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Abstract1

As the developed world replaces Defined Benefit (DB) pension plans with Defined Contri-2

bution (DC) plans, there is a need to develop decumulation strategies for DC plan holders.3

Optimal decumulation can be viewed as a problem in optimal stochastic control. Formulation4

as a control problem requires specification of an objective function, which in turn requires a5

definition of reward and risk. An intuitive specification of reward is the total withdrawals over6

the retirement period. Most retirees view risk as the possibility of running out of savings. This7

paper investigates several possible left tail risk measures, in conjunction with DC plan decu-8

mulation. The risk measures studied include (i) expected shortfall (ii) linear shortfall and (iii)9

probability of shortfall. We establish that, under certain assumptions, the set of optimal con-10

trols associated with all expected reward and expected shortfall Pareto efficient frontier curves11

is identical to the set of optimal controls for all expected reward and linear shortfall Pareto12

efficient frontier curves. Optimal efficient frontiers are determined computationally for each risk13

measure, based on a parametric market model. Robustness of these strategies is determined by14

testing the strategies out-of-sample using block bootstrapping of historical data.15

Keywords: decumulation, stochastic control, risk16

JEL codes: G11, G2217

AMS codes: 91G, 65N06, 65N12, 35Q9318

1 Introduction19

Internationally, there is a growing movement to replace Defined Benefit (DB) pension plans with20

Defined Contribution (DC) plans. A study of the P7 countries1 reveals that in terms of fraction of21

total pension assets, DC plans have increased from 37% in 2003 to 58% in 2023 (Thinking Ahead22

Institute, 2024). In terms of individual countries, Australia has 88% of pension assets in DC plans,23

while Japan has only 5% of pension assets in DC plans. In the Netherlands, all DB plans will24

transition to collective DC plans by 2028.2 The trend towards DC plans seems inevitable, since25

corporations and governments no longer desire to take on the risk of providing the guarantees26

implicit in DB plans.27

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca

bDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
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2“The End of the Dutch Defined Benefit Model A Steeper Euro Swap Curve Ahead,” https://www.pimco.com/

eu/en/insights/the-end-of-the-dutch-defined-benefit-model-a-steeper-euro-swap-curve-ahead

1

https://www.pimco.com/eu/en/insights/the-end-of-the-dutch-defined-benefit-model-a-steeper-euro-swap-curve-ahead
https://www.pimco.com/eu/en/insights/the-end-of-the-dutch-defined-benefit-model-a-steeper-euro-swap-curve-ahead


During the accumulation phase of a DC plan, the burden of deciding on an asset allocation28

usually is relegated to the investor. However, upon retirement, the DC plan holder is faced with an29

even bigger challenge. During the decumulation stage of a DC plan, the retiree must decide on a30

withdrawal schedule and an asset allocation. Surveys have revealed that retirees fear running out31

of savings more than death (Hill, 2016). Consequently, it seems clear that the retiree wants to to32

withdraw as much as possible, but avoid ruin. The decumulation problem has been termed “the33

nastiest, hardest problem in finance,” by William Sharpe (Ritholz, 2017).34

While it is often suggested that retirees purchase annuities to reduce the risk of depletion of35

savings, annuities are not popular with DC plan holders (Peijnenburg et al., 2016). MacDonald36

et al. (2013) suggest that avoidance of annuities may be entirely rational.3 For example, in the37

North American context, true inflation protected annuities are virtually unobtainable.38

An extensive study of decumulation strategies can be found in Bernhardt and Donnelly (2018).39

Some recent strategies which involve pooling longevity risk, such as a modern tontine (Fullmer,40

2019; Weinert and Gründl, 2021; Forsyth et al., 2024) appear promising. However, these types of41

plans are still in their infancy.42

The standard wealth management advice given to retirees is usually some variant of the ubiq-43

uitous 4% rule (Bengen, 1994). This rule suggests that retirees should (i) invest in a portfolio of44

50% bonds and 50% equities, rebalanced annually and (ii) withdraw 4% of the initial capital each45

year (adjusted for inflation). We can consider that this advice is given to a 65-year old retiree, who46

wants to be sure that he/she does not run out of savings if he/she lives to age 95.447

This advice is justified on the basis of historical rolling 30 year periods, using US data. A48

retiree following this advice would never have run out of savings over any of these rolling thirty year49

periods. Various adjustments to this rule have been suggested many times, see e.g. Guyton and50

Klinger (2006). However, both the advice and historical tests can be criticized. Rolling thirty-year51

periods obviously have very high correlations. Use of constant weight stock allocation is somewhat52

simplistic, as is use of a constant (in real terms) withdrawal rate. In fact Irlam (2014) used dynamic53

programming methods to conclude that deterministic (i.e. glide path) allocation strategies are sub-54

optimal.5 More recently, Anarkulova et al. (2023) suggest that the safe withdrawal rate might be55

much lower than the the 4% rule. In contrast to rolling historical periods, Anarkulova et al. (2023)56

use block bootstrap resampling to test withdrawal strategies. We will also use bootstrap resampling57

to test our results in this paper.58

Nevertheless, the four per cent rule has seen wide adoption since the original publication over59

thirty years ago, and can be regarded as the default advice.60

Contrary to commonly held beliefs, it appears that retirees are somewhat flexible in annual61

spending. A survey in Bannerje (2021) indicates that retirees actually adjust their lifestyle (i.e.62

what are perceived as fixed expenses) to match their cash flows.63

In fact, recent surveys indicate that, if anything, many retirees underspend on the basis of their64

financial assets (Rappaport, 2019; Ackerly et al., 2021). Browning et al. (2016) suggests that these65

assets are being held as a reserve against unexpected medical expenses. However, Canada has a66

comprehensive public health care system, yet Hamilton (2001) finds that senior Canadian couples67

85 and older either save or give away about 25% of their income.68

All these facts indicate that we should allow some flexibility in withdrawals from pension savings,69

in order to ameliorate sequence of return risk.70

Perhaps the most rigorous approach to the decumulation problem is to formulate this as a71

problem in optimal stochastic control. The controls in this case, are (i) the asset allocation, i.e.72

3See also “When do you need insurance?” https://donezra.com/217-when-do-you-need-insurance/
4The probability of a 65-year old Canadian male living to age 95 is about 0.13.
5A constant weight strategy is trivially deterministic.
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the stock/bond split and (ii) the withdrawal amounts (real) per year, subject to maximum and73

minimum constraints.74

Of course, the first task in formulating an optimal control problem is to specify the objective75

function. One possibility is to formulate the decumulation problem in terms of a utility function,76

combining the withdrawals and final portfolio value. However, it seems clear (from the popularity77

of the four per cent rule), that investors prefer to delineate the trade off between risk (running out78

of savings) and reward (maximizing withdrawals).79

We will consider basically the same problem as formulated by Bengen (1994). As a result, the80

obvious measure of reward is the total of the withdrawals (inflation adjusted) over a 30 year period.81

However, the choice of risk measure is not so clear. Since retirees are primarily concerned with82

running out of savings, we should be focused on left tail measures of risk.83

The objective of this paper is to carry out a thorough investigation of the following tail risk84

measures, in the context of decumulation, in terms of portfolio value at year 30:85

• Expected shortfall, i.e., the mean of the worst α fraction of the outcomes. Typically α = .05.86

• Linear shortfall, i.e. weighting negative portfolio values linearly.87

• Probability of final portfolio value being negative.88

We first formalize the equivalence between expected withdrawal reward and expected shortfall89

risk (EW-ES) and expected withdrawal reward and linear shortfall risk (EW-LS) efficient frontiers.90

We further compare the efficient frontiers generated using all three risk measures above. We calibrate91

a parametric stochastic model for stocks and bonds based on almost a century of data. We solve92

the optimal control problem via dynamic programming using the parametric model. The controls93

are tested out-of-sample, using block bootstrap resampling of historical data (Politis and Romano,94

1994; Cogneau and Zakalmouline, 2013; Dichtl et al., 2016; Anarkulova et al., 2022; 2023).95

One of our main results is that, under certain conditions, the set of optimal controls associated96

with all expected reward and shortfall Pareto efficient frontier curves is identical to the set of optimal97

controls for all expected reward and linear shortfall Pareto efficient frontier curves. Consequently the98

essential difference between EW-ES and EW-LS is in the parameter which specifies tail-risk level.99

This parameter is an explicit wealth level target in EW-LS versus a probability level in EW-ES.100

We conclude that Linear Shortfall is an excellent practical measure of tail risk. Linear Shortfall101

(LS) is (i) trivially time consistent (ii) weights shortfall6 (iii) is close to optimal in terms of expected102

shortfall and probability of shortfall (iv) has an intuitive interpretation and (v) has robust perfor-103

mance in out of sample bootstrap resampling tests. Consequently, we recommend use of expected104

total withdrawals (as a measure of reward) and linear shortfall (LS) as a measure of risk in the105

context of studying decumulation strategies.106

2 Problem Setting107

Spending rules (such as the four per cent rule) are clearly popular with retirees. It is interesting to108

note the following quotation from (Anarkulova et al., 2023)109

“Current retirement spending practices demonstrate a revealed preference for spending110

rules over annuitization, such that the efficacy of spending rules is an important issue.111

. . . Obtaining reliable, quantitative evidence on the 4% rule and alternative withdrawal112

rates is of critical importance given their widespread use.”113

6Being short $100,000 is worse than being short $1.
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Due to its wide acceptance in wealth management, we consider the scenario discussed in (Bengen,114

1994). We consider a 65-year old retiree who desires fixed minimum annual (real) cash flows over a 30115

year time horizon. We also impose a cap on maximum withdrawals in any year. From the CPM2014116

table from the Canadian Institute of Actuaries7, the probability that a 65-year old Canadian male117

attains the age of 95 is about 0.13. However, use of a 30 year time horizon is considered a prudent118

test for having a low probability of running out of savings. In addition, observe that we will not119

mortality weight future cash flows, as is done when averaging over a population for pricing annuities.120

Mortality weighting does not seem to be a useful concept for an individual retiree.121

Since we allow investing in risky assets, with a minimum cash withdrawals each year, it is122

possible to exhaust savings. In this case, we continue to withdraw cash from the portfolio, which123

is equivalent to borrowing cash. This debt accumulates at the borrowing rate. Essentially, we are124

assuming that the investor has other assets, e.g. real estate, which can be used as a hedge of last125

resort. In practice, accumulated debt due to exhausting savings could be funded using a reverse126

mortgage, with real estate as collateral (Pfeiffer et al., 2013).127

Note that real estate is not fungible with financial assets, except as a last resort. This mental128

bucketing of assets is a common tenet of behavioral finance (Shefrin and Thaler, 1988). As far as129

the real estate is concerned, if investments perform well, or the retiree passes away early, then the130

real estate can be a bequest.131

The fact that the portfolio can become negative, and the required cash flows can add to debt,132

means that any tail risk measure will penalize these states. Hence, the optimal stochastic control133

will find strategies which make these states as unlikely as possible.134

2.1 Notation, Formulation135

The investor has access to two funds: a stock index and a constant maturity bond index. At any136

instant in time t, let the amount invested in the stock index fund be denoted by St ≡ S(t), and137

similarly the amount invested in the bond index is denoted by Bt ≡ B(t). These amounts are real,138

i.e. inflation adjusted. The total (real) value of the portfolio Wt is then139

Wt = St +Bt . (2.1)140

For any time dependent function g(t), we use the notation141

g(t+) ≡ lim
ε→0+

g(t+ ε) ; g(t−) ≡ lim
ε→0+

g(t− ε) . (2.2)142

Consider a set of discrete withdrawal/rebalancing times T ,143

T = {t0 = 0 < t1 < t2 < . . . < tM = T}, (2.3)144

where T is the investment horizon. For ease of notation, we assume that ti − ti−1 = ∆t = T/M is145

constant.146

At each rebalancing time ti, i = 0, . . . ,M − 1, the investor first (i) withdraws an amount of cash147

qi from the portfolio and then (ii) rebalances the portfolio. More precisely148

W (t+i ) = W (t−i )− qi . (2.4)149

Denote the state of the system at each time by X (t), t ∈ [0,T ]. Informally, the state can be150

regarded as the information necessary to model the system from time t onwards (Powell, 2025).151

7www.cia-ica.ca/docs/default-source/2014/214013e.pdf.
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Let the rebalancing control p(X (t−i )) be the fraction in stocks after withdrawals, then,152

S(t+i ) = pi(X (t−i ))W (t+i )153

pi(X (t−i )) ≡ p(X (t−i ), ti)154

B(t+i ) = W (t+i )− S(t+i ) . (2.5)155

We can regard the amount withdrawn qi(·) as an additional control i.e. qi(X (t−i )) = q(X (t−i ), ti).156

Note we make the implicit assumption that the optimal controls are of feedback form, i.e. only a157

function of the state and time.158

Based on the parametric SDE model for (St,Bt) in Appendix A and Forsyth (2022), we will159

assume in the following that X (t) = (S(t), B(t)), t ∈ [0,T ], with the realized state of the system160

denoted by x = (s,b). More generally, of course, it may be necessary to include other variables to161

define the state (e.g. lifting the state space to include path dependent variables).8162

In the special case that there are no transaction costs qi(·) = qi(W
−
i ) and pi(·) = p(W+

i ), i.e.163

the amount withdrawn is only a function of total wealth before withdrawals, and the rebalancing164

fraction is only a function of wealth after withdrawals. Note that it is straightforward to include165

transaction costs, but if typical costs for ETFs are included, this has a very small impact on the166

controls (Dang and Forsyth, 2014).167

The control at time ti is given by (qi(·), pi(·)), where (·) denotes the control as a function of168

state. We specify feasibility of control by prescribing the set of admissible values of the controls by169

Z, i.e.,170

(qi,pi) ∈ Z(W−i ,W
+
i ,ti) = Zq(W

−
i , ti)×Zp(W

+
i ,ti) . (2.6)171

where172

Zq(W
−
i , ti) =


[qmin,qmax] ti ∈ T ; ti 6= tM ; W−i ≥ qmax

[qmin,max(qmin,W
−
i )] ti ∈ T ; t 6= tM ; W−i < qmax

{0} ti = tM

, (2.7)173

Zp(W
+
i ,ti) =


[0,1] W+

i > 0 ; ti ∈ T ; ti 6= tM

{0} W+
i ≤ 0 ; ti ∈ T ; ti 6= tM

{0} ti = tM

. (2.8)174

175

These expressions encapsulate the following constraints:176

• No shorting, no leverage (assuming solvency, i.e., when W+
i > 0),177

• Maximum qmax and minimum qmin withdrawal constraints,178

• In the case of insolvency W+
i < 0, trading ceases and debt accumulates at the borrowing rate,179

• At t = tM , all stocks are liquidated no withdrawals qM = 0,180

• If W−i < qmax, the investor attempts to avoid insolvency, but always withdraws at least qmin.181

Recall that we assume that the retiree can finance the debt using other assets, e.g. a real estate182

hedge of last resort. At first sight it might seem appropriate to simply cease withdrawals if insolvent.183

However, by assumption, the retiree needs a minimum cash flow of qmin each year. Therefore, we184

8A classic example is the pricing of an Asian option, which depends of the observed average stock price At. If the
stock price St follows GBM, then the state space for an Asian option is lifted to (St, At).
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penalize any set of controls which causes the retiree to exhaust his savings (and access the assumed185

real estate hedge) in order to fund the minimum cash flows. Allowing debt to accumulate also186

penalizes early insolvency compared to late insolvency.187

The admissible control set A can then be written as188

A =

{
(qi, pi)0≤i≤M : (pi, qi) ∈ Z(W−i ,W

+
i ,ti)

}
. (2.9)189

For notational simplicity, we denote a dynamic control by P, and an admissible control P ∈ A can190

be written as191

P = {(qi(·), pi(·)) : i = 0, . . . ,M} . (2.10)192

We also define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM ], i.e.193

Pn = {(qn(·), pn(·)), . . . , (qM (·), pM (·))} . (2.11)194

For notational completeness, we also define the tail of the admissible control set An as195

An =

{
(qi, pi)n≤i≤M : (qi, pi) ∈ Z(W−i ,W

+
i ,ti)

}
, (2.12)196

so that Pn ∈ An.197

3 Risk and reward198

3.1 Reward199

Define EX
−
0 ,t
−
0

P0
[·] as the expectation conditional on the observation at time t−0 , state X

−
0 , under200

control P0. We then define reward as201

EW (X−0 , t
−
0 ) = E

X−0 ,t
−
0

P0

[ M∑
i=0

qi

]
(3.1)202

which is the total expected withdrawals in [0,T ]. We will use EW as the reward measure in all cases.203

Note that qi is inflation adjusted and that we do not discount the future cash flows. We view this204

as a conservative approach and is consistent with the Bengen (1994) scenario.205

3.2 Risk206

PS We define PS risk as the probability of shortfall w.r.t. a terminal wealth level W,207

PS(X−0 , t
−
0 ) = Prob[WT <W] = E

X−0 ,t
−
0

P0
[1WT<W] . (3.2)208

Usually, W is zero, i.e., we are concerned with running out of cash. We want to minimize PS209

risk.210

LS Linear shortfall211

LS(X−0 , t
−
0 ) = E

X−0 ,t
−
0

P0
[min(WT −W, 0)] . (3.3)212

Note that PS risk does not differentiate bad outcomes. Clearly, being short 1$ is not as bad as213

being short 1000$. LS weights the bad outcomes. Since ES is defined in terms of final wealth,214

not losses, we want to maximize LS risk measure.215
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Acronym Description

EW (expected withdrawals) E[
∑M
i=0 qi]

PS (probability of shortfall) E[1WT<W]
LS (linear shortfall) E[min(WT −W, 0)]

ES (expected shortfall ) E

[
WT 1WT <W

α

]
s.t. E[1WT<W] = α

Table 3.1: Definition of acronyms.

ES ES is the mean of the worst α fraction of outcomes. A common choice is α = .05. More
precisely, let WT be the wealth associated with P0X

−
0 ,t
−
0

ES(X−0 , t
−
0 ) = E

X−0 ,t
−
0

P0

[
WT1WT<W

α

]
subject to

{
E
X−0 ,t

−
0

P0
[1WT<W] = α. (3.4)

We want to maximize ES risk measure.216

One of the main goals of this paper is to compare and contrast these different reward-risk combi-217

nations, both mathematically and computationally.218

3.3 Summary of Acronyms219

For future reference, Table 3.1 lists the acronyms used in this paper.220

4 Pareto points221

We will use a scalarization technique to determine Pareto optimal points for the multi-objective222

problems balancing risk and reward. As an example consider problem EW-PS. Informally, given an223

scalarization parameter κ > 0, we seek the optimal control P0 that maximizes224

EW(X−0 , t
−
0 )− κ PS(X−0 , t

−
0 ) . (4.1)225

Varying κ traces out an efficient frontier in the (EW, PS) plane. For any fixed value of PS, the226

corresponding point on the efficient frontier is the largest possible value of EW.227

4.1 PS, LS228

We solve optimal control problem for weighted reward and risk combinations, e.g., EW-PS, EW-LS.229

To be precise, for each reward and risk parameter pair, we define the function G(WT ,W) below,230

PS : GPS(WT ,W) = −1WT<W (4.2)231

LS : GLS(WT ,W) = min(WT −W, 0) , (4.3)232
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where W is a specified wealth level. Assuming a risk aversion scaling parameter κ, the general
problem for EW-xS, (x = {P,L}) can be written as

EW-xSt0 (W, κ) : sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κGxS(WT ,W)

+ εWT

∣∣∣∣X (t−0 ) = (s,b)

]}
(4.4)

subject to



(St, Bt) follow processes (A.3) and (A.4); t /∈ T
W+
` = W−` − q` ; X+

` = (S+
` , B

+
` )

W−` = S(t−i ) +B(t−i )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

(q`(·), p`(·)) ∈ Z(W−` ,W
+
` ,t`)

` = 0, . . . ,M ; t` ∈ T

. (4.5)

Observe that we have added the stabilization term εWT to the objective function in equation233

(4.4). The control problem is ill-posed in the cases where t→ T,Wt �W. In this case, due to the234

maximum withdrawal constraint, and since the Prob[Wt <W] ' 0, then the control has almost no235

effect on the objective function. Addition of the stabilization term regularizes the problem (see e.g.236

Chen et al. (2023)). We will discuss this further in later sections.237

4.2 Expected Shortfall (ES)238

We are interested in the relationship between the above reward-risk formulations with the same239

reward but ES risk, i.e.,240

EW(X−0 , t
−
0 ) + κ ES(X−0 , t

−
0 ) . (4.6)241

We formulate the EW-ES optimal control problem using the technique in Rockafellar and Uryasev
(2000), more precisely (0 < α < 1)

EW-ESt0 (α, κ) : sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ sup
W ′

(
W ′ +

1

α
min(WT −W ′, 0)

)

+εWT

∣∣∣∣(s,b)
]}

(4.7)

subject to
{
Conditions (4.5) .

Interchanging the order in sup sup{·} in problem (4.7 ), we equivalently have

EW-ESt0 (α, κ) : sup
W ′

sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)

+εWT

∣∣∣∣X−0 = (s,b)

]}
(4.8)

subject to
{
Conditions (4.5) .

Note that, as for the EW-xS problems, we have added a stabilization term εWT to the objective242

function.243
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Remark 4.1 (Pre-commitment policy). Note that the optimal control for problem (4.8) is formally244

a pre-commitment policy (Forsyth, 2020a). We delay further discussion concerning this issue to245

Section 4.4.246

4.3 Properties of optimal solution of EW-ES formulation (4.8)247

Let P0 be any permissible control for problem (4.8) and WT be the wealth corresponding to P0.248

Consider the maximizer below:9249

W = arg max
W ′

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)
250

+εWT

∣∣∣∣X−0 = (s,b)

]}
. (4.9)251

Following Rockafellar and Uryasev (2000), it can be shown that (4.9) is equivalent to the probability252

constraint below, under the assumption of continuity in distribution of WT ,253

E
X−0 ,t

−
0

P0
[1WT<W] = α . (4.10)254

Let EP0 denote EX
−
0 ,t
−
0

P0
for notational simplicity. Consider255

EP0

(
W +

1

α
min(WT −W, 0)

)
256

subject to257 {
EP0 [1WT≤W] = α . (4.11)258

Let gP0(WT ) be the density of WT under control P0. Then, write equation (4.11) as259 ∫ +∞

−∞
W gP0(WT ) dWT +

1

α

∫ W

−∞
(WT −W) gP0(WT ) dWT (4.12)260

subject to261 {∫W
−∞ gP0(WT ) dWT = α . (4.13)262

We can write (4.12) as263

W
∫ +∞

−∞
gP0(WT ) dWT −

W
α

∫ W

−∞
GP0(WT ) dWT +

1

α

∫ W

−∞
WT gP0(WT ) dWT . (4.14)264

Using equation (4.13), this becomes265

W−W +
1

α

∫ W

−∞
WT gP0(WT ) dWT = E

X−0 ,t
−
0

P0

[
WT1WT<W

α

]
. (4.15)266

Thus, when (4.9) is satisfied, we have267

E
X−0 ,t

−
0

P0
[1WT<W] = α268

E
X−0 ,t

−
0

P0

[
WT1WT<W

α

]
= E

X−0 ,t
−
0

P0

[(
W +

1

α
min(WT −W, 0)

)]
. (4.16)269

9The argmax is well defined since supP{·} is a continuous function of W ′.
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Consider the optimal W∗ and control P∗0 from EW-ESt0(α,κ), equation (4.8), i.e.,270

W∗ = arg max
W ′

sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)
271

+εWT

∣∣∣∣X−0 = (s,b)

]}
, (4.17)272

then equation (4.16) implies273

Prob[W ∗T <W∗] = α (4.18)274

ES = mean of worst α fraction of outcomes275

= E
X−0 ,t

−
0

P∗0

[(
W∗ +

1

α
min(W ∗T −W∗, 0)

)]
.276

From (4.18), we see immediately that W∗ is the α-VaR (value at risk) of the terminal wealth W ∗T277

associated with the optimal control.278

Fixing any target wealth level W, we consider linear shortfall Pareto optimization (κ̂ > 0):279

EW-LSt0 (W, κ̂) : sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ̂ min(WT −W, 0) + εWT280

∣∣∣∣X (t−0 ) = (s,b)

]}
, (4.19)281

subject to
{
Conditions (4.5) .282

Note that we notationally distinguish risk aversion parameters for EW-ES and EW-LS to describe283

their precise connection. We summarize the relationship between EW-ES and EW-LS in Proposition284

4.1 (see also Forsyth (2020a)).285

Proposition 4.1 (Optimal EW-ES strategy solves EW-LS).286

(i) The pre-commitment strategy P∗ which solves EW-ESt0(α,κ) (4.7) is a solution to EW-LSt0(W, κα)287

(4.19) with the fixed wealth level W = W∗ defined in (4.17).288

(ii) Conversely, an optimal control for EW-LSt0(W, κα) (4.19) with the fixed wealth level W = W∗289

given by (4.17), solves EW-ESt0(α,κ) (4.7).290

Proof.291

(i) Let P∗0 solve (4.7). Then it solves (4.8) due to equivalence between (4.8) and (4.7). Conse-
quently P∗0 also solves the linear shortfall problem EW-LSt0(W∗, κα) in (4.19), i.e., P∗0 solves

EW-LSt0 (W, κ̂) : sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ̂min(WT −W,0)

+εWT

∣∣∣∣(s,b)
]}

subject to
{
Conditions (4.5) ,

with κ̂ = κ
α , W = W∗, and W∗ defined in (4.17).292
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(ii) Assume that P∗0 solves EW-LSt0(W∗, κ̂), (4.19), with κ̂ = κ
α and W∗ defined in (4.17). Then

P∗0 solves

sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ(W∗ +
1

α
min(WT −W∗,0)

+εWT

∣∣∣∣(s,b)
]}

subject to
{
Conditions (4.5) ,

Applying W∗ defined in (4.17), then P∗0 solves (4.8), and hence (4.7).293

294

Let295

DES = {(α, κ) | 0 < α < 1 ; κ > 0}296

DLS = {(W, κ) | W ∈ R ; κ > 0} . (4.20)297

Define298

H∗ES = {P∗0 : P∗0 solves EW-ESt0(α, κ)(4.7) for some (α,κ) ∈ DES}
H∗LS = {P∗0 : P∗0 solves EW-LSt0(W, κ̂)(4.19) for some (W,κ̂) ∈ DLS} .

(4.21)299

We then have the following Corollary, which follows from Proposition 4.1:300

Corollary 4.1. Let H∗ES and H∗LS be defined in (4.21). Then the set H∗ES of optimal controls for301

Problem EW-ESt0 is a subset of the set H∗LS of optimal controls for Problem EW-LSt0.302

4.4 Time inconsistent EW-ES and time consistent EW-LS303

While Proposition 4.1 indicates that EW-ESt0 and EW-LSt0 share a common solution when the304

wealth level W = W∗, these two dynamic optimization formulations have different properties in305

terms of time consistency. To see this, we first recall the concept of time consistency and relate its306

relevance to the EW-ESt0(α,κ) problem, (4.8).307

Consider the optimal control P∗0 = (P∗)t0 computed at t0 from problem (4.8) at all rebalancing308

times,309

(P∗)t0(X (t−i ), ti) , i = 0, . . . ,M , (4.22)310

i.e., (4.22) denotes the optimal control (P∗)t0 at any time ti ≥ t0, as a function of the state variables311

X (t).312

Next we solve the problem (4.8) starting at a later time tk, k > 0 and denote the optimal control313

starting at tk is denoted by:314

(P∗)tk(X (t−i ), ti) , i = k, . . . ,M . (4.23)315

In general, the solution of (4.8) computed at tk is not equivalent to the solution computed at t0:316

(P∗)tk(X (t−i ), ti) 6= (P∗)t0(X (t−i ), ti) ; i ≥ k > 0. (4.24)317

This non-equivalence makes problem (4.8) time inconsistent, implying that the optimal control318

computed at tk, k > 0, deviates from the control determined at time t0. The optimal control319
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P∗0 = (P∗)t0 determined at the initial time is considered a pre-commitment control since the investor320

would need to commit to following the strategy at all times following t0, even if the optimal control321

recomputed at future time becomes different. Some authors describe pre-commitment controls as322

non-implementable because of the incentive to deviate from the initial control.323

Following Proposition 4.1, the pre-commitment control for EW-ESt0 (4.8), fortunately, can be324

shown to be optimal for EW-LSt0(W,κ̂), for which W is fixed at the optimal value (at time zero) in325

(4.17).326

With a fixed W, EW-LSt0(W,κ/α) uses a target-based linear shortfall as its measure of risk,327

and EW-LSt0 is trivially time consistent. Furthermore, W has the convenient interpretation of a328

disaster level of final wealth, as specified at time zero.329

While the pre-commitment strategy P∗ from EW-ESt0(α,κ), (4.8), is time inconsistent when330

viewed as a solution to EW-ES, this strategy is time consistent with respect to EW-LSt0(W∗, κα)331

with the fixed wealth level W∗. In other words, conditional on information at tn and fixed W∗, the332

future decision {(P∗)tn(X (t−i ), ti) ; i = n, . . . ,M} of the optimal pre-commitment EW-ES control,333

computed at t0, solves334

EW-LStn (W∗,κ/α) : sup
Pn∈A

{
EX

−
n ,t
−
n

Pn

[
M∑
i=n

qi +
κ

α
min(WT −W∗,0) (4.25)335

+εWT

∣∣∣∣X (t−n ) = (s,b)

]}
,336

for any given permissible stock and bond value pair (s,b).337

Remark 4.2 (EW-ES → EW-LS). Proposition 4.1 essentially tells us that any optimal control P∗338

from EW-ES problem (4.8), solves some EW-LS problem (4.25) with a fixed wealth level W∗. Since339

EW-LS is time consistent, the EW-ES optimal control P∗ is time consistent when Pareto optimality340

is assessed with EW-LS with this fixed wealth level W∗.341

Since the optimal control P∗ for EW-ESt0(α, κ) solves EW-LStn(W∗, κ/α) at any tn, where W∗342

is the α-VaR of the conditional terminal wealth W ∗T , conditional on W
∗
0 = s+ b, we can regard P∗343

as an induced time consistent strategy for EW-LStn(W∗, κ/α) (Strub et al., 2019). Consequently344

the investor has no incentive to deviate from the induced time consistent strategy, determined at345

time zero. Hence this policy is implementable.346

For more detailed analysis concerning the subtle distinctions involved in pre-commitment, time347

consistent, and induced time consistent strategies, please consult Bjork and Murgoci (2010; 2014);348

Vigna (2014; 2017); Strub et al. (2019); Forsyth (2020a); Bjork et al. (2021).349

4.5 Further relationship between EW-ES and EW-LS problem350

Problem EW-ESt0(α,κ) requires specification of the parameter pair (α,κ) while problem EW-LSt0(W,κ̂)351

needs stipulation of parameter pair (W,κ̂). From Proposition 4.1 (ii), we learn that, given a value of352

W from equation (4.17) we can solve problem Problem EW-LSt0(W, κ̂), which generates a control353

which is an optimal control for problem EW-ESt0(α, ακ̂).354

However, given an arbitrary value of W, for which a solution to Problem EW-LSt0(W, κ̂) exists,355

what is the relation of the optimal control for this problem to the optimal control for Problem356

EW-ESt0(α,κ)?357

To connect an optimal EW-LS solution P∗0 to EW-ESt0 , we define358

α∗κ̂(W) = prob(W ∗T <W), WT ∗ is the terminal wealth of P∗0 which solves EW-LSt0(W, κ̂)
(4.26)359
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Remark 4.3 (Construction of α∗κ̂(W)). Given (W, κ̂), and an optimal control P∗0 (W, κ̂) which solves360

Problem EW-LSt0(W, κ̂), then we can determine α∗κ̂(W) from361

α∗κ̂(W) = EP∗0 (W,κ̂)[1{WT ∗<W}] . (4.27)362

To ensure a proper correspondence to EW-ESt0 , we consider solution to EW-LSt0 with 0 <363

α∗κ̂(W) < 1, i.e., we consider a restricted domain for EW-LSt0 as:364

D+
LS = {(W, κ̂) | 0 < α∗κ̂(W) < 1 and κ̂ > 0} . (4.28)365

Assumption 4.1 (invertibility of α∗κ̂(W)). The function α∗κ̂(W) in (4.26) is well defined and is366

invertible at (W,κ̂) ∈ D+
LS, i.e., for any W′ 6= W, (W′, κ̂) ∈ D+

LS , α
∗
κ̂(W′) 6= α∗κ̂(W).367

Note that here we only assume that, for each given W and κ̂, EW-LSt0(W, κ̂) yields a unique368

probability value α∗κ̂(W) but we do not assume uniqueness of the optimal controls for EW-LSt0(W, κ̂).369

Proposition 4.2 below establishes an equivalence of EW-ESt0 and EW-LSt0 , under the assump-370

tion that the function α∗κ̂(W) is well defined and invertible.371

Proposition 4.2 (Relationship between EW-LSt0 and EW-LSt0 for general W). Suppose Assump-372

tion 4.1 holds at (W, κ̂) ∈ D+
LS, then a solution to EW-LSt0(W, κ̂) is a solution to EW-ESt0(α∗κ̂(W), α∗κ̂(W)κ̂),373

with (α∗κ̂(W), α∗κ̂(W)κ̂) ∈ DES.374

Proof. Consider EW-LSt0(W, κ̂) for a given (W,κ̂) ∈ D+
LS . Let α

∗
κ̂(W) be defined in (4.26). Consider

EW-ESt0(α∗,α∗κ̂) where α∗ = α∗κ̂(W). Note that by definition of D+
LS , we must have (α∗,α∗κ̂) ∈

DES . Proposition 4.1 (i) shows that a solution of EW-ESt0(α∗,κ̂α∗) is a solution to linear shortfall
EW-LSt0(W∗,κ̂) problem for W∗ defined in (4.17) with prob(W ∗T <W∗) = α∗κ̂(W∗) = α∗. Hence

α∗κ̂(W) = α∗κ̂(W∗) = α∗.

Since α∗κ̂(W) is invertible, we have that W = W∗. Applying Proposition 4.1 (ii), using W = W∗375

given in (4.17), a solution to EW-LSt0(W,κ̂) solves EW-ESt0(α∗,α∗κ̂), where α∗ = α∗κ̂(W). This376

completes the proof.377

Applying Corollary 4.1 and Proposition 4.2, we obtain the following Corollary 4.2.378

Corollary 4.2. Suppose Assumption 4.1 holds for any (W,κ̂) ∈ D+
LS. Let H∗ES and H∗LS be defined

in (4.21). Then the set H∗ES of optimal controls for Problem EW-ESt0 is identical to the set H∗+LS of
optimal controls for Problem EW-LSt0, where

H∗+LS = {P∗0 (W,κ̂) ∈ H∗LS and (W,κ̂) ∈ D+
LS}.

Proof. From Proposition 4.1, any optimal solution P∗0 of EW-ESt0 satisfies 0 < α∗κ̂(W∗) < 1, W∗
defined in (4.17). Hence we have

H∗ES ⊂ H∗+LS .

Conversely, following Proposition 4.2, if P∗0 ∈ H
∗+
LS , then P∗0 ∈ H∗ES, i.e., P∗0 ∈ H∗ES. Hence

H∗ES ≡ H∗+LS .

379

Corollary 4.2 essentially states that, under Assumption 4.1, the set of optimal controls associated380

with all EW-ESt0 Pareto efficient frontier curves, (α, κ) ∈ DES is identical to the set of optimal381

controls for all EW-LSt0 Pareto efficient frontier curves with (W, κ̂) ∈ D+
LS .382
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Remark 4.4 (Significance of Propositions 4.1 and 4.17). Proposition 4.1 (i) shows that any control383

which solves Problem EW-ESt0 solves the Problem EW-LSt0 with fixed W given by equation (4.17).384

Proposition 4.1 (ii) informs us that for certain values of (W, κ̂), the optimal control for Problem385

EW-LSt0 also solves problem EW-ESt0. This is also true more generally, for points (W,κ̂) satisfying386

Assumption 4.1. It would be interesting to discover conditions on Problem EW-LSt0 which are387

required to guarantee that Assumption 4.1 holds. We leave this for future work.388

Remark 4.5 (Numerical experiments: EW-LSt0 → EW-ESt0). Problems EW-LSt0 and EW-ESt0389

are solved numerically, as discussed in Appendix B. Equation (4.27) is approximated using Monte390

Carlo methods. For values of (κ̂,W) such that α∗κ̂(W) is small (i.e. α∗κ̂ < .02), Proposition 4.2 does391

not appear to hold. This may be a result of numerical errors in approximating the α-VAR for small392

α.393

5 Numerical Comparison of Different Risk-Reward Pairs394

5.1 Data395

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the396

1926:1-2023:12 period.10 Our base case tests use the CRSP US 30 day T-bill for the bond asset397

and the CRSP value-weighted total return index for the stock asset. This latter index includes all398

distributions for all domestic stocks trading on major U.S. exchanges. All of these various indexes399

are in nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by400

CRSP. We use real indexes since investors funding retirement spending should be focused on real401

(not nominal) wealth goals.402

We use the parametric model for the real stock index and real constant maturity bond index403

described in Appendix A.404

Remark 5.1 (Choice of 30-day T-bill for the bond index). It might be argued that the bond index405

should hold longer-dated bonds such as 10-year Treasuries since this would allow the investor to406

harvest the term premium. Long-term bonds enjoyed high real returns during 1990-2022. However,407

it is unlikely that this will continue to be true over the next 30 years. For example, during the408

period 1950-1983, long term bonds had negative real returns (Hatch and White, 1985), while short-409

term T-bills had positive real returns. If one imagines that the next 30 years will be a period with410

inflationary pressures, this suggests that the defensive asset should be short-term T-bills. Note that411

the historical real return of short-term T-bills over 1926:1-2023:12 is approximately zero. Hence our412

use of T-bills as the defensive asset is a conservative approach going forward.413

Remark 5.2 (Sensitivity to Calibrated Parameters). Some readers might suggest that the stochastic414

processes (A.3-A.4) are simplistic, and perhaps inappropriate. However, we will test the optimal415

strategies (computed assuming processes (A.3-A.4) ) with calibrated parameters in Table A.1 using416

bootstrap resampled historical data (see Section 5.2 below). The computed strategy seems surprisingly417

robust to model misspecification. Similar results have been noted for the case of multi-period mean-418

variance controls (van Staden et al., 2021). We conjecture that this robustness is due to the self-419

correcting nature of feedback controls.420

10More specifically, results presented here were calculated based on data from Historical Indexes, ©2024 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services (WRDS) was used in preparing this article. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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Data series Optimal expected
block size b̂ (months)

Real 30-day T-bill index 50.805
Real CRSP value-weighted index 3.17535

Table 5.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂. Historical
data range 1926:1-2023:12.

5.2 Historical Market421

We compute and store the optimal controls based on the parametric model (A.3-A.4) as for the422

synthetic market case. However, we compute statistical quantities using the stored controls, but423

using bootstrapped historical return data directly. In this case, we make no assumptions concerning424

the stochastic processes followed by the stock and bond indices. We remind the reader that all425

returns are inflation-adjusted. We use the stationary block bootstrap method (Politis and Romano,426

1994; Politis and White, 2004; Patton et al., 2009; Cogneau and Zakalmouline, 2013; Dichtl et al.,427

2016; Cavaglia et al., 2022; Simonian and Martirosyan, 2022; Anarkulova et al., 2022).428

A key parameter is the expected blocksize. Sampling the data in blocks accounts for serial429

correlation in the data series. We use the algorithm in Patton et al. (2009) to determine the430

optimal blocksize for the bond and stock returns separately, see Table 5.1. We use a paired sampling431

approach to simultaneously draw returns from both time series. In this case, a reasonable estimate432

for the blocksize for the paired resampling algorithm would be about 2.0 years. We will give results433

for a range of blocksizes as a check on the robustness of the bootstrap results. Detailed pseudo-code434

for block bootstrap resampling is given in Forsyth and Vetzal (2019).435

5.3 Investment Scenario436

Table 5.2 shows our base case investment scenario. We use thousands of dollars as our units of437

wealth. For example, a withdrawal of 40 per year corresponds to $40,000 per year (all values are438

real, i.e. inflation-adjusted), with an initial wealth of 1000 (i.e. $1,000,000). This would correspond439

to the use of the four per cent rule (Bengen, 1994). Recall that we assume that the investor has440

real estate, which is in a separate mental bucket (Shefrin and Thaler, 1988). Real estate is a hedge441

of last resort, used to fund required minimum cash flows (Pfeiffer et al., 2013). We assume that442

the retiree owns mortgage free real estate worth $400,000, of which $200,000 can be easily accessed443

using a reverse mortgage.444

5.4 Numerical Results445

We use the numerical method described in (Forsyth, 2022; Forsyth et al., 2024) to compute the446

optimal controls, which is based on solving a Partial Integro-Differential Equation (PIDE), combined447

with discretizing the controls and finding the optimal values by exhaustive search. A brief overview448

is given in Appendix B.449

We compute optimal strategies from EW-ESt0(α, κ) with α = 0.05 and κ > 0. For EW-LSt0(W,κ̂)450

and EW-PSt0(W,κ̂), we compute optimal strategies with W = 0 and κ̂ > 0.451
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Investment horizon T (years) 30.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W0 1000
Mortgage free real estate 400
Cash withdrawal/rebalancing times t = 0,1.0, 2.0, . . . , 29.0
Maximum withdrawal (per year) qmax = 60
Minimum withdrawal (per year) qmin = 30
Equity fraction range [0,1]
Borrowing spread µbc 0.03
Rebalancing interval (years) 1.0
Target Wealth W (EW-xS, x = {P,L}) 0.0
α (EW-ES) .05
Stabilization ε (see equation (4.4)) −10−4

Market parameters See Table A.1

Table 5.2: Input data for examples. Monetary units: thousands of dollars.

5.5 Convergence452

Appendix B.1 shows convergence as the number of grid nodes increases, for a single point on the453

synthetic market EW-LS efficient frontier. It is perhaps more instructive to examine the convergence454

of the efficient frontiers. Figure 5.1 shows the convergence of the EW-LS frontier, as a function of the455

PIDE nodes. The curves for different numbers of nodes essentially overlap, indicating satisfactory456

convergence. Similar results were obtained for the other strategies.457
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Figure 5.1: EW-LS convergence test. Real stock index: deflated real capitalization weighted CRSP,
real bond index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters in Table A.1. The optimal
control is determined by solving the PIDEs as described in Appendix B. Grid refers to the grid used in
the algorithm in Appendix B: nx×nb, where nx is the number of nodes in the log s direction, and nb is
the number of nodes in the log b direction. Units: thousands of dollars (real). The controls are stored,
and then the final results are obtained using a Monte Carlo method, with 2.56 × 106 simulations.
Target wealth W = 0.0.
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5.6 Stabilization term458

In Appendix C, we show the effect of changing the sign of the stabilization term for the EW-PS459

problem on the CDF of the final wealth WT . The stabilization term has almost no effect on the460

CDF near W = 0, but does change the CDF for large values of wealth. This is because the choice461

of controls for large values of wealth, as t → T is essentially arbitrary. For large values of realized462

wealth, the investor can choose 100% bonds or 100% stocks, and the objective function will be463

almost unaffected.11
464

5.7 Efficient Frontiers: EW-LS, EW-PS, EW-ES465

In this section, we compare efficient frontier curves computed from EW-ESt0(α,κ) with fixed α =466

0.05 and κ > 0, and EW-xSt0(W,κ̂) (x =P,L) with W = 0 and κ̂ > 0. We choose this comparison467

setting since it seems more immediately relevant from a retiree’s perspective.468

We assess the performance of these strategies in the performance domain (EW,LS), (EW,PS),469

and (EW,ES) in Figures 5.2, 5.3(a), and 5.3(b) respectively.470

Since all three formulations share the same reward, the top left sides of efficient frontiers from471

all strategies are expected to converge asymptotically (as risk aversion parameter goes to zero) in472

all performance domains (EW,LS), (EW,PS), and (EW,ES).473

Note that efficient frontier curves in either performance domain (EW,ES) or (EW,LS), from474

EW-ESt0(α,κ) and EW-LSt0(W,κ̂), for fixed α and W, are not expected to coincide, except possibly475

at single points.476

As the risk aversion parameter increases, efficient frontiers on the right side from different formu-477

lations are expected to deviate from each other more significantly. Overall, 5.2, Figure 5.3(a), and478

5.3(b) do demonstrate larger differences in efficient frontier curves on the right side, see particularly479

EW-ES frontiers in Figure 5.3(b). This confirms that the choice of objective function is important480

in achieving risk control. Subsequently we compare and contrast efficient frontiers in more detail.481

5.7.1 EW-LS482

Figure 5.2 plots frontier curves in the (EW,LS) domain. We compute EW-LS, EW-ES and EW-PS483

optimal controls, but plot their (EW,LS) performance measures in the same figure. Naturally the484

frontier curve of the EW-LS control must plot above all the other curves (since the objective function485

of EW-LS aligns with the specified measures). However, it is interesting to see that the EW-ES486

and EW-PS controls are not overly suboptimal, relative to EW-LSt0(W = 05,κ̂), using (EW,LS)487

criteria.488

From Proposition 4.1, we expect that there is a point (with target wealth W = 0) at which the489

EW-ES and EW-LS curve coincide. In Figure 5.2, we can see that this point occurs at EW ' 52.3.490

Figure 5.2 also shows the results for the Bengen strategy (Bengen, 1994).12 We can see that the491

Bengen strategy is considerably suboptimal compared to any of the other strategies. However, it492

is only fair to point out that the Bengen strategy always withdraws 40 per year (units thousands),493

while the other strategies have minimum withdrawals of 30 per year.494

11The 94 year old Warren Buffet, whose net worth exceeds 145 billion USD, can choose to invest either 100% in
stocks or 100% in bonds, and will never run out of savings.

12Recall that the recommended policy is to withdraw 4% of the initial capital per year, inflation adjusted, and to
rebalance to a weight of 50% stocks annually. The 4% withdrawal would correspond to 40 per year for our example.
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Figure 5.2: EW-LS efficient frontier. Real stock index: deflated real capitalization weighted CRSP,
real bond index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters in Table A.1. Synthetic
market. Controls computed using EW-PS and EW-ES, and results plotted in terms of EW-LS crite-
ria. The EW-LS frontier plots above the the controls computed using EW-PS and EW-ES objective
functions. The Bengen control withdraws 40 per year, and rebalances annually to 50% bonds and 50%
stocks. The wealth target level W = 0 for both EW-LSt0 and EW-PSt0 .

5.7.2 EW-PS495

Figure 5.3(a) plots the EW-PS efficient frontier. Along the x-axis we plot Prob[WT > 0] = 1 −496

Prob[WT < 0], to produce consistent shapes for the frontiers. As before, we compute the EW-497

ES and EW-LS efficient controls, but plot them using PS as a risk measure. As expected, the498

EW-PS frontier plots above the other curves (it is, after all, the efficient strategy according to the499

Prob[WT > 0] risk measure).500

There is somewhat more variation in these curves compared to Figure 5.2. In particular, the EW-501

PS and EW-LS curves generate Prob[WT > 0] ' 0.9998 for the largest values of κ (the right hand502

most point on the curves). In contrast, the EW-LS strategy never gets above Prob[WT > 0] ' 0.994.503

We also see that the EW-LS curve flat-tops to the left of EW ' 52.13
504

5.7.3 EW-ES505

Figure 5.3(b) shows the EW-ES efficient frontier. We also show (EW,ES) measures for optimal506

EW-PSt0(0,κ) and EW-LSt0(0,κ) strategies. The curves for EW-PS and EW-LS are very similar.507

However, for ES > 0, the EW-ES curve is dramatically different. This can be explained as follows.508

The EW-ES strategy moves towards maximizing ES as κ becomes large. This comes at the509

expense of decreased Prob[Wt > 0] (from Figure 5.3(a)). On the other hand, the EW-LS and510

EW-PS strategies have no risk if WT > 0, so focus entirely on increasing EW, if Wt > 0 as t→ T .511

Effectively, this means that for the EW-LS and EW-PS strategies, it does not make sense to consider512

points in the efficient frontier which are below the knee of the curves. To the left of the knee of the513

curves, EW-LS is very close to the EW-ES curve.514

Recall that we have assumed that the retiree can access $200K using a reverse mortgage with515

real estate as collateral. Consequently, as a rule of thumb, any point on any frontier which has516

ES > −200 is acceptable from a risk management point of view. In other words the mean of the517

13If we extend the x-axis to the left, then, eventually, all three curves meet. However, these points have an
uncomfortably large Prob[WT ] < 0, hence are not of practical interest.
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Figure 5.3: EW-PS and EW-ES efficient frontiers. Real stock index: deflated real capitalization
weighted CRSP, real bond index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters in
Table A.1. Synthetic market. The Bengen control withdraws 40 per year, and rebalances annually to
50% bonds and 50% stocks. Target wealth W = 0 for EW-LS and EW-PS.

worst 5% of the outcomes can be hedged using real estate. In particular, we can see that the Bengen518

strategy fails this risk management test.519

5.7.4 Summary of efficient frontier comparison520

It is relevant to compare performance of optimal strategies using risk measures which are not directly521

included in their respective objective functions. This helps an investor understand consequences of522

implementing a specific strategy from in terms of different but relevant performance measures.523

Our first observation is that in all cases, whatever the strategy or risk measure, the Bengen524

strategy is significantly sub-optimal. We also make the following additional observations:525

• Firstly recall that we use the same target wealth level W = 0 for both EW-LSt0 and EW-PSt0 .526

We observe that their frontier curves are close in all three measurement domains, (EW,LS),527

(EW,PS) and (EW,ES), even asymptotically as the risk aversion parameter κ → +∞. This528

suggests that choosing EW-LSt0 also leads to good performance in terms of EW-PSt0 . Fur-529

thermore, since linear shortfall is an expectation of piecewise linear shortfall, i.e., E(max(WT−530

W,0)), while the probability function is the expectation of a discontinuous indicator function,531

i.e., E(1WT<W), consequently solving EW-LSt0 can be computationally preferable to solving532

EW-PSt0 .533

• Choosing a suitable risk measure as part of the objective function which aligns with the534

desired decumulation goals does matter. Different risk measures can lead to very different535

performing strategies. This is particularly important in decumulation. For example, Figure536

5.3(a) shows that the optimal EW-ESt0 strategy is inefficient at minimizing the probability537

of negative terminal wealth. The smallest probability of negative wealth achieved is at the538

expense of steeply diminishing reward. Similarly Figure 5.3(b) shows that, with the wealth539

target W = 0, the 5% ES risk associated with the optimal EW-LSt0 and EW-PSt0 strategies540

as the risk aversion parameter κ̂→ +∞ is far from the optimal 5%-ES risk achievable.541

• While Figure 5.2 seems to indicate that all the strategies perform reasonably well in terms of542

the LS risk measure, we note that there is a similar steeper drop from the optimal EW-ESt0543
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Figure 5.4: Optimal controls computed using the synthetic market model. These controls tested using
bootstrapped historical data. Expected blocksizes (years) shown. 106 bootstrap resamples. Real stock
index: deflated real capitalization weighted CRSP, real bond index: deflated 30 day T-bills. Scenario
in Table 5.2. Parameters in Table A.1. The Bengen control withdraws 40 per year, and rebalances
annually to 50% bonds and 50% stocks. The Bengen results are also shown for expected blocksizes of
0.5, 1.0, 2.0 years.

strategy as the risk aversion parameter goes to +∞. We further note that the scales of the544

horizontal axis in Figure 5.2 and Figure 5.3(a) are very different. Optimal EW-ESt0 strategies545

are unable to achieve the minimum LS risk and the smallest LS risk strategy is achieved at546

the expense of suboptimal rewards.547

From Figure 5.3(a) we can see that, in terms of the PS risk measure, EW-LS plots a bit below548

the optimal EW-PS frontier. However, the EW-ES curve has a very unusual behaviour (in terms of549

PS risk). Any increase in EW above about 53 causes a large decrease in Prob[WT > 0].550

Turning attention to Figure 5.3(b), in terms of ES risk, all strategies behave similarly to the left551

of ES ' 0. However, the EW-ES efficient frontier continues to generate positive ES for EW < 50.552

Essentially, this is because the EW-ES strategy focuses on maximizing ES, but at the expense of553

giving up increases in Prob[WT > 0]. Recall from our previous discussion that the EW-PS and554

EW-LS strategies only make sense if we look at points to the left of the knee of the curves.555

From a practical point of view, it is not clear that maximizing ES when it is positive is consistent556

with the retiree’s view of risk (i.e. running out of savings).557

5.8 Tests for robustness: bootstrap resampling558

We compute and store the optimal controls for EW-PS, EW-LS and EW-ES objective functions,559

based on the parametric market model described in Appendix A. We then test these controls using560

block bootstrap resampling of the market data in 1926:1-2023:12 (Politis and Romano, 1994; Politis561

and White, 2004; Patton et al., 2009; Cogneau and Zakalmouline, 2013; Dichtl et al., 2016; Cavaglia562

et al., 2022; Simonian and Martirosyan, 2022; Anarkulova et al., 2022).563

Figure 5.4 compares the synthetic market results (test and train on the parametric market model)564

as well as testing this control on bootstrapped historical data, for all three objective functions: EW-565

LS, EW-PS and EW-ES. The bootstrapped tests are carried out for a range of expected blocksizes.566

In all cases, for all blocksizes, the efficient frontiers are quite close, indicating that the controls567

computed using the parametric market model in Appendix A are robust to model misspecification.568

Further insight can be obtained by examining the summary statistics in Table 5.3 (synthetic569

market) and Table 5.4 (historical market). It would seem that the EW-LS strategy is a good570

compromise, having a relatively small Prob[WT < 0], and with an expected shortfall close to the571
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optimal value from the EW-ES solution. Note that W is a byproduct of the optimization algorithm572

for the EW-ES problem. This may not correspond, intuitively, to the investor’s preferences. For573

example, as move rightward along the EW-ES efficient frontier, W becomes a large positive value.574

Any value of WT to the left of this point, is regarded (by the objective function) as a bad outcome,575

which probably does not correspond to most investor’s concept of risk.576

In contrast, W is an input parameter for EW-PS and EW-LS. In our case, since our main concern577

is running out of cash, setting W = 0 is clearly a reasonable choice.578

Note that Table 5.4 shows that the ES(5%) result for the EW-LS control (computed in the579

synthetic market) is actually better than for the EW-ES control (also computed in the synthetic580

market) control, when tested in the historical market. This suggests that the EW-LS control is581

more robust than the EW-ES control.582

Strategy κ E[
∑

i qi]/M LS(W = 0) ES(5%) Prob[WT < 0] W

EW-ES 0.5925 52.97 -11.106 -102.36 .271 -31.15
EW-LS 9.3822 52.99 -5.3332 -106.66 .048 0.0
EW-PS 2670.9 53.04 -9.2747 -185.40 .027 0.0

Table 5.3: Synthetic market, summary statistics for EW-PS, EW-LS, and EW-ES objective func-
tions, EW ' 53 for all strategies. LS refers to E[min(WT −W, 0)], ES(5%) is the mean of the worst
five per cent of the outcomes. W is specified for EW-PS and EW-LS, while it is an outcome of the
EW-ES optimization. Scenario in Table 5.2. Parameters in Table A.1. Units: thousands of dollars
(real). M is the total number of withdrawals (rebalancing dates).

Strategy E[
∑

i qi]/M LS(W = 0) ES(5%) Prob[WT < 0]

EW-ES 53.18 -5.4192 -46.21 0.250
EW-LS 52.93 -1.5448 -30.85 0.0226
EW-PS 53.12 -3.705 -74.02 0.0120

Table 5.4: Block bootstrap resampling, summary statistics for EW-PS, EW-LS, and EW-ES objective
functions, EW ' 53 for all strategies. Blocksize two years, 106 bootstrap resamples. Optimal controls
computed in the synthetic market. LS refers to E[min(WT −W, 0)], ES(5%) is the mean of the worst
five per cent of the outcomes. Scenario in Table 5.2. Parameters in Table A.1. Units: thousands of
dollars (real). M is the total number of withdrawals (rebalancing dates).

Another test of robustness is shown in Table 5.5. Here, we rank each strategy, in terms of per-583

formance, according to each risk criteria, in the historical market. All strategies have approximately584

the same EW ' 53. In this case, we can see that EW-LS is the clear winner.585

5.9 Comparison with the Bengen strategy586

Consider Figure 5.4(a), with EW ' 50. This translates to average withdrawals of 5% of initial587

wealth with Prob[WT < 0] < 1%. Contrast this with the bootstrapped results for the Bengen588

strategy, where the withdrawals are 40 per year (4% of initial wealth (real)), with a probability of589

failure > 10%.590
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Strategy Rank
LS(W = 0) ES(5%) Prob[WT < 0] Total Score

EW-ES 3 2 3 8
EW-LS 1 1 2 4
EW-PS 2 3 1 6

Table 5.5: Ranking of strategies, historical market. Each strategy is ranked (first, second or third).
Optimal controls computed in the synthetic market. Total score is the sum of the rows, smaller is
better. EW ' 53 for all strategies. Data is from Table 5.4. Block bootstrap resampling, summary
statistics for EW-PS, EW-LS, and EW-ES objective functions. Blocksize two years, 106 bootstrap
resamples. LS refers to E[min(WT −W, 0)], ES(5%) is the mean of the worst five per cent of the
outcomes. Scenario in Table 5.2. Parameters in Table A.1. Units: thousands of dollars (real).

Similarly, Figure 5.4(b) has (EW,ES) = (50,0) for the EW-ES optimal strategy, compared with591

(EW,ES) = ' (40, -350) for the Bengen strategy.592

Finally, Figure 5.4(c) gives (EW,LS) = (50,0) for the EW-LS optimal policy, compared with593

(EW,LS) = ' (40, -20) for the Bengen strategy.594

Of course, all these comparisons come with the caveat that the Bengen strategy withdraws a fixed595

amount per year, while the results for the optimal strategies are in terms of expected withdrawals.596

6 CDFs of the optimal strategies597

Figure 6.1 shows the CDF curves for the final wealth WT for all three strategies. The results are598

shown for both the synthetic and historical market. For each strategy, the point on the efficient599

frontier was selected so that EW ' 53. It is interesting to observe that all strategies have similar600

CDFs for X > 0 (Prob[WT > 0]), and rapidly increase to the right of this point. This indicates that601

all strategies are efficient in the sense that there is little unspent wealth at t = 30 years (age 95).602

This contrasts with the Bengen policy, which has a non-trivial probability of either running out of603

cash or ending up with large unspent wealth.604

Figure 6.2(b) focuses on the area of the CDF curves near X = 0. Examining the synthetic605

market results, Figure 6.2(a), we can see that the EW-PS and EW-LS curves behave very similarly606

nearWT = 0, but there is a difference in the left tail, as might be expected. We can see that EW-PS607

does an excellent job of producing small Prob[WT < 0]. However, this strategy does not do well608

in the left tail compared with EW-LS. The EW-ES strategy, on the other hand, has a fairly high609

probability thatWT < 0, compared with either EW-PS or EW-LS. However, this is a bit misleading,610

since the EW-ES CDF plots below the other strategies for X < −40. The historical market CDFs,611

Figure 6.2(b), are qualitatively similar to the synthetic market curves.612

7 Comments on EW-LS, EW-PS and EW-ES strategies613

The EW-PS optimal control, using PS risk (probability of running out of savings), seems at first614

sight to be an appealing intuitive strategy. However, the CDF of the final wealth shows that this615

strategy generates a very fat left tail. This is simply due to the fact that PS risk does not weight616

the amounts less than W.617

The EW-ES optimal control also has a simple intuitive interpretation. The ES (mean of the618

worst 5% of the outcomes) is a dollar amount that can be compared with, for example, the retiree’s619
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Figure 6.1: CDF curves, all strategies have the same average EW ' 53. Optimal controls com-
puted using the synthetic market model. Tests in the synthetic market Figure 6.1(a) and the historical
market, Figure 6.1(b) shown. Expected blocksize: two years. Real stock index: deflated real capital-
ization weighted CRSP, real bond index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters
in Table A.1.

real estate hedge of last resort. However, in some cases, the ES can be large and positive, which620

does not correspond to what we would normally think of as risk. In addition, EW-ES is formally621

time inconsistent. There is, of course, an induced time consistent policy, which is simply the EW-LS622

control with suitable W.623

The EW-LS control is trivially time-consistent. The investor specified parameter W in the EW-624

LS objective function is easily interpreted as the disaster level of final wealth. The EW-LS controls625

also perform reasonably well using ES (expected shortfall) or PS (probability of shortfall) as risk626

measures. The EW-LS control is also more robust, when tested in the historical (bootstrapped)627

market, compared to the other strategies.628

Consequently, we recommend use of the EW-LS control for decumulation.629

8 Detailed results: EW-LS, historical market630

Figure 8.1(a) shows the percentiles of the optimal fraction in stocks, versus time, in the historical631

market. Initially, the fraction in stocks is a bit less than 0.60. The median fraction drops smoothly632

down to zero near year 29. At the fifth percentile, complete de-risking occurs at about year 16. In633

the case of poor investment returns, the allocation to stocks is 0.60-0.80 at the 95th percentile.634

Figure 8.1(b) shows the wealth percentiles in the historical market. We can see that WT just635

approaches zero at the 5th percentile, at year 29. Again, we remind the reader that it is assumed636

that the retiree has real estate which can be used to fund a shortfall at less than the 5th percentile.637

The expected shortfall at the 5% level in this case is about −30. Assuming that a reverse mortgage638

can be obtained for one half the value of the real estate, this suggests that real estate valued (in639

real terms) > 60,000 can manage this risk.640

Finally, we can see from Figure 8.1(c) that the median withdrawal rapidly increases to the641

maximum withdrawal by year one.642

The heat maps for the optimal fraction in stocks and the optimal withdrawals are shown in643

Figure 8.2. Figure 8.2(b) shows that the withdrawal control is approximately bang-bang, i.e. it is644
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Figure 6.2: Zoomed plots, CDF curves, all strategies have the same average EW ' 53. Optimal
controls computed using the synthetic market model. Tests in the synthetic market Figure 6.1(a) and
the historical market, Figure 6.1(b) shown. Expected blocksize: two years. Real stock index: deflated
real capitalization weighted CRSP, real bond index: deflated 30 day T-bills. Scenario in Table 5.2.
Parameters in Table A.1.

only ever optimal to withdraw qmax or qmin and nothing in between. For an explanation of this, see645

Forsyth (2022).646

9 Conclusions647

As noted in Anarkulova et al. (2023), retirees and wealth advisors demonstrate a revealed preference648

for spending rules for decumulation of DC pension plans. Almost all previous work on spending649

rules postulates heuristic strategies and tests these rules using historical data.650

We follow a different methodology here. We determine the spending rules as the solution of651

an optimal stochastic control problem. The control problem is solved numerically, based on a652

parametric model of long term stock and bond returns.653

For an optimal control problem, the first order of business is to specify the objective function, in654

terms of risk and reward. Since we allow variable withdrawals (subject to maximum and minimum655

constraints) we define reward as the total expected (real) withdrawals over a 30 year retirement656

(EW).657

We assess and compare ES, LS, and PS risk measures. We establish mathematically that, under658

certain assumptions, the set of optimal controls associated with all expected reward and expected659

shortfall (EW-ES) Pareto efficient frontier curves is identical to the set of optimal controls for660

all expected reward and linear shortfall (EW-LS) Pareto efficient frontier curves. This has the661

consequence that the set of optimal controls for EW-ESt0 are time consistent under the EW-LSt0662

risk measure.663

Based on our analysis and computational assessment of various risk measures, we conclude that664

risk as measured by linear shortfall LS, i.e. linearly weighting the final wealth below zero, is an665

appropriate risk measure.666

As noted, the optimal EW-LS control is computed using a parametric market model. However,667

this control has been tested out-of-sample using block bootstrap resampling of historical data. These668

tests show that the optimal control is robust to parameter misspecification.669
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Figure 8.1: Scenario in Table 5.2. EW-LS control computed from problem EW-LS Problem (4.4).
Parameters based on the real CRSP index, and real 30-day T-bills (see Table A.1). Control computed
and stored from the Problem (4.4) in the synthetic market. Control used in the historical market,
106 bootstrap samples. qmin = 30, qmax = 60 (per year), EW ' 53.0. Units: thousands of dollars.
Expected blocksize two years.
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Figure 8.2: Optimal EW-LS. Heat map of controls: fraction in stocks and withdrawals, computed
from Problem EW-LS (4.4). Real capitalization weighted CRSP index, and real 30-day T-bills. Sce-
nario given in Table 5.2. Control computed and stored from the Problem 4.4 in the synthetic market.
qmin = 30, qmax = 60 (per year). EW ' 53.0. Percentiles from bootstrapped historical market.
Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands of dollars.

Bootstrap resampling of historical data shows that the 4% rule (initial capital: one million,670

withdrawing 4% real of initial capital per year) has a probability of failure > 10%, and expected671

shortfall ES(5%) < −$350,000. In contrast, under bootstrap resampling tests, the EW-LS optimal672

control can withdraw 5% of initial wealth annually, on average, (adjusted for inflation) with a 98%673

probability of success, with an ES(5%) ' −$15,000.674

The EW-LS controls are dynamic. Both withdrawal amounts and stock allocation depend on675

the realized portfolio wealth (and time to go). However, the controls are summarized as easy to676

interpret heat maps, which makes implementation of these optimal controls straightforward.677

Finally, we note that the optimal controls can be computed directly from the bootstrapped678

resampled data, without specifying a parametric model of the underlying stock and bond processes.679
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This requires use of machine learning techniques (Ni et al., 2022; van Staden et al., 2023; 2025).680

These methods also allow use of more assets in terms of investment choices. We leave further study681

of machine learning techniques in the context of DC decumulation for future work.682
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Appendix689

A Parametric Model690

We assume that the investor has access to two funds: a broad market stock index fund and a constant691

maturity bond index fund. The investment horizon is T . Let St and Bt respectively denote the692

real (inflation adjusted) amounts invested in the stock index and the bond index respectively. In693

general, these amounts will depend on the investor’s strategy over time, as well as changes in the694

real unit prices of the assets. In the absence of an investor determined control (i.e. cash withdrawals695

or rebalancing), all changes in St and Bt result from changes in asset prices. We model the stock696

index as following a jump diffusion.697

In addition, we follow the usual practitioner approach and directly model the returns of the698

constant maturity bond index as a stochastic process (see, e.g. Lin et al., 2015; MacMinn et al.,699

2014). As in MacMinn et al. (2014), we assume that the constant maturity bond index follows700

a jump diffusion process. Empirical justification for this can be found in Forsyth et al. (2022),701

Appendix A.702

Let St− = S(t − ε), ε → 0+, i.e. t− is the instant of time before t, and let ξs be a random703

number representing a jump multiplier. When a jump occurs, St = ξsSt− . Allowing for jumps704

permits modelling of non-normal asset returns. We assume that log(ξs) follows a double exponential705

distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, us is the probability of an upward706

jump, while 1− us is the chance of a downward jump. The density function for y = log(ξs) is707

fs(y) = usηs1e
−ηs1y1y≥0 + (1− us)ηs2eη

s
2y1y<0 . (A.1)

We also define708

γsξ = E[ξs − 1] =
usηs1
ηs1 − 1

+
(1− us)ηs2
ηs2 + 1

− 1 . (A.2)

In the absence of control, St evolves according to709

dSt
St−

=
(
µs − λsξγsξ

)
dt+ σs dZs + d

 πs
t∑

i=1

(ξsi − 1)

 , (A.3)710
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where µs is the (uncompensated) drift rate, σs is the volatility, dZs is the increment of a Wiener711

process, πst is a Poisson process with positive intensity parameter λsξ, and ξsi are i.i.d. positive712

random variables having distribution (A.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually713

independent.714

Similarly, let the amount in the bond index be Bt− = B(t−ε), ε→ 0+. In the absence of control,715

Bt evolves as716

dBt
Bt−

=
(
µb − λbξγbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πb
t∑

i=1

(ξbi − 1)

 , (A.4)717

where the terms in equation (A.4) are defined analogously to equation (A.3). In particular, πbt is a718

Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution719

f b(y = log ξb) = ubηb1e
−ηb1y1y≥0 + (1− ub)ηb2eη

b
2y1y<0 , (A.5)

and γbξ = E[ξb−1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term µbc1{Bt−<0}720

in equation (A.4) represents the extra cost of borrowing (the spread).721

The diffusion processes are correlated, i.e. dZs ·dZb = ρsb dt. The stock and bond jump processes722

are assumed mutually independent. See Forsyth (2020b) for justification of the assumption of stock-723

bond jump independence.724

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth,725

2016) to estimate the parameters for the parametric stochastic process models. Since the index data726

is in real terms, all parameters reflect real returns. Table A.1 shows the results of calibrating the727

models to the historical data. The correlation ρsb is computed by removing any returns which occur728

at times corresponding to jumps in either series, and then using the sample covariance. Further729

discussion of the validity of assuming that the stock and bond jumps are independent is given in730

Forsyth (2020b).731

CRSP µs σs λs us ηs1 ηs2 ρsb

0.087323 0.147716 0.316326 0.225806 4.3591 5.53370 0.095933

30-day T-bill µb σb λb ub ηb1 ηb2 ρsb

0.0032 0.0140 0.3878 0.3947 61.5350 53.4043 0.095933

Table A.1: Parameters for parametric market models (A.3 and (A.4, fit to CRSP data (inflation
adjusted) for 1926:1-2023:12.

B Numerical Techniques732

We solve problems (4.4) using the techniques described in detail in Forsyth and Labahn (2019);733

Forsyth (2020a; 2022). We give only a brief overview here.734

We localize the infinite domain to (s,b) ∈ [smin, smax] × [bmin, bmax], and discretize [bmin,bmax]735

using an equally spaced log b grid, with nb nodes. Similarly, we discretize [smin, smax] on an equally736

spaced log s grid, with ns nodes. For case b < 0, we define a reflected grid b′ = −b, with the nb×ns737

nodes. This represents the insolvent case nodes. The PIDE for b′ > 0 has the same form as for738

27



b > 0. This idea can be used more generally if leverage is permitted, which we do not explore in739

this work. Localization errors are minimized using the domain extension method in Forsyth and740

Labahn (2019).741

At rebalancing dates, we solve the local optimization problem by discretizing (q(·), p(·)) and742

using exhaustive search. Between rebalancing dates, we solve a two dimensional partial integro-743

differential equation (PIDE) using Fourier methods (Forsyth and Labahn, 2019; Forsyth, 2022).744

Finally, in the case of EW-ES, the outer optimization over W is solved using a one-dimensional745

method.746

We used the value ε = −10−4 in equation (4.4), which forces the investment strategy to be bond747

heavy if the remaining wealth in the investor’s account is large, and t→ T . Using this small value of748

gave the same results as ε = 0 for the summary statistics, to four digits. This is simply because the749

states with very large wealth have low probability. However, this stabilization procedure produced750

smoother heat maps for large wealth values, without altering the summary statistics appreciably.751

B.1 Convergence Test: Synthetic Market752

Table B.1 shows a detailed convergence test for the base case problem given in Table 5.2, for the753

EW-ES problem. The results are given for a sequence of grid sizes, for the dynamic programming754

algorithm in (Forsyth, 2022) and Appendix B. The dynamic programming algorithm appears to755

converge at roughly a second order rate. The optimal control computed using dynamic programming756

is stored, and then used in Monte Carlo computations. The Monte Carlo results are in good757

agreement with the dynamic programming solution. For all the numerical examples, we will use the758

2048× 2048 grid, since this seems to be accurate enough for our purposes.759

Algorithm in (Forsyth, 2022) and Appendix B Monte Carlo

Grid LS E[
∑

i qi]/M Value Function LS E[
∑

i qi]/M

512× 512 -1.40884 50.9082 1484.981 -1.26443 50.938
1024× 1024 -1.32050 50.9491 1488.864 -1.27396 50.953
2048× 2048 -1.30148 50.9643 1489.880 -1.28189 50.963

Table B.1: EW-LS convergence test. Real stock index: deflated real capitalization weighted CRSP,
real bond index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters in Table A.1. The Monte
Carlo method used 2.56 × 106 simulations. The MC method used the control from the solving the
PIDEs as described in Appendix B. κ = 30,W = 0.0. Grid refers to the grid used in the Algorithm in
Appendix B: nx × nb, where nx is the number of nodes in the log s direction, and nb is the number of
nodes in the log b direction. Units: thousands of dollars (real). M is the total number of withdrawals
(rebalancing dates).

C Effect of Stabilization term760

Recall that the optimization problem, for all objective functions, becomes ill-posed along any path761

where Wt �W, t→ T . To remove this problem, the stabilization term762

εE[WT ] (C.1)763

is added to each objective function. We set |ε| � 1, to ensure that this term has little effect unless764

we are in the ill-posed region. Essentially, if ε < 0, then this forces the portfolio to invest 100% in765
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Figure C.1: EW-PS CDF of the terminal wealth, with stabilization parameters shown. Point on
curve where EW ' 53.0. Real stock index: deflated real capitalization weighted CRSP, real bond
index: deflated 30 day T-bills. Scenario in Table 5.2. Parameters in Table A.1. Synthetic market.

bonds. On the other hand, if ε > 0, then the portfolio will invest 100% in stocks. We remark here766

that these choices are essentially arbitrary: by assumption, the 95-year old retiree has a short life767

expectancy, and has large wealth, so that even with maximum withdrawals, there is almost zero768

probability of running out of cash.769

To verify that the choice of positive or negative ε has little effect nearWt = W, Figure C.1 shows770

the CDF curves for the EW-PS strategy (EW = 53.0), for both positive and negative ε. We can see771

that both curves overlap for WT ≤ 100. Consequently, left tail risk measures will be identical for772

both cases, and there will be no differences in average withdrawals, since we will be constrained by773

the maximum withdrawal specification. To the right of WT = 100, we can see that for ε > 0, there774

is higher probability of obtaining larger WT compared to the case ε < 0. This is of course expected,775

since investing in all stocks, (when Wt is large) will have a larger expected portfolio value.776

The CDF curves for ±ε for EW-ES and EW-LS policies are similar.777
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