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Optimal decisions for a firm managing a
natural resource asset

• This paper uses a “real options” paradign to examine a firm’s

optimal decisions about extracting a non-renewable resource

over time and final abandonment of the project.

• An oil sands project is used as an example.

• Real options paradign uses concepts from finance for valuing

financial options, and applies these to other types of

investment decisions where irreversibility and uncertainty are

key.
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Applying option theory to other types of
investment decisions

1980s - a surge of interest in applying option theory to the

firm’s decision about investments in real assets:

• Dixit (Quarterly Journal of Economics,1989) , “Hysteresis,

import penetration, and exchange rate pass-through”

• Brennan and Schwartz (J. of Business, 1985): an early

paper using a no-arbitrage approach and stochastic control

theory to value a prototype mining project - the real options

approach
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• Paddock, Siegel and Smith (1988, Quarterly Journal of

Economics) , “Option valuation of claims of real assets: the

case of offshore petroleum leases”

• Morck, Schwartz and Strangeland (1989, Journal of Financial

and Quantitative Analysis), “The Valuation of Forest

Resources under Stochastice Prices and Inventories”
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More recent literature
A huge literature in economics and business using real options.

• Mason (JEEM, 2001) extended Brennan and Schwartz

by examining a firm’s decision to commence or suspend

extraction of a non-renewable resource

• Chen and Insley (JECD,2012) examine optimal forest

harvesting with regime switching stochastic lumber prices

• Slade (JEEM, 2001) - optimal extractions from copper mines

- option theory compared to actual firm decisions

• Conrad and Kotani (REE, 2005) - considered whether to

allow drilling in wildlife refuge in the Arctic
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Future development of the literature

• In economics the focus has been on problems with analytical

solutions.

• Development of computational approaches to solving HJB

equations allows us to analyze more complex decision

problems.

• Modelling approach is now much less constrained by our

ability to find closed form analytic solutions.

• Theory of viscosity solutions has put the solution of HJB

equations on a firm mathematical footing. No need to use

Markov chains and other probabilistic approaches

Presentation at the University of A Coruña 5



lecture 2

Future development of the literature

• Better models of stochastic prices or costs - regime switching,

jumps, stochastic volatility

• Comparing actual firm decisions to optimal action

• Implications of the real options paradigm for public policy

decisions when there is significant uncertainty - i.e. climate

change

• Real options and game theory to analzye firms’ strategic

decisions under threat of preemption

Presentation at the University of A Coruña 6



lecture 2

Issues that motivate this paper

• Pace of natural resource extraction depends on volatile

commodity prices - boom and bust cycles

• Serious environmental consequences of many resource

extraction projects

• Environmental regulations may not be adequate for a sudden

ramp up in operations

• Environmental damages may change through the life of the

project
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Figure 1: West Texas Intermediate Crude Oil Futures Price

with one month expiry, U.S. $/barrel, Monthly data
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Figure 2: Alberta Oil Sands Capital Expenditures. Data Source:

Canadian Association of Petroleum Producers
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Objectives of this paper

• To examine the impact of volatile prices and boom/bust

cycles on the optimal decisions of non-renewable resource

producer

• Use a regime switching model to capture oil price dynamics

• Use a switching model of resource investment - construction

and operations can be paused and restarted

• Consider implications for environmental regulation
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Model of a firm’s optimal decisions

• Specify a Hamilton-Jacob-Bellman partial differential

equation to model the decision to construct a resource

extraction project - oil sands in situ project

• Construction happens over a period of several years

• Once operational the project can be mothballed temporarily

at a cost and reactivated at a further cost

• Can also be abandoned at a cost
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Models of resource price

A general Ito process

dP = a(P, t)dt+ b(P, t)dz

a(P, t), b(P, t) = known functions

dz = increment of a Wiener process

dz = ε
√
dt, ε ∼ N(0, 1)
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Common models of commodity prices

• Geometric Brownian Motion

dP = αPdt+ σPdz

• Processes with mean reversion in the drift

dP = η(P̄ − P )dt+ σPdz

dP = η(µ− log(P ))Pdt+ σPdz
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Looking for better models

• Various researchers have sought improvements to these

simple models.

• Criteria:

– Ability to match the term structure of futures contracts

– Simple enough to be useful in pricing options

• Schwartz (J. of Finance, 1997) compared three different

models

– One factor mean reverting

– Two factor with stochastic convenience yield

– Three factor adding in a stochastic interest rate
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Looking for better models

• Stochastic volatility models - allows the variance of the

process generating the time series to change at discrete

points or continuously.

• Larsson and Nossman (Energy Economics, 2011) use

stochastic volatility with jumps to model oil prices.

• Used WTI spot prices to estimate the parameters of their

model.

• To price assets, parameters of the price model should be

estimated under the Q-measure, risk adjusted process.
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An alternative - a regime switching model

• Empirical analysis indicates that drift and volatility

parameters are not constant

• A regime switching model accommodates changes in drift

and volatility by defining different regimes and specifying

probabilities of switching between regimes

• Some empirical studies find strong evidence of regime

switching for crude oil price volatility (eg. Zou and Chen,

2013, Canadian Journal of Statistics)
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Specification of regime switching model

• Two regimes:

dP = ηj(P̄ j − P )dt+ σjPdz (1)

j = 1, 2;

• ηj is the speed of mean reversion in regime j

• P̄ j is the long run price level in regime j

• σj is the volatility in regime j

• dz = increment of a Wiener process
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Probability of switching regimes

• The term dXjl governs the transition between j and l:

dXjl =

{
1 with probability λjldt

0 with probability 1− λjldt

• There can only be one transition over dt
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Futures Prices

• In order to estimate risk-adjusted parameters, the parameters

in the above equation are calibrated using market natural gas

futures prices and options on futures.

• Let F j(P, t, T ) denote the futures price in regime j at time

t with delivery at T while the spot price resides at P
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Futures Prices

• The futures price equals the expected value of the spot price

in the risk neutral world:

F j(p, t, T ) = EQ[P (T )|P (t) = p, Jt = j]

j = 1, 2.

where EQ refers to the expectation in the risk neutral world

and Jt refers to the regime in period t.
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Futures Prices

• Applying Ito’s lemma results in two coupled pde’s for the

futures price, one for each regime, j = 1, 2:

(F j)t+η
j(P̄ j−P )(F j)P+

1

2
(σj)2P 2(F j)PP+λjl(F

l−F j) = 0.

• Boundary condition: F j(P, T, T ) = P , j = 1, 2.

• Substituting a solution of the form

F j(P, t, T ) = aj(t, T ) + bj(t, T )P

into the pde and boundary condition results in an ode system

which can be solved.
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Calibration Procedure

• This ode system can be used to find the model implied

futures price for different parameter values

• A suite of parameters must be estimated such as θ =

{ηj, µj, σj, λjl | j, l ∈ {0, 1}}
• In addition the current regime, J(t) must be estimated.

• On each observation day, t, there are futures contracts with

a variety of different maturity dates, T
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Calibration

• The parameter values minimize the sum of squared

differences between model-implied futures prices and actual

futures prices.

minθ,j(t)
∑
t

∑
T

(F̂ (J(t), P (t), t, T ; θ)− F (t, T ))2

where F (t, T ): market futures price on observation day t with

maturity T and F̂ (J(t), P (t), t, T ; θ) is the corresponding

model implied futures prices.
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Calibration

• A difficult optimization problem, with no unique solution

• Bounds are placed on the parameter estimates to achieve

reasonable results

• Calibration is done using monthly data for futures prices of

various maturities, 1995 - 2014.

• The speed of mean reversion η, long run equilibrium price

P̄ , and probability of switching regimes λjl are calibrated

independently of volatility, σ
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Calibration

• For the assumed Ito process volatilities are the same in the

P-measure and Q-measure

• Volatilities are estimated separately using the spot price.

• Use Matlab code written by Perlin (2012) for P-measure

estimation of Markov state switching models.
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Base Case Parameter Estimates
Regime 1 Regime 2 lower bound upper bound

ηj 0.29 0.49 .01 1

P̄ j, 50 98 0 200

λjl 0.45 0.47 0.02 0.98

σ 0.28 0.34

Table 1: dP = ηj(P̄ j − P )dt+ σjPdz, j = 1, 2.

• Risk adjusted parameter estimates

• Probability of switching regimes is λjldt

• The average error is $8.85.
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Simulation of the price process
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Figure 4: Simulation of base case regime switching price

process, U.S. $/barrel, 10 realizations
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Resource Valuation Model

• V (P, S, δ) - value of the resource asset; P is resource price,

S is the size of the resource stock, and δ is the plant stage.

• M possible plant stages, δm such as: 0 percent complete,

partially complete, fully operational, mothballed, abandoned.

• The firm chooses the timing of extraction as well as the plant

stage to maximize V .

• Denote annual extraction by R. Then dS = −Rdt; A path

dependent variable
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Objective Function

The value of the project in regime j and stage m is V jm(p, s, t).

V jm(p, s, t) = max
R,δm

EQ
{ T∫
t0

e−rt
′ [
πjm
]
dt | P (t) = p, S(t) = s

}
,

m = 1, ...,M ; j = 1, ..., J

subject to

∫ T

t0

R(:, t)dt ≤ S0.
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V between decision dates

Standard contingent claims arguements derive a system of pde’s which
describe V between decision dates.

∂V jm
∂t

= max
R∈Z(S)

{
− 1

2
bj(p, t)2∂

2V jm
∂p2

− aj(p, t)∂V
j
m

∂p
+Rjm

∂V jm
∂s
− πjm(t)+

J∑
l=1,l 6=j

λjl(V lm − V jm)− rV jm

}
j = 1, 2; m = 1, ...,M

where aj(p, t) is the risk adjusted drift rate conditional on P (t) = p and λjl

is the risk adjusted transition j to regime l from regime .
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Decision dates for switching plant stages

Each year the firm checks to see if it is optimal to switch to a different
stage of operations. Switching stages incurs a cost, but so does staying in
the current stage.

• Stage 1: Before construction begins

• Stage 2: Project 1/3 complete

• Stage 3: Project 2/3 complete

• Stage 4: Project 100 % complete and in full operation

• Stage 5: Project is temporarily mothballed

• Stage 6: Project abandoned
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Choosing the optimal plant stage

The optimal switching decision is given by:

V (t−, δm̄) = max
{
V (t+, δ1)−Cm̄1, ... , V (t+, δm̄)−Cm̄m̄, ... , V (t+, δM)−Cm̄M

}
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Solution Approach

• A stochastic optimal control problem requiring a numerical

solution

• A standard finite difference approach plus a semi-Lagrangian

scheme
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Production* 30,000 bbl/day, in situ, SAGD

Reserves* 250 million barrels

Lease length 30 years

Variable costs (energy):* 5.28% of WTI price

Variable costs (non-energy):* $5.06/bbl

Fixed cost (operating)* $34 million

Fixed cost (mothballed) $21.9 million

Cost to mothball and reactivate $ 5 million

Construction costs* $960 million over three years

Corporate tax: Federal/Prov 15% / 10%

Carbon tax $40 per tonne

*CERI (2008, 2009, 2012) & Plourde (2009, Energy Journal)
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• Royalty rates are based on pre-payout rate.

• Adds considerable complexity to calculate post-payout

royalties, as it depends on price, which is stochastic.

• Assume bitumen price is 65% of the price of WTI.
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Case 1: Project value pre-construction versus
price and reserves
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Value of beginning construction (left) and
finishing construction (right)
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R1: η = 0.29, P̄ = 50, λ12 = .45 ; R2: η = 0.49, P̄ = 98, λ12 = .47

S0 = 250 S0 = 125
Critical Prices for Transition from: R1 R2 R1 R2

Stage I to Stage II: Begin construction 20 0 62 32.5
Stage II to Stage III: Continue 40 15 68 45

Stage III to Stage IV: Finish, Begin production 66 52 88 74
Stage IV to Stage V: Mothball 52 37.5 69 55

Stage V to Stage IV: Reactivate 54 40 71 57
Stage IV or V to Stage VI: Abandon NA NA NA NA

• Critical prices are lower in regime 2 - higher long run price

and more rapid speed of MR.

• Critical prices to reopen are higher than critical prices for

mothballing - hysteresis.
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• At these levels of reserves there is no price at which the

resource would be abandoned. (To be further discussed

later.)

• Critical prices are higher when stock is lower

• Critical prices rise as construction proceeds.
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Why do critical prices rise as reserves fall?

These figures show ∂V
∂S versus remaining reserves for two prices levels.
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Why do critical prices rise as
construction proceeds?

• Compare benefits versus costs of delaying the next stage of

capital investment

• Benefits of delay

– Delay in construction spending

• Costs of delay

– Delay in receiving revenue from production

– Maintenance costs while construction is mothballed
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Why do critical prices rise as
construction proceeds?

• Construction is begun at a critical price lower than that at

which it would be optimal to begin production.

• Getting construction underway is like exercising an option

which moves the firm one step closer to production.

• Costs of delay are higher at an earlier stage of construction

since the firm is unable to quickly finish the project and get

production underway in the event of a sudden surge in oil

prices.
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Why do critical prices rise as
construction proceeds?

• This pattern of critical prices is not a general result - depends

on the nature of price process involved.

• Cost of delaying construction depends on the stochastic price

process.

• This pattern is typical for prices following a mean reverting

process - want to be able to respond quickly to temporary

upswings.

• For GBM process, critical prices start high and then fall as

construction proceeds.
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Importance of regime switching

Weighted Average Price (Case 2) and
Zero Probability of Switching Regimes (Case 3)

Case 1 Case 1 Case 2 Case 3 Case 3
Regime 1 Regime 2 Weighted Average Regime 1 Regime 2

η 0.29 0.49 0.39 .29 .49
P̄ 50 98 73 50 98
λjl .45 0.47 NA 0 0
σ 0.28 0.34 0.31 0.29 0.34

Cases 1, 2, and 3 parameter values. dP = ηj(P̄ j −P )dt+σjPdz, j = 1, 2.
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Importance of regime switching
Weighted Average Price (Case 2) and

Zero Probability of Switching Regimes (Case 3)
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Comparing critical prices, Cases 1, 2 and 3
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Comparing critical prices, Cases 1, 2 and 3

• Project values are lower in Case 2 (weighted average)

compared to the base case.

• Critical prices differ across the three cases - ignoring price

regimes would result in non-optimal decisions.

Presentation at the University of A Coruña 48



lecture 2

Impact of a carbon tax

• IPCC has suggested a global carbon price that increases to

around $200 per tonne of CO2 is needed by the middle of

this century.

• Consider two additional cases:

– Case 4: Tax increasing gradually from $40 to $200 per

tonne over 15 years
– Case 5: Tax increasing immediately to $200 per tonne
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Impact of a carbon tax: Project value
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Impact of a carbon tax: Critical prices, R1
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Impact of a carbon tax: Critical prices, R2

0 0

40

15

0

5152

27.5

78

37.5

17.5

58

40

20

61

0

10

20

30

40

50

60

70

80

90

Base Case, R2 Carbon tax, gradual increase, R2 Carbon tax, sudden increase, R2

U.
S.

 $
/b

ar
re

l o
f W

TI

stages 1-2 stages 2-3 stages 3-4 stages 4-5 stages 5-4

Presentation at the University of A Coruña 52



lecture 2

Carbon tax

• With a gradually increasing tax, critical prices are markedly

lower. Construction and production will be speeded up.

• With a sudden tax increase, critical prices increase at all

stages. Construction and production are delayed.

• As in the base case, there are no prices for abandonment at

full reserves. This changes for lower reserve levels.
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Critical prices for abandonment versus reserves
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Critical prices for abandonment

• Critical prices for abandonment rise as reserve level falls.

• Critical prices for abandonment under a carbon tax of $200

are higher than under a carbon tax of $40.

• The higher carbon tax may cause some reserves to be left in

the ground.
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Sensitivity on volatility

Base case: σ1 = 0.28, σ2 = 0.34.
Case 7 (high volatility): σ1 = 0.84, σ2 = 1.02

Case 1: Case 6:
Base case High volatility

Transition from : R1 R2 R1 R2

Stages 1 to 2: Begin construction 20 0 15 0
Stages 2 to 3: Continue 40 15 35 15

Stages 3 to 4: Finish, Begin production 66 52 121 110
Stages 4 to 5: Mothball 52 37.5 85 69

Stages 5 to 4: Reactivate 54 40 87 71
Stages 4 or 5 to 6: Abandon na na na na
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Sensitivity on mean reversion speed

Base case: σ1 = 0.28, σ2 = 0.34.
Case 8 (low mean reversion speed): η1 = 0.02, η2 = 0.02.

Case 1: Case 7:
Base case Low speed of

mean reversion
Transition from : R1 R2 R1 R2

Stages 1 to 2: Begin construction 20 0 83 83
Stages 2 to 3: Continue 40 15 79 78

Stages 3 to 4: Finish, Begin production 66 52 83 86
Stages 4 to 5: Mothball 52 37.5 58 59

Stages 5 to 4: Reactivate 54 40 59 61
Stages 4 or 5 to 6: Abandon na na na na
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Conclusions

• Modelling resource prices as regime switching stochastic

processes can give insight into optimal investment decisions

in natural resource industries.

• A myopic investor ignoring possibility of regime change can

make suboptimal decisions.

• Uncertainty affects the pace of development. This has

implications if environmental costs are unevenly distributed

over the lifetime of the project.

• The timing of an environmental tax has a significant effect

on the pace of development and how much of the total

resource is extracted.
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