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Motivation

Long Term Investor saving for retirement

Investor has DC (Defined Contribution) pension plan

Invests for 30+ years, yearly contributions

Rebalances infrequently (i.e. once a year)

Desires to end up with a target wealth level, used to fund
retirement

→ What is the optimal dynamic allocation to bonds and stocks?

What objective function should we use?

Traditionally, various utility functions (i.e. power law)

→ Difficult for end users to interpret
→ Objective function maximizes utils not target wealth

Much recent work on multi-period mean-variance objective
functions
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Previous Work: Multi-period Mean Variance

Suppose we want to find the (dynamic) rebalancing strategy (the
control) which solves

minVar [WT ]

such that E [WT ] = specified

WT = terminal wealth

Var = variance

E [·] = Expectation
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Pre-commitment solution (multi-period MV optimal)

Optimal multi-period MV control: minimize (Zhou and Li,
2000)

E

[(
min(WT −W ∗, 0)

)2]
→ varying W ∗ traces out efficient frontier

But this solution is not time consistent

Suppose we compute the pre-commitment solution at t = 0

Determine feedback (closed loop) controls as a function of
state variables

Recompute strategy at some later time t > 0

Strategy (as a function of state) may not agree with t = 0
strategy

⇒ Investor has incentive to deviate from the pre-commitment
policy computed at t = 0
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Time Consistent Solution

Add constraint to MV objective function

Force time consistency (Basak and Chabakauri, 2010; Bjork
and Murgoci, 2010; Wang and Forsyth, 2011).

But, note result from (Bjork and Murgoci, 2010), which I
paraphrase

Theorem 1
Given the optimal control from the time consistent MV problem1,
this same control is optimal for an alternative objective function,
which is unconstrained and time consistent.

In other words:

⇒ Forcing time consistency changes the objective function.

1The result is more general, and applies to non-standard problems
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Pre-commitment ⇒ induced time consistent strategy

Pre-commitment MV solution at time zero is found by minimizing

E

[(
min(WT −W ∗, 0)2

)2]
(1)

If, ∀t > 0, we fix W ∗, then

→ The pre-commitment control computed at time zero is the
time consistent2 control for objective function (1)

→ Termed time consistent mean-variance induced utility
function, (Strub, Li, Cui; 2019)

2Proof: eqn (1) can be optimized using dynamic programming.
6 / 29



Summary: MV optimization, pre-commitment vs. time
consistent

Forcing time consistency

⇒ Equivalent to unconstrained alternative objective function

Pre-commitment policy

⇒ Equivalent at time zero to alternative induced objective
function

⇒ This induced objective function has time consistent controls

Both approaches give rise to alternative objective functions

⇒ Both controls are time consistent

⇒ Investor has no incentive to deviate from control computed at
time zero

⇒ Neither strategy can be dismissed out of hand

This talk

Study both approaches for mean-CVAR asset allocation
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Mean-CVAR Objective Function
CVARα is the mean of the worst α fraction of outcomes
↪→ A larger value is better

WT ≡ terminal wealth at time T ; g(WT ) ≡ density of WT

CVARα =

∫W ∗α
−∞WT g(WT ) dWT

α
;

∫ W ∗α

−∞
g(WT ) dWT = α

g(WT ) is the density of final wealth, not losses

Plan:

Consider mean-CVAR objective function with scalarization
parameter κ > 0

max

(
CVARα + κE [WT ]

)
Compare pre-commitment and time consistent mean-CVAR
strategies
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Two Asset Portfolio: stock index and bond index

St ≡ amount invested in stock index

dSt =

(
Single factor jump diffusion

)
jump size → double exponential

Bt ≡ amount invested in risk free bond;

dBt = rBt dt ; r = risk free rate

Wt ≡ St + Bt = total wealth

W0 ≡ Initial wealth

Discrete Rebalancing times:

T ≡ {t0 = 0 < t1 < · · · < tM = T}. (2)
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Rebalancing
At rebalancing times ti , let t+i ≡ lim

ε→0+
ti + ε ; t−i ≡ lim

ε→0+
ti − ε

Inject cash qi

W (t+i ) = W (t−i ) + qi

Determine optimal fraction in stocks pi (·)

pi (·) = p(W (t+i ), ti )

S(t+i ) = pi (W
+
i )W+

i ; B(t+i ) = (1− pi (W
+
i ))W+

i

Admissible controls P

P = {pi (·) ∈ Z : i = 0, . . . ,M − 1}
Z = [0, 1] ; no leverage, no shorting

Tail of controls at tn

Pn = {pn(·), . . . , pM−1(·)} .
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Alternate definition of CVAR

Given an expectation under control EP [·] (Rockafeller and Uryasev,
2000 )

CVARα = max
W ∗

EP

(
W ∗ +

1

α

[
(WT −W ∗)−

])
(WT −W ∗)− ≡ min(WT −W ∗, 0) .

Mean-CVAR problem (Miller and Yang, 2017)

max
P

{ CVAR under control P︷ ︸︸ ︷
max
W ∗

EP

(
W ∗ +

1

α

[
(WT −W ∗)−

])
+κ

Wealth︷ ︸︸ ︷
EP

(
WT

) }
︸ ︷︷ ︸

maximize over P

.
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(TCMCtn (κ)): Time Consistent Mean CVAR

Defined via value function J(s, b, t)

(TCMCtn (κ)) :

J
(
s, b, t−n

)
= max
Pn

max
W ∗

E
(W+

n ,t
+
n )

Pn

[
W ∗ +

1

α
(WT −W ∗)− + κWT

]
W+

n = s + b + qn

s.t.Pn =
{
pn(·),P∗n+1

}
=
{
pn(·), p∗n+1(·), . . . , p∗M−1(·)

}
(3)

where P∗n+1 is optimal for problem (TCMC tn+1 (κ))

Intuition:

Time consistent constraint in (3)

→ Optimize control today, knowing that future controls are
optimal for future problems
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Embed problem (TCMC tn (κ)) in 3-d space

Define auxiliary function V (s, b,W ∗, t)

V
(
s, b,W ∗, t−n

)
= E

(W+
n ,W

∗,t+n )
Pn

[
W ∗ +

1

α
(WT −W ∗)− + κWT

]
W+

n = s + b + qn

Dynamic programming solution for optimal control

pn(w) = argmax
p′∈Z

{
max
W ∗

V (w p′,w (1− p′),W ∗, t+n )

}
.

But we advance the solution (backwards) for all values of W ∗

V (s, b,W ∗, t−n ) = V
(
w+ pn(w+),w+ (1− pn(w+) ),W ∗, t+n

)
w+ = s + b + qn .
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Expanded state space formulation II

For t ∈ (tn−1, tn) (i.e. between rebalancing dates)

Solve 2-d PIDE, with W ∗ regarded as a parameter

Intuition

Optimal W ∗ depends on state, time and future controls

→ Solve for all possible values of W ∗, additional state variable

Now have a true 3-d problem

→ Coupling for different W ∗ values occurs through optimal
controls at each rebalancing date

Recover original value function

J
(
s, b, t−n

)
= max

W ∗
V (s, b,W ∗, t−n ) ,
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(PCMCt0 (κ)) : Pre-commitment Mean-CVAR
Defined via value function Ĵ(s, b, t0)

(PCMCt0 (κ)) :

Ĵ
(
0,W0, t

−
0

)
= max
P0

max
W ∗

E
(W+

0 ,t
+
0 )

P0

[
W ∗ +

1

α
(WT −W ∗)− + κWT

]
W+

0 = W0 + q0 ; W0 = initial wealth

Compared with time-consistent formulation

No time consistent constraint

Optimality at t = t0

Re-formulate: interchange maxP0 maxW ∗ E [·]

Ĵ
(
0,W0, t

−
0

)
= max

W ∗
max
P0

E
(W+

0 ,t
+
0 )

P0

[
W ∗ +

1

α
(WT −W ∗)− + κWT

]
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Expanded State Space Formulation (Miller and Yang,
2017)

Define auxiliary function V̂ (s, b,W ∗, t)

V̂ (s, b,W ∗, t−n ) = E
(W+

n ,W
∗,t+n )

Pn

[
W ∗ +

1

α
(WT −W ∗)− + κWT

]
W+

n = s + b + qn

Dynamic programming solution for control:

p̂n(w ,W ∗) = argmax
p′∈Z

{
V̂ (w p′,w (1− p′),W ∗, t+i )

}
.

Advance solution backwards ( fixed W ∗)

V̂ (s, b,W ∗, t−n ) = V̂
(
w+ p̂n(w+,W ∗),w+ (1− p̂n(w+,W ∗) ),W ∗, t+n

)
w+ = s + b + qn
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Pre-commitment formulation II

Remark 1 (Contrast with time-consistent case)

No coupling of the solution for different W ∗ values from the
optimal control.

As usual: for t ∈ (tn−1, tn), solve 2-d PIDE

Original pre-commitment value function is recovered via

Ĵ
(
0,W0, t

−
0

)
= max

W ′
V̂ (0,W0,W

′, t−0 ) (4)

Formulation requires

Inner HJB equation solve (W ∗ is fixed for t ∈ [0,T ])

Outer optimize (4) over W ∗ at t = t−0
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Equivalent/Induced Time Consistent Problem
Let

W ∗(t0) = argmax
W ′

V̂ (s = 0, b = W0,W
′, t = t0)

Proposition 1 (Equivalent/Induced Time Consistent Problem)
The pre-commitment mean-CVAR strategy P∗ determined by
solving Ĵ(0,W0, t0) is the time consistent strategy for the
equivalent problem TCEQ (with fixed W ∗(t0)), with value function

J̃(s, b, t) defined by3

(TCEQtn (κα)) :

J̃
(
s, b, t−n

)
= max
Pn∈A

E
W+

n ,t
+
n

Pn

[
(WT −

constant︷ ︸︸ ︷
W ∗(t0) )− + (κα)WT

]
W+

n = s + b + qn

3Proof: W ∗ is constant, and multiply PCMC objective by α > 0.
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Intuition: TCEQ

Induced alternative objective function (TCEQtn (κα)):

Solve pre-commitment problem at time zero

→ Determine target shortfall W ∗(t0) (i.e. VAR at level α)

With this fixed W ∗(t0)

→ Solve ∀t, problem (TCEQtn (κα))
→ This strategy is time consistent

Intuitively appealing

If you have a billion dollars

→ You don’t worry as long as you have 50 million left

If you have only a million dollars

→ You probably get worried if your wealth < 500, 000

Contrast with time consistent Mean-CVAR

→ Disaster level of wealth always relative to current wealth

Fixed target based strategies popular with actuaries (Vigna,
2017)

19 / 29



Numerical Methods

Time consistent Mean-CVAR

Discretize in (s, b,W ∗) directions (3-d)

Solve PIDE between rebalancing times using ε-Monotone
Fourier method (Forsyth, Labahn; 2019)
Discretize equity fraction, solve optimization problems at
rebalancing times by exhaustive search and linear interpolation

Pre-commitment mean-CVAR

Discretize in (s, b) directions (2-d), W ∗ is a fixed parameter

Solve PIDE: as above
Solve optimization problems: as above

Use 1-d optimization method for outer optimization over W ∗

Each evaluation of objective function requires HJB equation
solve
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Numerical Example

Stock Index

Fit to CRSP US cap-weighted stock index 1926:1-2017:12
(real, i.e. inflation adjusted)

Bond Index

Average one month real T-bill return, 1926:1-2017:12,
(r = .00464)

Investment Parameters

Expiry time T 30 years
Initial wealth 0
Rebalancing frequency yearly
Cash injection {qi}i=0,...,29 20,000
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Default Strategy: rebalance to constant weight p = 0.44

E [WT ] CVAR (5%) Median[WT ]

1162 598 1084

Units: thousands of dollars

Choose κ (scalarization parameter) for pre-commitment and time
consistent Mean-CVAR

Median[WT ] matches median for p = 0.4 strategy
(approximately)

4A typical glide path strategy: p = .8, t = 0; p = 0.0, t = T ; time average
p ' .4. Glide path and constant weight with same time average p, → same
distribution of WT (Forsyth and Vetzal, 2019).
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Compare CVAR, same Median[WT ]

Strategy CVAR (5%)

Pre-commitment 682
Constant weight (p = 0.4) 598
Time consistent 530

Units: thousands of dollars
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More Details: pre-commitment

Percentiles: accumulated wealth Percentiles: fraction in equities
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Control Heat Map: pre-commitment

Red: all stock; Blue: all bond
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More Details: time consistent

Percentiles: accumulated wealth Percentiles: fraction in equities

Heat Map of controls: time consistent

Mostly independent of wealth (except for small wealth values)

→ Almost deterministic strategy

Map:uninteresting, has (mostly) straight vertical lines
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Time consistent constraint or induced time consistent
objective?

Pre-commitment strategies

→ Investor has incentive to deviate from strategy computed at
time zero

But, pre-commitment mean-CVAR strategy computed at time zero

→ Identical to time consistent target shortfall strategy, with fixed
target

→ Investor has no incentive to deviate from this strategy, under
this induced objective function

Time consistent strategies

If we constrain a pre-commitment strategy to be time
consistent

→ Then this strategy is equivalent to an optimal strategy for an
unconstrained alternative objective function

⇒ Both strategies: time consistent under alternative objective
functions
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Compare Strategies: Cumulative Distribution Functions

W (Thousands)

P
ro

b
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T
 <

 W
)
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Constant
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  (p=0.4)

Mean CVAR
Precommitment

By design, all strategies have
same Median[WT ]

→ Intersect at Prob(·) = 0.5

Minimize left tail risk

→ Look for strategy which
plots below other
strategies in left tail

Time consistent mean-CVAR

→ Has worst tail risk of any
strategy
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Conclusions

Adding time consistent constraint to mean-CVAR objective
function

Equivalent to alternative, unconstrained objective function
→ Under this alternative objective function, we no longer

minimize tail risk

Pre-commitment strategy at time zero

Equivalent to time consistent target shortfall strategy ∀t > 0
Minimizes tail risk w.r.t fixed target
Maximizes CVAR at time zero5

It would appear that forcing time consistency in the
mean-CVAR case is a bad idea!

Consistent with poor performance of time consistent, MV
case, wealth dependent risk aversion parameter

See (Wang, Forsyth; 2011), (Van Staden et al; 2018),
(Bensoussan et al; 2019)

5Recall CVAR is the mean of the worst fraction of wealth outcomes →
larger is better.
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