Decumulation of Retirement Savings:
 The Nastiest, Hardest Problem in Finance

Peter Forsyth ${ }^{1}$
${ }^{1}$ Cheriton School of Computer Science
University of Waterloo

CAIMS

Thursday, June 16, 2022
6:15 PM (Waterloo time)

Motivation

Defined Benefit Plans (DB) are disappearing
\rightarrow Corporations/governments no longer willing to take risk of DB plans
A retiree with savings in a DC plan (i.e. an RRSP) has to decide on

- An investment strategy (stocks vs. bonds)
- A decumulation schedule

The retiree now has two major sources of risk

- Investment risk
- Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this
"The nastiest hardest problem in finance"

The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed:
A retiree who

- Invested in a portfolio of 50% bonds, 50% stocks (US), rebalanced annually
- Withdrew 4% of initial capital (adjusted for inflation) annually
\rightarrow Would never have run out of cash, over any rolling 30-year period (from 1926)
Criticism
- Simplistic asset allocation strategy
- Simplistic withdrawal strategy
- Rolling 30 year periods contain large overlaps
\rightarrow Underestimates risk of portfolio depletion

Objective of this talk

Determine a decumulation strategy which has

- Variable withdrawals (minimum and maximum constraints)
- Minimizes risk of portfolio depletion
- Maximizes total expected withdrawals
- Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control

Formulation

Investor has access to two funds

- A broad stock market index fund
- Amount in stock index S_{t}
- A constant maturity bond index fund
- Amount in bond index B_{t}

$$
\begin{equation*}
\text { Total Wealth } W_{t}=S_{t}+B_{t} \tag{1}
\end{equation*}
$$

Model the returns of both indexes

- Parametric, jump diffusion
- Non-zero stock-bond correlation
- Fit parameters to market data 1926:1-2019:12
\hookrightarrow All returns adjusted for inflation

Notation

Withdraw/rebalance at discrete times $t_{i} \in[0, T]$
The investor has two controls at each rebalancing time

$$
\begin{align*}
& q_{i}=\text { Amount of withdrawal } \\
& p_{i}=\text { Fraction in stocks after withdrawal } \tag{2}
\end{align*}
$$

At t_{i}, the investor withdraws q_{i}

$$
\begin{align*}
& W_{i}^{-}=\overbrace{S_{i}^{-}+B_{i}^{-}}^{\text {wealth before withdrawal }} \\
& W_{i}^{+}=W_{i}^{-}-q_{i}
\end{align*}
$$

Then, the investor rebalances the portfolio

$$
\begin{align*}
S_{i}^{+} & =p_{i} W_{i}^{+} \\
B_{i}^{+} & =\left(1-p_{i}\right) W_{i}^{+} \tag{4}
\end{align*}
$$

Can show that

$$
q_{i}=q_{i}\left(W_{i}^{-}\right) \quad ; \quad p_{i}=p_{i}\left(W_{i}^{+}\right)
$$

Controls

Constraints on controls

$$
\begin{aligned}
q_{i} \in & {\left[q_{\min }, q_{\max }\right] \quad ; \quad \text { withdrawal amount } } \\
p_{i} \in & {[0,1] \quad ; \quad \text { fraction in stocks } } \\
& \text { no shorting, no leverage }
\end{aligned}
$$

Set of controls

$$
\begin{equation*}
\left.\mathcal{P}=\left\{\left(q_{i}(\cdot), p_{i}(\cdot)\right)\right): i=0, \ldots, M\right\} \tag{5}
\end{equation*}
$$

Reward and Risk

Reward: Expected total Withdrawals (EW)

$$
\mathrm{EW}=E[\overbrace{\sum_{i}^{\text {total }} q_{i}}^{\text {withdrawals }}]
$$

Risk measure: Expected Shortfall ES

$$
\begin{aligned}
& E S(5 \%) \equiv\left\{\text { Mean of worst } 5 \% \text { of } W_{T}\right\} \\
& \\
& W_{T}=\text { terminal wealth at } t=T
\end{aligned}
$$

ES defined in terms of final wealth, not losses ${ }^{1}$
\rightarrow Larger is better

[^0]
Objective Function

Multi-objective problem \rightarrow scalarization approach for Pareto points
Find controls \mathcal{P} which maximize (scalarization parameter $\kappa>0$)

$$
\begin{aligned}
& \sup _{\mathcal{P}}\{E W+\kappa E S\} \\
& \text { total withdrawals } \\
& \sup _{\mathcal{P}}\{\overbrace{E_{\mathcal{P}}\left[\sum_{i} q_{i}\right]}^{\text {total }}+\kappa \overbrace{\left(\frac{E_{\mathcal{P}}\left[W_{T} \mathbf{1}_{\left.W_{T} \leq W^{*}\right]}\right.}{.05}\right)}\} \\
& \text { s.t. } \operatorname{Prob}\left[W_{T} \leq W^{*}\right]=.05
\end{aligned}
$$

Varying κ traces out the efficient frontier in the ($E W, E S$) plane 2

[^1]
Scenario: all amounts indexed to inflation

- DC account at $t=0$ (age 65) $\$ 1,000 \mathrm{~K}$ (one million)
- Minimum withdrawal from DC account $\$ 35 \mathrm{~K}$ per year ${ }^{3}$
- Maximum withdrawal from DC $\$ 60 \mathrm{~K}$ per year
- Annual rebalancing/withdrawals
- Owns mortgage-free real estate worth $\$ 400 \mathrm{~K}$

Investment Horizon

- $T=30$ years, i.e. from age 65 to 95

[^2]
Scenario II

Why do we include real estate in the scenario?

Since $q_{\text {min }}=35 K$ per year, W_{t} can become negative

- When $W_{t}<0$, the retiree is borrowing, using a reverse mortgage
- Reverse mortgages allow borrowing of 50% of home value
- In our case: $\$ 200 \mathrm{~K}$
- Once $W_{t}<0$
- All stocks are liquidated
- Debt accumulates at borrowing rate
- If $W_{T}>0$, then real-estate is a bequest
- Real estate is a hedge of last resort: not fungible with other wealth
- This mental bucketing of real estate is a well-known behavioural finance result. I also observe this with my fellow retirees.

Numerical Method

Dynamic programming

- Conditional expectations at t_{i}^{+}
- Solve linear 2-d PIDE
- Use ϵ-monotone Fourier method (Forsyth and Labahn (2019))
- Optimal controls at each rebalancing time
- Discretize controls
- Find maximum by exhaustive search
- Guaranteed to converge to the solution as discretization parameters $\rightarrow 0$

Data

Center for Research in Security Prices (CRSP) US

- Cap weighted index, all stocks on all major US exchanges 1926:1-2019:12
- US 10 year Treasury index
- Monthly data, inflation adjusted by CPI

Synthetic Market

- Stock/bond returns driven by parametric jump-diffusion model, calibrated to data
- Optimal controls computed in the synthetic market

Historical market

- Stock/bond returns from stationary block bootstrap resampling of actual data
- No assumptions about stock/bond processes
- Used to test controls computed in the synthetic market

EW-ES efficient frontier (Units: thousands)

- ES is the mean of the worst 5\% of outcomes
- Each pt on curve, different κ
- Reverse mortgage hedge
\rightarrow Any point $E S>-200 K$ is acceptable

Note Efficient Frontier almost vertical at right hand end

- Base case: constant withdrawal 35K/year
- Tiny increase in risk (smaller ES)
\rightarrow Average withdrawal increases to 50 K per year (never less than 35 K)

Point on Frontier: Expected average withdrawals =

 $51 \mathrm{~K} /$ yearPercentiles: wealth

Percentiles: fraction in equities

Bootstrap resamples of optimal strategy (5% of initial capital on average per year, inflation adjusted)

$$
\rightarrow E S \simeq-17 K
$$

Bootstrap resamples of Bengen 4\% rule (4\% of initial capital per year) $\rightarrow E S \simeq-300 K$

Expected Average Withdrawals: $51 \mathrm{~K} /$ year

- Withdrawal controls \simeq bang-bang, i.e. only withdraw either $q_{\text {min }}$ or $q_{\text {max }}$.
- Median $W_{t} \simeq 1000 K \rightarrow 300 K$

Robustness Check: Efficient Frontier (Units: thousands)

Controls computed and stored in the synthetic market

- Parametric model calibrated to historical data

Controls tested ${ }^{4}$ in the bootstrapped historical market
\rightarrow Controls are robust to parametric model misspecification

[^3]
Conclusions

- Optimal strategy: flexible withdrawals, dynamic stock-bond allocation
\rightarrow Less risk, higher average withdrawals compared to 4\% rule
\rightarrow Bootstrap resampling \Rightarrow controls are robust
- In the continuous withdrawal limit
\rightarrow Optimal withdrawals are bang-bang, i.e. only withdraw at either maximum or minimum rate ${ }^{5}$
- Discrete rebalancing: withdrawal controls are very close to bang-bang
- Intuition: if you are lucky, and make money in stocks, take money off the table and enjoy
\rightarrow Otherwise: sit tight

[^4]
[^0]: ${ }^{1}$ ES is basically the negative of CVAR

[^1]: ${ }^{2} \mathrm{ES}$ is not formally time-consistent. We assume that the investor follows the induced time consistent policy. See (Forsyth, SIFIN, 2019). The induced time consistent control is identical to the pre-commitment control at $t=0$.

[^2]: ${ }^{3}$ Assume gov't benefits of $22 \mathrm{~K} /$ year. Minimum income $\simeq 22 K+35 K=57 K /$ year .

[^3]: 4 "Out-of-sample" test.

[^4]: ${ }^{5}$ Proof: Forsyth (North American Actuarial Journal, 2022), independent of risk measure.

