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The Basic Problem

Many financial problems have unhedgeable risk

Optimal trade execution (sell a large block of shares)

→ Maximize average price received, minimize risk, taking into
account price impact

Long term asset liability management (insurance)

→ Match liabilities with minimal risk

Minimum variance hedging of contingent claims (with real
market constraints)

→ Liquidity effects, different rates for borrowing/lending

Pension plan investments.

Wealth management products
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Risk-reward tradeoff

All these problems (and many others) involve a tradeoff between
risk and reward.

A classic approach is to use some sort of utility function

But this has all sorts of practical limitations

→ What is the utility function of an investment bank?
→ What risk aversion parameter should be selected by the

Pension Investment Committee?

Alternative: mean-variance optimization

When risk is specified by variance, and reward by expected
value

→ Non-technical managers can understand the tradeoffs and
make informed decisions
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Multi-period Mean Variance

Some issues:

Standard formulation not amenable to use of dynamic
programming

Variance as risk measure penalizes upside as well as downside

Pre-commitment mean variance strategies are not time
consistent

I hope to convince you that multi-period mean variance
optimization is

Intuitive

Can be modified slightly to be (effectively) a downside risk
measure

Motivating example: Wealth Management (target date fund)
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Example: Target Date (Lifecycle) Fund with two assets
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = (µ− λκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− λdt

1 with probability λdt,

log J ∼ N (µJ , σ
2
J). ; κ = E [J − 1]
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Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest
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Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (1)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t), t)

E
c(·)
t,x [·]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [·]︸ ︷︷ ︸
Risk

= Variance ” ” ” ” ”

Mean Variance (MV) problem: for fixed λ find control c(·) which
solves:

sup
c(·)∈Z

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at time t

−λ Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at time t

}
,

Z = set of admissible controls ; T = target date

• Varying λ ∈ [0,∞) traces out the efficient frontier
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Embedding( Zhou and Li (2000), Li and Ng (2000) )

Equivalent formulation:1 2 for fixed λ, if c∗(·) solves the standard
MV problem,

→ ∃γ such that c∗(·) minimizes

inf
c(·)∈Z

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (2)

Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier

1We are determining the optimal pre-commitment strategy
(Basak,Chabakauri: 2010; Bjork et al: 2010). See (Wang and Forsyth (2012))
for a comparison of pre-commitment and time consistent strategies.

2We do not require convex constraints.
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Equivalence of MV optimization and target problem

MV optimization is equivalent3 to investing strategy which4

Attempts to hit a target final wealth of γ/2

There is a quadratic penalty for not hitting this wealth target

From (Li and Ng(2000))

γ

2︸︷︷︸
wealth target

=
1

2λ︸︷︷︸
risk aversion

+ E
c(·)
t=0,x0

[Wa(T )]︸ ︷︷ ︸
expected wealth

Intuition: if you want to achieve E [Wa(T )], you must aim
higher

3Vigna, Quantitative Finance, to appear, 2014
4Strictly speaking, since some values of γ may not represent points on the

original frontier, we need to construct the upper left convex hull of these points
(Tse, Forsyth, Li (2014), SIAM J. Control Optimization)
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HJB PIDE

Determination of the optimal control c(·) is equivalent to
determining the value function

V (x , t) = inf
c∈Z

{
E c
t,x [(Wa(T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV ,

JV ≡
∫ ∞
0

p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)

12 / 29



HJB PIDE II

The optimal control c(·) is given by solving the impulse control
HJB equation:

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

if (s + b > 0) (3)

Along with liquidation constraint if insolvent

V (s, b, t) = V (0, (s + b), t)

if (s + b) ≤ 0 and s 6= 0 (4)

Easy to generalize the above equation to handle the discrete
rebalancing case.
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Computational Domain5

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ∞, +∞]

(0,0)

+∞

∞

+∞

5If µ > r it is never optimal to short S
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Well behaved utility function

Definition (Well-behaved utility functions)

A utility function Y (W ) is a well-behaved function of wealth W if
it is an increasing function of W .

Proposition

Pre-commitment MV portfolio optimization is equivalent to
maximizing the expectation of a well-behaved quadratic utility
function if

Wa(T ) ≤ γ

2
. (5)

Obvious, since value function V (x , t) is

V (x , t) = sup
c∈Z

{
E x ,t
c [Y (Wa(T )]

}
Y (W ) = −(W − γ/2)2
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Dynamic MV Optimal Strategy

Theorem (Vigna (2014))

Assuming that (i) the risky asset follows a pure diffusion (no
jumps), (ii) continuous re-balancing, (iii) infinite leverage
permitted, (iv) trading continues even if bankrupt: then the
optimal self-financing MV wealth satisfies

Wa(t) ≤ F (t) ; ∀t

F (t) =
γ

2
e−r(T−t) = discounted wealth target

↪→ MV optimization maximizes a well behaved quadratic utility
Result can be generalized6 to the case of

Realistic constraints: finite leverage and no trading if insolvent

But, we must have continuous rebalancing and no jumps

6Dang and Forsyth (2013)
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Global Optimal Point

Examination of the HJB equation allows us to prove the following
result

Lemma (Dang and Forsyth (2013))

The value function V (s, b, t) is identically zero at

V (0,F (t), t) ≡ 0 ; F (t) =
γ

2
e−r(T−t) , ∀t

Since V (s, b, t) ≥ 0

V (0,F (t), t) = 0 is a global minimum

Any admissible policy which allows moving to this point is an
optimal policy

Once this point is attained, it is optimal to remain at this
point
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Movement of Globally Optimal Point7

S

B

Liquidate

W = 0

V(0, F(t) ) = 0

F(t) = e
r(Tt)

(γ/2)

Increasing
(Tt)

W = F(t)

Move to optimal
point

7This is only admissible if γ > 0
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Optimal semi-self-financing strategy

Theorem (Dang and Forsyth (2013))

If Wa(t) > F (t),8 t ∈ [0,T ], an optimal MV strategy is9

Withdraw cash Wa(t)− F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

Corollary (Well behaved utility function)

In the case of discrete rebalancing, and/or jumps, the optimal
semi-self-financing MV strategy is

Equivalent to maximizing a well behaved quadratic utility
function10

8F (t) is the discounted wealth target
9A similar semi-self-financing strategy for the discrete rebalancing case was

first suggested in (Cui, Li, Wang, Zhu (2012) Mathematical Finance).
10A similar idea is termed time consistency in efficiency (Li, Cui, Zhu (2011))
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Intuition: Multi-period mean-variance

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account

Optimal control for the target problem ≡ optimal control for the
Mean Variance problem

This strategy dominates any other MV strategy

→ And the investor receives a bonus in terms of a free cash flow
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What happens if we win the lottery?

Classic Mean Variance

If you win the lottery, and exceed your wealth target

Since gains > target are penalized.
→ Optimal strategy: lose money!

Precommitment, semi-self-financing optimal strategy

If you win the lottery, and exceed your wealth target

→ Invest F (t)11 in a risk-free account
→ Withdraw any remaining cash from the portfolio
→ No incentive to act irrationally

11F (t) is the discounted target wealth
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Numerical Method

We solve the HJB impulse control problem numerically using a
finite difference method

We use a semi-Lagrangian timestepping method

Can impose realistic constraints on the strategy

Maximum leverage, no trading if insolvent
Arbitrarily shaped solvency boundaries

Continuous or discrete rebalancing

Nonlinearities

Different interest rates for borrowing/lending
Transaction costs

Regime switching (i.e. stochastic volatility and interest rates)

We can prove12 that the method is monotone, consistent, `∞
stable

→ Guarantees convergence to the viscosity solution

12Dang and Forsyth (2014) Numerical Methods for PDEs
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Numerical Examples

initial allocated wealth (Wa(0)) 100
r (risk-free interest rate) 0.04450
T (investment horizon) 20 (years)

qmax (leverage constraint) 1.5
discrete re-balancing time period 1.0 (years)

mean downward jumps mean upward jumps
µ (drift) 0.07955 0.12168

λ (jump intensity) 0.05851 0.05851
σ (volatility) 0.17650 0.17650

mean log jump size -0.78832 0.10000
compensated drift 0.10862 0.10862
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Efficient Frontier: discrete rebalancing
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Figure: T = 20 years, Wa(0) = 100.
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Example II

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham13, most investors should

Pick a fraction p of wealth to invest in an index fund (i.e.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

13Benjamin Graham, The Intelligent Investor
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Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy
Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.
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Optimal semi-self-financing asset allocation

Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

We do this by determining the value of γ/2 (the wealth
target) by Newton iteration

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
Semi-self-financing 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
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Cumulative Distribution Functions

W
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Optimal
Allocation

Risky Asset
Proportion = 1/2

E [WT ] = 816.62 for both
strategies

Optimal policy: ↑W risk off;
↓W (t) risk on

Optimal allocation gives up
gains � target in order to
reduce variance and
probability of shortfall.

Investor must pre-commit to
target wealth
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Conclusions

Pre-commitment mean variance strategy

Equivalent to quadratic target strategy

Semi-self-financing, pre-commitment mean variance strategy

Minimizes quadratic loss w.r.t. a target
Dominates self-financing strategy
Extra bonus of free cash-flow

Example: target date fund
Optimal strategy dominates simple constant proportion
strategy by a large margin

→ Probability of shortfall ' 3 times smaller!

But

→ Investors must pre-commit to a wealth target

Optimal stochastic control: teaches us an important life
lesson

Decide on a life target ahead of time and stick with it
If you achieve your target, do not be greedy and want more
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