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Outline

1 Dynamic mean variance

Embedding result ⇒ quadratic target
Removal of spurious points

2 HJB PDE

Intuitive discretization
Semi-Lagrangian timestepping and explicit control
Unconditionally stable, monotone and consistent

3 Calibrate to historical market data (1926-2015)

Synthetic market: M-V optimal beats constant proportion
Backtests using real historical data: M-V optimal even better!
Constant proportion beats any deterministic glide path
strategy (lumpsum investment)1

→ M-V optimal beats any deterministic glide path strategy

1Strategy used in Target Date funds (over $750 billion in US)
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Dynamic Mean Variance: Abstract Formulation

Define:

X = Process
dX

dt
= SDE

x = (X (t) = x) = State

W (X (t), t) = total wealth

Control c(X (t), t) is applied to X (t)

Define admissible set Z, i.e.

c(x , t) ∈ Z(x , t)
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [W (T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [W (T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of W (T ) are as observed at time t, initial
state x .
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Basic Problem: Find Pareto Optimal Strategy

We desire to find the investment strategy c∗(·) such that, there
exists no other other strategy c(·) such that

E
c(·)
t,x [WT ]︸ ︷︷ ︸

Reward under strategy c(·)

≥ E
c(∗·)
t,x [WT ]︸ ︷︷ ︸

Reward under strategy c∗(·)

Var
c(·)
t,x [WT ]︸ ︷︷ ︸

Risk under strategy c(·)

≤ Var
c∗(·)
t,x [WT ]︸ ︷︷ ︸

Risk under strategy c∗(·)

and at least one of the inequalities is strict.

Scalarization: For λ > 0, find c(·) which solves

inf
c(·)

{
λVar

c(·)
t,x [WT ]− E

c(·)
t,x [WT ]

}
Varying λ traces out the efficient frontier.
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Pareto optimal points

Let

E = E
c(·)
t,x [WT ] ; V = Var

c(·)
t,x [WT ]

The achievable set Y is

Y = {(V, E) : c(·) ∈ Z} ,

Given λ > 0, define scalarization set 2

Sλ(Y) = {(V, E) ∈ Ȳ : λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗}

The efficient frontier YP is

YP =
⋃
λ>0

Sλ(Y)

The efficient frontier is a collection of Pareto points

2Ȳ is the closure of Y.
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Scalarization: intuition3

Recall scalarization set:

Sλ(Y) = {(V, E) ∈ Ȳ : λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗} (1)

Geometric interpretation:

Consider the straight line (for fixed λ)

λV − E = C1 (2)

Points in (1)

Choose C1 as small as possible, such that:

→ Intersection of Y and straight line (2) has at least one point

3We may not get all the Pareto points here if Y is not convex
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Intuition

M-V achievable set Y

V

E

(E∗,V∗)

Move dotted lines line λV − E = C1 to the left as much as possible
(decrease C1)

Line will touch Y at Pareto point
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Problem
Pareto point

λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗} (3)

Problem arises from variance

V = E c [W (T )2]− (E c [W (T )])2

(E c [W (T )])2 → problem for dynamic programming

Consider the optimization problem (for fixed γ)

inf
(V,E)∈Y

V + E2 − γE (4)

Note that

V + E2 = E c [W (T )2]

Minimizing (4) can be done using dynamic programming
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Embedded Objective Function Intuition
Examine points (V, E) ∈ Y such that (for fixed γ)

V + E2 − γE = inf
(V∗,E∗)∈Y

V∗ + E2
∗ − γE∗ (5)

Geometric interpretation:

Consider the parabola

V + E2 − γE = C2 (6)

Points in (5)
Choose C2 as small as possible, such that

Intersection of parabola and Y has at least one point

Rewriting equation (6)

V = −
(
E2 − γE

)
+ C2 = − (E − γ/2)2 + γ2/4 + C2

= − (E − γ/2)2 + C3.

Parabola faces left, symmetric about line E = γ/2
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Embedded Pareto Points

Suppose (V∗, E∗) ∈ YP → ∃λ > 0, C1, s.t.

λV∗ − E∗ = C1

M-V achievable set Y

V

E

(E∗,V∗)

Parabola:
V = − (E − γ/2)2 + C3.

∃ γ/2,C3, such that we can

Move parabola to left (C3)

Move parabola up/down
(γ/2)

⇒ intersect line λV − E = C1

at a single point (V∗, E∗).
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Tangency Condition

M-V achievable set Y

V

E

(E∗,V∗)

Parabola V = − (E − γ/2)2 + C3 tangent to line λV − E = C1 at (V∗, E∗)(
∂E
∂V

)
parabola

= λ ; λ = slope of dotted lines

→ γ/2 = 1/(2λ) + E∗
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Embedding Result

Theorem 1 ((Li and Ng (2000); Zhou and Li (2000))
If

λV0 − E0 = inf
(V,E)∈Y

(λV − E), (7)

then

V0 + E2
0 − γE0 = inf

(V,E)∈Y
(V + E2 − γE), (8)

γ =
1

λ
+ 2E0

Implication

We can determine all the Pareto points from (7) by solving
problem (8)
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Value function

Note:

V + E2 − γE = E c
t,x [(W (T )− γ

2
)2] +

γ2

4
,

Define value function4 (ignore γ2/4 term when minimizing)

V (x , t) = inf
c(·)∈Z

E
c(·)
t,x [(W (T )− γ/2)2] (9)

Key Result: Given point (V∗, E∗) on the efficient frontier,
generated by control c∗(·), then ∃γ s.t.

→ c∗(·) is an optimal control for (9)

4Precommitment MV optimal ≡ quadratic target optimal. Precommitment
→ choose target wealth γ/2 at time zero

14 / 45



Spurious points

But, converse not necessarily true: i.e. there may be some
γ ∈ (−∞,+∞) s.t. c∗(·) which solves

V (x , t) = inf
c(·)∈Z

E
c(·)
t,x [(W (T )− γ/2)2] (10)

does not correspond to a point on the efficient frontier

M-V achievable set Y

V

E

P

Q

R

1
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Technical Point: Precommitment vs. time consistent

We are solving for the optimal precommitment policy

This is not time-consistent, since γ/2 (the target) depends on
the initial state

However, a way to think about this is as follows

At t = 0 we determine where we want to be on the efficient
frontier. This fixes γ/2.
At t > 0, we can think of this policy as the optimal time
consistent strategy which minimizes quadratic loss w.r.t. fixed
γ/2.
This is intuitive and easy to explain to pension plan investors
(Vigna (2014))

The target amount γ/2 is the amount needed to fund
retirement
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Basic Algorithm

Discretize the parameter γ

γ ∈ Γk = [−|γkmax|,−|γkmax|+ hk , . . . , |γkmax|] (11)

hk → 0 ; γkmax →∞ ; k →∞ (12)

For each γi ,

Determine optimal control c∗γi (·) by solving the embedded
problem (solve HJB equation, store control)

Using this control, compute E
c∗γi

(·)
t,x [(WT )], Var

c∗γi
(·)

t,x [(WT )] via
Monte Carlo (one point on the frontier)

Does this converge to true efficient frontier as k →∞?

17 / 45



Problems

1 Controls which minimize E
c(·)
t,x [(W (T )− γ/2)2] (from

numerical solve)

May generate spurious points (e.g. non-convex Y)

2 The control which minimizes

E
c(·)
t,x [(W (T )− γ/2)2] (13)

may not be unique.
Numerical HJB solve for fixed γ/2

→ picks out only one control c∗(·)
Does the control we compute correspond to a point in YP?
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Convergent Algorithm5

For k = 0, 1, . . .

Solve value function ∀γi ∈ Γk

Generate set of candidate points on the efficient frontier Ak

Determine upper left convex hull S(Ak)

Approximate points on efficient frontier: Ak ∩ S(Ak)

b
b

b

b

b

b
b

b

b

b

b S(A)

upper left boundary of convex hull

b A \ S(A)

5Tse, Forsyth, Li (2014, SIAM Cont. Opt.); Dang,Forsyth, Li (2016,
Numerische Mathematik)
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Convergence result

Recall def’n of scalarization set:

Sλ(X ) =
{

(V∗, E∗) ∈X : λV∗ − E∗ = inf
(V,E)∈X

λV − E
}
, (14)

Suppose Sλ(Y) 6= ∅, λ > 0 (i.e. Sλ(Y) are points on the efficient
frontier for fixed λ)

Theorem 2
Suppose Γk is systematically refined 6 as k →∞, and let
(Vk , Ek) ∈ Sλ(Ak). Let (V∗, E∗) be a limit point of {(Vk , Ek)}.
Then (V∗, E∗) is on the original efficient frontier.

Remark 1
All points on the approximate efficient frontier Ak ∩ S(Ak) are
valid points on the true efficient frontier as k →∞. 7

6Any reasonable refinement satisfies this condition
7There may some gaps in the approximate frontier if there are 3 or more

points on a straight line segment.
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Asset allocation: risk free bond, stock index
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S (jump diffusion)

dS = (µ− ρκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− ρ dt

1 with probability ρdt,

log J ∼ double exponential. ; κ = E [J − 1]
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Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Optimal de-risking (free cash flow)

Let

F (t) =
γ

2
e−r(T−t)

= discounted target wealth

Proposition 1 (Dang and Forsyth (2016))

If Wt > F (t), t ∈ [0,T ], an optimal MV strategy is

Withdraw cash d = Wt − F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

We will refer to the amount withdrawn as a free cash flow. 8

8See also: Ehrbar, J. Econ. Theory (1990); Cui, Li, Wang, Zhu
Mathematical Finance (2012); Bauerle, Grether Mathematical Methods of
Operations Research (2015).
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Constraints on the strategy

The investor can continue trading only if solvent

W (s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (15)

In the event of bankruptcy, the investor must liquidate 9

S+ = 0 ; B+ = W (s, b) ; if W (s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth

9The No Donald Trump trading condition.
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HJB PIDE

Find optimal control c(·) ⇒ solve for value function

V (x , t) = inf
c∈Z

{
E c
t,x [(W (T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− ρκ)sVs − ρV ,

JV ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density ; ρ = jump intensity

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)
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HJB PIDE II
Value function, control c(·) ⇒ solve impulse control HJB equation

max

[
Vt + LV + rbVb + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

Discretize computational domain (s, b) ∈ [0,∞)× (−∞,+∞)

{s1, s2, . . . , simax} ; {b1, . . . , bjmax}

Constant timesteps, discretize control

∆τ = τn+1 − τn ; B+ ∈ {b1, . . . , bjmax}

Discretization parameter h

max
i

(si+1 − si ) = max
j

(bj+1 − bj) = max
n

(τn+1 − τn) = O(h)
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Computational Domain10

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ­∞, +∞]

(0,0)

+∞

­∞

+∞

10If µ > r it is never optimal to short S
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Intuitive Derivation of Discretization

Consider a set of discrete rebalancing times {t1, t2, . . .}
Define

t+
m = tm + ε ; t−m = tm − ε ; ε→ 0+ (16)

At t = t+
m , s = S(t) and b = B(t)

Step [t+
m , t

−
m+1] (bond amount constant)

The value function V (s, b, t) evolves according to the PIDE

Vt +

No rbVb term︷︸︸︷
LV +

Jump term︷︸︸︷
JV = 0,
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Evolution over [t−m+1, t
+
m+1]

Step [t−m+1, tm+1] (Stock amount constant)

Pay interest earned in [t+
m , t

−
m+1]

V (s, b, t−m+1) = V (s, ber∆t , tm+1) ; by no-arbitrage

∆t = tm+1 − tm

Step [tm+1, t
+
m+1]

Optimal rebalance

V (s, b, tm+1) =

rebalance︷ ︸︸ ︷
min
c

V (S+(s, b, c),B+(s, b, c), t+
m+1)
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Backwards time: discrete solution

Now, we write these steps down in backwards time τ = T − t

Define V n
i ,j ≡ discrete solution Vh(si , bj , τ

n)

Ṽ n
i,j =

Optimization step with τn data︷ ︸︸ ︷
min
c∈Zh

Vh(S+(si , bje
r∆τ , c),B+(si , bje

r∆τ , c), τn)

V n+1
i,j

∆τ
− LhV n+1

i,j − JhV n+1
i,j =

Ṽ n
i,j

∆τ︸ ︷︷ ︸
Linear time advance

Formally: Semi-Lagrangian timestepping and explicit impulse
control
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Discretization Properties

1 Positive coefficient method used to discretize P,

2 Jump term: fixed point iteration + FFT for dense
matrix-vector product

3 Linear interpolation used to approximate Vh at off grid points
(needed for optimal control)

Assume strong comparison property holds:

Consistent, `∞ stable, monotone

↪→ Convergence to viscosity solution
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Example Asset Allocation: Constant Proportions

According to Benjamin Graham11, defensive investors should

Pick a fraction p of wealth to invest in a diversified equity
fund (e.g. p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

→ i.e. a constant proportion strategy

How does this strategy compare with standard target date funds,
which follow a deterministic glide path over time T?

Typical deterministic glide path strategy12

p(t) =

(
110− your age

)
100

11Benjamin Graham, The Intelligent Investor
12This used to be (100− your age) but people are living longer

32 / 45



Lumpsum Investment: ineffectiveness of glide paths

Consider any deterministic glide path strategy p(t)

p(t) = fraction of wealth invested in equities

Define a constant weight strategy p∗ where

p∗ =
1

T

∫ T

0

p(s) ds

= time average fraction in equities

Let W denote total wealth. We can prove (GBM + jumps) 13

constant weight︷ ︸︸ ︷
E [W (T )] =

glide path︷ ︸︸ ︷
E [W (T )] ;

constant weight︷ ︸︸ ︷
Var [W (T )] ≤

glide path︷ ︸︸ ︷
Var [W (T )] (17)

Backtests on historical data and MC simulations14 indicates (17) holds in
general → constant proportion beats deterministic glide path

13Graf (2016), Forsyth and Vetzal (2016)
14Basu et al (2011), Arnott et al (2013), Esch and Michaud (2014)
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Technical Point: lumpsum vs. periodic contributions

Constant proportion beats any deterministic glide path for a
lumpsum investment.

This is not true for periodic contributions (accumulation) or
withdrawals (decumulation)

However, for T > 20 years

Numerical tests show that the optimal deterministic MV glide
path strategy is only slightly better than a constant
proportions strategy.
In practice, deterministic glide path strategies are devised using
heuristics.
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Monte Carlo Simulation Results

Inflation-adjusted equity: jump diffusion15 model estimated using
CRSP16 total return index and CPI data (1926 to 2015)

Inflation-adjusted bonds: average real 3M T-bills (1926 to 2015)

Strategy Expected Standard Prob(W(T)) Prob(W(T))
Value Deviation < 300 < 400

Constant
Proportion p = 0.5

417 299 0.41 0.60

M-V
Optimal Control

417 117 0.13 0.22

Table : Investment horizon T = 30 years. Initial investment
W (0) = 100. Optimal de-risking; no trading if insolvent; maximum
leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250%, shortfall probability
reduced by 3×

15Jump size had double exponential distribution (Kou, 2002)
16Capitalization weighted index of all stocks traded on major US exchanges.
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Cumulative Distribution Function: IRR17

IRR

P
ro
b
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R
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0

0.1
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0.4

0.5

0.6

0.7

0.8

0.9

1

Constant
Proportion
(p=0.5)

MV Optimal

E [W (T )] = 417 same for
both strategies

Optimal policy: Contrarian:
when market goes down →
increase stock allocation;
when market goes up →
decrease stock allocation

Optimal allocation gives up
gains � target in order to
reduce variance and
probability of shortfall.

Investor must pre-commit to
target wealth

MV optimal beats constant proportion, consequently it also beats

any deterministic glide path!

17Internal rate of return (i.e. effective rate of return) = log(W (T )/W (0))/T
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Strategy Heat Map

Red: maximum
leverage

Blue: 100%
bond

E [WT ] = 417
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Back Testing

M-V optimal performance on historical data

Compute and store strategy based on estimated parameters
for entire historical period (January 1, 1926 - December 31,
2014).

E [W (T )] same as for constant proportion strategy (p = .5),
for this set of average parameters.

Select starting date

Compare:

Optimal MV strategy (based on average parameters, not tuned
to this period)
Constant proportion strategy
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Back Test, Real Returns: Jan 1, 1985 - Dec 31, 201418

time

R
e
a
l
W
e
a
lt
h

1985 1990 1995 2000 2005 2010 2015
0
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250

300

350

400

450

500

50% Stocks
50% Bonds

Mean Variance
Optimal

18W (1985) = 100. Maximum leverage 1.5. Optimal MV strategy computed
using parameters for 1926-2015 period. Yearly rebalancing.
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Back Test, Real Returns: Jan 1, 1930 - Dec 31, 195919

time

R
e
a
l
W
e
a
lt
h

1930 1935 1940 1945 1950 1955 1960
0

50

100

150

200

250

300

350

400

450

500

50% Stocks
50% Bonds

Mean Variance
Optimal

Note Falling Knife effect in
1932

Can we fix this: regime
switching plus machine
learning?

19W (1930) = 100. Maximum leverage 1.5. Optimal MV strategy computed
using parameters for 1926-2015 period. Yearly rebalancing.
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Bootstrap Resampling: 1926-2015
More Scientific Test: Resampling

Use real historical data, monthly returns

Randomly draw 30 years of returns (with replacement) from
historical returns (blocksize 10 years)

10,000 simulations, each block starts at random month

Strategy Expected Standard Pr(W (T )) Expected
Value Deviation < 300 Free Cash

Constant
Proportion p = 0.5

385 183 0.38 0.0

M-V
Optimal Control

431 84 0.07 40

Table : T = 30 years. W (0) = 100. Yearly rebalancing. Optimal
de-risking ; no trading if insolvent; maximum leverage = 1.5.

Performs even better on actual historical data than on synthetic
market data!
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Resampled Cumulative Distribution Function: IRR20
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(no free cash)

20Internal rate of return, (i.e. effective rate of return) = log(W (T )/W (0))/T
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Technical Point: Bootstrap resampling

Data is wrapped around to avoid end effects (i.e. 1930s appears
more often).

To minimize blocksize end effects, blocksize is selected randomly
from a geometric distribution

Time series Optimal Expected
Block size (months)

Real 90-day T-bills 50.1
Real 10 year treasury 4.7
Real CRSP index (cap weight) 1.8
Real CRSP index (equal weight) 10.4

Table : Optimal expected blocksize 1/p where the blocksize is distributed
according to a geometric distribution Pr(b = k) = (1− p)k−1p. The
algorithm in (Politis et al (2009)) is used.
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Technical Point: Bootstrap resampling vs rolling quarters
A common backtest is to use rolling quarters

This amounts to starting the investment at each historical
quarter, and then seeing how it performed over the next 30
years.

Summary statistics of probability of failure are then quoted

However, there are not enough 30 year rolling blocks to get
reasonable samples → investment results are too good!

Strategy Expected Pr(W (T )) Pr(W (T ))
Value < 300 < 400

Constant
Proportion p = 0.5

351 0.31 0.73

M-V
Optimal Control

453 0.0 0.07

Table : T = 30 years. W (0) = 100. Yearly rebalancing. Optimal
de-risking ; no trading if insolvent; maximum leverage = 1.5. Rolling
quarters, 30 year blocksize, data is wrapped-around.
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Conclusions
M-V strategy is very robust

Insensitive to calibration ambiguity
MC tests: insensitive to random perturbations of synthetic
market SDE parameters
Stochastic volatility: typical parameters, insignificant for long
term investors
10 year treasuries (instead of 3-M) similar results
Good results on historical backtests

Similar results for accumulation, decumulation
M-V beats constant proportion, i.e. probability of shortfall
2− 3× smaller
→ Constant proportion beats any deterministic glide path

M-V optimal equivalent to minimizing quadratic loss w.r.t.
wealth target

Optimal strategy is M-V optimal and quadratic loss optimal

More sophisticated models
Regime switching? (machine learning approach being
investigated)
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