the case, we assume that the Green’s function g(x,x,, At) decays to
zero as |xq |, |x2| — co. More precisely, we assume that

Assumption 1 (Decay of Green’s Function). Forsome A > 0, g(x1,x2, AT) is negligible
if min(|x; |, [x2]) > A.

We choose our region €2 so that we can assume that the Green’s function is negligible
for (x1,x2) ¢ Q. As such we replace the Fourier transform pair (27) by their Fourier
series equivalent
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14 Peter A. Forsyth and George Labahn

(1 )max (22 )max Lk L
G(wl,wz,A‘r) g(x1, X2, AT) e 2TECTX1 o727 X2 e Iy
(1) min (XZ)mm
1 2 2
g(xy,x2,AT) = P P kaj_Z:wG(wl,wz,AT) e miwkx e miw) £ (30)
with
P = P, = . k _ k i d
1= (XDmax = &Dmin 3 P2 = (X2)max = (X2)mins wy = P w; = 7,
1 2
along with a localized version of equation (26)
(1 )max (22 )max
v(x1,x2, T+AT) = g(x1 —z1,%0 — 22, A7) v(21, 22, 7) dzy dzs
(1) min (>2)min

3D

Scaling factors in equation (30) are selected to correspond to a finite domain form of

equation (27).

7.2 Periodic Extension

We have informally derived the expression for the Green’s function by localizing the
infinite domain Green’s function. Localizing the problem on €, and using a Fourier
series representation of the Green’s function makes the implicit assumption of periodic
extension.

Assumption 2. Periodicity

The control problem is defined on the finite domain €.
The solution v(x1, x>, T) is extended periodically

v(x1 £ P1,x2,T) = v(x1, %2 = P2, 7) = v(x1,X2,T) . (32)

The jump size density functions f5(y1), f°(y2) are defined on y; € [(x1)min> (X1)max]
and y3 € [(%2)min> (X2)max ], With periodic extension

FFoi+P) =) and fP(y2+P2)=f2(). (33)

Periodic boundary conditions are specified for the PIDE problem (23)).
From equation we can also see that

g(x1 £ P1,x2,7) = g(x1,x2 = Py, 7) = g(x1,x2, 7).

It is more rigorous to make Assumption [2] and then derive the Green’s function.
It is stralghtforward to verify that thls y1e1ds the Fourier series representation (30),
with G(a)] , wz) given by equations . In particular, we have that (Garroni and
Menaldi, [1992)

g(x1,x2,AT) 2 0

/g(xl,xz,AT)qu dxy=1.
Q
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7.3 Discretization

We discretize equation on a grid {(x1,x2);.x}, {(z1,22) .k}, by setting

J _ 20 . .k _ 20 L.
x]—x1+]Ax1,x2—x2+kAx2,]——

M

; Axo

-3

N,
27

2 2 2

P1 = (x1)max = (X1)min 5 P2 = (X2)max — (X2)min
vjk(T) = v(x{,xé‘,‘r).

Define linear basis functions as

(x1—(x] -Ax)))

Ax1

¢l (x1) = { Gl+an-x)

X1

0

1

J
X

x) —Ax) <x; <x/

1
<X Sx{+Ax1

otherwise

with a similar definition for gb’z‘ (x2). We can then represent the solution v(xy, x;,7) as a
linear combination of the basis functions

Ni/2-1

N> /2-1

x> Y Y g (x)ok(D) (34)

J==Ni/2 k==N,/2

Substituting equation (34) into equation (3T) then gives

ve.m (T + AT)

NUZL Np/2c] (X1 mas
= Z Z ;.k(7)

Jj=—N1/2 k=—N»/2 (X1 )min

(XZ)m

(2)min

ax

¢>{(x1) ¢]2‘(x2) g(xf —X1,X5 — X2, AT) dx; dx; .

(35)

For a given pair (j, k) the double integrals then simplify to

(1 )max (22 )max

¢{(x1) o5 (x2) g (6 = x1, X" = x2, AT) dx; dxs

(1) min (%2)min

1
4

1 2

/ x{ +AXx] xé‘ +AXx)
x]j —-Ax xé‘ —Axp
m— xé‘ +AXx)

/xf—x{+Axl /x
x‘)fx{ —-Axy xé"kafoz

2

2

J m k
'/vxl —-x +AXx] /x2 —X; +Axy
x][—xJ —Axy x’"—xé‘—sz

¢']i(x1) B8 (x2) g(xf = x1, x5 = x2, A7) dxy dxa

¢] (x{ —x1) P (X~ x2) g(x1,%2, AT) dixy dx

¢ (x1)93* (x2) g (x1,x2, AT) dixy dxs .

Here the last line follows from the property of linear basis functions,

¢l —xi) = ¢\ (1), PE(E —x0) = K (na).

Defining

1
S i mr(AT) = ———
8t-j, k( T) A)Clez ‘/x‘{

xt —x'll +AXx]

1

—x{ —Ax

m

o)
X -

2

—xé‘ +Axy

k_
x5 Axp

17 (x1) By  (x2) g(x1.32, AT) dxy dix,
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16 Peter A. Forsyth and George Labahn

then implies that for each ¢ = —=N/2,...,N1/2 -1, m = =N3/2,...,N»/2 — 1, the
convolution (33) can be written as

Ni/2=1 Naj2-1

vem(T+AT) = DT 0 k(D) ook (7) Ay Axa. (36)
J==N1/2 k=-N,/2

Furthermore using the Fourier series form for g(-) from equation (30) we have

g[—j,m—k(AT)
1 xf—x +AX; 3 —xy +Ax) i k
== . ¢, (x1) 57" (x2) g(x1,x2,7) dxy dxy
Ax1 Axp /" X —Ax) /xlg"—xk—sz ! z

© & (sin? rw “AX| sinzﬂngxz
P1P2 Z Z (nw”Ax1)2 (7rw§Ax2)2

i i sin? W Axy sinzﬂngxz
P1P2 L (rwfAxy)? (mw} Axs)?

Here for the inside integrals in (37) we have used the following formula for linear basis
functions

/y+Ax PRIOY () = 2O sin® TwAx
Ax (mwAx)?
applied separately for ¢| and ¢,. Note that equatlon is independent of £? E|
For future reference, we note the DFT pair for any grld functlorl h(x] ,xz) = hjy is
given by
t m Py Py —27ilj/Ny ,—2rimk/N,
H(a)l,a)z,AT)zﬁlEZe e hjk (38)
ok
hpn(AT) = VS 2PN 2mimn N2 pr ()€ ) At) (39)
f,m

which can be verified by substituting equation (38) into equation (39)
1 2nil(p—-j)/Ni 2nim(n—k)/ Ny
hpn(AT)—m;;hjk;ﬂe e = pn »

since

Z 27l (p=]) N1 2mim(n—k) [Ny _ NiN» p=j af}d n=k ‘ 40)
0 otherwise

t,m

We denote this pair by H = DFT(h),h = IDFT(H).

7.3.1 Discrete Index Domain

Although we have defined the solution on the physical domain Q, note that from equation
8¢—j,m-n 1s independent of ()??, 322 ). In addition, the DFT pair are defined indepen-

¢ For the case of u = 0, p = 0 in equation we take the limiting value as w(l) -0, “’(2) — 0.
7 Note that the DFT here is independent of any physical coordinates.

k
G(wl,wz,AT) 627rlw1 (x -y ) 27r1w (x3"=x5)

G(wl,wZ,Ar) eanu([ J)/ Ny 27rlp(m k)/Nz

(37)
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dently of the original grid. Consequently, in order to avoid confusion concerning the
various physical and grid domains, we will refer only to discrete index domains. Define

{(€])|——<€<7—1 —TSJ'ST_l}_

Then g, ;, ve,; are both in the index domain D.

7.4 Efficient Computation of the Discrete Convolution

The discrete convolution (36) is performed at each rebalancing date, hence an efficient
evaluation is desirable. The convolution can be written as

Ni/2-1  NpJ2-1

vem (T +AT) = Z Z v k(T)&e-j.m-k (AT) Axy Axy
J==Ni/2 k=—=N,/2

P P
= 22& jmk (AT k(7). (41)

Using equations and to write §(At) = IDFT(G(At)),v = IDFT(V) in
equation (1)) gives

1 1 - . . . L R
Vem (T + AT) — Z Z Gpu (AT)eZmp(f—j)/Nl eZmu(m—k)/Nz Z Vq’requj/N] e27rtrk/N2

NPy N2 P o &
1 . .
— G (AT)V eZmp[/Nl 2mium/N; eZm/(qu)/Nleka(rfu)/Nz
NP, N2P2 Z;; b JZ,;
11 . .
— P_IP_ Gpu (AT)VpueZHIP(’/NIeZﬂmm/Nz

p.u

where we have used equation (@0) in the last step. More compactly we can write
(1t + A1) = IDFT( G(At) o DFT (0(7)) ), (42)

where y o z is the Hadamard product of vectors y, z.

7.5 6-Monotonicity

Using the definition for § from equation (37), then this represents an exact integra-
tion over linear basis functions of the exact Green’s function (with periodic boundary
conditions) on . Hence

gik=20;V(jk)eD (43)

This gives rise to an important monotonicity property (Forsyth and Labahnl [2019).
Suppose we have two discrete solutions ve_,, (7), ts_, (7) such that

Ve.m(T) > e (1) 5 YV(&m) € D . (44)

Then, using the time advance algorithm (36)), it follows that the discrete comparison
principle holds:
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18 Peter A. Forsyth and George Labahn

Vem(T+AT) > upm(T+A7); YV(E,m) € D.

The positivity condition (43) ensures that the order property (4) is preserved by the
discretized algorithm. This is, of course, a property of the exact solution. This property
is important since we compare the values of the discrete solution in order to determine

the optimal control. See [Forsyth and Labahn|(2019) for more discussion of this.

However, note that the dimension of g is (N7, N»), but we need to sum an infinite
series to determine the discrete values of g,,, from equation (36). In practice, we
truncate the series in equation (37)), that is,

&c-jm-k(AT)
NE[2-1  NF/2-1 (

1
- PP Z

u=-Nf/2 p=-N3/2

2
G(wy, wé’,AT) e

sin? nwiAx ) (sin2 ﬂwsz)Q ) e pOmek)
e N

(mwiAxy)? (mwh Axy)?

(45)

where the grid sizes (N?, N§ ) can be chosen independently from (N, N,). However,
truncating the Fourier series means that the positivity condition (#3)) may not hold any
longer. In |[Forsyth and Labahn| (2019), it is suggested that (N, Nzg) be selected so that

NE/2+1 Nf/2-1

A
Y D, Andnmin(Ena.0) <o . (46)
m=—N1g/2 n=—Né’]/2

This ensures that the cumulative effect (after (7'/(At) steps) of non-positivity means
that the discrete comparison principle holds to O(8). Note that if the timestep (A7) is
constant (which is usually the case), then equation (@3]) needs to be computed only once.
Hence it is inexpensive to select sizes (N¥, N2g ) which satisfy condition . Equation
can also be computed efficiently using FFTs, assuming N‘lg /Ny, Né" /N, are powers
of two (see [Forsyth and Labahn| (2019).

8 Periodicity and the problem of Wrap-around error

Localization of the Green’s function effectively implies a periodic extension of the
Green’s function and the solution (see Assumption [2). In option pricing applications,
this wrap-around error does not cause difficulty. However, in control applications,
impulse controls (such as rebalancing) may require extensive use of solution values near
the edges of the grid. For example, derisking by investing in an all bond portfolio results
in an impulse control which drives s — 0 instantaneously. This can cause significant
wrap-around pollution (see (Lippa, |2013; Ruijter et al., 2013} [Ignatieva et al., [ 2018))).

Given the localized problem defined on Q = [(x])min, (*1)max] X [(*2)min> (X2)max ],
with widths

P = (x1)max — (X1)min and P2 = (x2)max — (X2)min

we construct an auxiliary grid with N Ir = 2N nodes in the x; direction, and Ng =2N,

nodes in the x, direction, on the domain Q' = [(xl):nm, (xl);;ax] X [(xz)jnin, (xz)jnax],

with

P P
(xl)T' = (xl)rnin - , (xl):;ax = (xl)max + -
min 2 )

P
(XZ)T- = (x2)min -2 5 (x2)r1;1ax = (x2)max + =2
min 2 )

Pl{ = ()Cl);;ax - (xl);in = 2P1 ; PZI = (x2)2;1ax - (XZ)jnin = 2P2
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Although we have increased the size of the physical domain €2, we remind the reader
of the discussion in Section[7.3.1] It will be more convenient in the following to refer to
the extended index domain

D = {(k,j)l -Nij2<k<Ni2-1, —Ng/zsjszv;/z—1} .

Denote the projected Green’s function for grid indexes in D' by g'. Note from
equation that g% does not depend on the actual physical domain, but only on
(Axy, Axy). We construct and store the DFT of the projection of the Green’s function
G'(At) = DFT(g"(A7)) on this auxiliary index grid DT,

Before applying the time advance algorithm @]} we form the padded array v’ (7):

UT(xI”,xlg,T) = v(x’l",xg,r) , (m,k) € D

MNPk Ty, me [-NT/2,-Ni /2 - 115 k€ [-N2/2, N2 — 1]

=o(x; M2 TNV 1), moe [-NT[2,-N /2= 1]; k€ [-N), -N; 1]

= o ;™ 0y, me [-N1/2,Ni /2115 k€ [-N[/2,-N2/2 - 1]
=A(x7’,x12‘,‘r), m>N;/2-1 or k>Ny/2-1, 47)

=o(x

where A(x’ln,xé, 7) is an asymptotic form of the solution which we assume to be
available from financial reasoning. On the auxiliary grid, the points where x| < (x1)min
or xp < (Xx2)min correspond to the points where s — 0 or b — 0, with very small
grid spacing. Hence extending the solution by constant values to the left and bottom is
expected to generate a very small error.

We then modify the time advance algorithm (@2)) as shown in Algorithm[I] Note that
the step (3) discards the computed solution in the padded areas {v'(7 + A7), j|(i, j) €
DT — D}, since these points may be contaminated by wrap-around errors.

Require: v(7); G'

1: Form v (7) using ~
2 v'(r+A7) = IDFT(G o DFT (v'(7)) ) {IDFT (Hadamard product)}

3 vem(T+AT) = 0] (T+AT), (k,m) € D {Discard values in D - D.}

ALcoritHM 1: Advance time v(T) — v(T + AT).

8.1 Error Due to Wrap-around

Let " = nAtr and NAt = T, with At fixed. We can then write the discrete convolution
(@T) in the physical domain, compactly as

optl = AxjAx, Z Bl (T (Em) €D . (48)
(j,k)eDF

Note that the right hand side of equation lb uses the padded values for vj. x> but

generates the unpadded U?J;,ll on the left hand side. In addition, ' is periodic with period
PI in the x direction, and period P; in the x; direction.

The use of Algorithm [I|means that the periodic extension of g is used in equation
(@8) for any terms of the sum such that
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(t-jm—k)¢D".

This periodic extension wraps around the solution domain. For example, points with
indexes { — j < —N I /2 reference points with index € — j + N IL, which is at the opposite
side of the grid, and potentially generates wrap-around error. See also Appendix [I2] for
further discussion of this.

Definition 1 (Wraparound error.) Assume g}  for (¢£,m) € D is periodic
g (=N m) =g (tm=N]) =g (tm). (49)

Suppose v;’k(‘r") is determined by boundary data for (x{ X' € (Q" — Q), which

we assume to be exact with (N i N; ) = (2N1,2N;). Then, the wraparound error for

convolution @ evaluated using DFTs, at timestep nAt, denoted by €]}, is

wrap

83)’,“‘0 = A)CIsz (enr:le)ve( Z |g~;7j,m7kvj',k(‘rn)| l(f—j,m—k)e.‘D* . (50)
| (J.k)e DT

We now state a theorem on the effectiveness of our padding method. See Appendix
[12] for a proof.

Theorem 1 (Wraparound error) Suppose g; wfor (6,m) € D' isperiodic as defined in
equation , and that vj, (7" be determined by boundary data for (£, m) € ( D -D),
with (N if N,) =2(Ny, N2). Assume further that there exists a constant C such that

|U;m(‘r")| <C, (&,m)eD", V¥n suchthat (nAt) <T,

and that we choose (N1, N;) sufficiently large so that

Avidy, > gl l| < e AT, (51)
(j.k)eD'-D
Then
Eprap < Cep AT, (52)

and the wraparound error after N steps is bounded by
eN < Tep,C whereT = NAt .

Remark 2 (Asymptotic Form of Green’s Function) For a pure diffusion in one dimension,
the Green’s function for the Black-Scholes equation behaves like

gx—x",At)=0 (e_(x_x’)z/(‘fzm)) as|x —x'| > 0.
Similar asymptotic exponential decay as max(|x|,|x2|) — oo is also seen for the full

2-d Green’s function(Garroni and Menaldi, [1992). Hence ensuring that condition @)
holds is not onerous.

8 In practice, we use the method in equation li , which we expect will generate a small error.
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8.2 Numerical Method for Optimal Control

As mentioned in Section[T6] we need the optimal pair (g, p) at each rebalancing date. The
optimal controls are obtained by first discretizing the controls and thereafter determining
the controls by exhaustive search. Recall that the PIDE grid spacing is Axy, Ax,. Let
N, and N, denote the number of points in the discretizations of ¢ and p, respectively.
We will also need to discretize the possible values of total wealth w = s + b, with
N, denoting the number of discrete wealth values. This approach (discretization and
search), is then guaranteed to converge to the viscosity solution of the optimal control
problem in the limit as

AXI7A-X2—)O;N£[7N[)’NH)_>OO; 6—)09

provided that the complete numerical scheme is 6—monotone, consistent and £, stable,
see (Barles and Souganidis, |1991} |[Forsyth and Labahn, [2019)).

Given an array of discrete values, that is, v; x(7,, ), we denote the linear interpolant
of the grid values at an arbitrary point (z, z2) by

v(Z(z1,22).7,) -
The numerical analogue of equation (20) requires a temporary array, h(wy), k =

1,..., Ny, where wi = s + b, the total wealth. This array is determined by

p*(wx) = argmax U( 7 ( log(wkp;) , log(wi(1 = p;))) ,T,f)
——— j=1,..., Ny
k=1,...,N, Pj€Zp(wk,7,;)

h(wg) = U(I( log(wep™(wk) ), log(wi(1 - p*(wi)) ) )Tn) - (33)

——

In order to compute (21, we break this down into two steps, first using

q"(wx) = argmax {qj+h(I(wk—qj)) } (54)
—— j=1,..., Ny
k=1,..,Ny 4;€Zq(wk,Tn)

where h(J (-)) refers to one dimensional interpolation for the one dimensional array
h(wg). Then

ik _+ * %
o(x),x;,7y) =g¢q (I(wj,k>)+h(f(w,~,k—q (I(wj,k>))). (55)
——————
Jj=—Ni/2,...,N{/2-1
k=—N>/2,...,N>/2-1

J k
w_,-,k=ex1 +e™2

8.3 Summary: Algorithm for Problem (16).

Algorithm [2] summarizes the final algorithm. The initial set-up cost is computing the
Fourier weights on the extended domain G . Each timestep consists of first determining
the optimal control, then followed by advancing to the next rebalancing time using the
precomputed weights G .

Remark 3 (Use of linear interpolation) Equations (53H55) make heavy use of linear in-
terpolation. As discussed in |[Forsyth and Labahn| (2019))) this is the only interpolation
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Require: Weights G'in padded Fourier domain satisfying tolerance ¢ (see equations
(ERE))
1: Input: number of timesteps A, initial solution (v°)~
2: forn=1,...,N do {Timestep loop}
3:  Optimal control v(7, ) — v(7}_,) equations
4: Advance time v(7)_ ) — v(7,) using Algorithm I}
5: end for{End timestep loop}

ALGORITHM 2: Monotone Fourier method.

method (in general) which will preserve ¢-monotonicity. This means that the conver-
gence rate cannot exceed second order in the grid spacing. This is in contrast to the
methods in (Fang and Oosterleel [2008}; 2009 [Ruijter et al., 2013)), where, in some cir-
cumstances, high order rates of convergence can be achieved, but at the cost of possible
non-monotonicity.

Remark 4 (Insolvency Between Rebalancing Times) For b > 0, insolvency cannot occur
between rebalancing dates. However, for b < 0, it is possible that a large drop in the
value of stocks could result in s + b < 0 between rebalancing times. Numerical tests
using subtimesteps between rebalancing times (and checking for insolvency) did not
show any significant changes to the final values at + = T. Hence, in all our reported
numerical tests, we only check for insolvency at rebalancing times.

8.4 Final Algorithm: Problem EW-ES (18).

The final step for the complete solution of the EW-ES problem is the optimization step
(I8). We solve Problem EW-ES on a sequence of grids, with increasing number of grid
nodes. On the coarsest grid, we discretize W* and find the maximum of equation (I8]) by
exhaustive search. Note that each evaluation of the objective function in (I8) requires a
solution of Problem Using the coarse grid value of W* as a starting value, we use
a one-dimensional optimization algorithm to maximize the objective function (I8)) on
each finer grid.

9 Numerical Example and Results

We consider a 65 year old retiree who has $1,000K (one million) in pension savings.
The retiree needs to withdraw a minimum of 30K per year, but has no use for more than
60K per year. All amounts are inflation adjusted. We assume that the retiree has other
sources of income (work pension, government benefits) which, when added to the 30K
per year of withdrawals, accumulate to a satisfactory income level.

We consider a 30 year time horizon, since this is consistent with the Bengen| (1994
scenario. Recall that the probability of a 65 year old Canadian male attaining the age
of 95 is about 0.13, so this is a fairly conservative assumption. Similar probabilities are
also true for other western countries.

The pension savings are assumed to be held in a tax advantaged account, so that there
are no tax consequences for rebalancing. We consider the withdrawals to be the desired
amount before any income taxes.

Note that we also consider that the retiree has mortgage free real estate worth 400K.
We can regard this as a hedge of last resort.
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Remark 5 (Reverse Mortgage Hedge) If we assume that a reverse mortgage can be used
to obtain a non-recourse loan of half the value of the real estate (200K), then from a risk
management point of view, any strategy which results in an expected shortfall > —200K
is probably acceptable. All quantities are assumed inflation adjusted.

Other scenario details are listed in Table [I] As a point of comparison, the Bengen
(1994) strategy would withdraw a fixed amount of 40K (real) per year (4% of the initial
1,000K), and rebalance to a constant weight of 50% in stocks at each rebalancing date.

Investment horizon T (years) 30.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W 1000
Mortgage free real estate 400
Cash withdrawal /rebalancing times t=0,1.0,2.0,...,29.0
Maximum withdrawal (per year) Gmax = 60
Minimum withdrawal (per year) Gmin = 30
Equity fraction range [0,pmax]

Pmax = 0.5,0.8,1.0,1.3
Borrowing spread u” 0.03
Rebalancing interval (years) 1.0
a (Expected shortfall parameter) .05
Stabilization € (see equation ) -10*
Market parameters See Table

TABLE 1: Input data for examples. Monetary units: thousands of dollars. All amounts inflation
adjusted.

For the computational study in this paper, we use data from the Center for Research
in Security Prices (CRSP) on a monthly basis from 1926:1 to 2024:12°| The specific
indices used are the CRSP 30 day U.S. T-bill index for the bond asset, and the CRSP
cap-weighted total return index for the stock asse{™] Retirees are, naturally, concerned
with preserving real (not nominal) spending power. Hence, we use the US CPI index
(from CSRP) to adjust these indexes for inflation. We use the above market data in two
different ways in subsequent investigations.

We use the threshold technique (Mancini}, 2009} |Cont and Mancinil 2011} Dang and
Forsyth, [2016)) to estimate the parameters for the parametric stochastic process models.
Since the index data is in real terms, all parameters reflect real returns. Table shows the
results of calibrating the models to the historical data. The correlation pg, is computed
by removing any returns which occur at times corresponding to jumps in either series,
and then using the sample covariance. Further discussion of the validity of assuming
that the stock and bond jumps are independent is given in [Forsyth|(2020b).

We first compute and store the optimal controls in the synthetic market, that is, the
stock market processes follow the parametric models and (@). We then use Monte
Carlo simulation, coupled with the stored optimal controls, to analyze the properties of
the optimal allocation/withdrawal.

9 More specifically, results presented here were calculated based on data from Historical Indexes,
©2024 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of
Business. Wharton Research Data Services was used in preparing this article. This service and the
data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its
third-party suppliers.

10 The stock index includes all distributions for all domestic stocks trading on major U.S. exchanges.
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CRSP IuS O_S /lX uS 77; 775 psb
0.088241 0.147361 0.31313 0.22581 4.3608 5.5309 0.096279
30-day T-bill ~ p? ot Pl ub nb ns Psb

0.0034  0.0139 0.3838 0.3947 61.510 53.356 0.096279

TABLE 2: Parameters for parametric market models and , fit to CRSP data (inflation
adjusted) for 1926:1 to 2024:12.

Finally, as a check on robustness, we test the controls (computed in the synthetic
market), in the historical market, using block bootstrap resampled historical data.

9.1 Results: Convergence

We first check on the convergence of our method. The numerical parameters are given
in Table[3l

Grid sizes (b > 0) 512 %512
1024 x 1024
2048 x 2048
Extended grid (N], N]) (2N1,2N>)
)2(1’,)?3 log(100)
(X1)min> (X2)min -1.5+ ﬁg
(xl)maxv (x2)max +10 + )22
Monotonicity condition § (equation) 1076

Number of points in w grid N,, (equation (53))) 4N,
Number of points in p grid N, (equation (53)) ~ N;/10
Number of points in g grid N, (equation (54))  N;/10

TaBLE 3: Numerical parameters

Figure [2] shows the EW-ES efficient frontiers, computed using various grid sizes.
The grid here refers to the grid for b > 0. There is an additional grid (of the same
size) for b < 0. The optimal control is computed and stored, using the d-monotone
PIDE method. Statistics are then generated using Monte Carlo (MC) simulations, using
the stored optimal controls, with 2.56 x 10° MC simulations being used. The curves
for all grid sizes essentially overlap, indicating convergence for practical purposes. All
subsequent results use the 2048 x 2048 grid. For comparison, we also show the results
for the Bengen|(1994) policy, which is clearly much less efficient than the optimal policy.

Table 4] shows detailed convergence results for a single point on the EW-ES frontier
(Pmax = 1.0,k = 0.866). The optimal controls computed using Algorithm [2] are stored,
and then used in Monte Carlo (MC) simulations. The value function appears to converge
smoothly (for the PIDE method).

It is also interesting to note that, in all our tests using the parameters in Table 3] we
find that the wraparound error condition [5T)) is bounded by

(Axlez Z |§;’k|)<10_14. (56)
(j.k)eDI-D
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60

512 x 512

% 55 | \‘/
i) 2048 x 2048
£ w N
= \
Ol % 1024 x 1024 \
(2}
o
% * Bengen (1994)
E 30 . . . : ' '

-500 -400 -300 -200 -100 0 100 200

Expected Shortfall

F1G. 2: EW-ES convergence test. Real stock index: deflated real capitalization weighted CRSP,
real bond index: deflated 30 day T-bills. Scenario in Table [I} Parameters in Table 2] The
optimal control is determined by solving the using the method in Algorithm@ Grid refers to
the grid used in the PIDE solve, ng X np,, where ng is the number of nodes in the log s direction,
and ny, is the number of nodes in the log b direction. Units: thousands of dollars (real). The
controls are stored, and then the final results are obtained using a Monte Carlo method, with
2.56 x 10° simulations. Maximum fraction in stocks pmax = 1.0. Bengen (1994) refers to a
constant weight in stocks p = 0.5, rebalanced annually, and constant yearly withdrawals of
40 per year. All amounts are inflation adjusted.

Algorithm in | Monte Carlo
Grid ES E[Y; gi]/M Value Function | ES E[Y;qil/M
512 x 512 -14.6176 51.1162 1520.941 -10.302  51.1507
1024 x 1024 -9.16685  51.0706 1524.251 -7.5173  51.0781
2048 x 2048 -4.84764  50.9780 1525.179 -3.8866  50.9762

TABLE 4: EW-ES convergence test. Real stock index: deflated real capitalization weighted
CRSP, real bond index: deflated 30 day T-bills. Scenario in Table |Z| Parameters in Table
The optimal control is determined by solving the using the method in Algorithm[2} Grid refers
to the grid used in the PIDE solve, ng X np, where ng is the number of nodes in the log s
direction, and nyp, is the number of nodes in the log b direction. Units: thousands of dollars
(real). The controls are stored, and then the results are verified using a Monte Carlo method,
with 2.56 x 10° simulations. Maximum fraction in stocks pmax = 1.0. k = 0.8660.

Note that
(Axlez Z IgNj,’kI)S1+6zl
(j,k)e D

with 6 given in Table 3] Consequently, the numerical result (36) indicates that the
wraparound error is only slightly larger than double precision machine epsilon.

9.2 Efficient Frontiers: Synthetic market

Figure [3] shows the efficient frontiers computed using various value of ppax (labelled
pmax on the Figure), the maximum values of the fraction in stocks. As must be true
mathematically, the curves with higher values of pn,x plot above curves with smaller
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Pmax- However, a striking result is that the curves are all fairly tightly clustered, in
comparison to the [Bengen| (1994) strategy. In particular, it seems reasonable to target
an ES =~ 0. The expected annual withdrawal for all values of pnax are very close for
ES = OE] However, this is not quite a free lunch, as we will see when we examine the
results more closely.

60

pmax =1.3

S}
@

=

©

S

°

£

=

D 40 =

S pmax = 1.0

o

d>.> 35 - Bengen (1994)

, pmax = 0.8

w 5 ! ! ! ! ! ! .
-500 -400 -300 -200 -100 0 100 200

Expected Shortfall

F1G. 3: Comparison of maximum leverage constraint pmax, synthetic market. Real stock index:
deflated real capitalization weighted CRSP, real bond index: deflated 30 day T-bills. Scenario
in Table[I] Parameters in Table[2] The optimal control is determined using Algorithm 2} The
controls are stored (using 2048 x 2048 grid), and then the final results are obtained using a
Monte Carlo method, with 2.56 x 10° simulations. Bengen (1994) refers to a constant weight
in stocks p = 0.5, rebalanced annually, and constant yearly withdrawals of 40K per year. All
amounts are inflation adjusted.

9.3 Heat Maps: Synthetic Market

In order to gain some insight into the optimal controls, we plot the heat maps of the
optimal asset allocation and the optimal withdrawals, for the cases pmax = 1.3,1.0,0.5
in Figures ] [} [6] For each case, we choose the point on the efficient frontier so that
ES =~ 0, since this is an inferesting point on the efficient frontier.

First, note that Figures [4(b)| [5(b)| and [6(b)| show that the optimal withdrawal strate-
gies for a wide range of pn.x are very similar. In all cases, the withdrawal control is
approximately bang-bang, that is, the optimal policy is only to withdraw the maximum
or minimum amounts. For an explanation of this (the bang-bang property) see [Forsyth
(2022). The left hand plots of Figures [] [5] [6] show the optimal allocation strategies. We
use the same colour scale for all plots, with the maximum allocation to stocks being
130%. It is interesting to see that the allocation strategies are quite similar as long as
we restrict attention to the areas in the heat maps above the 5th wealth percentile. Large
differences in the allocation appear below the 5th wealth percentile.

11 Although from Remark even ES ~ —200K is also acceptable. Hence a target of ES = 0 is very
conservative.
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Fraction in Stocks Normalized Withdrawal
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(a) Fraction in stocks (b) Withdrawals

FiG. 4: pmax = 1.3. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm|2| Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table[I| Control computed and stored from the Algorithm [)in the synthetic market.
Gmin = 30, gmax = 60 (per year). k = 0.8583, EW =~ 50.9, ES =~ 0.96. Percentiles from
bootstrapped historical market. Normalized withdrawal (q — Gmin)/(Gmax — Gmin)- Units:
thousands of dollars.

Fraction in Stocks Normalized Withdrawal
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Fic. 5: pmax = 1.0. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm[2] Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table |Z| Control computed and stored using Algorithm 2| in the synthetic market.
gmin = 30, gmax = 60 (per year). k = 0.8860, EW = 50.7, ES = 4.6. Percentiles from
bootstrapped historical market. Normalized withdrawal (q — Gmin)/(Gmax — qmin). Units:
thousands of dollars.

9.4 Percentiles Versus Time: Synthetic Market

Figures [7] [§] and [9] show the percentiles of fraction in stocks, wealth, and withdrawals
versus time. We select the point on the efficient frontier for each case so that ES =~ 0.

Rather surprisingly, the percentiles fraction in stocks and percentiles wealth are very
similar, for all values of pn.x. However, we do see some differences in the withdrawal
percentiles (the rightmost panel in each plot). The median withdrawal is slower to
increase to the maximum for pn,x = 0.5 compared to the case with pyax = 1.0.

In addition, we can see that even for pn.x = 1.3, the 95th percentile for stock
allocation is less than 0.6 (Figure [/(a)), suggesting that with this level of ES risk, the
optimal policy rarely allocates a large fraction to stocks.
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Fraction in Stocks

Real Wealth (Thousands)
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Real Wealth (Thousands)
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(a) Fraction in stocks

(b) Withdrawals

F1G. 6: pmax = 0.5. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm[2] Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table |Z| Control computed and stored using Algorithm 2| in the synthetic market.
Gmin = 30, gmax = 60 (per year). k = 1.0, EW = 50.2, ES = 1.25. Percentiles from
bootstrapped historical market. Normalized withdrawal (q — Gmin)/(Gmax — Gmin)- Units:
thousands of dollars.
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F1G. 7: Scenario in TableStrategy computed in synthetic market. pmax = 1.3. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table ). Control computed
and stored from the Algorithm in the synthetic market. quin = 30, gmax = 60 (per year),

EW ~50.9, ES =0.96 (k = 0.8583). Units: thousands of dollars.
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FiG. 8: Scenario in TableStrategy computed in synthetic market. pmax = 1.0. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table |2|) Control computed and
stored from Algorithm[2in the synthetic market. qumin = 30, gmax = 60 (per year), EW = 50.7,
ES =4.6 (k =0.8860). Units: thousands of dollars.



656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

673

674

675

676

Numerical methods for optimal decumulation of a defined contribution pension plan 29

1 2000~ 100

T

95th
percentile

1500 5th

.~ percentile ]
20
£

. L) .

/Medlan g ﬁMedlan 5th
s 40 il
£ / percentile
H

s L L L L J
25 30

95th
percentile

Weatlh (Thousands)

Fraction in stocks

T

02 percentile Sth /

percentile

L s s | |
25 30

,
N I )
Time (years) Time (years)

, |
10 15 20
Time (years)

(a) Percentiles fraction in (b) Percentiles wealth (c)  Percentiles  with-
stocks drawals

F1G. 9: Scenario in Table || Strategy computed in synthetic market. pmax = 0.5. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table . Control computed and
stored using Algorithm[2in the synthetic market. Gmin = 30, gmax = 60 (peryear), EW = 50.2,
ES =1.25 (k = 1.0). Units: thousands of dollars.

10 Bootstrap results
10.1 Historical Market

In order to check on the robustness of the above results, we proceed as follows. We
compute and store the optimal controls based on the parametric model (3} as for
the synthetic market case. However, we compute statistical quantities using the stored
controls, but using bootstrapped historical return data directly. In this case, we make no
assumptions concerning the stochastic processes followed by the stock and bond indices.
We remind the reader that all returns are inflation-adjusted. We use the stationary block
bootstrap method (Politis and Romano, |1994; |Politis and White, 2004; Patton et al.,
2009; [Cogneau and Zakalmoulinel [2013; Dichtl et al., 2016} |Cavaglia et al.| |2022;
Simonian and Martirosyan 2022} |Anarkulova et al., 2022).

A key parameter is the expected blocksize. Sampling the data in blocks accounts
for serial correlation in the data series. We use the algorithm in [Patton et al.| (2009) to
determine the optimal blocksize for the bond and stock returns separately, see Table 3]
However, in our simulations, we use a paired sampling approach to simultaneously draw
returns from both time series. In this case, a reasonable estimate for the blocksize for the
paired resampling algorithm would be about 2.0 years. We will give results for a range
of blocksizes as a check on the robustness of the bootstrap results. Detailed pseudo-code
for block bootstrap resampling is given in Forsyth and Vetzal| (2019).

Optimal expected block size for bootstrap resampling historical data

Data Optimal expected
block size b (months)

30-day T-bill 51

CRSP cap weighted index 4.0

TaBLE 5: Optimal expected blocksize b = 1/v, from |Patton et al.|(2009). Range of historical
data is between 1926:1 and 2024:12. The blocksize is a draw from a geometric distribution
with Pr (b = k) = (1 — v)*"v. Expected blocksize estimate algorithm from|Politis and White
(2004)); |Patton et al.|(2009) using market data from CRSP.

Figure [T0|plots (i) the synthetic efficient frontier and (ii) bootstrap efficient frontier,
computed using the synthetic market controls, tested in the historical market, for various
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FiG. 10: Optimal controls computed using the synthetic market model. These controls tested
using bootstrapped historical data. Expected blocksizes (years) shown. 10° bootstrap resam-
ples. Real stock index: deflated real capitalization weighted CRSP, real bond index: deflated
30 day T-bills. Scenario in Table[l| Parameters in Table[2] The Bengen control withdraws 40
per year, and rebalances annually to 50% bonds and 50% stocks. The Bengen results are also
shown for expected blocksizes 0f 0.5, 1.0, 2.0 years.

blocksizes. Figure@]shows the results for pax = 1.3. In this case, all the frontiers are
quite close, especially compared to the |Bengen| (1994) strategy, tested in the historical
market. The effect of using different expected blocksizes in the block bootstrap algorithm
is quite small. Overall, this plot suggests that the optimal controls in this case are robust
to model parameter misspecification.

The historical test for ppax = 0.5 is shown in Figure @} Again, the historical
frontiers using different blocksizes are quite close. However, the historical efficient
frontiers do deviate somewhat from the synthetic market frontier, for values of £S > 100.
This indicates that there is some effect of model parameter misspecification, for large
values of ES in the case of pmax = 0.5. However, for values of ES < 100, the synthetic
and historical market frontiers are very close. So, unless the retiree is extremely risk
averse, this may not be a problem of practical concern.

Figures [IT] and [T2] show the percentiles of fraction in stocks, wealth, and optimal
withdrawals, tested in the historical market. The two extreme cases: pqax = 1.3 and
Pmax = 0.5 are shown.

The percentiles in stocks and wealth are fairly close, for both cases. However, a
comparison of Figures and Figure indicates that the median withdrawal
increases from the minimum to the maximum over about three years for the case with
Pmax = 1.3. The comparable time frame for pya.x = 0.5 is about four years.

Although most retirees would prefer to larger withdrawals during the early years of
retirement, slightly lower initial withdrawals in exchange for never having more than
50% stock allocation might be seen as a reasonable tradeoff.

11 Conclusions

In this paper, we have developed a technique for solving the optimal control problem
associated with decumulation of a defined benefit (DC) pension plan. The basic control
algorithm at each rebalancing time consists of (i) solution of an optimization problem
and (ii) advancing the solution to the next rebalancing time (going backwards). We use
a 6-monotone scheme, based on Fourier methods, for step (ii). This method preserves
order relations to O (8), which is an important property for numerical solution of optimal
control. We pay particular attention to ensuring that Fourier wraparound error can be
made arbitrarily small.
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FiG. 11: Scenario in Table |l| Strategy computed in synthetic market. pmax = 1.3. Tested in
the bootstrapped historical market, expected blocksize 1.0 years. 10° bootstrap simulations.
Bootstrap date based on the real CRSP index, and real 30-day T-bills 1926:1-2024:12. Control
computed and stored using Algorithm [2|in the synthetic market. qumin = 30, gmax = 60 (per
year), EW =51.7, ES =19 (k = 0.8583). Units: thousands of dollars. Median withdrawal
at gmax at year 3.0
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FiG. 12: Scenario in Table |l| Strategy computed in synthetic market. pmax = 0.5. Tested in
the bootstrapped historical market, expected blocksize 1.0 years. 10° bootstrap stimulations.
Bootstrap date based on the real CRSP index, and real 30-day T-bills 1926:1-2024:12. Control
computed and stored using Algorithm [2|in the synthetic market. qumin = 30, gmax = 60 (per
year), EW =50.3, ES = 6.7 (k = 1.0). Units: thousands of dollars. Median withdrawal at

gmax at year 4.0.

From a practical point of view, we have verified that the controls are robust by
testing the controls using block bootstrap resampling of historical data, which makes no
assumptions about stochastic processes for the underlying stock and bond indexes.

Perhaps the most interesting result, in terms of investment strategies for retirees, is
the following. If the maximum fraction in equities is restricted to be less than 50%, this
strategy is only slightly less efficient than allowing a maximum fraction of 130% (that
is, using leverage). This suggests that for most retirees, there is no need to undertake
risky strategies during the decumulation of a DC account.

These optimal control strategies are far more efficient than the typical four per cent
rule (Bengen, [1994). The optimal policy has an expected average withdrawal (real) of
more than 5% of initial capital over thirty years, with approximately zero expected
shortfall at age 95 (based on historical data). In contrast, the strategy suggested in
(Bengenl [1994), withdraws 4% of initial capital annually, but has an expected shortfall
of more than 35% of initial capital at age 95.

Finally, we note that solving the optimal control problem for decumulation based
on solving PIDE:s is limited to three dimensions (i.e. three assets) or less. However,
problems with more assets can be solved using a machine learning approach ((Li and
Forsyth, 2019} |[Van Staden et al., [2023} [2024 [Chen et al.| [2025))).
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Appendices

12 Wrap Around Error: Details

To gain some insight into the wrap-around problem, we consider a highly simplified,
one dimensional problem. To avoid subscript clutter, in this section, we use the notation

§(m—=0)=gm—r; u"(m) = up,.

Using the above notation, consider the discrete time advance convolution

Nf/2-1
W'(m)=Ax > Zm=0)u" (L),
t=—NT/2
m=-N/2,...,N/2—1,N<N", (57)

where we assume periodic extension of g
geN)=g(0).

In the above, if N* > N, nodes corresponding to m < —N/2 and m > N /2 — 1 are the
padded nodes. In this case, we assume that the padded nodal values u"(m), m < —N/2
and m > N/2 — 1, are determined by boundary data.

As an example of wrap-around error, we examine a worst case term in equation (57).
Consider the term in (57) corresponding to m = —N/2,and [ = N7/2 — 1, namely

AxG(-N/2-N'2+ D) u" " (NT/2-1). (58)
By periodic extension, we shift the argument of g(-) by N7, resulting in
G(-N/2-=NT/2+1)=3(-N/2=N"/2+1+N") =g(-N/2+N"/2+1), (59)
and hence, the term becomes
AxG(-N/2+ N2+ 1) u" " (NT/2-1). (60)
Hence, in this extreme case, equation becomes

Nf/2-2

u'(-NJ2) = Ax g(-N/2+ N2+ 1) ™" (NT/2-1) + Z ( remaining terms ).
I=—-N*/2

(61)

Example 1 (No padding: N' = N) Suppose we do not use any padding, so that N = N.
In this case, equation (61)) becomes

N/2-2
u"(-N/2) = Aw (1) u" " (N/2-1) + Z ( remaining terms ).
I=—N/2

Since, in general, (1) is not small, we can see that the term "~ '(N/2 - 1) has a
considerable effect on u™ (—N/2), which should not be the case. We can see here that
the periodic extension of g causes a wrap-around effect.

Example 2 (Padding: N = 2N) If NT = 2N, then equation becomes
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N¥/j2-2
W'(=NJ2) = Awg(N/2+ 1) u™ " (NT/2-1) + Z (other terms ). (62)
I==Nt/2

If we select N sufficiently large so that §(+N/2) = 0, then the leading term in equation
@]) is small, and hence, wrap-around error is reduced.

12.1 Wrap-around: a formal result

From our previous examples, we can see that wrap-around may occur in equation (57
if

(m—10) <-=N"/2 or (m—€)>N"/2-1.

This leads us to the following formal definition of wrap-around error. We show that,
with NT = 2N, wrap-around error is sufficiently reduced.

Definition 2 (Wrap-around error) Assume {g(-)} is periodic with period NT and
u"(m), form < —N/2orm > N/2— 1, are determined by boundary data with N¥ = 2N.
Then the wrap-around error for equation , at timestep n, denoted by e, is

wrap?

Crrp = max {Aw Z )g(m -{) M"_I(Z)‘ (1{(m—€)<—NT/2} + 1{(m—f)>1v+/2—1})} .
£eNT
(63)

We can now state the following result.

Theorem 2 Let 3(-) be periodic with period N* and u" (m), for m < =N/2 or m >
N/2 =1, be determined by boundary data with N* = 2N. Assume further that u" (m) is
bounded, so for 0 < n < M, there exists a positive constant C such thaf{?

lu*(m)| < C, meN' vn. (64)

If N is selected sufficiently large so that

-N/2-1 NT/2-1
Ax > (EO+Ax > [3(O)] < eAT (65)
{(=-N7/2 (=N/2

then the wrap-around error after N steps is bounded by TCe,.

Proof. Applying property (64) to equation (63) gives

N/2-1

Crp < Cmﬁx{Ax Z |g(m = 0)] (1{(m—e)<—1v+/2} + 1{(m—£’)>NT/2—1});- (66)
="NT2

Recall that m € {-N/2,...,N/2 — 1}, hence the worst case values of m on the right
hand side of equation are m = —N/2 and m = N/2 — 1. Thus equation gives

12 This is essentially a stability condition. See|Forsyth and Labahn|(2019) for a proof of stability for the
6-monotone method.
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NT/2-1
Curp < CAX Z I8(N/2 =1 =01y (njp-1-0)>NT2-1}
t=—N*/2
NT/2-1
+CAx > 1B(=N2= Ol 1y ppmeyemnipy- (67)
t=-N*J2

Also, since N = Nt /2 equation becomes

NT/2-1
Crp < CAX Z 1BNT/4=1=0)| 1Nt ja1-e)snij2-1)
="N'J2
NT/2-1
+CAx Z 18(=N"/4 = DI Ly _ntja-ey<—ni /2y (68)
="N 2

and eliminating the indicator functions gives

-NT/4-1 N/2-1
ey SCAx > g(NY/A-1-0 +CAx > |g(-NT/4-0)|.
t=—NT/2 ¢=NT/4+1

Shifting g(-) by +NT so that the argument of 3(-) is in the range [-NT/2, NT/2 - 1],
implies

-NT/4-1 NT/2-1
el SCAX D |G(NT/A=1=C=ND +CAx D" |g(-N"/4=C+N)|
t=-NT/2 (=N'/4+1
-NT/4-1 NT/2-1
= CAx Z |(=3NT/4 -1 -0)| +CAx Z IEG3NT/4-0)].  (69)
t=—N7/2 £=N7 /4+1

Rearranging the indices, gives

-NTt/4-1 Nf/2-1
el CAx D3OI +CAx 3T 130, (70)
t=—NT1/2 (=NT/4+1

which, since N = N'/2, implies that equation (70} satisfies

-N/2-1 Nf/2-1
el SCA Y (3O +CAx 20, (71)
{=-N7/2 £=N [2+1
Since
Nt/2-1 N/2-1
Ax Y 1EOI<Ax Y [E(0)] (72)
(=N /2+1 (=N/2
then
-N/2-1 Nt/2-1
ey CAX Y (3O +CAx Y 13(0)] (73)
(=—NT/2 {=N/2

= Ce, AT (74)
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where the last step follows from condition (63). Applying equation (74) recursively gives
the bound TCe,. O

It might at first sight seem odd to weaken the error bound using equation (72).
However, this makes the final result easy to interpret. Let

ST={-N"/2,...,+N"/2-1}; S={-N/2,...,+N/2 -1} (75)

so that ST is the set of node indexes for the padded domain, and S is the set of node
indices for the original domain. Consequently, condition (73] can be written compactly
as

el < C(Ax > |g(€)|) < CeAt. (76)
te(8T-8)

Proving Theorem [I] basically follows the previous proof of the simpler case. Divide
the region D’ — D outside D into right and left A,, A, and upper and lower A,, Ay
regions as follows.

: Ay :

Ae D A,

Ag

!
|
|
|
1

Our goal is to give an upper bound to

ggrap = (AXIAXZ (rt’nr‘rlla)l)eiZ) Z ig;—j,m—kv-j}:,k(T”M l(f—j,m—k)éﬂ"')
’ (j.k)eDF

which by the boundedness assumptions of Theorem [I]is the same as bounding

(Axlez max Z |gl;_j’m_k|l(f—j,m—k)éi)"')'

(t,m)eD (jhent
As in the 1d wraparound error, our worse case values occur at borders, in this case
the four corners of . In the horizontal direction when the first components are —N; /2
and N1/2 — 1 we can use the same manipulations as done in the 1d case to obtain the
wraparound error contribution from A, and A, and use an identical argument when the
second argument is —N, /2 and N, /2 — 1 to get the wraparound error contribution from
A, and Ag4. These manipulations reduce to

ecrap < C(Axle2 Z |g(€’ m)l) < CEeAT
(t,m)e(DT-D)

for each time step and hence give the error bound eY < Te,C after N steps.

wrap —
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