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Abstract The decumulation of a defined contribution (DC) pension plan is well known1

to be one of the hardest problems in finance. We model this decumulation challenge as2

an optimal stochastic control problem. The control problem is solved, at each rebalanc-3

ing date, by alternatively solving a linear partial-integro differential equation (PIDE)4

followed by an optimization step. We solve the PIDE by using a 𝛿-monotone Fourier5

method, which ensures that monotonicity holds to𝑂 (𝛿). We allow for the use of leverage6

(i.e. borrowing to invest in stocks), as well as minimum constraints on bond holdings.7

We pay particular attention to minimizing wrap-around error, an issue which is endemic8

for Fourier methods and central to the effective use of these methods for optimal control9

problems. Rather unexpectedly, we find that restricting the portfolio equity fraction to a10

maximum of 50% does not reduce portfolio efficiency noticeably. This may be a useful11

strategy for risk-averse retirees.12
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1 Introduction16

In developed countries, there is a strong and growing shift from Defined Benefit (DB)17

pension plans to Defined Contribution (DC) plans. The private sector, and increasingly18

government institutions, are unwilling to take on the balance sheet liabilities of a DB19

plan (Thinking Ahead Institute, 2024).20

Under a DC plan, the employer and employee contribute to a (usually) tax advantaged21

account, which is typically invested in a mix of stocks and bonds. Upon retirement, the22

employee is now responsible for both choosing an investment strategy and deciding on a23

withdrawal schedule. Although it is often advocated that retirees should buy annuities,24

these are unpopular with DC plan holders (Peĳnenburg et al., 2016) for numerous valid25

reasons (MacDonald et al., 2013). In particular, annuities are generally overpriced, lack26

true inflation protection and retirees have no access to capital in the event of emergencies.27
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Since it is usually challenging to fund a reasonable lifestyle investing solely in riskless28

assets, the retiree is now exposed to both investment risk and longevity risk. This problem29

of funding retirement from accumulated DC capital, also known as the decumulation30

problem, has been termed “the nastiest, hardest problem in finance,” by Nobel Laureate31

William Sharpe (Ritholz, 2017).32

There have been several suggestions for DC plan spending rules (Anarkulova et al.,33

2025). Probably the most ubiquitous rule is the four per cent rule (Bengen, 1994). This34

rule suggests that retirees can withdraw four per cent of their initial capital (at age 65)35

annually, adjusted for inflation. Based on historical US data, an investor who invested in36

a portfolio of 50% bonds and 50% stocks (rebalanced annually), and followed the four37

per cent rule, would have never run out of savings over any thirty year historical period.38

However, the four per cent rule has many critics. For example, rolling thirty year39

periods have high correlations. In addition, a fixed withdrawal schedule, as well as a40

constant weight stock allocation is somewhat simplistic. In order to better stress test41

spending rules, Anarkulova et al. (2025) use block bootstrap resampling of historical42

data, to generate a distribution of outcomes. We will also use block bootstrap resampling43

to test our results in this paper.44

Decumulation strategies are naturally posed as a problem in optimal stochastic con-45

trol. The controls in this case are the stock/bond split on each rebalancing date and46

the (real) annual withdrawal amounts. In our case we impose maximum and minimum47

constraints on the withdrawal amounts and also impose constraints on the maximum48

stock allocation.49

1.1 Our Contributions50

In this paper, we consider the same scenario posed in Bengen (1994). Our objective func-51

tion is to maximize total withdrawals over a thirty year period (with minimum/maximum52

annual constraints) and minimize the risk of running out of savings before year thirty.53

An optimal stochastic control problem used for decumulation is solved at each re-54

balancing date, by alternatively solving a linear partial-integro differential equation55

(PIDE) followed by an optimization step. The PIDE is solved by using a 𝛿-monotone56

Fourier method, which ensures that monotonicity holds to 𝑂 (𝛿), an important property57

for control problems. The 𝛿−monotone technique generalizes the method described in58

Forsyth and Labahn (2019). Our basic dynamic programming technique is similar to59

the high-level description in Forsyth (2022), but here we delve much deeper in de-60

scribing the numerical methods. In particular, we focus on such issues as wrap-around61

errors in Fourier methods or Partial-Integro Differential Equations (PIDEs), and the 2-d62

𝛿-monotone Green’s function approximation.63

Previous studies for decumulation have imposed no-shorting and no-leverage con-64

straints on stock investments. In this paper, we relax the no-leverage constraint on the65

stock investment and also investigate more restrictive investments in stocks. For exam-66

ple, a risk averse retiree may wish to restrict the maximum fraction invested in equities67

to be significantly less than one.68

Rather surprisingly, we find that restricting the maximum fraction in stocks to be69

50% does not lower the efficient frontier by a large amount. The most significant effect70

of the 50% restriction, compared to allowing a maximum stock fraction of up to 130%71

(leverage) is that the time for the median withdrawals to reach the maximum is delayed72

by one year. This may be an acceptable trade-off for risk averse investors.73

From the numerical point of view, when solving optimal control problems using74

Fourier methods, wrap-around error can be significant, due to the possible instantaneous75

movement to domain boundaries at reallocation times (Lippa, 2013; Ignatieva et al.,76
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2018; Alonso-Garcca et al., 2018). We show that our technique reduces wrap-around77

error to almost machine level precision.78

1.2 Organization of this Chapter79

The rest of this paper is organized as follows. In the next section we state our problem80

setting followed by a mathematical formulation of our model in Section 3. The latter81

section includes information on the stochastic processes followed by bonds and stocks82

along with a description of our control set. Section 4 describes our conflicting risk and83

reward measures, Expected Shortfall and Expected Withdrawals, while Section 5 looks84

at how one maximizes these conflicting measures, something which is initially set up85

as a pre-commitment problem which is not implementable. Section 6 then discusses86

how one can formulate our problem into an (implementable) dynamic program, one87

which is solved by a PIDE between withdrawal time intervals. Section 7 then shows88

how one can solve these PIDEs using Green’s functions and Fourier analysis. The wrap89

around problem that comes with using Fourier analysis and periodicity is addressed in90

the next section. That section also includes the resulting numerical algorithm for solving91

our optimal control decumulation problem. Section 9 then presents an example along92

with its numerical solution followed in the next section by tests of robustness of our93

numerical example. The paper ends with a conclusion along with an Appendix providing94

extra details regarding the wraparound error discussed earlier.95

2 Problem Setting96

As noted in Anarkulova et al. (2025), retirees have a revealed preference for spending97

rules, such as that advocated by Bengen (1994). Spending rules (such as the four per98

cent rule) are popular with retirees as they are simple to implement, have an intuitive99

interpretation, and the rolling 30 year backtests in Bengen (1994) are easy to understand.100

In this paper we restrict attention to the scenario outlined in Bengen (1994), that is, we101

consider a 65-year old retiree who desires fixed minimum annual (real) cash flows over102

a 30 year time horizon. We also impose an upper limit (a cap) on maximum withdrawals103

in any year. From the CPM2014 table from the Canadian Institute of Actuaries1, the104

probability that a 65-year old Canadian male attains the age of 95 is about 0.13. In105

spite of this relatively low probability of achieving the age of 95, assuming a 30 year106

time horizon is considered a prudent approach for minimizing the risk of exhausting107

savings. In addition, observe that we will not mortality weight future cash flows, as is108

done when averaging over a population for pricing annuities. Mortality weighting may109

not be meaningful for an individual investor, since it reflects population averages, rather110

than the circumstances of an individual retiree.111

Since we allow investing in risky assets, with a minimum cash withdrawal each year,112

it is possible to exhaust savings.2 In this case, we continue to withdraw funds from113

the portfolio, which is equivalent to borrowing cash. In such circumstances, we assume114

that withdrawals continue, something which can be viewed as borrowing against other115

resources. This debt accumulates at the borrowing rate. Essentially, we are assuming116

that the investor has other assets, for example real estate, which can be used as a hedge117

of last resort. In this case, this debt could then be funded using a reverse mortgage, with118

real estate as collateral (Pfeiffer et al., 2013).119

1 www.cia-ica.ca/docs/default-source/2014/214013e.pdf.
2 Ignoring the trivial and unlikely case where investing in riskless assets can fund 30 year minimum
withdrawals.

www.cia-ica.ca/docs/default-source/2014/214013e.pdf
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It is important to note that an implicit assumption here is that real estate is not fungible120

with other financial assets, except as a last resort. This mental separation of assets is121

a common aspect of behavioral finance (Shefrin and Thaler, 1988). Real estate in this122

case has a dual role: if market returns are exceptionally strong, or the retiree passes away123

earlier then expected, this property can be a bequest. If market returns are poor, or in the124

case of extreme longevity, then real estate can be used to fund expenses if the retirement125

account is exhausted.126

3 Mathematical Formulation127

We assume that the investor has access to two funds: a broad market stock index fund128

and a constant maturity bond index fund. Let 𝑆(𝑡) and 𝐵(𝑡) denote the real (inflation129

adjusted) amounts invested in the stock index and the bond index, respectively, at time130

𝑡 with 𝑇 being the investment horizon. These amounts will evolve over time, depending131

on the investor’s asset allocation, and changes in the real unit prices of the assets. In the132

absence of an investor determined control such as cash withdrawals or rebalancing, any133

changes in 𝑆(𝑡) and 𝐵(𝑡) result from asset price evolution. We model the stock index134

as following a jump diffusion, which permits modelling both continuous stochastic135

processes as well as market jumps.136

We model the real returns of a constant maturity bond index as a stochastic process137

(see for example, Lin et al., 2015; MacMinn et al., 2014). This avoids the need to model138

bond prices and inflation separately. As done in MacMinn et al. (2014), we assume that139

the constant maturity bond index follows a jump diffusion process, with justification140

being found in Forsyth et al. (2022, Appendix A).141

3.1 The Diffusion Processes.142

For any time 𝑡 let

𝑆(𝑡−) ≡ lim
𝜖→0+

𝑆(𝑡 − 𝜖) and 𝑆(𝑡+) ≡ lim
𝜖→0+

𝑆(𝑡 + 𝜖)

denote the values of 𝑆 the instant before 𝑡− and the instant after 𝑡+ time 𝑡. Such notation143

will also be used for any other time dependent function. We let 𝜉𝑠 be a random number144

representing a jump multiplier, that is, when a jump occurs, 𝑆(𝑡) = 𝜉𝑠𝑆(𝑡−). The use145

of a jump process accounts for non-normal asset returns. As in (Kou, 2002; Kou and146

Wang, 2004), we assume that log(𝜉𝑠) follows a double exponential distribution with 𝑢𝑠147

the probability of an upward jump and 1 − 𝑢𝑠 the probability of a downward jump. The148

density function for 𝑦 = log 𝜉𝑠 is149

𝑓 𝑠 (𝑦) = 𝑢𝑠𝜂𝑠1𝑒
−𝜂𝑠1 𝑦1𝑦≥0 + (1 − 𝑢𝑠)𝜂𝑠2𝑒

𝜂𝑠2 𝑦1𝑦<0 . (1)150

We also define151

𝛾𝑠𝜉 = 𝐸 [𝜉𝑠 − 1] =
𝑢𝑠𝜂𝑠1
𝜂𝑠1 − 1

+
(1 − 𝑢𝑠)𝜂𝑠2
𝜂𝑠2 + 1

− 1 , (2)152

where 𝐸 [·] is the expectation. In the absence of control, 𝑆(𝑡) evolves according to153

𝑑𝑆(𝑡)
𝑆(𝑡−) =

(
𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉

)
𝑑𝑡 + 𝜎𝑠 𝑑𝑍 𝑠 + 𝑑 ©­«

𝜋𝑠𝑡∑︁
𝑖=1

(𝜉𝑠𝑖 − 1)ª®¬ , (3)154
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where 𝜇𝑠 is the (uncompensated) drift rate, 𝜎𝑠 is the volatility, 𝑑𝑍 𝑠 is the increment of155

a Wiener process, 𝜋𝑠𝑡 is a Poisson process with positive intensity parameter 𝜆𝑠
𝜉
, and the156

𝜉𝑠
𝑖

are i.i.d. positive random variables having distribution (1). Moreover, 𝜉𝑠
𝑖
, 𝜋𝑠𝑡 , and 𝑍 𝑠157

are assumed to all be mutually independent.158

Similarly, let the amount in the bond index the instant before 𝑡 be 𝐵(𝑡−). In the159

absence of investor intervention, 𝐵(𝑡) evolves as160

𝑑𝐵(𝑡)
𝐵(𝑡−) =

(
𝜇𝑏 − 𝜆𝑏𝜉𝛾𝑏𝜉 + 𝜇𝑏𝑐1{𝐵(𝑡− )<0}

)
𝑑𝑡 + 𝜎𝑏 𝑑𝑍𝑏 + 𝑑 ©­«

𝜋𝑏𝑡∑︁
𝑖=1

(𝜉𝑏𝑖 − 1)ª®¬ , (4)161

where the terms in equation (4) are defined analogously to equation (3). In particular,162

𝜋𝑏𝑡 is a Poisson process with positive intensity parameter 𝜆𝑏
𝜉
, and the density function163

for 𝑦 = log 𝜉𝑏 is164

𝑓 𝑏 (𝑦) = 𝑢𝑏𝜂𝑏1 𝑒
−𝜂𝑏1 𝑦1𝑦≥0 + (1 − 𝑢𝑏)𝜂𝑏2 𝑒

𝜂𝑏2 𝑦1𝑦<0 ,

and 𝛾𝑏
𝜉
= 𝐸 [𝜉𝑏 − 1]. Again 𝜉𝑏

𝑖
, 𝜋𝑏𝑡 , and 𝑍𝑏 are assumed to all be mutually independent.165

The term 𝜇𝑏𝑐1{𝐵(𝑡− )<0} in equation (4) represents the extra cost of borrowing, that is,166

the spread.167

The diffusion processes are correlated, that is, 𝑑𝑍 𝑠 ·𝑑𝑍𝑏 = 𝜌𝑠𝑏 𝑑𝑡. However, contrary168

to common belief, an analysis of historical data suggests that the stock and bond jump169

processes are essentially uncorrelated (see Forsyth (2020b) for empirical justification).170

We make this assumption in this work.171

We define the investor’s total wealth at time 𝑡 as

Total wealth ≡ 𝑊 (𝑡) = 𝑆(𝑡) + 𝐵(𝑡).

In case of insolvency, the portfolio is liquidated, trading stops and any outstanding debt172

accrues interest at the borrowing rate.173

3.2 The Set of Controls.174

Consider a set of discrete times

T = {𝑡0 = 0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑀 = 𝑇}

where we assume that 𝑡𝑖 − 𝑡𝑖−1 = Δ𝑡 = 𝑇/𝑀 is constant. Here 𝑡0 = 0 is the inception175

time of the investment and T is the set of withdrawal/rebalancing times, as defined176

in equation (3.2). At each rebalancing time 𝑡𝑖 , 𝑖 = 0, 1, . . . , 𝑀 − 1, the investor first177

withdraws an amount of cash 𝑞𝑖 from the portfolio, and then afterwards rebalances the178

portfolio. At 𝑡𝑀 = 𝑇 the portfolio is liquidated and no cash flow occurs. This is enforced179

by specifying 𝑞𝑀 = 0.180

Let
𝑊 (𝑡−𝑖 ) = 𝑆(𝑡−𝑖 ) + 𝐵(𝑡−𝑖 )

denote the instant before withdrawals and rebalancing at 𝑡𝑖 , we then have that 𝑊 (𝑡+
𝑖
) is

given by
𝑊 (𝑡+𝑖 ) = 𝑊 (𝑡−𝑖 ) − 𝑞𝑖 ; 𝑖 ∈ T ,

with𝑊 (𝑡+
𝑀
) = 𝑊 (𝑡−

𝑀
) since 𝑞𝑀 ≡ 0.181

Typically, DC plan savings are held in a tax-advantaged account, with no taxes182

triggered by rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect183

other transaction costs, to be small, and hence can be ignored. It is possible to include184
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transaction costs, but at the expense of increased computational cost (van Staden et al.,185

2018).186

Let 𝑋 (𝑡) = (𝑆 (𝑡) , 𝐵 (𝑡)), 𝑡 ∈ [0,𝑇] denote the multi-dimensional controlled under-
lying process and 𝑥 = (𝑠, 𝑏) the realized state of the system. The rebalancing control
𝑝𝑖 (·) is the fraction invested in the stock index at the rebalancing date 𝑡𝑖 , that is,

𝑝𝑖
(
𝑋 (𝑡−𝑖 )

)
= 𝑝

(
𝑋 (𝑡−𝑖 ), 𝑡𝑖

)
=

𝑆(𝑡+
𝑖
)

𝑆(𝑡+
𝑖
) + 𝐵(𝑡+

𝑖
) .

Let 𝑞𝑖 (·) be the amount withdrawn at time 𝑡𝑖 , that is, 𝑞𝑖
(
𝑋 (𝑡−

𝑖
)
)
= 𝑞

(
𝑋 (𝑡−

𝑖
), 𝑡𝑖

)
.

Formally, the controls depend on the state of the investment portfolio, before the rebal-
ancing occurs, that is, 𝑝𝑖 (·) = 𝑝

(
𝑋 (𝑡−

𝑖
), 𝑡𝑖

)
and 𝑞𝑖 (·) = 𝑞

(
𝑋 (𝑡−

𝑖
), 𝑡𝑖

)
𝑡𝑖 ∈ T , where

T is the set of rebalancing times. However, it will be convenient to note that in our
case, we find the optimal control 𝑝𝑖 (·) amongst all strategies with constant wealth (after
withdrawal of cash). Hence, with some abuse of notation, we will now consider 𝑝𝑖 (·)
to be function of wealth after withdrawal of cash, where we use the shorthand notation
𝑊−
𝑖

and 𝑊+
𝑖

for the variables representing wealth the instant before and instant after 𝑡𝑖 .
Using a similar shorthand notation for 𝑆𝑖 and 𝐵𝑖 we then have

𝑝𝑖 (·) = 𝑝(𝑊 (𝑡+𝑖 ), 𝑡𝑖) = 𝑝𝑖 (𝑊+
𝑖 )

𝑆+𝑖 = 𝑝𝑖 (𝑊+
𝑖 ) 𝑊+

𝑖

𝐵+
𝑖 = (1 − 𝑝𝑖 (𝑊+

𝑖 )) 𝑊+
𝑖 .

Note that the control for 𝑝𝑖 (·) depends only 𝑊+
𝑖
. Since 𝑝𝑖 (·) = 𝑝𝑖 (𝑊−

𝑖
− 𝑞𝑖), it follows

that
𝑞𝑖 (·) = 𝑞𝑖 (𝑊−

𝑖 ) ,

which we discuss further in Section 6.187

A control at time 𝑡𝑖 is then given by the pair (𝑞𝑖 (·), 𝑝𝑖 (·)) where the notation (·)188

denotes that the control is a function of the state. Let Z represent the set of admis-189

sible values of the controls (𝑞𝑖 (·), 𝑝𝑖 (·)). We impose no-shorting, bounded leverage190

constraints (assuming solvency) along with maximum and minimum values for the191

withdrawals. In addition we apply the constraint that in the event of insolvency due to192

withdrawals (𝑊 (𝑡+
𝑖
) < 0), or in the case of leverage, trading ceases and debt (negative193

wealth) accumulates at the appropriate borrowing rate of return (that is, a spread over194

the bond rate). We also specify that the stock assets are liquidated at 𝑡 = 𝑡𝑀 .195

We can then define our controls by

Z𝑞 (𝑊−
𝑖 , 𝑡𝑖) =


[𝑞min,𝑞max] 𝑡𝑖 ∈ T ; 𝑡𝑖 ≠ 𝑡𝑀 ; 𝑊−

𝑖
≥ 𝑞max

[𝑞min,max(𝑞min,𝑊
−
𝑖
)] 𝑡𝑖 ∈ T ; 𝑡 ≠ 𝑡𝑀 ; 𝑊−

𝑖
< 𝑞max

{0} 𝑡𝑖 = 𝑡𝑀

, (5)

Z𝑝 (𝑊+
𝑖 ,𝑡𝑖) =


[0, 𝑝max] 𝑡𝑖 ∈ T ; 𝑡𝑖 ≠ 𝑡𝑀 ; 𝑊+

𝑖
> 0

{0} 𝑡𝑖 ∈ T ; 𝑡𝑖 ≠ 𝑡𝑀 ; 𝑊+
𝑖
≤ 0

{0} 𝑡𝑖 = 𝑡𝑀

. (6)

The rather complicated expression in equation (5) imposes the assumption that as wealth196

becomes small, the retiree first tries to avoid insolvency as much as possible and in the197

event of insolvency, withdraws only 𝑞min.198

The set of admissible values for (𝑞𝑖 , 𝑝𝑖), 𝑡𝑖 ∈ T , can then be written as199

(𝑞𝑖 , 𝑝𝑖) ∈ Z(𝑊−
𝑖 ,𝑊

+
𝑖 ,𝑡𝑖) = Z𝑞 (𝑊−

𝑖 , 𝑡𝑖) × Z𝑝 (𝑊+
𝑖 ,𝑡𝑖) . (7)200
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For implementation purposes, we have written equation (7) in terms of the wealth after201

withdrawal of cash. However, we remind the reader that since𝑊+
𝑖
= 𝑊−

𝑖
−𝑞𝑖 , the controls202

are formally a function of the state 𝑋 (𝑡−
𝑖
) before the control is applied.203

The admissible control set A can then be written as

A =

{
(𝑞𝑖 , 𝑝𝑖)0≤𝑖≤𝑀 : (𝑝𝑖 , 𝑞𝑖) ∈ Z(𝑊−

𝑖 ,𝑊
+
𝑖 ,𝑡𝑖)

}
with an admissible control P ∈ A written as

P = {(𝑞𝑖 (·), 𝑝𝑖 (·)) : 𝑖 = 0, . . . , 𝑀} .

We also define P𝑛 ≡ P𝑡𝑛 ⊂ P as the tail of the set of controls in [𝑡𝑛, 𝑡𝑛+1, . . . , 𝑡𝑀 ], that
is,

P𝑛 = {(𝑞𝑛 (·), 𝑝𝑛 (·)), . . . , (𝑞𝑀 (·), 𝑝𝑀 (·))}

and A𝑛, the tail of the admissible control set, as

A𝑛 =

{
(𝑞𝑖 , 𝑝𝑖)𝑛≤𝑖≤𝑀 : (𝑞𝑖 , 𝑝𝑖) ∈ Z(𝑊−

𝑖 ,𝑊
+
𝑖 ,𝑡𝑖)

}
,

so that P𝑛 ∈ A𝑛.204

4 Risk and Reward205

In this section we consider our measures of risk and reward for our retiree. In this case206

the retiree is primarily concerned with the risk of depleting savings while at the same207

time hoping to maximize the cash withdrawals from his plan.208

4.1 Risk: Expected Shortfall (ES)209

Two typical measures of financial tail risk of an investment portfolio are Value at Risk210

(VAR) and Conditional Value of risk (CVAR), with the latter also known as Expected211

Shortfall. Expected Shortfall is an alternative to value at risk that is more sensitive to212

the shape of the tail of the loss distribution.213

Suppose214 ∫ 𝑊∗
𝛼

−∞
𝑔(𝑊𝑇 ) 𝑑𝑊𝑇 = 𝛼,

where 𝑔(𝑊𝑇 ) be the probability density function of wealth𝑊𝑇 at 𝑡 = 𝑇 . Then𝑊∗
𝛼 can be215

viewed as the Value at Risk (VAR) at level 𝛼 since the probability of wealth being more216

than 𝑊∗
𝛼 is 1 − 𝛼. For example, if 𝛼 = .01, then 99% of the outcomes have 𝑊𝑇 > 𝑊∗

𝛼.217

If 𝑊∗
𝛼 is sufficiently large, this suggests very low risk of running out of savings. The218

Expected Shortfall (ES) at level 𝛼 is then219

ES𝛼 =
1
𝛼

∫ 𝑊∗
𝛼

−∞
𝑊𝑇 𝑔(𝑊𝑇 ) 𝑑𝑊𝑇 , (8)220

which is the mean of the worst 𝛼 fraction of outcomes. Typically 𝛼 ∈ {.01, .05}.221

The definition of ES in equation (8) uses the probability density of the final wealth222



8 Peter A. Forsyth and George Labahn

distribution, not the density of loss. Hence in our case, a larger value of ES, that is, a223

larger value of average worst case terminal wealth, is desired. 3224

Define 𝑋−
0 = 𝑋 (𝑡−0 ). Given an expectation under control P, 𝐸P [·], then as noted225

by Rockafellar and Uryasev (2000), the expected shortfall at level 𝛼 has the alternate226

formulation as227

ES𝛼 (𝑋−
0 , 𝑡

−
0 ) = sup

𝑊∗
𝐸
𝑋−

0 ,𝑡
−
0

P0

[
𝑊∗ + 1

𝛼
min(𝑊𝑇 −𝑊∗, 0)

]
. (9)228

The admissible set for𝑊∗ in equation (9) is over the set of possible values for𝑊𝑇 .229

The notation ES𝛼 (𝑋−
0 , 𝑡

−
0 ) emphasizes that ES𝛼 is as seen at (𝑋−

0 , 𝑡
−
0 ), that is, the230

pre-commitment ES𝛼. A strategy based purely on optimizing the pre-commitment value231

of ES𝛼 at time zero is time-inconsistent. As such it has been termed by many as non-232

implementable, since the investor has an incentive to deviate from the time zero pre-233

commitment strategy at 𝑡 > 0. However we consider the pre-commitment strategy merely234

as a device to determine an appropriate level of𝑊∗ in equation (9). If we fix𝑊∗ for all235

positive 𝑡, then this strategy is the induced time-consistent strategy (Strub et al., 2019;236

Forsyth, 2020a; Cui et al., 2022) and hence is implementable. For further discussion237

of the relationship between time consistent and pre-commitment strategies, see (Vigna,238

2014; Menoncin and Vigna, 2017; Vigna, 2017; Strub et al., 2019; Forsyth, 2020a;239

Bjork et al., 2021; Cui et al., 2022). In particular, see Forsyth (2020a) for discussion of240

the induced time consistent policy resulting from the use of ES risk.241

An alternative measure of risk could be based on variability of withdrawals (Forsyth242

et al., 2020). However, we note that we have constraints on the minimum and maximum243

withdrawals, so that variability is mitigated. We also assume that given these constraints,244

the retiree is primarily concerned with the risk of depleting savings, something which245

is well measured by ES.246

4.2 Reward: Expected Total Withdrawals (EW)247

We will use expected total withdrawals as a measure of reward in the following. More248

precisely, we define EW (expected withdrawals) as249

EW(𝑋−
0 , 𝑡

−
0 ) = 𝐸

𝑋+
0 ,𝑡

+
0

P0

[ 𝑀∑︁
𝑖=0

𝑞𝑖

]
, (10)250

where we assume that the investor survives for the entire decumulation period. This is251

consistent with the scenario in Bengen (1994) .252

We remark that there is no discounting term in equation (10) as all quantities are real,253

that is, inflation-adjusted. It is straightforward to introduce discounting, but we view254

setting the real discount rate to zero to be a reasonable and conservative choice. See255

Forsyth (2022) for further comments.256

5 Maximizing Conflicting Measures: Problem EW-ES257

Expected withdrawals (EW) and expected shortfall (ES) are two conflicting measures.
We handle this by using a scalarization technique to find the Pareto points for this bi-
objective optimization problem, that is, the set of points where one objective cannot be

3 In practice, the negative of 𝑊∗
𝛼 is often the reported VAR. and the negative of ES is commonly

referred to as Conditional Value at Risk (CVAR).
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improved without worsening the other. For a given scalarization parameter 𝜅 > 0, the
goal is to then find the control P0 that maximizes

EW(𝑋−
0 , 𝑡

−
0 ) + 𝜅 ES𝛼 (𝑋−

0 , 𝑡
−
0 ) .

More precisely, we define the pre-commitment EW-ES problem (𝑃𝐶𝐸𝑆𝑡0 (𝜅)) prob-258

lem in terms of the value function 𝐽 (𝑠, 𝑏, 𝑡−0 ) derived from (9) and (10):259

𝐽
(
𝑠, 𝑏, 𝑡−0

)
= sup

P0∈A
sup
𝑊∗

{
𝐸
𝑋−

0 ,𝑡
−
0

P0

[
𝑀∑︁
𝑖=0

𝑞𝑖 + 𝜅
(
𝑊∗ + 1

𝛼
min(𝑊𝑇 −𝑊∗, 0)

)
+ 𝜖𝑊𝑇

����𝑋 (𝑡−0 ) = (𝑠, 𝑏)
]}

(11)

subject to



(𝑆(𝑡), 𝐵(𝑡)) follows processes (3) and (4); 𝑡 ∉ T
𝑊+
ℓ
= 𝑊−

ℓ
− 𝑞ℓ ; 𝑋+

ℓ
= (𝑆+

ℓ
, 𝐵+
ℓ
)

𝑊−
ℓ
=

(
𝑆−
ℓ
+ 𝐵−

ℓ

)
𝑆+
ℓ
= 𝑝ℓ (·)𝑊+

ℓ
; 𝐵+

ℓ
= (1 − 𝑝ℓ (·))𝑊+

ℓ

(𝑞ℓ (·), 𝑝ℓ (·)) ∈ Z(𝑊−
ℓ
,𝑊+

ℓ
,𝑡ℓ)

ℓ = 0, . . . , 𝑀 ; 𝑡ℓ ∈ T

. (12)

Note that we have added an extra term 𝐸
𝑋−

0 ,𝑡
−
0

P0
[𝜖𝑊𝑇 ] to equation (11). If we have a260

maximum withdrawal constraint, and if 𝑊𝑡 ≫ 𝑊∗ as 𝑡 → 𝑇 , then the controls become261

ill-posed. In this fortunate state for the investor, we can break investment policy ties262

either by setting 𝜖 < 0, which will force investments in bonds, or by setting 𝜖 > 0, which263

will force investments into stocks. Choosing |𝜖 | ≪ 1 ensures that this term only has an264

effect if𝑊𝑡 ≫ 𝑊∗ and 𝑡 → 𝑇 . See Forsyth (2022) for more discussion of this.265

We can interchange the sup sup(·) 4 in equation (11) to represent the value function266

as267

𝐽
(
𝑠, 𝑏, 𝑡−0

)
= sup
𝑊∗

sup
P0∈A

{
𝐸
𝑋+

0 ,𝑡
+
0

P0

[
𝑀∑︁
𝑖=0

𝔮𝑖 + 𝜅
(
𝑊∗ + 1

𝛼
min(𝑊𝑇 −𝑊∗, 0)

)
+ 𝜖𝑊𝑇

����𝑋 (𝑡−0 ) = (𝑠, 𝑏)
]}
.

(13)

Since the inner supremum in equation (13) is a continuous function of 𝑊∗ and the
optimal value of𝑊∗ in equation (13) is bounded, 5 we can define

W∗ (𝑠,𝑏) = arg max
𝑊∗

{
sup
P0∈A

{
𝐸
𝑋+

0 ,𝑡
+
0

P0

[
𝑀∑︁
𝑖=0

𝔮𝑖 + 𝜅
(
𝑊∗ + 1

𝛼
min(𝑊𝑇 −𝑊∗, 0)

)
+𝜖𝑊𝑇

����𝑋 (𝑡−0 ) = (𝑠, 𝑏)
]}

.

(14)

Given W∗ (𝑠,𝑏) from equation (14), then the optimal control P∗ which solves Problem
(13) is the same control which solves

4 Let 𝐹 = sup(𝑎,𝑏) ∈𝐴×𝐵 𝑓 (𝑎, 𝑏) , then ∀𝜖 > 0, ∃(𝑎∗,𝑏∗ ) ∈ 𝐴 × 𝐵, s.t. 𝑓 (𝑎∗,𝑏∗ ) > 𝐹 − 𝜖 . Then
𝐹 ≥ sup𝑎∈𝐴 sup𝑏∈𝐵 𝑓 (𝑎, 𝑏) ≥ sup𝑏∈𝑏 𝑓 (𝑎∗, 𝑏) ≥ 𝑓 (𝑎∗,𝑏∗ ) > 𝐹 − 𝜖 . Hence, 𝜖 → 0 implies
sup𝑎∈𝐴 sup𝑏∈𝐵 𝑓 (𝑎, 𝑏) = 𝐹. Similarly sup𝑏∈𝐵 sup𝑎∈𝐴 𝑓 (𝑎, 𝑏) = 𝐹.
5 This is the same as noting that a finite value at risk exists.
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𝐽
(
𝑠, 𝑏, 𝑡−0

)
= sup

P0∈A

{
𝐸
𝑋+

0 ,𝑡
+
0

P0

[
𝑀∑︁
𝑖=0

𝔮𝑖 +
𝜅

𝛼
min(𝑊𝑇 −W∗ (𝑠,𝑏), 0)+ 𝜖𝑊𝑇

����𝑋 (𝑡−0 ) = (𝑠, 𝑏)
]}
.

(15)

Hence Problem (15) is the induced time consistent policy for Problem (13). We refer268

the reader to Forsyth (2020a) for an extensive discussion concerning pre-commitment269

and time consistent expected shortfall strategies.270

6 Formulation as a Dynamic Program271

We can use the method in Forsyth (2020a) to determine our value function. Write (13)
as

𝐽 (𝑠, 𝑏, 𝑡−0 ) = sup
𝑊∗

𝑣̃(𝑠, 𝑏,𝑊∗, 0−) ,

where 𝑣̃(𝑠, 𝑏,𝑊∗, 𝑡) is defined as

𝑣̃(𝑠, 𝑏,𝑊∗, 𝑡−𝑛 ) = sup
P𝑛∈A𝑛

{
𝐸
𝑋̂+
𝑛 ,𝑡

+
𝑛

P𝑛

[
𝑀∑︁
𝑖=𝑛

𝑞𝑖 + 𝜅
(
𝑊∗ + 1

𝛼
min((𝑊𝑇 −𝑊∗),0)

)
+ 𝜖𝑊𝑇

���� 𝑋̂ (𝑡−𝑛 ) = (𝑠, 𝑏,𝑊∗)
]}

(16)

subject to



(𝑆(𝑡), 𝐵(𝑡)) follows processes (3) and (4); 𝑡 ∉ T
𝑊+
ℓ
= 𝑊−

ℓ
− 𝑞ℓ ; 𝑋+

ℓ
= (𝑆+

ℓ
, 𝐵+
ℓ
,𝑊∗)

𝑊−
ℓ
=

(
𝑆−
ℓ
+ 𝐵−

ℓ

)
𝑆+
ℓ
= 𝑝ℓ (·)𝑊+

ℓ
; 𝐵+

ℓ
= (1 − 𝑝ℓ (·))𝑊+

ℓ

(𝑞ℓ (·), 𝑝ℓ (·)) ∈ Z(𝑊−
ℓ
,𝑊+

ℓ
, 𝑡ℓ)

ℓ = 𝑛, . . . , 𝑀 ; 𝑡ℓ ∈ T

. (17)

The original problem (13) has therefore been decomposed into two steps:272

1. For given initial cash𝑊0, and a fixed value of𝑊∗, solve problem (16) using dynamic273

programming in order to determine 𝑣̃(0,𝑊0,𝑊
∗, 0−).274

2. Solve problem (13) by maximizing over𝑊∗
275

𝐽 (0,𝑊0, 0−) = sup
𝑊∗

𝑣(0,𝑊0,𝑊
∗, 0−) . (18)276

6.1 Dynamic Programming Solution of Problem (16)277

We give a brief overview of the method described in detail in (Forsyth, 2022). We apply
the dynamic programming principle to 𝑡𝑛 ∈ T

𝑣̃(𝑠, 𝑏,𝑊∗, 𝑡−𝑛 ) = sup
𝑞∈Z𝑞 (𝑤− ,𝑡𝑛 )

{
sup

𝑝∈Z𝑝 (𝑤−−𝑞,𝑡𝑛 )

[
𝑞 + 𝑣̃((𝑤− − 𝑞)𝑝, (𝑤− − 𝑞) (1 − 𝑝),𝑊∗, 𝑡+𝑛)

] }
where 𝑤− = (𝑠 + 𝑏) . (19)

If we set278
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ℎ(𝑤, 𝑡𝑛,𝑊∗) =
[

sup
𝑝∈Z𝑝 (𝑤,𝑡𝑛 )

𝑣̃(𝑤𝑝, 𝑤(1 − 𝑝),𝑊∗, 𝑡+𝑛)
]

(20)279

then equation (19) becomes

𝑣̃(𝑠, 𝑏,𝑊∗, 𝑡−𝑛 ) = sup
𝑞∈Z𝑞 (𝑤− ,𝑡𝑛 )

{
𝑞 +

[
ℎ((𝑤− − 𝑞),𝑊∗, 𝑡+𝑛)

]}
with 𝑤− = (𝑠 + 𝑏). (21)

This approach effectively replaces a two dimensional optimization for (𝑞𝑛, 𝑝𝑛), by two
sequential one dimensional optimizations. From equations (20) and (21), the optimal
pair (𝑞𝑛, 𝑝𝑛) satisfies

𝑞𝑛 = 𝑞𝑛 (𝑤− ,𝑊∗) where 𝑤− = (𝑠 + 𝑏)
𝑝𝑛 = 𝑝𝑛 (𝑤,𝑊∗) where 𝑤 = 𝑤− − 𝑞𝑛 .

In other words, the optimal withdrawal control 𝑞𝑛 is only a function of total wealth280

before withdrawals while the optimal control 𝑝𝑛 is a function only of total wealth281

after withdrawals. If a withdrawal results in 𝑊+ > 0, then the optimal control for 𝑝282

is determined along lines of constant wealth in the (𝑠, 𝑏) plane while if a withdrawal283

results in𝑊+ < 0, then stocks are liquidated (𝑝 = 0). This is illustrated in Figure 1.284
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Fig. 1: Schematic of withdrawal controls.

At 𝑡 = 𝑇 , we have

𝑣̃(𝑠, 𝑏,𝑊∗, 𝑇+) = 𝜅
(
𝑊∗ + min((𝑠 + 𝑏 −𝑊∗), 0)

𝛼

)
+ 𝜖 (𝑠 + 𝑏)

while at points in between rebalancing times, that is when 𝑡 ∉ T , standard arguments
from SDEs (3-4), and Forsyth (2022) give

𝑣̃𝑡 +
(𝜎𝑠)2𝑠2

2
𝑣̃𝑠𝑠 + (𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉 )𝑠𝑣̃𝑠 + 𝜆

𝑠
𝜉

∫ +∞

−∞
𝑣̃(𝑒𝑦𝑠, 𝑏, 𝑡) 𝑓 𝑠 (𝑦) 𝑑𝑦 + (𝜎𝑏)2𝑏2

2
𝑣̃𝑏𝑏

+ (𝜇𝑏 + 𝜇𝑏𝑐1{𝑏<0} − 𝜆𝑏𝜉𝛾𝑏𝜉 )𝑏𝑣̃𝑏 + 𝜆𝑏𝜉
∫ +∞

−∞
𝑣̃(𝑠, 𝑒𝑦𝑏, 𝑡) 𝑓 𝑏 (𝑦) 𝑑𝑦 − (𝜆𝑠𝜉 + 𝜆

𝑏
𝜉 ) 𝑣̃ + 𝜌𝑠𝑏𝜎𝑠𝜎𝑏𝑠𝑏𝑣̃𝑠𝑏 = 0 .

(22)
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It is convenient to consider the two cases 𝑏 ≥ 0 and 𝑏 ≤ 0 separately. For 𝑏 ≥ 0, we
solve

𝑣̃𝑡 +
(𝜎𝑠)2𝑠2

2
𝑣̃𝑠𝑠 + (𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉 )𝑠𝑣̃𝑠 + 𝜆

𝑠
𝜉

∫ +∞

−∞
𝑣̃(𝑒𝑦𝑠, 𝑏, 𝑡) 𝑓 𝑠 (𝑦) 𝑑𝑦 + (𝜎𝑏)2𝑏2

2
𝑣̃𝑏𝑏

+ (𝜇𝑏 − 𝜆𝑏𝜉𝛾𝑏𝜉 )𝑏𝑣̃𝑏 + 𝜆𝑏𝜉
∫ +∞

−∞
𝑣̃(𝑠, 𝑒𝑦𝑏, 𝑡) 𝑓 𝑏 (𝑦) 𝑑𝑦 − (𝜆𝑠𝜉 + 𝜆

𝑏
𝜉 ) 𝑣̃ + 𝜌𝑠𝑏𝜎𝑠𝜎𝑏𝑠𝑏𝑣̃𝑠𝑏 = 0 ,

𝑏 ≥ 0, 𝑠 ≥ 0 . (23)

When 𝑏 < 0, it is convenient to re-write equation (22) in terms of debt 𝑏̂ = −𝑏. Letting
𝑣̂(𝑠, 𝑏̂, 𝑡) = 𝑣̃(𝑠, 𝑏, 𝑡), 𝑏 < 0, 𝑏̂ = −𝑏 in equation (22) we obtain

𝑣̂𝑡 +
(𝜎𝑠)2𝑠2

2
𝑣̂𝑠𝑠 + (𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉 )𝑠𝑣̂𝑠 + 𝜆

𝑠
𝜉

∫ +∞

−∞
𝑣̂(𝑒𝑦𝑠, 𝑏̂, 𝑡) 𝑓 𝑠 (𝑦) 𝑑𝑦 + (𝜎𝑏)2𝑏̂2

2
𝑣̂𝑏̂𝑏̂

+ (𝜇𝑏 + 𝜇𝑏𝑐 − 𝜆𝑏𝜉𝛾𝑏𝜉 )𝑏̂𝑣̂𝑏̂ + 𝜆
𝑏
𝜉

∫ +∞

−∞
𝑣̂(𝑠, 𝑒𝑦 𝑏̂, 𝑡) 𝑓 𝑏 (𝑦) 𝑑𝑦 − (𝜆𝑠𝜉 + 𝜆

𝑏
𝜉 ) 𝑣̂ + 𝜌𝑠𝑏𝜎𝑠𝜎𝑏𝑠𝑏̂𝑣̂𝑠𝑏̂ = 0 ,

𝑏̂ > 0, 𝑠 ≥ 0 . (24)

Note that equation (24) is now amenable to a transformation of the form 𝑥 = log 𝑏̂285

since 𝑏̂ > 0, something required when using a Fourier method (Forsyth and Labahn,286

2019; Forsyth, 2022) to solve equation (24).287

After rebalancing, if 𝑏 ≥ 0, then 𝑏 cannot become negative, since 𝑏 = 0 is a barrier
in equation (22). However, 𝑏 can become negative after withdrawals, in which case 𝑏
remains in the state 𝑏 < 0. There equation (24) applies, unless there is an injection of
cash to move to a state with 𝑏 > 0. The terminal condition for equation (24) is

𝑣̂(𝑠, 𝑏̂,𝑊∗, 𝑇+) = 𝜅
(
𝑊∗ + min((𝑠 − 𝑏̂ −𝑊∗), 0)

𝛼

)
+ 𝜖 (𝑠 − 𝑏̂) ; 𝑏̂ > 0 .

7 The 𝜹-Monotone Fourier Method288

The 𝛿-monotone Fourier method originated with the work of Forsyth and Labahn (2019),289

where it was applied to one dimensional problems in stochastic control. In the following,290

we give a sketch showing how to extend those methods to work for two dimensional291

problems.292

We illustrate this method by focusing on equation (23). Since 𝑏 > 0, 𝑠 > 0 we can let
𝑥1 = log 𝑠, 𝑥2 = log 𝑏, 𝜏 = 𝑇 − 𝑡 with 𝑣(𝑥1, 𝑥2, 𝜏) = 𝑣̃(𝑒𝑥1 , 𝑒𝑥2 , 𝑇 − 𝜏). Then (23) converts
to

𝑣𝜏 =
(𝜎𝑠)2

2
𝑣𝑥1𝑥1 + (𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉 )𝑣𝑥1 + 𝜆𝑠𝜉

∫ ∞

−∞
𝑣(𝑥1 + 𝑦, 𝑥2, 𝜏) 𝑓 𝑠 (𝑦) 𝑑𝑦 +

(𝜎𝑏)2

2
𝑣𝑥2𝑥2

+ (𝜇𝑏 − 𝜆𝑏𝜉𝛾𝑏𝜉 )𝑣𝑥2 + 𝜆𝑏𝜉
∫ ∞

−∞
𝑣(𝑥1, 𝑥2 + 𝑦, 𝑡) 𝑓 𝑏 (𝑦) 𝑑𝑦 − (𝜆𝑠𝜉 + 𝜆

𝑏
𝜉 )𝑣 + 𝜌𝑠𝑏𝜎𝑠𝜎𝑏𝑣𝑥1𝑥2 .

(25)

The exact solution of equation (25) can be written as293

𝑣(𝑥1, 𝑥2, 𝜏 + Δ𝜏) =
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥1 − 𝑧1, 𝑥2 − 𝑧2,Δ𝜏) 𝑣(𝑧1, 𝑧2, 𝜏) 𝑑𝑧1 𝑑𝑧2 , (26)294

where 𝑔(𝑥1, 𝑥2,Δ𝜏) is the Green’s function of equation (23) (Garroni and Menaldi,295

1992).296
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Remark 1 (Form of Green’s function) Note that the Green’s function for equation (23)297

is of the form 𝑔(𝑥1, 𝑥2, 𝑧1, 𝑧2) = 𝑔(𝑥1 − 𝑧1, 𝑥2 − 𝑧2), that is a function of the differences.298

Intuitively, we can view the Green’s function as a scaled probability density 𝑓 , and299

this means that 𝑓 (𝑥1, 𝑥2) | (𝑧1, 𝑧2) depends only on the difference, 𝑓 (𝑥1, 𝑥2) | (𝑧1, 𝑧2) =300

𝑓 (𝑥1−𝑧1, 𝑥2−𝑧2). See Forsyth and Labahn (2019) for more discussion of this observation.301

The Fourier transform pair for the Green’s function is given as302

𝐺 (𝜔1, 𝜔2,Δ𝜏) =
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥1, 𝑥2,Δ𝜏)𝑒−2𝜋𝑖𝑤1𝑥1𝑒−2𝜋𝑖𝑤2𝑥2 𝑑𝑥1 𝑑𝑥2303

𝑔(𝑥1, 𝑥2,Δ𝜏) =
∫ ∞

−∞

∫ ∞

−∞
𝐺 (𝜔1, 𝜔2,Δ𝜏)𝑒2𝜋𝑖𝑤1𝑥1𝑒2𝜋𝑖𝑤2𝑥2 𝑑𝜔1 𝑑𝜔2 . (27)304

where 𝑖 =
√
−1. Standard techniques then give the Fourier Transform of the Green’s305

function 𝐺 (𝜔1, 𝜔2,Δ𝜏) for equation (25) as306

𝐺 (𝜔1, 𝜔2,Δ𝜏) = 𝑒Ψ(𝜔1 ,𝜔2 )Δ𝜏 , (28)307

where308

Ψ(𝜔1, 𝜔2) = − (𝜎𝑠)2

2
(2𝜋𝜔1)2 +

(
𝜇𝑠 − 𝜆𝑠𝜉𝛾

𝑠
𝜉 −

(𝜎𝑠)2

2

)
(2𝜋𝑖𝜔1) + 𝜆𝑠𝜉𝐹𝑠 (𝜔1)309

− (𝜎𝑏)2

2
(2𝜋𝜔2)2 +

(
𝜇𝑏 − 𝜆𝑏𝜉𝛾𝑏𝜉 −

(𝜎𝑏)2

2

)
(2𝜋𝑖𝜔2) + 𝜆𝑏𝜉𝐹𝑏 (𝜔1)310

−(𝜆𝑠𝜉 + 𝜆
𝑏
𝜉 ) − 𝜌𝑠𝑏𝜎𝑠𝜎𝑏 (2𝜋𝜔1) (2𝜋𝜔2). (29)311

Here 𝐹𝑏 (𝜔1), 𝐹𝑠 (𝜔1) are the complex conjugates of the Fourier transforms of the312

density functions 𝑓 𝑠 , 𝑓 𝑏:313

𝐹𝑠 (𝜔1) =
𝑢𝑠

1 − 2𝜋𝑖𝜔1
𝜂𝑠1

+ 1 − 𝑢𝑠

1 + 2𝜋𝑖𝜔1
𝜂𝑠2

314

𝐹𝑏 (𝜔2) =
𝑢𝑏

1 − 2𝜋𝑖𝜔2
𝜂𝑏1

+ 1 − 𝑢𝑏

1 + 2𝜋𝑖𝜔2
𝜂𝑏2

.315

7.1 Localization316

Define317

Ω = [(𝑥1)min, (𝑥1)max] × [(𝑥2)min, (𝑥2)max] .318

As is typically the case, we assume that the Green’s function 𝑔(𝑥1, 𝑥2,Δ𝜏) decays to319

zero as |𝑥1 |, |𝑥2 | → ∞. More precisely, we assume that320

Assumption 1 (Decay of Green’s Function). For some 𝐴 > 0, 𝑔(𝑥1, 𝑥2,Δ𝜏) is negligible321

if min( |𝑥1 |, |𝑥2 |) > 𝐴.322

We choose our region Ω so that we can assume that the Green’s function is negligible323

for (𝑥1,𝑥2) ∉ Ω. As such we replace the Fourier transform pair (27) by their Fourier324

series equivalent325
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𝐺 (𝜔𝑘1 , 𝜔
𝑗

2,Δ𝜏) ≃
∫ (𝑥1 )max

(𝑥1 )min

∫ (𝑥2 )max

(𝑥2 )min

𝑔(𝑥1, 𝑥2,Δ𝜏) 𝑒−2𝜋𝑖𝜔𝑘
1 𝑥1 𝑒−2𝜋𝑖𝜔 𝑗

2 𝑥2 𝑑𝑥1 𝑑𝑥2326

𝑔(𝑥1, 𝑥2,Δ𝜏) =
1

𝑃1𝑃2

∞∑︁
𝑘=−∞

∞∑︁
𝑗=−∞

𝐺 (𝜔𝑘1 , 𝜔
𝑗

2,Δ𝜏) 𝑒
2𝜋𝑖𝜔𝑘

1 𝑥1 𝑒2𝜋𝑖𝜔 𝑗

2 𝑥2 (30)327

with328

𝑃1 = (𝑥1)max − (𝑥1)min ; 𝑃2 = (𝑥2)max − (𝑥2)min; 𝜔𝑘1 =
𝑘

𝑃1
; 𝜔 𝑗2 =

𝑗

𝑃2
329

along with a localized version of equation (26)330

𝑣(𝑥1,𝑥2, 𝜏 + Δ𝜏) =
∫ (𝑥1 )max

(𝑥1 )min

∫ (𝑥2 )max

(𝑥2 )min

𝑔(𝑥1 − 𝑧1, 𝑥2 − 𝑧2,Δ𝜏) 𝑣(𝑧1, 𝑧2, 𝜏) 𝑑𝑧1 𝑑𝑧2 .331

(31)332

Scaling factors in equation (30) are selected to correspond to a finite domain form of333

equation (27).334

7.2 Periodic Extension335

We have informally derived the expression for the Green’s function by localizing the
infinite domain Green’s function. Localizing the problem on Ω, and using a Fourier
series representation of the Green’s function makes the implicit assumption of periodic
extension.

Assumption 2. Periodicity

1. The control problem is defined on the finite domain Ω.
2. The solution 𝑣(𝑥1, 𝑥2, 𝜏) is extended periodically

𝑣(𝑥1 ± 𝑃1, 𝑥2, 𝜏) = 𝑣(𝑥1, 𝑥2 ± 𝑃2, 𝜏) = 𝑣(𝑥1, 𝑥2, 𝜏) . (32)

3. The jump size density functions 𝑓 𝑠 (𝑦1), 𝑓 𝑏 (𝑦2) are defined on 𝑦1 ∈ [(𝑥1)min, (𝑥1)max]
and 𝑦2 ∈ [(𝑥2)min, (𝑥2)max], with periodic extension

𝑓 𝑠 (𝑦1 + 𝑃1) = 𝑓 𝑠 (𝑦1) and 𝑓 𝑏 (𝑦2 + 𝑃2) = 𝑓 𝑏 (𝑦2) . (33)

4. Periodic boundary conditions (32)-33) are specified for the PIDE problem (25).
5. From equation (30) we can also see that

𝑔(𝑥1 ± 𝑃1, 𝑥2, 𝜏) = 𝑔(𝑥1, 𝑥2 ± 𝑃2, 𝜏) = 𝑔(𝑥1, 𝑥2, 𝜏).

It is more rigorous to make Assumption 2, and then derive the Green’s function.336

It is straightforward to verify that this yields the Fourier series representation (30),337

with 𝐺 (𝜔𝑘1 , 𝜔
𝑗

2) given by equations (28)-(29). In particular, we have that (Garroni and338

Menaldi, 1992)339

𝑔(𝑥1, 𝑥2,Δ𝜏) ≥ 0340 ∫
Ω

𝑔(𝑥1, 𝑥2,Δ𝜏)𝑑𝑥1 𝑑𝑥2 = 1 .341
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7.3 Discretization342

We discretize equation (31) on a grid {(𝑥1, 𝑥2) 𝑗 ,𝑘}, {(𝑧1, 𝑧2) 𝑗 ,𝑘}, by setting343

𝑥
𝑗

1 = 𝑥0
1 + 𝑗Δ𝑥1 ; 𝑥𝑘2 = 𝑥0

2 + 𝑘Δ𝑥2 ; 𝑗 = −𝑁1

2
, . . .

𝑁1

2
− 1 ; 𝑘 = −𝑁2

2
, . . .

𝑁2

2
− 1344

Δ𝑥1 =
𝑃1

𝑁1
; Δ𝑥2 =

𝑃2

𝑁2
345

𝑃1 = (𝑥1)max − (𝑥1)min ; 𝑃2 = (𝑥2)max − (𝑥2)min346

𝑣 𝑗 ,𝑘 (𝜏) ≡ 𝑣(𝑥 𝑗1 , 𝑥
𝑘
2 , 𝜏).347

Define linear basis functions as348

𝜙
𝑗

1 (𝑥1) =


(𝑥1−(𝑥 𝑗

1 −Δ𝑥1 ) )
Δ𝑥1

𝑥
𝑗

1 − Δ𝑥1 ≤ 𝑥1 ≤ 𝑥 𝑗1
(𝑥 𝑗

1+Δ𝑥1−𝑥1 )
Δ𝑥1

𝑥
𝑗

1 ≤ 𝑥1 ≤ 𝑥 𝑗1 + Δ𝑥1

0 otherwise .

349

with a similar definition for 𝜙𝑘2 (𝑥2). We can then represent the solution 𝑣(𝑥1, 𝑥2, 𝜏) as a350

linear combination of the basis functions351

𝑣(𝑥1, 𝑥2, 𝜏) ≃
𝑁1/2−1∑︁
𝑗=−𝑁1/2

𝑁2/2−1∑︁
𝑘=−𝑁2/2

𝜙
𝑗

1 (𝑥1)𝜙𝑘2 (𝑥2)𝑣 𝑗 ,𝑘 (𝜏) . (34)352

Substituting equation (34) into equation (31) then gives353

𝑣ℓ,𝑚(𝜏 + Δ𝜏)354

=

𝑁1/2−1∑︁
𝑗=−𝑁1/2

𝑁2/2−1∑︁
𝑘=−𝑁2/2

𝑣 𝑗 ,𝑘 (𝜏)
∫ (𝑥1 )max

(𝑥1 )min

∫ (𝑥2 )max

(𝑥2 )min

𝜙
𝑗

1 (𝑥1) 𝜙𝑘2 (𝑥2) 𝑔(𝑥ℓ1 − 𝑥1, 𝑥
𝑚
2 − 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2 .355

(35)356

For a given pair ( 𝑗 , 𝑘) the double integrals then simplify to357 ∫ (𝑥1 )max

(𝑥1 )min

∫ (𝑥2 )max

(𝑥2 )min

𝜙
𝑗

1 (𝑥1) 𝜙𝑘2 (𝑥2) 𝑔(𝑥ℓ1 − 𝑥1, 𝑥
𝑚
2 − 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2358

=

∫ 𝑥
𝑗

1+Δ𝑥1

𝑥
𝑗

1 −Δ𝑥1

∫ 𝑥𝑘2 +Δ𝑥2

𝑥𝑘2 −Δ𝑥2

𝜙
𝑗

1 (𝑥1) 𝜙𝑘2 (𝑥2) 𝑔(𝑥ℓ1 − 𝑥1, 𝑥
𝑚
2 − 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2359

=

∫ 𝑥ℓ1 −𝑥
𝑗

1+Δ𝑥1

𝑥ℓ1 −𝑥
𝑗

1 −Δ𝑥1

∫ 𝑥𝑚2 −𝑥𝑘2 +Δ𝑥2

𝑥𝑚2 −𝑥𝑘2 −Δ𝑥2

𝜙
𝑗

1 (𝑥
ℓ
1 − 𝑥1) 𝜙𝑘2 (𝑥

𝑚
2 − 𝑥2) 𝑔(𝑥1, 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2360

=

∫ 𝑥ℓ1 −𝑥
𝑗

1+Δ𝑥1

𝑥ℓ1 −𝑥
𝑗

1 −Δ𝑥1

∫ 𝑥𝑚2 −𝑥𝑘2 +Δ𝑥2

𝑥𝑚2 −𝑥𝑘2 −Δ𝑥2

𝜙
ℓ− 𝑗
1 (𝑥1)𝜙𝑚−𝑘

2 (𝑥2) 𝑔(𝑥1, 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2 .361

Here the last line follows from the property of linear basis functions,

𝜙
𝑗

1 (𝑥
ℓ
1 − 𝑥1) = 𝜙ℓ− 𝑗1 (𝑥1), 𝜙𝑘2 (𝑥

𝑘
2 − 𝑥2) = 𝜙𝑚−𝑘

2 (𝑥2).

Defining362

𝑔̃ℓ− 𝑗 ,𝑚−𝑘 (Δ𝜏) ≡
1

Δ𝑥1Δ𝑥2

∫ 𝑥ℓ1 −𝑥
𝑗

1+Δ𝑥1

𝑥ℓ1 −𝑥
𝑗

1 −Δ𝑥1

∫ 𝑥𝑚2 −𝑥𝑘2 +Δ𝑥2

𝑥𝑚2 −𝑥𝑘2 −Δ𝑥2

𝜙
ℓ− 𝑗
1 (𝑥1)𝜙𝑚−𝑘

2 (𝑥2) 𝑔(𝑥1, 𝑥2,Δ𝜏) 𝑑𝑥1 𝑑𝑥2,363
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then implies that for each ℓ = −𝑁1/2, . . . , 𝑁1/2 − 1, 𝑚 = −𝑁2/2, . . . , 𝑁2/2 − 1, the364

convolution (35) can be written as365

𝑣ℓ,𝑚(𝜏 + Δ𝜏) =
𝑁1/2−1∑︁
𝑗=−𝑁1/2

𝑁2/2−1∑︁
𝑘=−𝑁2/2

𝑣 𝑗 ,𝑘 (𝜏) 𝑔̃ℓ− 𝑗 ,𝑚−𝑘 (𝜏) Δ𝑥1 Δ𝑥2. (36)366

Furthermore using the Fourier series form for 𝑔(·) from equation (30) we have367

𝑔̃ℓ− 𝑗 ,𝑚−𝑘 (Δ𝜏)368

=
1

Δ𝑥1 Δ𝑥2

∫ 𝑥ℓ1 −𝑥
𝑗

1+Δ𝑥1

𝑥
ℓ

1 −𝑥
𝑗

1 −Δ𝑥1

∫ 𝑥𝑚2 −𝑥𝑘2 +Δ𝑥2

𝑥𝑚2 −𝑥𝑘2 −Δ𝑥2

𝜙
ℓ− 𝑗
1 (𝑥1) 𝜙𝑚−𝑘

2 (𝑥2) 𝑔(𝑥1, 𝑥2, 𝜏) 𝑑𝑥1 𝑑𝑥2369

=
1

𝑃1𝑃2

∞∑︁
𝑢=−∞

∞∑︁
𝑝=−∞

(
sin2 𝜋𝜔𝑢1Δ𝑥1

(𝜋𝜔𝑢1Δ𝑥1)2

) (
sin2 𝜋𝜔

𝑝

2 Δ𝑥2

(𝜋𝜔𝑝2 Δ𝑥2)2

)
𝐺 (𝜔𝑢1 , 𝜔

𝑝

2 ,Δ𝜏) 𝑒
2𝜋𝑖𝜔𝑢

1 (𝑥ℓ1 −𝑥
𝑗

1 ) 𝑒2𝜋𝑖𝜔𝑝

2 (𝑥𝑚2 −𝑥𝑘2 )370

=
1

𝑃1𝑃2

∞∑︁
𝑢=−∞

∞∑︁
𝑝=−∞

(
sin2 𝜋𝜔𝑢1Δ𝑥1

(𝜋𝜔𝑢1Δ𝑥1)2

) (
sin2 𝜋𝜔

𝑝

2 Δ𝑥2

(𝜋𝜔𝑝2 Δ𝑥2)2

)
𝐺 (𝜔𝑢1 , 𝜔

𝑝

2 ,Δ𝜏) 𝑒
2𝜋𝑖𝑢(ℓ− 𝑗 )/𝑁1 𝑒2𝜋𝑖𝑝 (𝑚−𝑘 )/𝑁2 .371

(37)372

Here for the inside integrals in (37) we have used the following formula for linear basis
functions

1
Δ𝑥

∫ 𝑦+Δ𝑥

𝑦−Δ𝑥
𝑒2𝜋𝑖𝜔𝑥𝜙(𝑥)𝑑𝑥 = 𝑒2𝜋𝑖𝜔𝑦 sin2 𝜋𝜔Δ𝑥

(𝜋𝜔Δ𝑥)2

applied separately for 𝜙1 and 𝜙2. Note that equation (37) is independent of 𝑥0
1, 𝑥

0
2.6373

For future reference, we note the DFT pair for any grid function7 ℎ(𝑥 𝑗1 , 𝑥
𝑘
2 ) = ℎ 𝑗𝑘 is374

given by375

𝐻 (𝜔ℓ1, 𝜔
𝑚
2 ,Δ𝜏) =

𝑃1

𝑁1

𝑃2

𝑁2

∑︁
𝑗 ,𝑘

𝑒−2𝜋𝑖ℓ 𝑗/𝑁1𝑒−2𝜋𝑖𝑚𝑘/𝑁2ℎ 𝑗𝑘 (38)376

ℎ𝑝𝑛 (Δ𝜏) =
1

𝑃1𝑃2

∑︁
ℓ,𝑚

𝑒2𝜋𝑖ℓ 𝑝/𝑁1𝑒2𝜋𝑖𝑚𝑛/𝑁2𝐻 (𝜔ℓ1, 𝜔
𝑚
2 ,Δ𝜏) (39)377

which can be verified by substituting equation (38) into equation (39)378

ℎ𝑝𝑛 (Δ𝜏) =
1

𝑁1𝑁2

∑︁
𝑗 ,𝑘

ℎ 𝑗𝑘

∑︁
ℓ,𝑚

𝑒2𝜋𝑖ℓ (𝑝− 𝑗 )/𝑁1𝑒2𝜋𝑖𝑚(𝑛−𝑘 )/𝑁2 = ℎ𝑝𝑛 ,379

since380 ∑︁
ℓ,𝑚

𝑒2𝜋𝑖ℓ (𝑝− 𝑗 )/𝑁1𝑒2𝜋𝑖𝑚(𝑛−𝑘 )/𝑁2 =

{
𝑁1𝑁2 𝑝 = 𝑗 and 𝑛 = 𝑘
0 otherwise

. (40)381

We denote this pair by 𝐻 = 𝐷𝐹𝑇 (ℎ), ℎ = 𝐼𝐷𝐹𝑇 (𝐻).382

7.3.1 Discrete Index Domain383

Although we have defined the solution on the physical domainΩ, note that from equation384

(37) 𝑔̃ℓ− 𝑗 ,𝑚−𝑛 is independent of (𝑥0
1, 𝑥

0
2). In addition, the DFT pair are defined indepen-385

6 For the case of 𝑢 = 0, 𝑝 = 0 in equation (37) we take the limiting value as 𝜔0
1 → 0, 𝜔0

2 → 0.
7 Note that the DFT here is independent of any physical coordinates.
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dently of the original grid. Consequently, in order to avoid confusion concerning the386

various physical and grid domains, we will refer only to discrete index domains. Define387

D =

{
(ℓ, 𝑗)

�� − 𝑁1

2
≤ ℓ ≤ 𝑁1

2
− 1 , − 𝑁2

2
≤ 𝑗 ≤ 𝑁2

2
− 1

}
.388

Then 𝑔̃ℓ, 𝑗 , 𝑣ℓ, 𝑗 are both in the index domain D.389

7.4 Efficient Computation of the Discrete Convolution390

The discrete convolution (36) is performed at each rebalancing date, hence an efficient391

evaluation is desirable. The convolution can be written as392

𝑣ℓ,𝑚 (𝜏 + Δ𝜏) =
𝑁1/2−1∑︁
𝑗=−𝑁1/2

𝑁2/2−1∑︁
𝑘=−𝑁2/2

𝑣 𝑗 ,𝑘 (𝜏)𝑔̃ℓ− 𝑗 ,𝑚−𝑘 (Δ𝜏) Δ𝑥1 Δ𝑥2393

=
𝑃1

𝑁1

𝑃2

𝑁2

∑︁
𝑗 ,𝑘

𝑔̃ℓ− 𝑗 ,𝑚−𝑘 (Δ𝜏)𝑣 𝑗 ,𝑘 (𝜏) . (41)394

Using equations (38) and (39) to write 𝑔̃(Δ𝜏) = 𝐼𝐷𝐹𝑇 (𝐺̃ (Δ𝜏)), 𝑣 = 𝐼𝐷𝐹𝑇 (𝑉) in395

equation (41) gives396

𝑣ℓ,𝑚 (𝜏 + Δ𝜏) = 1
𝑁1𝑃1

1
𝑁2𝑃2

∑︁
𝑗 ,𝑘

∑︁
𝑝,𝑢

𝐺̃ 𝑝𝑢 (Δ𝜏)𝑒2𝜋𝑖𝑝 (ℓ− 𝑗 )/𝑁1𝑒2𝜋𝑖𝑢(𝑚−𝑘 )/𝑁2
∑︁
𝑞,𝑟

𝑉𝑞,𝑟 𝑒
2𝜋𝑖𝑞 𝑗/𝑁1𝑒2𝜋𝑖𝑟𝑘/𝑁2397

=
1

𝑁1𝑃1

1
𝑁2𝑃2

∑︁
𝑝,𝑢

∑︁
𝑞,𝑟

𝐺̃ 𝑝𝑢 (Δ𝜏)𝑉𝑞𝑟 𝑒2𝜋𝑖𝑝ℓ/𝑁1𝑒2𝜋𝑖𝑢𝑚/𝑁2
∑︁
𝑗 ,𝑘

𝑒2𝜋𝑖 𝑗 (𝑞−𝑝)/𝑁1𝑒2𝜋𝑖𝑘 (𝑟−𝑢)/𝑁2398

=
1
𝑃1

1
𝑃2

∑︁
𝑝,𝑢

𝐺̃ 𝑝𝑢 (Δ𝜏)𝑉𝑝𝑢𝑒2𝜋𝑖𝑝ℓ/𝑁1𝑒2𝜋𝑖𝑢𝑚/𝑁2399

where we have used equation (40) in the last step. More compactly we can write400

𝑣̃(𝜏 + Δ𝜏) = 𝐼𝐷𝐹𝑇
(
𝐺̃ (Δ𝜏) ◦ 𝐷𝐹𝑇 (𝑣(𝜏))

)
, (42)401

where 𝑦 ◦ 𝑧 is the Hadamard product of vectors 𝑦, 𝑧.402

7.5 𝜹-Monotonicity403

Using the definition for 𝑔̃ from equation (37), then this represents an exact integra-404

tion over linear basis functions of the exact Green’s function (with periodic boundary405

conditions) on Ω. Hence406

𝑔̃ 𝑗 ,𝑘 ≥ 0 ; ∀( 𝑗 ,𝑘) ∈ D (43)407

This gives rise to an important monotonicity property (Forsyth and Labahn, 2019).408

Suppose we have two discrete solutions 𝑣ℓ,𝑚 (𝜏), 𝑢ℓ,𝑚(𝜏) such that409

𝑣ℓ,𝑚 (𝜏) > 𝑢ℓ,𝑚 (𝜏) ; ∀(ℓ,𝑚) ∈ D . (44)410

Then, using the time advance algorithm (36), it follows that the discrete comparison411

principle holds:412
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𝑣ℓ,𝑚 (𝜏 + Δ𝜏) > 𝑢ℓ,𝑚 (𝜏 + Δ𝜏) ; ∀(ℓ,𝑚) ∈ D .413

The positivity condition (43) ensures that the order property (44) is preserved by the414

discretized algorithm. This is, of course, a property of the exact solution. This property415

is important since we compare the values of the discrete solution in order to determine416

the optimal control. See Forsyth and Labahn (2019) for more discussion of this.417

However, note that the dimension of 𝑔̃ is (𝑁1, 𝑁2), but we need to sum an infinite418

series to determine the discrete values of 𝑔̃𝑚,𝑢 from equation (36). In practice, we419

truncate the series in equation (37), that is,420

𝑔̃ℓ− 𝑗,𝑚−𝑘 (Δ𝜏 )421

≃ 1
𝑃1𝑃2

𝑁
𝑔

1 /2−1∑︁
𝑢=−𝑁𝑔

1 /2

𝑁
𝑔

2 /2−1∑︁
𝑝=−𝑁𝑔

2 /2

(
sin2 𝜋𝜔𝑢

1 Δ𝑥1

(𝜋𝜔𝑢
1 Δ𝑥1 )2

) (
sin2 𝜋𝜔

𝑝

2 Δ𝑥2

(𝜋𝜔𝑝

2 Δ𝑥2 )2

)
𝐺 (𝜔𝑢

1 , 𝜔
𝑝

2 , Δ𝜏 ) 𝑒
2𝜋𝑖 𝑢(ℓ− 𝑗)

𝑁1 𝑒
2𝜋𝑖 𝑝 (𝑚−𝑘)

𝑁2422

(45)423

where the grid sizes (𝑁𝑔1 , 𝑁
𝑔

2 ) can be chosen independently from (𝑁1, 𝑁2). However,424

truncating the Fourier series means that the positivity condition (43) may not hold any425

longer. In Forsyth and Labahn (2019), it is suggested that (𝑁𝑔1 , 𝑁
𝑔

2 ) be selected so that426

𝑁
𝑔

1 /2+1∑︁
𝑚=−𝑁𝑔

1 /2

𝑁
𝑔

2 /2−1∑︁
𝑛=−𝑁𝑔

2 /2
Δ𝑥1Δ𝑥2 | min(𝑔̃𝑚,𝑛,0) | < 𝛿

Δ𝜏

𝑇
. (46)427

This ensures that the cumulative effect (after (𝑇/(Δ𝜏) steps) of non-positivity means428

that the discrete comparison principle holds to 𝑂 (𝛿). Note that if the timestep (Δ𝜏) is429

constant (which is usually the case), then equation (45) needs to be computed only once.430

Hence it is inexpensive to select sizes (𝑁𝑔1 , 𝑁
𝑔

2 ) which satisfy condition (46). Equation431

(45) can also be computed efficiently using FFTs, assuming 𝑁𝑔1 /𝑁1, 𝑁
𝑔

2 /𝑁2 are powers432

of two (see Forsyth and Labahn (2019).433

8 Periodicity and the problem of Wrap-around error434

Localization of the Green’s function effectively implies a periodic extension of the435

Green’s function and the solution (see Assumption 2). In option pricing applications,436

this wrap-around error does not cause difficulty. However, in control applications,437

impulse controls (such as rebalancing) may require extensive use of solution values near438

the edges of the grid. For example, derisking by investing in an all bond portfolio results439

in an impulse control which drives 𝑠 → 0 instantaneously. This can cause significant440

wrap-around pollution (see (Lippa, 2013; Ruĳter et al., 2013; Ignatieva et al., 2018)).441

Given the localized problem defined on Ω = [(𝑥1)min, (𝑥1)max] × [(𝑥2)min, (𝑥2)max],
with widths

𝑃1 = (𝑥1)max − (𝑥1)min and 𝑃2 = (𝑥2)max − (𝑥2)min

we construct an auxiliary grid with 𝑁†
1 = 2𝑁1 nodes in the 𝑥1 direction, and 𝑁†

2 = 2𝑁2442

nodes in the 𝑥2 direction, on the domain Ω† = [(𝑥1)†min, (𝑥1)†max] × [(𝑥2)†min, (𝑥2)†max],443

with444

(𝑥1)†min = (𝑥1)min −
𝑃1

2
; (𝑥1)†max = (𝑥1)max +

𝑃1

2
445

(𝑥2)†min = (𝑥2)min −
𝑃2

2
; (𝑥2)†max = (𝑥2)max +

𝑃2

2
446

447

𝑃
†
1 = (𝑥1)†max − (𝑥1)†min = 2𝑃1 ; 𝑃

†
2 = (𝑥2)†max − (𝑥2)†min = 2𝑃2448
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Although we have increased the size of the physical domain Ω, we remind the reader449

of the discussion in Section 7.3.1. It will be more convenient in the following to refer to450

the extended index domain451

D† =
{
(𝑘, 𝑗)

�� − 𝑁†
1/2 ≤ 𝑘 ≤ 𝑁

†
1/2 − 1 , − 𝑁†

2/2 ≤ 𝑗 ≤ 𝑁
†
2/2 − 1

}
.452

Denote the projected Green’s function for grid indexes in D† by 𝑔̃†. Note from453

equation (37) that 𝑔̃† does not depend on the actual physical domain, but only on454

(Δ𝑥1,Δ𝑥2). We construct and store the DFT of the projection of the Green’s function455

𝐺̃† (Δ𝜏) = 𝐷𝐹𝑇 (𝑔̃† (Δ𝜏)) on this auxiliary index grid D†.456

Before applying the time advance algorithm (42) we form the padded array 𝑣† (𝜏):457

𝑣† (𝑥𝑚1 , 𝑥
𝑘
2 , 𝜏) = 𝑣(𝑥

𝑚
1 , 𝑥

𝑘
2 , 𝜏) , (𝑚,𝑘) ∈ D458

= 𝑣(𝑥−𝑁1/2
1 , 𝑥𝑘2 , 𝜏) , 𝑚 ∈ [−𝑁†

1/2,−𝑁1/2 − 1]; 𝑘 ∈ [−𝑁2/2, 𝑁2 − 1]459

= 𝑣(𝑥−𝑁1/2
1 , 𝑥

−𝑁2/2
2 , 𝜏), 𝑚 ∈ [−𝑁†

1/2,−𝑁1/2 − 1]; 𝑘 ∈ [−𝑁†
2 ,−𝑁2 − 1]460

= 𝑣(𝑥𝑚1 , 𝑥
−𝑁2/2
2 , 𝜏) , 𝑚 ∈ [−𝑁1/2, 𝑁1/2 − 1] ; 𝑘 ∈ [−𝑁†

1/2,−𝑁2/2 − 1]461

= 𝐴(𝑥𝑚1 , 𝑥
𝑘
2 , 𝜏) , 𝑚 > 𝑁1/2 − 1 or 𝑘 > 𝑁2/2 − 1 , (47)462

where 𝐴(𝑥𝑚1 , 𝑥
𝑘
2 , 𝜏) is an asymptotic form of the solution which we assume to be463

available from financial reasoning. On the auxiliary grid, the points where 𝑥1 < (𝑥1)𝑚𝑖𝑛464

or 𝑥2 < (𝑥2)min correspond to the points where 𝑠 → 0 or 𝑏 → 0, with very small465

grid spacing. Hence extending the solution by constant values to the left and bottom is466

expected to generate a very small error.467

We then modify the time advance algorithm (42) as shown in Algorithm 1. Note that468

the step (3) discards the computed solution in the padded areas {𝑣† (𝜏 + Δ𝜏)𝑖, 𝑗
��(𝑖, 𝑗) ∈469

D† − D}, since these points may be contaminated by wrap-around errors.470

Require: 𝑣(𝜏) ; 𝐺†

1: Form 𝑣† (𝜏) using (47)
2: 𝑣† (𝜏+Δ𝜏) = 𝐼𝐷𝐹𝑇

(
𝐺̃† ◦𝐷𝐹𝑇

(
𝑣† (𝜏)

) )
{IDFT (Hadamard product)}

3: 𝑣𝑘,𝑚 (𝜏 +Δ𝜏) = 𝑣†
𝑘,𝑚

(𝜏 +Δ𝜏) , (𝑘, 𝑚) ∈ D {Discard values in D† −D.}

Algorithm 1: Advance time 𝑣(𝜏 ) → 𝑣(𝜏 + Δ𝜏 ) .

8.1 Error Due to Wrap-around471

Let 𝜏𝑛 = 𝑛Δ𝜏 and NΔ𝜏 = 𝑇 , with Δ𝜏 fixed. We can then write the discrete convolution472

(41) in the physical domain, compactly as473

𝑣𝑛+1
ℓ,𝑚 = Δ𝑥1Δ𝑥2

∑︁
( 𝑗 ,𝑘 ) ∈D†

𝑔̃
†
ℓ− 𝑗 ,𝑚−𝑘𝑣

†
𝑗 ,𝑘

(𝜏𝑛) , (ℓ,𝑚) ∈ D . (48)474

Note that the right hand side of equation (48) uses the padded values for 𝑣†
𝑗 ,𝑘

, but475

generates the unpadded 𝑣𝑛+1
ℓ,𝑚

on the left hand side. In addition, 𝑔̃† is periodic with period476

𝑃
†
1 in the 𝑥1 direction, and period 𝑃†

2 in the 𝑥2 direction.477

The use of Algorithm 1 means that the periodic extension of 𝑔̃ is used in equation478

(48) for any terms of the sum such that479
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(ℓ − 𝑗 , 𝑚 − 𝑘) ∉ D† .480

This periodic extension wraps around the solution domain. For example, points with481

indexes ℓ − 𝑗 < −𝑁†
1/2 reference points with index ℓ − 𝑗 + 𝑁†

1 , which is at the opposite482

side of the grid, and potentially generates wrap-around error. See also Appendix 12 for483

further discussion of this.484

Definition 1 (Wraparound error.) Assume 𝑔̃†
ℓ,𝑚

for (ℓ, 𝑚) ∈ D† is periodic485

𝑔̃† (ℓ ± 𝑁†
1 , 𝑚) = 𝑔̃

† (ℓ, 𝑚 ± 𝑁†
2 ) = 𝑔̃

† (ℓ, 𝑚) . (49)486

Suppose 𝑣†
𝑗 ,𝑘

(𝜏𝑛) is determined by boundary data for (𝑥 𝑗1 , 𝑥
𝑚
2 ) ∈ (Ω† − Ω), which487

we assume to be exact,8 with (𝑁†
1 , 𝑁

†
2 ) = (2𝑁1, 2𝑁2). Then, the wraparound error for488

convolution (48) evaluated using DFTs, at timestep 𝑛Δ𝜏, denoted by 𝜖𝑛𝑤𝑟𝑎𝑝 is489

𝜀𝑛𝑤𝑟𝑎𝑝 = Δ𝑥1Δ𝑥2 max
(ℓ,𝑚) ∈D

∑︁
( 𝑗 ,𝑘 ) ∈D†

��𝑔̃†
ℓ− 𝑗 ,𝑚−𝑘𝑣

†
𝑗 ,𝑘

(𝜏𝑛)
�� 1(ℓ− 𝑗 ,𝑚−𝑘 )∉D† . (50)490

We now state a theorem on the effectiveness of our padding method. See Appendix491

12 for a proof.492

Theorem 1 (Wraparound error) Suppose 𝑔̃†
ℓ,𝑚

for (ℓ, 𝑚) ∈ D† is periodic as defined in493

equation (49), and that 𝑣†
ℓ,𝑚

(𝜏𝑛) be determined by boundary data for (ℓ, 𝑚) ∈ (D†−D),494

with (𝑁†
1 , 𝑁

†
2 ) = 2(𝑁1, 𝑁2). Assume further that there exists a constant 𝐶 such that495 ��𝑣†
ℓ,𝑚

(𝜏𝑛)
�� ≤ 𝐶 , (ℓ, 𝑚) ∈ D† , ∀ 𝑛 such that (𝑛Δ𝜏) ≤ 𝑇 ,496

and that we choose (𝑁1, 𝑁2) sufficiently large so that497

©­«Δ𝑥1Δ𝑥2
∑︁

( 𝑗 ,𝑘 ) ∈D†−D
|𝑔̃†
𝑗 ,𝑘

|ª®¬ ≤ 𝜀𝑏 Δ𝜏 . (51)498

Then499

𝜀𝑛𝑤𝑟𝑎𝑝 ≤ 𝐶𝜀𝑏 Δ𝜏 , (52)500

and the wraparound error after N steps is bounded by501

𝜀N ≤ 𝑇𝜖𝑏𝐶 where 𝑇 = NΔ𝜏 .502

Remark 2 (Asymptotic Form of Green’s Function) For a pure diffusion in one dimension,503

the Green’s function for the Black-Scholes equation behaves like504

𝑔(𝑥 − 𝑥′,Δ𝜏) = 𝑂
(
𝑒−(𝑥−𝑥′ )2/(𝜎2Δ𝜏 )

)
as |𝑥 − 𝑥′ | → ∞ .505

Similar asymptotic exponential decay as max( |𝑥1 |,|𝑥2 |) → ∞ is also seen for the full506

2-d Green’s function(Garroni and Menaldi, 1992). Hence ensuring that condition (51)507

holds is not onerous.508

8 In practice, we use the method in equation (47), which we expect will generate a small error.
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8.2 Numerical Method for Optimal Control509

As mentioned in Section 16, we need the optimal pair (𝑞, 𝑝) at each rebalancing date. The510

optimal controls are obtained by first discretizing the controls and thereafter determining511

the controls by exhaustive search. Recall that the PIDE grid spacing is Δ𝑥1,Δ𝑥2. Let512

𝑁𝑞 and 𝑁𝑝 denote the number of points in the discretizations of 𝑞 and 𝑝, respectively.513

We will also need to discretize the possible values of total wealth 𝑤 = 𝑠 + 𝑏, with514

𝑁𝑤 denoting the number of discrete wealth values. This approach (discretization and515

search), is then guaranteed to converge to the viscosity solution of the optimal control516

problem in the limit as517

Δ𝑥1,Δ𝑥2 → 0 ; 𝑁𝑞 , 𝑁𝑝 , 𝑁𝑤 → ∞ ; 𝛿 → 0 ,518

provided that the complete numerical scheme is 𝛿−monotone, consistent and ℓ∞ stable,519

see (Barles and Souganidis, 1991; Forsyth and Labahn, 2019).520

Given an array of discrete values, that is, 𝑣 𝑗 ,𝑘 (𝜏−𝑛 ), we denote the linear interpolant521

of the grid values at an arbitrary point (𝑧1, 𝑧2) by522

𝑣(I(𝑧1, 𝑧2), 𝜏−𝑛 ) .523

The numerical analogue of equation (20) requires a temporary array, ℎ(𝑤𝑘), 𝑘 =524

1, . . . , 𝑁𝑤, where 𝑤𝑘 = 𝑠 + 𝑏, the total wealth. This array is determined by525

𝑝∗ (𝑤𝑘)︸  ︷︷  ︸
𝑘=1,...,𝑁𝑤

= arg max
𝑗=1,...,𝑁𝑝

𝑝 𝑗 ∈Z𝑝 (𝑤𝑘 ,𝜏
−
𝑛 )

𝑣

(
I

(
log(𝑤𝑘 𝑝 𝑗 ) , log(𝑤𝑘 (1 − 𝑝 𝑗 ))

)
,𝜏−𝑛

)
526

ℎ(𝑤𝑘)︸︷︷︸
𝑘=1,...,𝑁𝑤

= 𝑣

(
I

(
log( 𝑤𝑘 𝑝∗ (𝑤𝑘) ) , log( 𝑤𝑘 (1 − 𝑝∗ (𝑤𝑘)) )

)
, 𝜏−𝑛

)
. (53)527

In order to compute (21), we break this down into two steps, first using528

𝑞∗ (𝑤𝑘)︸  ︷︷  ︸
𝑘=1,...,𝑁𝑤

= arg max
𝑗=1,...,𝑁𝑞

𝑞 𝑗 ∈Z𝑞 (𝑤𝑘 ,𝜏𝑛 )

{
𝑞 𝑗 + ℎ

(
I(𝑤𝑘 − 𝑞 𝑗 )

) }
(54)529

where ℎ(I(·)) refers to one dimensional interpolation for the one dimensional array530

ℎ(𝑤𝑘). Then531

𝑣(𝑥 𝑗1 , 𝑥
𝑘
2 , 𝜏

+
𝑛 )︸         ︷︷         ︸

𝑗=−𝑁1/2,...,𝑁1/2−1
𝑘=−𝑁2/2,...,𝑁2/2−1

𝑤 𝑗,𝑘=𝑒
𝑥
𝑗

1 +𝑒𝑥
𝑘
2

= 𝑞∗
(
I(𝑤 𝑗 ,𝑘)

)
+ ℎ

(
I

(
𝑤 𝑗 ,𝑘 − 𝑞∗

(
I(𝑤 𝑗 ,𝑘)

) ) )
. (55)532

8.3 Summary: Algorithm for Problem (16).533

Algorithm 2 summarizes the final algorithm. The initial set-up cost is computing the534

Fourier weights on the extended domain 𝐺†. Each timestep consists of first determining535

the optimal control, then followed by advancing to the next rebalancing time using the536

precomputed weights 𝐺†.537

Remark 3 (Use of linear interpolation) Equations (53-55) make heavy use of linear in-538

terpolation. As discussed in Forsyth and Labahn (2019)) this is the only interpolation539
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Require: Weights 𝐺† in padded Fourier domain satisfying tolerance 𝛿 (see equations
(45-46))

1: Input: number of timesteps N , initial solution (𝑣0)−
2: for 𝑛 = 1, . . . ,N do {Timestep loop}
3: Optimal control 𝑣(𝜏−

𝑛−1) → 𝑣(𝜏+
𝑛−1) equations (53-55)

4: Advance time 𝑣(𝜏+
𝑛−1) → 𝑣(𝜏−𝑛 ) using Algorithm 1

5: end for{End timestep loop}

Algorithm 2: Monotone Fourier method.

method (in general) which will preserve 𝛿-monotonicity. This means that the conver-540

gence rate cannot exceed second order in the grid spacing. This is in contrast to the541

methods in (Fang and Oosterlee, 2008; 2009; Ruĳter et al., 2013), where, in some cir-542

cumstances, high order rates of convergence can be achieved, but at the cost of possible543

non-monotonicity.544

Remark 4 (Insolvency Between Rebalancing Times) For 𝑏 > 0, insolvency cannot occur545

between rebalancing dates. However, for 𝑏 < 0, it is possible that a large drop in the546

value of stocks could result in 𝑠 + 𝑏 < 0 between rebalancing times. Numerical tests547

using subtimesteps between rebalancing times (and checking for insolvency) did not548

show any significant changes to the final values at 𝑡 = 𝑇 . Hence, in all our reported549

numerical tests, we only check for insolvency at rebalancing times.550

8.4 Final Algorithm: Problem EW-ES (18).551

The final step for the complete solution of the EW-ES problem is the optimization step552

(18). We solve Problem EW-ES on a sequence of grids, with increasing number of grid553

nodes. On the coarsest grid, we discretize𝑊∗ and find the maximum of equation (18) by554

exhaustive search. Note that each evaluation of the objective function in (18) requires a555

solution of Problem 16. Using the coarse grid value of 𝑊∗ as a starting value, we use556

a one-dimensional optimization algorithm to maximize the objective function (18) on557

each finer grid.558

9 Numerical Example and Results559

We consider a 65 year old retiree who has $1,000K (one million) in pension savings.560

The retiree needs to withdraw a minimum of 30K per year, but has no use for more than561

60K per year. All amounts are inflation adjusted. We assume that the retiree has other562

sources of income (work pension, government benefits) which, when added to the 30K563

per year of withdrawals, accumulate to a satisfactory income level.564

We consider a 30 year time horizon, since this is consistent with the Bengen (1994)565

scenario. Recall that the probability of a 65 year old Canadian male attaining the age566

of 95 is about 0.13, so this is a fairly conservative assumption. Similar probabilities are567

also true for other western countries.568

The pension savings are assumed to be held in a tax advantaged account, so that there569

are no tax consequences for rebalancing. We consider the withdrawals to be the desired570

amount before any income taxes.571

Note that we also consider that the retiree has mortgage free real estate worth 400K.572

We can regard this as a hedge of last resort.573
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Remark 5 (Reverse Mortgage Hedge) If we assume that a reverse mortgage can be used574

to obtain a non-recourse loan of half the value of the real estate (200𝐾), then from a risk575

management point of view, any strategy which results in an expected shortfall > −200𝐾576

is probably acceptable. All quantities are assumed inflation adjusted.577

Other scenario details are listed in Table 1. As a point of comparison, the Bengen578

(1994) strategy would withdraw a fixed amount of 40K (real) per year (4% of the initial579

1,000K), and rebalance to a constant weight of 50% in stocks at each rebalancing date.580

Investment horizon 𝑇 (years) 30.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value𝑊0 1000
Mortgage free real estate 400
Cash withdrawal/rebalancing times 𝑡 = 0,1.0, 2.0, . . . , 29.0
Maximum withdrawal (per year) 𝑞max = 60
Minimum withdrawal (per year) 𝑞min = 30
Equity fraction range [0,𝑝max]

𝑝max = 0.5, 0.8, 1.0, 1.3
Borrowing spread 𝜇𝑏𝑐 0.03
Rebalancing interval (years) 1.0
𝛼 (Expected shortfall parameter) .05
Stabilization 𝜖 (see equation (11)) −10−4

Market parameters See Table 2

Table 1: Input data for examples. Monetary units: thousands of dollars. All amounts inflation
adjusted.

For the computational study in this paper, we use data from the Center for Research581

in Security Prices (CRSP) on a monthly basis from 1926:1 to 2024:12.9 The specific582

indices used are the CRSP 30 day U.S. T-bill index for the bond asset, and the CRSP583

cap-weighted total return index for the stock asset10. Retirees are, naturally, concerned584

with preserving real (not nominal) spending power. Hence, we use the US CPI index585

(from CSRP) to adjust these indexes for inflation. We use the above market data in two586

different ways in subsequent investigations.587

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and588

Forsyth, 2016) to estimate the parameters for the parametric stochastic process models.589

Since the index data is in real terms, all parameters reflect real returns. Table 2 shows the590

results of calibrating the models to the historical data. The correlation 𝜌𝑠𝑏 is computed591

by removing any returns which occur at times corresponding to jumps in either series,592

and then using the sample covariance. Further discussion of the validity of assuming593

that the stock and bond jumps are independent is given in Forsyth (2020b).594

We first compute and store the optimal controls in the synthetic market, that is, the595

stock market processes follow the parametric models (3) and (4). We then use Monte596

Carlo simulation, coupled with the stored optimal controls, to analyze the properties of597

the optimal allocation/withdrawal.598

9 More specifically, results presented here were calculated based on data from Historical Indexes,
©2024 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of
Business. Wharton Research Data Services was used in preparing this article. This service and the
data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its
third-party suppliers.
10 The stock index includes all distributions for all domestic stocks trading on major U.S. exchanges.
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CRSP 𝜇𝑠 𝜎𝑠 𝜆𝑠 𝑢𝑠 𝜂𝑠1 𝜂𝑠2 𝜌𝑠𝑏

0.088241 0.147361 0.31313 0.22581 4.3608 5.5309 0.096279

30-day T-bill 𝜇𝑏 𝜎𝑏 𝜆𝑏 𝑢𝑏 𝜂𝑏1 𝜂𝑏2 𝜌𝑠𝑏

0.0034 0.0139 0.3838 0.3947 61.510 53.356 0.096279

Table 2: Parameters for parametric market models (3) and (4), fit to CRSP data (inflation
adjusted) for 1926:1 to 2024:12.

Finally, as a check on robustness, we test the controls (computed in the synthetic599

market), in the historical market, using block bootstrap resampled historical data.600

9.1 Results: Convergence601

We first check on the convergence of our method. The numerical parameters are given602

in Table 3.603

Grid sizes (𝑏 > 0) 512 × 512
1024 × 1024
2048 × 2048

Extended grid (𝑁†
1 , 𝑁

†
2 ) (2𝑁1, 2𝑁2)

𝑥0
1, 𝑥

0
2 log(100)

(𝑥1)min, (𝑥2)min -7.5 + 𝑥0
1

(𝑥1)max, (𝑥2)max +10 + 𝑥0
2

Monotonicity condition 𝛿 (equation(46)) 10−6

Number of points in 𝑤 grid 𝑁𝑤 (equation (53)) 4𝑁1
Number of points in 𝑝 grid 𝑁𝑝 (equation (53)) 𝑁1/10
Number of points in 𝑞 grid 𝑁𝑞 (equation (54)) 𝑁1/10

Table 3: Numerical parameters

Figure 2 shows the EW-ES efficient frontiers, computed using various grid sizes.604

The grid here refers to the grid for 𝑏 > 0. There is an additional grid (of the same605

size) for 𝑏 < 0. The optimal control is computed and stored, using the 𝛿-monotone606

PIDE method. Statistics are then generated using Monte Carlo (MC) simulations, using607

the stored optimal controls, with 2.56 × 106 MC simulations being used. The curves608

for all grid sizes essentially overlap, indicating convergence for practical purposes. All609

subsequent results use the 2048 × 2048 grid. For comparison, we also show the results610

for the Bengen (1994) policy, which is clearly much less efficient than the optimal policy.611

Table 4 shows detailed convergence results for a single point on the EW-ES frontier612

(𝑝max = 1.0, 𝜅 = 0.866). The optimal controls computed using Algorithm 2 are stored,613

and then used in Monte Carlo (MC) simulations. The value function appears to converge614

smoothly (for the PIDE method).615

It is also interesting to note that, in all our tests using the parameters in Table 3, we616

find that the wraparound error condition 51) is bounded by617 (
Δ𝑥1Δ𝑥2

∑︁
( 𝑗 ,𝑘 ) ∈D†−D

|𝑔̃†
𝑗 ,𝑘

|
)
< 10−14 . (56)618
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Fig. 2: EW-ES convergence test. Real stock index: deflated real capitalization weighted CRSP,
real bond index: deflated 30 day T-bills. Scenario in Table 1. Parameters in Table 2. The
optimal control is determined by solving the using the method in Algorithm 2. Grid refers to
the grid used in the PIDE solve, 𝑛𝑠 ×𝑛𝑏 , where 𝑛𝑠 is the number of nodes in the log 𝑠 direction,
and 𝑛𝑏 is the number of nodes in the log 𝑏 direction. Units: thousands of dollars (real). The
controls are stored, and then the final results are obtained using a Monte Carlo method, with
2.56 × 106 simulations. Maximum fraction in stocks 𝑝max = 1.0. Bengen (1994) refers to a
constant weight in stocks 𝑝 = 0.5, rebalanced annually, and constant yearly withdrawals of
40 per year. All amounts are inflation adjusted.

Algorithm in 2 Monte Carlo

Grid ES 𝐸 [∑𝑖 𝑞𝑖]/𝑀 Value Function (13) ES 𝐸 [∑𝑖 𝑞𝑖]/𝑀
512 × 512 -14.6176 51.1162 1520.941 -10.302 51.1507
1024 × 1024 -9.16685 51.0706 1524.251 -7.5173 51.0781
2048 × 2048 -4.84764 50.9780 1525.179 -3.8866 50.9762

Table 4: EW-ES convergence test. Real stock index: deflated real capitalization weighted
CRSP, real bond index: deflated 30 day T-bills. Scenario in Table 1. Parameters in Table 2.
The optimal control is determined by solving the using the method in Algorithm 2. Grid refers
to the grid used in the PIDE solve, 𝑛𝑠 × 𝑛𝑏 , where 𝑛𝑠 is the number of nodes in the log 𝑠
direction, and 𝑛𝑏 is the number of nodes in the log 𝑏 direction. Units: thousands of dollars
(real). The controls are stored, and then the results are verified using a Monte Carlo method,
with 2.56 × 106 simulations. Maximum fraction in stocks 𝑝max = 1.0. 𝜅 = 0.8660.

Note that619 (
Δ𝑥1Δ𝑥2

∑︁
( 𝑗 ,𝑘 ) ∈D†

|𝑔̃†
𝑗 ,𝑘

|
)
≤ 1 + 𝛿 ≃ 1620

with 𝛿 given in Table 3. Consequently, the numerical result (56) indicates that the621

wraparound error is only slightly larger than double precision machine epsilon.622

9.2 Efficient Frontiers: Synthetic market623

Figure 3 shows the efficient frontiers computed using various value of 𝑝max (labelled624

𝑝𝑚𝑎𝑥 on the Figure), the maximum values of the fraction in stocks. As must be true625

mathematically, the curves with higher values of 𝑝max plot above curves with smaller626
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𝑝max. However, a striking result is that the curves are all fairly tightly clustered, in627

comparison to the Bengen (1994) strategy. In particular, it seems reasonable to target628

an 𝐸𝑆 ≃ 0. The expected annual withdrawal for all values of 𝑝max are very close for629

𝐸𝑆 = 0.11 However, this is not quite a free lunch, as we will see when we examine the630

results more closely.631
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Fig. 3: Comparison of maximum leverage constraint 𝑝max, synthetic market. Real stock index:
deflated real capitalization weighted CRSP, real bond index: deflated 30 day T-bills. Scenario
in Table 1. Parameters in Table 2. The optimal control is determined using Algorithm 2. The
controls are stored (using 2048 × 2048 grid), and then the final results are obtained using a
Monte Carlo method, with 2.56 × 106 simulations. Bengen (1994) refers to a constant weight
in stocks 𝑝 = 0.5, rebalanced annually, and constant yearly withdrawals of 40𝐾 per year. All
amounts are inflation adjusted.

9.3 Heat Maps: Synthetic Market632

In order to gain some insight into the optimal controls, we plot the heat maps of the633

optimal asset allocation and the optimal withdrawals, for the cases 𝑝max = 1.3, 1.0, 0.5634

in Figures 4, 5, 6. For each case, we choose the point on the efficient frontier so that635

𝐸𝑆 ≃ 0, since this is an interesting point on the efficient frontier.636

First, note that Figures 4(b), 5(b) and 6(b) show that the optimal withdrawal strate-637

gies for a wide range of 𝑝max are very similar. In all cases, the withdrawal control is638

approximately bang-bang, that is, the optimal policy is only to withdraw the maximum639

or minimum amounts. For an explanation of this (the bang-bang property) see Forsyth640

(2022). The left hand plots of Figures 4, 5, 6 show the optimal allocation strategies. We641

use the same colour scale for all plots, with the maximum allocation to stocks being642

130%. It is interesting to see that the allocation strategies are quite similar as long as643

we restrict attention to the areas in the heat maps above the 5th wealth percentile. Large644

differences in the allocation appear below the 5th wealth percentile.645

11 Although from Remark 5, even 𝐸𝑆 ≃ −200𝐾 is also acceptable. Hence a target of 𝐸𝑆 = 0 is very
conservative.
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(a) Fraction in stocks (b) Withdrawals

Fig. 4: 𝑝max = 1.3. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm 2. Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table 1. Control computed and stored from the Algorithm 2 in the synthetic market.
𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year). 𝜅 = 0.8583, 𝐸𝑊 ≃ 50.9, 𝐸𝑆 ≃ 0.96. Percentiles from
bootstrapped historical market. Normalized withdrawal (𝑞 − 𝑞min )/(𝑞max − 𝑞min ) . Units:
thousands of dollars.

(a) Fraction in stocks (b) Withdrawals

Fig. 5: 𝑝max = 1.0. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm 2. Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table 1. Control computed and stored using Algorithm 2 in the synthetic market.
𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year). 𝜅 = 0.8860, 𝐸𝑊 = 50.7, 𝐸𝑆 = 4.6. Percentiles from
bootstrapped historical market. Normalized withdrawal (𝑞 − 𝑞min )/(𝑞max − 𝑞min ) . Units:
thousands of dollars.

9.4 Percentiles Versus Time: Synthetic Market646

Figures 7. 8 and 9 show the percentiles of fraction in stocks, wealth, and withdrawals647

versus time. We select the point on the efficient frontier for each case so that 𝐸𝑆 ≃ 0.648

Rather surprisingly, the percentiles fraction in stocks and percentiles wealth are very649

similar, for all values of 𝑝max. However, we do see some differences in the withdrawal650

percentiles (the rightmost panel in each plot). The median withdrawal is slower to651

increase to the maximum for 𝑝max = 0.5 compared to the case with 𝑝max = 1.0.652

In addition, we can see that even for 𝑝max = 1.3, the 95th percentile for stock653

allocation is less than 0.6 (Figure 7(a)), suggesting that with this level of ES risk, the654

optimal policy rarely allocates a large fraction to stocks.655
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(a) Fraction in stocks (b) Withdrawals

Fig. 6: 𝑝max = 0.5. Heat map of controls: fraction in stocks and withdrawals, computed
using Algorithm 2. Real capitalization weighted CRSP index, and real 30-day T-bills. Scenario
given in Table 1. Control computed and stored using Algorithm 2 in the synthetic market.
𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year). 𝜅 = 1.0, 𝐸𝑊 ≃ 50.2, 𝐸𝑆 = 1.25. Percentiles from
bootstrapped historical market. Normalized withdrawal (𝑞 − 𝑞min )/(𝑞max − 𝑞min ) . Units:
thousands of dollars.
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Fig. 7: Scenario in Table 1 Strategy computed in synthetic market. 𝑝max = 1.3. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table 2). Control computed
and stored from the Algorithm 2 in the synthetic market. 𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year),
𝐸𝑊 ≃ 50.9, 𝐸𝑆 = 0.96 (𝜅 = 0.8583). Units: thousands of dollars.
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Fig. 8: Scenario in Table 1 Strategy computed in synthetic market. 𝑝max = 1.0. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table 2). Control computed and
stored from Algorithm 2 in the synthetic market. 𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year), 𝐸𝑊 ≃ 50.7,
𝐸𝑆 = 4.6 (𝜅 = 0.8860). Units: thousands of dollars.
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Fig. 9: Scenario in Table 1 Strategy computed in synthetic market. 𝑝max = 0.5. Parameters
based on the real CRSP index, and real 30-day T-bills (see Table 2). Control computed and
stored using Algorithm 2 in the synthetic market.𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per year),𝐸𝑊 = 50.2,
𝐸𝑆 = 1.25 (𝜅 = 1.0). Units: thousands of dollars.

10 Bootstrap results656

10.1 Historical Market657

In order to check on the robustness of the above results, we proceed as follows. We658

compute and store the optimal controls based on the parametric model (3-4) as for659

the synthetic market case. However, we compute statistical quantities using the stored660

controls, but using bootstrapped historical return data directly. In this case, we make no661

assumptions concerning the stochastic processes followed by the stock and bond indices.662

We remind the reader that all returns are inflation-adjusted. We use the stationary block663

bootstrap method (Politis and Romano, 1994; Politis and White, 2004; Patton et al.,664

2009; Cogneau and Zakalmouline, 2013; Dichtl et al., 2016; Cavaglia et al., 2022;665

Simonian and Martirosyan, 2022; Anarkulova et al., 2022).666

A key parameter is the expected blocksize. Sampling the data in blocks accounts667

for serial correlation in the data series. We use the algorithm in Patton et al. (2009) to668

determine the optimal blocksize for the bond and stock returns separately, see Table 5.669

However, in our simulations, we use a paired sampling approach to simultaneously draw670

returns from both time series. In this case, a reasonable estimate for the blocksize for the671

paired resampling algorithm would be about 2.0 years. We will give results for a range672

of blocksizes as a check on the robustness of the bootstrap results. Detailed pseudo-code673

for block bootstrap resampling is given in Forsyth and Vetzal (2019).674

Optimal expected block size for bootstrap resampling historical data

Data Optimal expected
block size 𝑏̂ (months)

30-day T-bill 51
CRSP cap weighted index 4.0

Table 5: Optimal expected blocksize 𝑏̂ = 1/𝑣, from Patton et al. (2009). Range of historical
data is between 1926:1 and 2024:12. The blocksize is a draw from a geometric distribution
with 𝑃𝑟 (𝑏 = 𝑘 ) = (1 − 𝑣)𝑘−1𝑣. Expected blocksize estimate algorithm from Politis and White
(2004); Patton et al. (2009) using market data from CRSP.

Figure 10 plots (i) the synthetic efficient frontier and (ii) bootstrap efficient frontier,675

computed using the synthetic market controls, tested in the historical market, for various676
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Fig. 10: Optimal controls computed using the synthetic market model. These controls tested
using bootstrapped historical data. Expected blocksizes (years) shown. 106 bootstrap resam-
ples. Real stock index: deflated real capitalization weighted CRSP, real bond index: deflated
30 day T-bills. Scenario in Table 1. Parameters in Table 2. The Bengen control withdraws 40
per year, and rebalances annually to 50% bonds and 50% stocks. The Bengen results are also
shown for expected blocksizes of 0.5, 1.0, 2.0 years.

blocksizes. Figure 10(a) shows the results for 𝑝max = 1.3. In this case, all the frontiers are677

quite close, especially compared to the Bengen (1994) strategy, tested in the historical678

market. The effect of using different expected blocksizes in the block bootstrap algorithm679

is quite small. Overall, this plot suggests that the optimal controls in this case are robust680

to model parameter misspecification.681

The historical test for 𝑝max = 0.5 is shown in Figure 10(b). Again, the historical682

frontiers using different blocksizes are quite close. However, the historical efficient683

frontiers do deviate somewhat from the synthetic market frontier, for values of 𝐸𝑆 > 100.684

This indicates that there is some effect of model parameter misspecification, for large685

values of 𝐸𝑆 in the case of 𝑝max = 0.5. However, for values of 𝐸𝑆 < 100, the synthetic686

and historical market frontiers are very close. So, unless the retiree is extremely risk687

averse, this may not be a problem of practical concern.688

Figures 11 and 12 show the percentiles of fraction in stocks, wealth, and optimal689

withdrawals, tested in the historical market. The two extreme cases: 𝑝𝑚𝑎𝑥 = 1.3 and690

𝑝max = 0.5 are shown.691

The percentiles in stocks and wealth are fairly close, for both cases. However, a692

comparison of Figures 11(c) and Figure 12(c) indicates that the median withdrawal693

increases from the minimum to the maximum over about three years for the case with694

𝑝𝑚𝑎𝑥 = 1.3. The comparable time frame for 𝑝max = 0.5 is about four years.695

Although most retirees would prefer to larger withdrawals during the early years of696

retirement, slightly lower initial withdrawals in exchange for never having more than697

50% stock allocation might be seen as a reasonable tradeoff.698

11 Conclusions699

In this paper, we have developed a technique for solving the optimal control problem700

associated with decumulation of a defined benefit (DC) pension plan. The basic control701

algorithm at each rebalancing time consists of (i) solution of an optimization problem702

and (ii) advancing the solution to the next rebalancing time (going backwards). We use703

a 𝛿-monotone scheme, based on Fourier methods, for step (ii). This method preserves704

order relations to𝑂 (𝛿), which is an important property for numerical solution of optimal705

control. We pay particular attention to ensuring that Fourier wraparound error can be706

made arbitrarily small.707
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Fig. 11: Scenario in Table 1 Strategy computed in synthetic market. 𝑝max = 1.3. Tested in
the bootstrapped historical market, expected blocksize 1.0 years. 106 bootstrap simulations.
Bootstrap date based on the real CRSP index, and real 30-day T-bills 1926:1-2024:12. Control
computed and stored using Algorithm 2 in the synthetic market. 𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per
year), 𝐸𝑊 = 51.7, 𝐸𝑆 = 19 (𝜅 = 0.8583). Units: thousands of dollars. Median withdrawal
at 𝑞max at year 3.0
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Fig. 12: Scenario in Table 1 Strategy computed in synthetic market. 𝑝max = 0.5. Tested in
the bootstrapped historical market, expected blocksize 1.0 years. 106 bootstrap stimulations.
Bootstrap date based on the real CRSP index, and real 30-day T-bills 1926:1-2024:12. Control
computed and stored using Algorithm 2 in the synthetic market. 𝑞𝑚𝑖𝑛 = 30, 𝑞max = 60 (per
year), 𝐸𝑊 = 50.3, 𝐸𝑆 = 6.7 (𝜅 = 1.0). Units: thousands of dollars. Median withdrawal at
𝑞max at year 4.0.

From a practical point of view, we have verified that the controls are robust by708

testing the controls using block bootstrap resampling of historical data, which makes no709

assumptions about stochastic processes for the underlying stock and bond indexes.710

Perhaps the most interesting result, in terms of investment strategies for retirees, is711

the following. If the maximum fraction in equities is restricted to be less than 50%, this712

strategy is only slightly less efficient than allowing a maximum fraction of 130% (that713

is, using leverage). This suggests that for most retirees, there is no need to undertake714

risky strategies during the decumulation of a DC account.715

These optimal control strategies are far more efficient than the typical four per cent716

rule (Bengen, 1994). The optimal policy has an expected average withdrawal (real) of717

more than 5% of initial capital over thirty years, with approximately zero expected718

shortfall at age 95 (based on historical data). In contrast, the strategy suggested in719

(Bengen, 1994), withdraws 4% of initial capital annually, but has an expected shortfall720

of more than 35% of initial capital at age 95.721

Finally, we note that solving the optimal control problem for decumulation based722

on solving PIDEs is limited to three dimensions (i.e. three assets) or less. However,723

problems with more assets can be solved using a machine learning approach ((Li and724

Forsyth, 2019; Van Staden et al., 2023; 2024; Chen et al., 2025)).725
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Appendices726

12 Wrap Around Error: Details727

To gain some insight into the wrap-around problem, we consider a highly simplified,728

one dimensional problem. To avoid subscript clutter, in this section, we use the notation729

𝑔̃(𝑚 − ℓ) ≡ 𝑔̃𝑚−ℓ ; 𝑢𝑛 (𝑚) ≡ 𝑢𝑛𝑚.730

Using the above notation, consider the discrete time advance convolution731

𝑢𝑛 (𝑚) = Δ𝑥

𝑁 †/2−1∑︁
ℓ=−𝑁 †/2

𝑔̃(𝑚 − ℓ) 𝑢𝑛−1 (ℓ) ,732

𝑚 = −𝑁/2, . . . , 𝑁/2 − 1 , 𝑁 ≤ 𝑁† , (57)733

where we assume periodic extension of 𝑔̃734

𝑔̃(ℓ ± 𝑁†) = 𝑔̃(ℓ) .735

In the above, if 𝑁† > 𝑁 , nodes corresponding to 𝑚 < −𝑁/2 and 𝑚 > 𝑁/2 − 1 are the736

padded nodes. In this case, we assume that the padded nodal values 𝑢𝑛 (𝑚), 𝑚 < −𝑁/2737

and 𝑚 > 𝑁/2 − 1, are determined by boundary data.738

As an example of wrap-around error, we examine a worst case term in equation (57).739

Consider the term in (57) corresponding to 𝑚 = −𝑁/2, and 𝑙 = 𝑁†/2 − 1, namely740

Δ𝑥 𝑔̃(−𝑁/2 − 𝑁†/2 + 1) 𝑢𝑛−1 (𝑁†/2 − 1). (58)741

By periodic extension, we shift the argument of 𝑔̃(·) by 𝑁†, resulting in742

𝑔̃(−𝑁/2 − 𝑁†/2 + 1) = 𝑔̃(−𝑁/2 − 𝑁†/2 + 1 + 𝑁†) = 𝑔̃(−𝑁/2 + 𝑁†/2 + 1), (59)743

and hence, the term (58) becomes744

Δ𝑥 𝑔̃(−𝑁/2 + 𝑁†/2 + 1) 𝑢𝑛−1 (𝑁†/2 − 1). (60)745

Hence, in this extreme case, equation (57) becomes746

𝑢𝑛 (−𝑁/2) = Δ𝑥 𝑔̃(−𝑁/2 + 𝑁†/2 + 1) 𝑢𝑛−1 (𝑁†/2 − 1) +
𝑁 †/2−2∑︁
𝑙=−𝑁†/2

( remaining terms ).747

(61)748

Example 1 (No padding: 𝑁† = 𝑁) Suppose we do not use any padding, so that 𝑁† = 𝑁.749

In this case, equation (61) becomes750

𝑢𝑛 (−𝑁/2) = Δ𝑤 𝑔̃(1) 𝑢𝑛−1 (𝑁/2 − 1) +
𝑁/2−2∑︁
𝑙=−𝑁/2

( remaining terms ).751

Since, in general, 𝑔̃(1) is not small, we can see that the term 𝑢𝑛−1 (𝑁/2 − 1) has a752

considerable effect on 𝑢𝑛 (−𝑁/2), which should not be the case. We can see here that753

the periodic extension of 𝑔̃ causes a wrap-around effect.754

Example 2 (Padding: 𝑁† = 2𝑁) If 𝑁† = 2𝑁 , then equation (61) becomes755
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𝑢𝑛 (−𝑁/2) = Δ𝑤 𝑔̃(𝑁/2 + 1) 𝑢𝑛−1 (𝑁†/2 − 1) +
𝑁 †/2−2∑︁
𝑙=−𝑁 †/2

( other terms ). (62)756

If we select 𝑁 sufficiently large so that 𝑔̃(±𝑁/2) ≃ 0, then the leading term in equation757

(62) is small, and hence, wrap-around error is reduced.758

12.1 Wrap-around: a formal result759

From our previous examples, we can see that wrap-around may occur in equation (57)760

if761

(𝑚 − ℓ) < −𝑁†/2 or (𝑚 − ℓ) > 𝑁†/2 − 1.762

This leads us to the following formal definition of wrap-around error. We show that,763

with 𝑁† = 2𝑁 , wrap-around error is sufficiently reduced.764

Definition 2 (Wrap-around error) Assume {𝑔̃(·)} is periodic with period 𝑁† and765

𝑢𝑛 (𝑚), for𝑚 < −𝑁/2 or𝑚 > 𝑁/2−1, are determined by boundary data with 𝑁† = 2𝑁 .766

Then the wrap-around error for equation (57), at timestep 𝑛, denoted by 𝑒𝑛wrap, is767

𝑒𝑛wrap = max
𝑚

{
Δ𝑤

∑︁
ℓ∈N†

���𝑔̃(𝑚 − ℓ) 𝑢𝑛−1 (𝑙)
��� (1{ (𝑚−ℓ )<−𝑁†/2} + 1{ (𝑚−ℓ )>𝑁†/2−1}

)}
.768

(63)769

We can now state the following result.770

Theorem 2 Let 𝑔̃(·) be periodic with period 𝑁† and 𝑢𝑛 (𝑚), for 𝑚 < −𝑁/2 or 𝑚 >771

𝑁/2 − 1, be determined by boundary data with 𝑁† = 2𝑁 . Assume further that 𝑢𝑛 (𝑚) is772

bounded, so for 0 ≤ 𝑛 ≤ 𝑀 , there exists a positive constant 𝐶 such that12773

|𝑢𝑛 (𝑚) | ≤ 𝐶, 𝑚 ∈ N† ,∀𝑛 . (64)774

If 𝑁 is selected sufficiently large so that775

Δ𝑥

−𝑁/2−1∑︁
ℓ=−𝑁†/2

|𝑔̃(ℓ) | + Δ𝑥

𝑁 †/2−1∑︁
ℓ=𝑁/2

|𝑔̃(ℓ) | ≤ 𝜖𝑒Δ𝜏 (65)776

then the wrap-around error after N steps is bounded by 𝑇𝐶𝜖𝑒.777

Proof. Applying property (64) to equation (63) gives778

𝑒𝑛wrap ≤ 𝐶max
𝑚

{
Δ𝑥

𝑁†/2−1∑︁
ℓ=−𝑁†/2

|𝑔̃(𝑚 − ℓ) |
(
1{ (𝑚−ℓ )<−𝑁†/2} + 1{ (𝑚−ℓ )>𝑁†/2−1}

)}
. (66)779

Recall that 𝑚 ∈ {−𝑁/2, . . . , 𝑁/2 − 1}, hence the worst case values of 𝑚 on the right780

hand side of equation (66) are 𝑚 = −𝑁/2 and 𝑚 = 𝑁/2 − 1. Thus equation (66) gives781

12 This is essentially a stability condition. See Forsyth and Labahn (2019) for a proof of stability for the
𝛿-monotone method.
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𝑒𝑛wrap ≤ 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=−𝑁†/2

|𝑔̃(𝑁/2 − 1 − ℓ) |1{ (𝑁/2−1−ℓ )>𝑁 †/2−1}782

+ 𝐶Δ𝑥
𝑁 †/2−1∑︁
ℓ=−𝑁†/2

|𝑔̃(−𝑁/2 − ℓ) | 1{ (−𝑁/2−ℓ )<−𝑁†/2} . (67)783

Also, since 𝑁 = 𝑁†/2 equation (67) becomes784

𝑒𝑛wrap ≤ 𝐶Δ𝑥
𝑁 †/2−1∑︁
ℓ=−𝑁 †/2

|𝑔̃(𝑁†/4 − 1 − ℓ) | 1{ (𝑁 †/4−1−ℓ )>𝑁 †/2−1}785

+ 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=−𝑁 †/2

|𝑔̃(−𝑁†/4 − 𝑙) | 1{ (−𝑁†/4−ℓ )<−𝑁†/2} , (68)786

and eliminating the indicator functions gives787

𝑒𝑛wrap ≤ 𝐶Δ𝑥
−𝑁†/4−1∑︁
ℓ=−𝑁 †/2

|𝑔̃(𝑁†/4 − 1 − ℓ) | + 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=𝑁 †/4+1

|𝑔̃(−𝑁†/4 − ℓ) |.788

Shifting 𝑔̃(·) by ±𝑁† so that the argument of 𝑔̃(·) is in the range [−𝑁†/2, 𝑁†/2 − 1],789

implies790

𝑒𝑛wrap ≤ 𝐶Δ𝑥
−𝑁 †/4−1∑︁
ℓ=−𝑁†/2

|𝑔̃(𝑁†/4 − 1 − ℓ − 𝑁†) | + 𝐶Δ𝑥
𝑁 †/2−1∑︁
ℓ=𝑁†/4+1

|𝑔̃(−𝑁†/4 − ℓ + 𝑁†) |791

792

= 𝐶Δ𝑥

−𝑁 †/4−1∑︁
ℓ=−𝑁†/2

|𝑔̃(−3𝑁†/4 − 1 − ℓ) | + 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=𝑁†/4+1

|𝑔̃(3𝑁†/4 − ℓ) |. (69)793

Rearranging the indices, gives794

𝑒𝑛wrap ≤ 𝐶Δ𝑥
−𝑁 †/4−1∑︁
ℓ=−𝑁†/2

|𝑔̃(ℓ) | + 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=𝑁 †/4+1

|𝑔̃(ℓ) |, (70)795

which, since 𝑁 = 𝑁†/2, implies that equation (70) satisfies796

𝑒𝑛wrap ≤ 𝐶Δ𝑥
−𝑁/2−1∑︁
ℓ=−𝑁 †/2

|𝑔̃(ℓ) | + 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=𝑁/2+1

|𝑔̃(ℓ) |. (71)797

Since798

Δ𝑥

𝑁 †/2−1∑︁
ℓ=𝑁/2+1

|𝑔̃(ℓ) | ≤ Δ𝑥

𝑁†/2−1∑︁
ℓ=𝑁/2

|𝑔̃(ℓ) | (72)799

then800

𝑒𝑛wrap ≤ 𝐶Δ𝑥
−𝑁/2−1∑︁
ℓ=−𝑁†/2

|𝑔̃(ℓ) | + 𝐶Δ𝑥
𝑁†/2−1∑︁
ℓ=𝑁/2

|𝑔̃(ℓ) | (73)801

= 𝐶𝜖𝑒Δ𝜏 (74)802
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where the last step follows from condition (65). Applying equation (74) recursively gives803

the bound 𝑇𝐶𝜖𝑒. ⊓⊔804

It might at first sight seem odd to weaken the error bound using equation (72).805

However, this makes the final result easy to interpret. Let806

S† = {−𝑁†/2, . . . , +𝑁†/2 − 1} ; S = {−𝑁/2, . . . , +𝑁/2 − 1} (75)807

so that S† is the set of node indexes for the padded domain, and S is the set of node808

indices for the original domain. Consequently, condition (73) can be written compactly809

as810

𝑒𝑛wrap ≤ 𝐶
(
Δ𝑥

∑︁
ℓ∈ (S†−S)

|𝑔̃(ℓ) |
)

≤ 𝐶𝜖𝑒Δ𝜏 . (76)811

Proving Theorem 1 basically follows the previous proof of the simpler case. Divide812

the region D′ − D outside D into right and left 𝐴𝑟 , 𝐴ℓ and upper and lower 𝐴𝑢, 𝐴𝑑813

regions as follows.814

D𝐴ℓ 𝐴𝑟

𝐴𝑢

𝐴𝑑
815

Our goal is to give an upper bound to816

𝜀𝑛𝑤𝑟𝑎𝑝 =

(
Δ𝑥1Δ𝑥2 max

(ℓ,𝑚) ∈D

∑︁
( 𝑗 ,𝑘 ) ∈D†

��𝑔̃†
ℓ− 𝑗 ,𝑚−𝑘𝑣

†
𝑗 ,𝑘

(𝜏𝑛)
�� 1(ℓ− 𝑗 ,𝑚−𝑘 )∉D†

)
817

which by the boundedness assumptions of Theorem 1 is the same as bounding818 (
Δ𝑥1Δ𝑥2 max

(ℓ,𝑚) ∈D

∑︁
( 𝑗 ,𝑘 ) ∈D†

��𝑔̃†
ℓ− 𝑗 ,𝑚−𝑘

�� 1(ℓ− 𝑗 ,𝑚−𝑘 )∉D†

)
.819

As in the 1d wraparound error, our worse case values occur at borders, in this case820

the four corners of D. In the horizontal direction when the first components are −𝑁1/2821

and 𝑁1/2 − 1 we can use the same manipulations as done in the 1d case to obtain the822

wraparound error contribution from 𝐴ℓ and 𝐴𝑟 and use an identical argument when the823

second argument is −𝑁2/2 and 𝑁2/2 − 1 to get the wraparound error contribution from824

𝐴𝑢 and 𝐴𝑑 . These manipulations reduce to825

𝑒𝑛wrap ≤ 𝐶
(
Δ𝑥1Δ𝑥2

∑︁
(ℓ,𝑚) ∈ (D†−D)

|𝑔̃(ℓ, 𝑚) |
)

≤ 𝐶𝜖𝑒Δ𝜏826

for each time step and hence give the error bound 𝑒Nwrap ≤ 𝑇𝜖𝑒𝐶 after N steps.827
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