Multi-period Mean CVAR Asset Allocation: Is it
Advantageous to be Time Consistent?

Peter Forsyth?

LCheriton School of Computer Science
University of Waterloo

A Corufia, July 2019

1/29



Motivation

Long Term Investor saving for retirement
@ Investor has DC (Defined Contribution) pension plan
Invests for 30+ years, yearly contributions

°
@ Rebalances infrequently (i.e. once a year)
°

Desires to end up with a target wealth level, used to fund
retirement

— What is the optimal dynamic allocation to bonds and stocks?
What objective function should we use?
e Traditionally, various utility functions (i.e. power law)

— Difficult for end users to interpret
— Objective function maximizes utils not target wealth

@ Much recent work on multi-period mean-variance objective
functions
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Previous Work: Multi-period Mean Variance

Suppose we want to find the (dynamic) rebalancing strategy (the
control) which solves

min Var[Wr]
such that E[Wr]| = specified

W+ = terminal wealth
Var = variance

E[-] = Expectation
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Pre-commitment solution (multi-period MV optimal)

e Optimal multi-period MV control: minimize (Zhou and Li,

2000)
E[<min(WT - W*,O))Z]

— varying W™ traces out efficient frontier

@ But this solution is not time consistent

@ Suppose we compute the pre-commitment solution at t =0
o Determine feedback (closed loop) controls as a function of
state variables
@ Recompute strategy at some later time t > 0

o Strategy (as a function of state) may not agree with t =0
strategy
= Investor has incentive to deviate from the pre-commitment
policy computed at t =0
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Time Consistent Solution

Add constraint to MV objective function

e Force time consistency (Basak and Chabakauri, 2010; Bjork
and Murgoci, 2010; Wang and Forsyth, 2011).
But, note result from (Bjork and Murgoci, 2010), which |
paraphrase

Theorem 1

Given the optimal control from the time consistent MV problem?!,
this same control is optimal for an alternative objective function,
which is unconstrained and time consistent.

In other words:

= Forcing time consistency changes the objective function.

1The result is more general, and applies to non-standard problems
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Pre-commitment = induced time consistent strategy

Pre-commitment MV solution at time zero is found by minimizing

E[<min(WT — W*,0)2ﬂ (1)

If, Vt > 0, we fix W*, then
— The pre-commitment control computed at time zero is the
time consistent? control for objective function (1)

— Termed time consistent mean-variance induced utility
function, (Strub, Li, Cui; 2019)

2Proof: eqn (1) can be optimized using dynamic programming.
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Summary: MV optimization, pre-commitment vs. time
consistent

Forcing time consistency
= Equivalent to unconstrained alternative objective function
Pre-commitment policy

= Equivalent at time zero to alternative induced objective
function

= This induced objective function has time consistent controls
Both approaches give rise to alternative objective functions
= Both controls are time consistent

= Investor has no incentive to deviate from control computed at
time zero

= Neither strategy can be dismissed out of hand
This talk
@ Study both approaches for mean-CVAR asset allocation
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Mean-CVAR Objective Function

CVAR,, is the mean of the worst « fraction of outcomes
< A larger value is better

Wt = terminal wealth at time T ; g(W7y) = density of Wr

- I Wr g(Wr) dwr /W;

CVAR, = g(Wr) dWr =«

o o

o g(Wr) is the density of final wealth, not losses

Plan:

@ Consider mean-CVAR objective function with scalarization
parameter Kk > 0

max (CVARa + nE[WT]>

@ Compare pre-commitment and time consistent mean-CVAR
strategies
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Two Asset Portfolio: stock index and bond index

S; = amount invested in stock index
ds; = ( Single factor jump difFusion)

Jjump size — double exponential

B; = amount invested in risk free bond;
dB; = rB; dt ; r = risk free rate

W:; = S;+ B; = total wealth

Wy = Initial wealth

Discrete Rebalancing times:

T={th=0<ti<---<ty=T}
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Rebalancing

At rebalancing times t;, let t7 = lim t;+¢ ; t = lim t; —¢
e—0t e—07t

Inject cash g;
W(t") = W(t) + qi
Determine optimal fraction in stocks p;(-)

pi() = p(W(t"),t)
S() = p(WHWT 5 B(t7) = (1 - p(W )W

Admissible controls P

P = {p()eZ:i=0,....M—1}

Z =10,1] ; no leverage, no shorting
Tail of controls at t,

Pn=1{pn(:),-- -, Pm-1(:)} -
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Alternate definition of CVAR

Given an expectation under control Ep[-] (Rockafeller and Uryasev,
2000 )

* 1 *\ —
CVAR, = W}Ep<w + = [(wr - w) ])
(Wr — W)™ = min(Wr — W*,0) .

Mean-CVAR problem (Miller and Yang, 2017)

CVAR under control P Wealth
1
E w* + = (Wr - W)~ Ep| W .
pe{ maxes (W (e - W] enen(wr) |

maximize over P

11/29



(TCMC;, (r)): Time Consistent Mean CVAR

Defined via value function J(s, b, t)
(TCMC,, (k) :
_ Wt e o 1 oy
J(s,b,t, ) = Ey W —(Wr -W 4%
(s:b. ty ) = maxmax Ep, +—(Wr )" +EWr
W =s+b+q,

s:6.Pp = {pa(), Pasa} = {Pa(): Pria()s -+ Pia—1() } 3)
where P, is optimal for problem (TCMC,,, (r))

Intuition:
e Time consistent constraint in (3)

— Optimize control today, knowing that future controls are
optimal for future problems
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Embed problem (TCMC, (x)) in 3-d space
Define auxiliary function V/(s, b, W*, t)
V (s, b, W* ty) = EYV W) [W* + é(WT — W)+ IiWT:|
WS =s+b+q,

Dynamic programming solution for optimal control

pa(w) = argmax{max V(w p',w (1-p), W*, t;r)} .
pEZ W=

But we advance the solution (backwards) for all values of W*

V(s,b, W, t,) = V( wt pp(wh), wt (1= pa(w™) ), W*, tF )
wh=s+b+gq,.
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Expanded state space formulation Il

For t € (th—1,tn) (i.e. between rebalancing dates)
@ Solve 2-d PIDE, with W* regarded as a parameter

Intuition
@ Optimal W* depends on state, time and future controls
— Solve for all possible values of W*, additional state variable
@ Now have a true 3-d problem

— Coupling for different W* values occurs through optimal
controls at each rebalancing date

@ Recover original value function

J(s,bty) = max V(s, b, W*, t7),
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(PCMC,, (k)) : Pre-commitment Mean-CVAR

~

Defined via value function J(s, b, tp)

(PCMG, (K)) :

h -\ _ (W' t) *
./(0, Wo,to) —rT;DE(l)Xh“/lVa*xEPOO o W
Wo" = Wo + qo ;

Compared with time-consistent formulation
@ No time consistent constraint

e Optimality at t =t
Re-formulate: interchange maxp, maxw+ E[]

W)
0

J,We,t7) = w*
(7 an) rrl)va*xn;)aoxp +

(0%

1
E(WT — W*)_ + kWt
Wo = initial wealth

1
(WT — W*)_ + :‘ﬁWT
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Expanded State Space Formulation (Miller and Yang,

2017)
Define auxiliary function \7(5, b, W*, t)

~ * 1
V(s,b,W* t7) = EQV W) [W* + = (Wr — W*)™ + /iWT}
n (6]
W,T:S—i-b—l—q,,

Dynamic programming solution for control:

Po(w, W*) = argmax{ V(wp',w (1—p), W, tf)} .

pEZ
Advance solution backwards ( fixed W*)

Vis,b, W t;) = V(wh pu(w, W), wh (1—pa(w, W*)), W t})
wt =s+b+q,
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Pre-commitment formulation Il

Remark 1 (Contrast with time-consistent case)

No coupling of the solution for different W* values from the
optimal control.

As usual: for t € (tp—1,t,), solve 2-d PIDE
Original pre-commitment value function is recovered via

J(0, Wo,ty5) = max V(0, Wo, W', t5) (4)

Formulation requires
@ Inner HJB equation solve (W* is fixed for t € [0, T])
@ Outer optimize (4) over W* at t = t;
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Equivalent/Induced Time Consistent Problem
Let

W*(ty) = argmaxV(s=0,b= Wy, W', t = to)
WI

Proposition 1 (Equivalent/Induced Time Consistent Problem)
The pre-commitment mean-CVAR strategy P* determined by

~

solving J(0, Wo, to) is the time consistent strategy for the
equivalent problem TCEQ (with fixed W*(ty)), with value function

J(s, b, t) defined by

(TCEQ:, (ko)) :

constant
- B Wt et /—*"ﬁ B
J(S, b, t, ) :g;lgﬁEpn"7" (WT— w (to) ) +(/€Oz)WT

er:5+b+qn

3Proof: W* is constant, and multiply PCMC objective by « > 0.
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Intuition: TCEQ

Induced alternative objective function (TCEQy, (ka)):
@ Solve pre-commitment problem at time zero
— Determine target shortfall W*(ty) (i.e. VAR at level «)
e With this fixed W*(tp)
— Solve Vt, problem (TCEQ;, (ka))
— This strategy is time consistent
Intuitively appealing
@ If you have a billion dollars
— You don't worry as long as you have 50 million left
@ If you have only a million dollars
— You probably get worried if your wealth < 500, 000
@ Contrast with time consistent Mean-CVAR
— Disaster level of wealth always relative to current wealth
o Fixed target based strategies popular with actuaries (Vigna,
2017)
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Numerical Methods

Time consistent Mean-CVAR
e Discretize in (s, b, W*) directions (3-d)
e Solve PIDE between rebalancing times using e-Monotone
Fourier method (Forsyth, Labahn; 2019)
e Discretize equity fraction, solve optimization problems at
rebalancing times by exhaustive search and linear interpolation

Pre-commitment mean-CVAR
e Discretize in (s, b) directions (2-d), W* is a fixed parameter
e Solve PIDE: as above
e Solve optimization problems: as above
@ Use 1-d optimization method for outer optimization over W*

e Each evaluation of objective function requires HJB equation
solve
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Numerical Example

Stock Index

o Fit to CRSP US cap-weighted stock index 1926:1-2017:12
(real, i.e. inflation adjusted)

Bond Index

@ Average one month real T-bill return, 1926:1-2017:12,
(r = .00464)

Investment Parameters

Expiry time T 30 years
Initial wealth 0
Rebalancing frequency yearly

Cash injection {q;}i=o,... 20 20,000
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Default Strategy: rebalance to constant weight p = 0.4*

E[Ws] CVAR (5%) Median|Wr]
1162 598 1084
Units: thousands of dollars

Choose k (scalarization parameter) for pre-commitment and time
consistent Mean-CVAR
e Median[Wr]| matches median for p = 0.4 strategy
(approximately)

*A typical glide path strategy: p=.8,t =0; p=0.0,t = T; time average
p ~ .4. Glide path and constant weight with same time average p, — same
distribution of Wt (Forsyth and Vetzal, 2019).
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Compare CVAR, same Median[W7r]

Strategy | CVAR (5%)
Pre-commitment 632
Constant weight (p = 0.4) 598
Time consistent 530

Units: thousands of dollars
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More Details: pre-commitment

Percentiles: accumulated wealth
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Control Heat

Map: pre-commitment
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More Details: time consistent

Percentiles: accumulated wealth Percentiles: fraction in equities
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Heat Map of controls: time consistent
@ Mostly independent of wealth (except for small wealth values)
— Almost deterministic strategy

e Map:uninteresting, has (mostly) straight vertical lines
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Time consistent constraint or induced time consistent
objective?
Pre-commitment strategies
— Investor has incentive to deviate from strategy computed at
time zero
But, pre-commitment mean-CVAR strategy computed at time zero

— ldentical to time consistent target shortfall strategy, with fixed
target

— Investor has no incentive to deviate from this strategy, under
this induced objective function
Time consistent strategies

@ If we constrain a pre-commitment strategy to be time
consistent

— Then this strategy is equivalent to an optimal strategy for an
unconstrained alternative objective function

= Both strategies: time consistent under alternative objective

functions
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Compare Strategies: Cumulative Distribution Functions

By design, all strategies have
same Median[Wr]

— Intersect at Prob(-) = 0.5
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Conclusions

@ Adding time consistent constraint to mean-CVAR objective
function
e Equivalent to alternative, unconstrained objective function
— Under this alternative objective function, we no longer
minimize tail risk
@ Pre-commitment strategy at time zero
e Equivalent to time consistent target shortfall strategy Vt > 0
e Minimizes tail risk w.r.t fixed target
e Maximizes CVAR at time zero®

@ It would appear that forcing time consistency in the
mean-CVAR case is a bad idea!

o Consistent with poor performance of time consistent, MV
case, wealth dependent risk aversion parameter

o See (Wang, Forsyth; 2011), (Van Staden et al; 2018),
(Bensoussan et al; 2019)

5Recall CVAR is the mean of the worst fraction of wealth outcomes —
larger is better.
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