Multi-period Mean CVAR Asset Allocation: Is it Advantageous to be Time Consistent?

Peter Forsyth¹

¹Cheriton School of Computer Science University of Waterloo

A Coruña, July 2019

Motivation

Long Term Investor saving for retirement

- Investor has DC (Defined Contribution) pension plan
- Invests for 30+ years, yearly contributions
- Rebalances infrequently (i.e. once a year)
- Desires to end up with a target wealth level, used to fund retirement
 - ightarrow What is the optimal dynamic allocation to bonds and stocks?

What objective function should we use?

- Traditionally, various utility functions (i.e. power law)
 - → Difficult for end users to interpret
 - → Objective function maximizes *utils* not target wealth
- Much recent work on multi-period mean-variance objective functions

Previous Work: Multi-period Mean Variance

Suppose we want to find the (dynamic) rebalancing strategy (the control) which solves

min
$$Var[W_T]$$

such that $E[W_T] =$ specified

 $W_T = \text{terminal wealth}$

Var = variance

 $E[\cdot] = Expectation$

Pre-commitment solution (multi-period MV optimal)

 Optimal multi-period MV control: minimize (Zhou and Li, 2000)

$$E\left[\left(\min(W_T - W^*, 0)\right)^2\right]$$
 \rightarrow varying W^* traces out efficient frontier

- But this solution is not time consistent
- ullet Suppose we compute the pre-commitment solution at t=0
 - Determine feedback (closed loop) controls as a function of state variables
- Recompute strategy at some later time t > 0
 - Strategy (as a function of state) may not agree with t=0 strategy
 - \Rightarrow Investor has incentive to deviate from the pre-commitment policy computed at t=0

Time Consistent Solution

Add constraint to MV objective function

 Force time consistency (Basak and Chabakauri, 2010; Bjork and Murgoci, 2010; Wang and Forsyth, 2011).

But, note result from (Bjork and Murgoci, 2010), which I paraphrase

Theorem 1

Given the optimal control from the time consistent MV problem¹, this same control is optimal for an alternative objective function, which is unconstrained and time consistent.

In other words:

⇒ Forcing time consistency changes the objective function.

¹The result is more general, and applies to *non-standard* problems

Pre-commitment ⇒ induced time consistent strategy

Pre-commitment MV solution at time zero is found by minimizing

$$E\left[\left(\min(W_T - W^*, 0)^2\right)^2\right] \tag{1}$$

If, $\forall t > 0$, we fix W^* , then

- \rightarrow The pre-commitment control computed at time zero is the time consistent² control for objective function (1)
- → Termed time consistent mean-variance induced utility function, (Strub, Li, Cui; 2019)

²Proof: eqn (1) can be optimized using dynamic programming.

Summary: MV optimization, pre-commitment vs. time consistent

Forcing time consistency

⇒ Equivalent to unconstrained alternative objective function

Pre-commitment policy

- ⇒ Equivalent at time zero to alternative *induced* objective function
- \Rightarrow This induced objective function has time consistent controls

Both approaches give rise to alternative objective functions

- ⇒ Both controls are time consistent
- ⇒ Investor has no incentive to deviate from control computed at time zero
- ⇒ Neither strategy can be dismissed out of hand

This talk

Study both approaches for mean-CVAR asset allocation

Mean-CVAR Objective Function

 CVAR_{α} is the mean of the worst α fraction of outcomes $\hookrightarrow \mathsf{A}$ larger value is better

$$W_T \equiv ext{ terminal wealth at time } T$$
 ; $g(W_T) \equiv ext{ density of } W_T$ $\text{CVAR}_{\alpha} = rac{\int_{-\infty}^{W_{\alpha}^*} W_T \ g(W_T) \ dW_T}{\alpha}$; $\int_{-\infty}^{W_{\alpha}^*} g(W_T) \ dW_T = \alpha$

• $g(W_T)$ is the density of final wealth, not losses

Plan:

 \bullet Consider mean-CVAR objective function with scalarization parameter $\kappa>0$

$$\max \bigg(\mathsf{CVAR}_{\alpha} + \kappa E[W_T] \bigg)$$

Compare pre-commitment and time consistent mean-CVAR strategies

Two Asset Portfolio: stock index and bond index

$$S_t \equiv amount ext{ invested in stock index}$$
 $dS_t = \left(ext{ Single factor jump diffusion}
ight)$ $jump \ size
ightarrow \ double \ exponential$ $B_t \equiv amount ext{ invested in risk free bond;}$ $dB_t = rB_t \ dt \quad ; \quad r = ext{ risk free rate}$ $W_t \equiv S_t + B_t = ext{ total wealth}$ $W_0 \equiv ext{ Initial wealth}$

Discrete Rebalancing times:

$$\mathcal{T} \equiv \{t_0 = 0 < t_1 < \dots < t_M = T\}. \tag{2}$$

Rebalancing

At rebalancing times t_i , let $t_i^+ \equiv \lim_{\epsilon \to 0^+} t_i + \epsilon$; $t_i^- \equiv \lim_{\epsilon \to 0^+} t_i - \epsilon$

Inject cash qi

$$W(t_i^+) = W(t_i^-) + q_i$$

Determine optimal fraction in stocks $p_i(\cdot)$

$$p_{i}(\cdot) = p(W(t_{i}^{+}), t_{i})$$

$$S(t_{i}^{+}) = p_{i}(W_{i}^{+})W_{i}^{+}; B(t_{i}^{+}) = (1 - p_{i}(W_{i}^{+}))W_{i}^{+}$$

Admissible controls \mathcal{P}

$$\mathcal{P} = \{p_i(\cdot) \in \mathcal{Z} : i = 0, ..., M - 1\}$$

 $\mathcal{Z} = [0, 1]$; no leverage, no shorting

Tail of controls at t_n

$$\mathcal{P}_n = \{p_n(\cdot), \dots, p_{M-1}(\cdot)\} .$$

Alternate definition of CVAR

Given an expectation under control $E_{\mathcal{P}}[\cdot]$ (Rockafeller and Uryasev, 2000)

$$\begin{aligned} \mathsf{CVAR}_{\alpha} &= & \max_{\mathcal{W}^*} E_{\mathcal{P}} \bigg(W^* + \frac{1}{\alpha} \left[(W_{\mathcal{T}} - W^*)^- \right] \bigg) \\ & (W_{\mathcal{T}} - W^*)^- \equiv \min(W_{\mathcal{T}} - W^*, 0) \; . \end{aligned}$$

Mean-CVAR problem (Miller and Yang, 2017)

$$\underbrace{\max_{\mathcal{P}} \left\{ \begin{array}{c} \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W^* + \frac{1}{\alpha} \left[(W_T - W^*)^- \right] \right) + \kappa \ E_{\mathcal{P}} \left(W_T \right) \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \right] \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\max_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right) - \left[(W_T - W^*)^- \right] \\ \underbrace{\min_{W^*} E_{\mathcal{P}} \left(\ W_T - W^* \right)$$

$(TCMC_{t_n}(\kappa))$: Time Consistent Mean CVAR

Defined via value function J(s, b, t)

$$(TCMC_{t_n}(\kappa)):$$

$$J(s, b, t_n^-) = \max_{\mathcal{P}_n} \max_{W^*} E_{\mathcal{P}_n}^{(W_n^+, t_n^+)} \left[W^* + \frac{1}{\alpha} (W_T - W^*)^- + \kappa W_T \right]$$

$$W_n^+ = s + b + q_n$$

$$s.t.\mathcal{P}_{n} = \left\{ p_{n}(\cdot), \mathcal{P}_{n+1}^{*} \right\} = \left\{ p_{n}(\cdot), p_{n+1}^{*}(\cdot), \dots, p_{M-1}^{*}(\cdot) \right\}$$

$$where \, \mathcal{P}_{n+1}^{*} \text{ is optimal for problem } \left(TCMC_{t_{n+1}}(\kappa) \right)$$
(3)

Intuition:

- Time consistent constraint in (3)
 - ightarrow Optimize control today, knowing that future controls are optimal for future problems

Embed problem $(TCMC_{t_n}(\kappa))$ in 3-d space

Define auxiliary function $V(s, b, W^*, t)$

$$V(s, b, W^*, t_n^-) = E_{\mathcal{P}_n}^{(W_n^+, W^*, t_n^+)} \left[W^* + \frac{1}{\alpha} (W_T - W^*)^- + \kappa W_T \right]$$
$$W_n^+ = s + b + q_n$$

Dynamic programming solution for optimal control

$$p_n(w) = \underset{p' \in \mathcal{Z}}{\operatorname{arg max}} \left\{ \max_{W^*} V(w \ p', w \ (1-p'), W^*, t_n^+) \right\}.$$

But we advance the solution (backwards) for all values of W^*

$$V(s, b, W^*, t_n^-) = V(w^+ p_n(w^+), w^+ (1 - p_n(w^+)), W^*, t_n^+)$$

 $w^+ = s + b + q_n$.

Expanded state space formulation II

For $t \in (t_{n-1}, t_n)$ (i.e. between rebalancing dates)

• Solve 2-d PIDE, with W^* regarded as a parameter

Intuition

- ullet Optimal W^* depends on state, time and future controls
 - \rightarrow Solve for all possible values of W^* , additional state variable
- Now have a true 3-d problem
 - ightarrow Coupling for different W^* values occurs through optimal controls at each rebalancing date
- Recover original value function

$$J\left(s,b,t_{n}^{-}\right)=\max_{W^{*}}V(s,b,W^{*},t_{n}^{-}),$$

$(PCMC_{to}(\kappa))$: Pre-commitment Mean-CVAR

Defined via value function $\hat{J}(s, b, t_0)$

$$\begin{split} \left(\textit{PCMC}_{t_0}\left(\kappa\right)\right): \\ \hat{J}\left(0, W_0, t_0^-\right) &= \max_{\mathcal{P}_0} \max_{W^*} \textit{E}_{\mathcal{P}_0}^{(W_0^+, t_0^+)} \bigg[W^* + \frac{1}{\alpha}(W_T - W^*)^- + \kappa W_T\bigg] \\ W_0^+ &= W_0 + q_0 \; ; \; W_0 = \; \text{initial wealth} \end{split}$$

Compared with time-consistent formulation

- No time consistent constraint
- Optimality at $t = t_0$

Re-formulate: interchange $\max_{\mathcal{P}_0} \max_{W^*} E[\cdot]$

$$\hat{J}(0, W_0, t_0^-) = \max_{W^*} \max_{\mathcal{P}_0} E_{\mathcal{P}_0}^{(W_0^+, t_0^+)} \left[W^* + \frac{1}{\alpha} (W_T - W^*)^- + \kappa W_T \right]$$

Expanded State Space Formulation (Miller and Yang, 2017)

Define auxiliary function $\hat{V}(s, b, W^*, t)$

$$\hat{V}(s, b, W^*, t_n^-) = E_{\mathcal{P}_n}^{(W_n^+, W^*, t_n^+)} \left[W^* + \frac{1}{\alpha} (W_T - W^*)^- + \kappa W_T \right] \\
W_n^+ = s + b + q_n$$

Dynamic programming solution for control:

$$\hat{\rho}_n(w, W^*) = \underset{p' \in \mathcal{Z}}{\operatorname{arg\,max}} \left\{ \hat{V}(w \ p', w \ (1-p'), W^*, t_i^+) \right\}.$$

Advance solution backwards (**fixed** W^*)

$$\hat{V}(s, b, W^*, t_n^-) = \hat{V}(w^+ \hat{p}_n(w^+, W^*), w^+ (1 - \hat{p}_n(w^+, W^*)), W^*, t_n^+)$$

 $w^+ = s + b + q_n$

Pre-commitment formulation II

Remark 1 (Contrast with time-consistent case)

No coupling of the solution for different W^* values from the optimal control.

As usual: for $t \in (t_{n-1}, t_n)$, solve 2-d PIDE

Original pre-commitment value function is recovered via

$$\hat{J}(0, W_0, t_0^-) = \max_{W'} \hat{V}(0, W_0, W', t_0^-)$$
(4)

Formulation requires

- Inner HJB equation solve (W^* is fixed for $t \in [0, T]$)
- Outer optimize (4) over W^* at $t=t_0^-$

Equivalent/Induced Time Consistent Problem

Let

$$W^*(t_0) = \underset{W'}{\operatorname{arg max}} \hat{V}(s = 0, b = W_0, W', t = t_0)$$

Proposition 1 (Equivalent/Induced Time Consistent Problem)

The pre-commitment mean-CVAR strategy \mathcal{P}^* determined by solving $\hat{J}(0,W_0,t_0)$ is the time consistent strategy for the equivalent problem TCEQ (with fixed $W^*(t_0)$), with value function $\tilde{J}(s,b,t)$ defined by³

$$\begin{split} \left(\textit{TCEQ}_{t_n}\left(\kappa\alpha\right)\right): \\ \tilde{J}\left(s,b,t_n^-\right) &= \max_{\mathcal{P}_n \in \mathcal{A}} E_{\mathcal{P}_n}^{W_n^+,t_n^+} \left[\left(W_T - \overbrace{W^*(t_0)}^{constant}\right)^- + (\kappa\alpha)W_T \right] \\ W_n^+ &= s + b + q_n \end{split}$$

³Proof: W^* is constant, and multiply PCMC objective by $\alpha > 0$.

Intuition: TCEQ

Induced alternative objective function ($TCEQ_{t_n}(\kappa\alpha)$):

- Solve pre-commitment problem at time zero
 - \rightarrow Determine target shortfall $W^*(t_0)$ (i.e. VAR at level α)
- With this fixed $W^*(t_0)$
 - \rightarrow Solve $\forall t$, problem $(TCEQ_{t_n}(\kappa\alpha))$
 - \rightarrow This strategy is time consistent

Intuitively appealing

- If you have a billion dollars
 - → You don't worry as long as you have 50 million left
- If you have only a million dollars
 - \rightarrow You probably get worried if your wealth < 500,000
- Contrast with time consistent Mean-CVAR
 - ightarrow Disaster level of wealth always relative to current wealth
- Fixed target based strategies popular with actuaries (Vigna, 2017)

Numerical Methods

Time consistent Mean-CVAR

- Discretize in (s, b, W^*) directions (3-d)
 - Solve PIDE between rebalancing times using ϵ -Monotone Fourier method (Forsyth, Labahn; 2019)
 - Discretize equity fraction, solve optimization problems at rebalancing times by exhaustive search and linear interpolation

Pre-commitment mean-CVAR

- Discretize in (s, b) directions (2-d), W^* is a fixed parameter
 - Solve PIDE: as above
 - Solve optimization problems: as above
- ullet Use 1-d optimization method for outer optimization over W^*
 - Each evaluation of objective function requires HJB equation solve

Numerical Example

Stock Index

• Fit to CRSP US cap-weighted stock index 1926:1-2017:12 (real, i.e. inflation adjusted)

Bond Index

• Average one month **real** T-bill return, 1926:1-2017:12, (r = .00464)

Investment Parameters	
Expiry time T	30 years
Initial wealth	0
Rebalancing frequency	yearly
Cash injection $\{q_i\}_{i=0,,29}$	20,000

Default Strategy: rebalance to constant weight $p = 0.4^4$

$E[W_T]$	CVAR (5%)	$Median[W_T]$
1162	598	1084
Units: thousands of dollars		

Choose κ (scalarization parameter) for pre-commitment and time consistent Mean-CVAR

• $Median[W_T]$ matches median for p = 0.4 strategy (approximately)

⁴A typical glide path strategy: p=.8, t=0; p=0.0, t=T; time average $p\simeq.4$. Glide path and constant weight with same time average p, \rightarrow same distribution of W_T (Forsyth and Vetzal, 2019).

Compare CVAR, same $Median[W_T]$

Strategy	CVAR (5%)	
Pre-commitment	682	
Constant weight $(p = 0.4)$	598	
Time consistent	530	

Units: thousands of dollars

More Details: pre-commitment

Percentiles: accumulated wealth

95th percentile 95th percentile 1000 Median 5th percentile 1000 Time (years)

Percentiles: fraction in equities

Control Heat Map: pre-commitment

Red: all stock; Blue: all bond

More Details: time consistent

Percentiles: accumulated wealth

Percentiles: fraction in equities

Heat Map of controls: time consistent

- Mostly independent of wealth (except for small wealth values)
 - \rightarrow Almost deterministic strategy
- Map:uninteresting, has (mostly) straight vertical lines

Time consistent constraint or induced time consistent objective?

Pre-commitment strategies

→ Investor has incentive to deviate from strategy computed at time zero

But, pre-commitment mean-CVAR strategy computed at time zero

- ightarrow Identical to time consistent target shortfall strategy, with fixed target
- → Investor has no incentive to deviate from this strategy, under this induced objective function

Time consistent strategies

- If we constrain a pre-commitment strategy to be time consistent
 - → Then this strategy is equivalent to an optimal strategy for an unconstrained alternative objective function
- ⇒ Both strategies: time consistent under alternative objective functions

Compare Strategies: Cumulative Distribution Functions

By design, all strategies have same $Median[W_T]$

 \rightarrow Intersect at $Prob(\cdot) = 0.5$

Minimize left tail risk

→ Look for strategy which plots below other strategies in left tail

Time consistent mean-CVAR

→ Has worst tail risk of any strategy

Conclusions

- Adding time consistent constraint to mean-CVAR objective function
 - Equivalent to alternative, unconstrained objective function
 - → Under this alternative objective function, we no longer minimize tail risk
- Pre-commitment strategy at time zero
 - Equivalent to time consistent target shortfall strategy $\forall t > 0$
 - Minimizes tail risk w.r.t fixed target
 - Maximizes CVAR at time zero⁵
- It would appear that forcing time consistency in the mean-CVAR case is a bad idea!
- Consistent with poor performance of time consistent, MV case, wealth dependent risk aversion parameter
 - See (Wang, Forsyth; 2011), (Van Staden et al; 2018), (Bensoussan et al; 2019)

 $^{^5 \}text{Recall CVAR}$ is the mean of the worst fraction of wealth outcomes \rightarrow larger is better.