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Overview

1 Long Term Asset Allocation for the Patient Investor (Forsyth,
1 hour)

2 On the timing of non-renewable resource extraction with
regime switching prices: an optimal stochastic control
approach (Insley, 1.5 hours)

3 Long Term Asset Allocation: HJB Formulation and Solution
(Forsyth, 1 hour)

4 An Options Pricing Approach to Ramping Rate Restrictions at
Hydro Power Plants (Insley, 1.5 hours)

5 Monotone Schemes for Two Factor HJB Equations with
Nonzero Correlation (Forsyth, 1.5 hours)

6 Methods for Pricing American Options Under Regime
Switching (Forsyth, 1 hour)
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The Basic Problem

Suppose you are saving for retirement (i.e. 20 years away)

What is your portfolio allocation strategy?

i.e. how much should you allocate to bonds, and how much to
equities (i.e. an index ETF)

How should this allocation change through time?

Typical rule of thumb: fraction of portfolio in stocks
= 110 minus your age.

Target Date (Lifecycle) funds

Automatically adjust the fraction in stocks (risky assets) as
time goes on
Use a specified “glide path” to determine the risky asset
proportion as a function of time to go
At the end of 2014, over $700 billion invested in US1

1Morningstar
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Risk-reward tradeoff

This problem (and many others) involve a tradeoff between risk
and reward.

Intuitive approach: multi-period mean-variance optimization

When risk is specified by variance, and reward by expected
value

→ Even non-technical managers can understand the tradeoffs and
make informed decisions2

In this talk, I will determine the optimal asset allocation strategy

Objective: minimize risk for specified expected gain

Use tools of optimal stochastic control

2I am now a member of the University of Waterloo Pension Committee. I
have seen this problem first-hand
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Multi-period Mean Variance

Criticism: variance as risk measure penalizes upside as well as
downside

I hope to convince you that multi-period mean variance
optimization

Can be modified slightly to be (effectively) a downside risk
measure

Has other good properties: small probability of shortfall

Outcome: optimal strategy for a Target Date Fund

I will show you that most Target Date Funds being sold in the
marketplace use a sub-optimal strategy
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“All models are wrong: some are useful” 4

Let S be the price of an underlying asset (i.e. EuroStoxx index).

A standard model for the evolution of S through time is
Geometric Brownian Motion (GBM)

Basic assumption: price process is stochastic, i.e.
unpredictable3

dS

S
= µ dt + σφ

√
dt

µ = drift rate,

σ = volatility,

φ = random draw from a

standard normal distribution

3If this were not true, then I (and many others) would be rich
4G. Box, of Box-Jenkins and Box-Muller fame.
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Monte Carlo Paths: GBM
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Figure: Ten realizations of possible random paths. Assumption: price
processes are stochastic, i.e. unpredictable. µ = .10, σ = .25.
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What’s Wrong with GBM?

Equity return data suggests market has jumps in addition to
GBM

Sudden discontinuous changes in price

Most asset allocation strategies ignore the jumps, i.e. market
crashes

But, it seems that we get a financial crisis occurring about
once every ten years

Does it make sense to ignore these events?

Jumps are also known as:

Black Swans (see the book with the same title by Nassim
Taleb)
Fat tail events
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EuroStoxx 50 weekly log returns 1986-2014
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A Better Model: Jump Diffusion

dS

S
=

GBM︷ ︸︸ ︷
(µ− λκ) dt + σφ

√
dt +

Jumps︷ ︸︸ ︷
(J − 1)dq

dq =

{
0 with probability 1− λdt

1 with probability λdt,

λ = mean arrival rate of Poisson jumps; S → JS

J = Random jump size ; κ = E [J − 1].

GBM plus jumps (jump diffusion)

When a jump occurs, S → JS , where J is also random

This simulates a sudden market crash
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Monte Carlo Paths
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Figure: The arrival rate of the Poisson jump process is .1 per year. Most
of the time, the asset follows GBM. In only one of ten stochastic paths,
in any given year, can we expect a crash. µ = .10, σ = .25.
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Example: Target Date (Lifecycle) Fund with two assets
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = jump diffusion process

Total wealth W

W = S + B (1)

Objective:

Optimal allocation of amounts (S(t),B(t)), which is
multi-period mean-variance optimal

Optimal strategy is in general a function of (W , t)
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Optimal Control
Let:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest

13 / 43



Lecture 1

Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (2)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of Wa(T ) are as observed at time t, initial
state x .
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Basic problem: find Efficient frontier

We construct the efficient frontier by finding the optimal control
c(·) which solves (for fixed λ) 5

max
c

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

}
(3)

• Varying λ ∈ [0,∞) traces out the efficient frontier

• λ = 0;→ we seek only maximize cash received, we don’t care
about risk.
• λ =∞→ we seek only to minimize risk, we don’t care about the
expected reward.

5All investors should pick one of the strategies on the efficient frontier.
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Given this variance:
no other point has a
higher expected value

Conversely: given this
expected value, no other
point has a smaller variance

Each point on the efficient frontier represents a different strategy c(·).
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Mean Variance: Standard Formulation

max
c(X (u),u≥t)

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at t

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at t

}
,

λ ∈ [0,∞) (4)

• Let c∗
t (x , u), u ≥ t be the optimal policy for (4).

Then c∗
t+∆t(x , u), u ≥ t + ∆t is the optimal policy which

maximizes

max
c(X (u),u≥t+∆t))

{
E
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Reward as seen at t+∆t

−λVar
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Risk as seen at t+∆t

}
.
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Pre-commitment Policy

However, in general

c∗
t (X (u), u)︸ ︷︷ ︸

optimal policy as seen at t

6= c∗
t+∆t(X (u), u)︸ ︷︷ ︸

optimal policy as seen at t+∆t

; u ≥ t + ∆t︸ ︷︷ ︸
any time>t+∆t

,

(5)
↪→ Optimal policy is not time-consistent.

The strategy which solves problem (4) has been called the
pre-commitment policy

Your future self may not agree with your current self!
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Ulysses and the Sirens: A pre-commitment strategy

Ulysses had himself tied to the mast of his ship (and put wax in his

sailor’s ears) so that he could hear the sirens song, but not jump to his

death.
20 / 43



Lecture 1

Re-formulate MV Problem → Dynamic Programming6

For fixed λ, if c∗(·) maximizes

max
c(X (u),u≥t)

{
E c
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar ct,x [Wa(T )]︸ ︷︷ ︸
Risk

}
,

(6)

→ There exists γ such that c∗(·) minimizes

min
c(·)

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (7)

Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier

6Li and Ng (2000), Zhou and Li (2000)
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Equivalence of MV optimization and target problem

MV optimization is equivalent7 to investing strategy which

Attempts to hit a target final wealth of γ/2

There is a quadratic penalty for not hitting this wealth target

From (Li and Ng(2000))

γ

2︸︷︷︸
wealth target

=
1

2λ︸︷︷︸
risk aversion

+ E
c(·)
t=0,x0

[Wa(T )]︸ ︷︷ ︸
expected wealth

Intuition: if you want to achieve E [Wa(T )], you must aim
higher

7Vigna, Quantitative Finance, 2014
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HJB PIDE

Determination of the optimal control c(·) ⇒ find the value
function

V (x , t) = min
c(·)

{
E
c(·)
x ,t [(Wa(T )− γ/2)2]

}
,

Value function

Given from numerical solution of a Hamilton-Jacobi-Bellman
(HJB) partial integro-differential equation (PIDE)

This also generates the optimal control c(·).
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Optimal semi-self-financing strategy

Let

F (t) =
γ

2
e−r(T−t)

= discounted target wealth

Theorem (Dang and Forsyth (2014))

If Wa(t) > F (t), t ∈ [0,T ], an optimal MV strategy is

Withdraw cash Wa(t)− F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

What should you do with the cash you withdraw (the free cash)?

Anything you like (e.g. buy an expensive car).

You are better off withdrawing the cash!
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Intuition: Multi-period mean-variance

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing8 Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account

This strategy dominates any other MV strategy

We never exceed the target

No “upside penalization”

→ And the investor receives a bonus in terms of a free cash flow

8Idea that withdrawing cash may be mean variance optimal was also
suggested in (Ehrbar, J. Econ. Theory (1990) )
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Numerical Examples

initial allocated wealth (Wa(0)) 100
r (risk-free interest rate) 0.04450
T (investment horizon) 20 (years)

qmax (leverage constraint) 1.5
ti+1 − ti (discrete re-balancing time period) 1.0 (years)

mean downward jumps mean upward jumps
µ (drift) 0.07955 0.12168

λ (jump intensity) 0.05851 0.05851
σ (volatility) 0.17650 0.17650

mean log jump size -0.78832 0.10000

Objective: verify that removing cash when wealth exceeds target is
optimal.
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Efficient Frontier: sometimes its optimal to spend money9
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9T = 20 years, Wa(0) = 100. Strictly speaking: upper curve is not an
efficient frontier.
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Example II

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham10, most investors should

Pick a fraction p of wealth to invest in an index fund (e.g.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

10Benjamin Graham, The Intelligent Investor
28 / 43



Lecture 1

Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy

Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.
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Optimal semi-self-financing asset allocation

Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
Optimal 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
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Cumulative Distribution Functions
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Investor must pre-commit to
target wealth
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Mean and standard deviation of the control
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Typical Strategy for Target Date Fund: Linear Glide Path
Let p be fraction in risky asset

p(t) = pstart +
t

T
(pend − pstart)

Choose parameters so that we get the same expected value as the
optimal strategy

pstart = 1.0 ; pend = 0.0

Strategy Expected Stndrd Pr(W (T ) < 800) Expected
Value Dev Free Cash

p = 0.5 817 350 0.56 0.0

Linear12 817 410 0.58 0.0
Glide Path

Optimal 817 143 0.19 6.3

12We can prove that for any deterministic glide path, there exists a superior
constant mix strategy
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Sensitivity to Market Parameter Estimates
Assume we only know the mean values for the market parameters

Compute control using mean values

But: assume parameters (in real world) are uniformly
distributed in a range centered on mean

Compute investment result using Monte Carlo simulations

Interest rate range Drift rate range Volatility range
[.02, .06] [.06, .14] [.10, .20]

Strategy: computed using fixed parameters

Market Expected Stndrd Pr(W (T ) < 800) Expected
Parameters Value Dev Free Cash

Fixed at Mean 817 143 0.19 6.3

Random 807 145 0.19 30.5
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Example III: jump diffusion

Investment horizon (years) 30 Drift rate risky asset µ 0.10
λ (jump intensity) 0.10 Volatility σ 0.10
E [J]13 0.62 Effective vol (with jumps) 0.16 14

Risk free rate r 0.04 Initial Investment W0 100

Strategy Expected Standard Pr(W (T )) < 800
Value Deviation

Graham p = 0.515 826 399 0.55
Optimal 826 213 0.23

Table: T = 30 years. W (0) = 100. Optimal: semi-self-financing; no
trading if insolvent; maximum leverage = 1.5, rebalancing once/year.

13When a jump occurs S → JS .
14stndrd dev [S(T )/S(0)]/T
15Yearly rebalancing
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Cumulative Distribution Function: Jump diffusion
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Mean and standard deviation of the control
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Back Testing

Back test problem: only a few non-overlapping 30 year paths
↪→ Backtesting is dubious in this case

Assume GBM

Estimate µ, σ, r 16 from real data Jan 1, 1934 - Dec 31, 1954

With these parameters, estimate E [W (1985)] for an equally
weighted portfolio (p = 1/2) for Jan 1, 1955 - Dec 31, 1984.

Determine the MV optimal strategy which has same expected
value

Now, run both strategies on observed 1955− 1984 data

Second test: repeat: estimate parameters from Jan 1, 1934 - Dec
31, 1984 data

Compare strategies using real returns from Jan 1, 1985 - Dec
31, 2014

163 month US treasuries. CRSP value weighted total return.
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Back Test: Jan 1, 1955 - Dec 31, 198417
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17W (Jan 1, 1954) = 100. GBM parameters estimated from 1934− 1954
data. Estimated E [W (Dec 31 1984) | t = Jan 1, 1955] = 625 same for both
strategies. Estimated parameters: µ = .12, σ = .18, r = .0063. MV optimal
target 641.4. Historical returns used for 1955− 1984. Maximum leverage 1.5. 39 / 43
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Back Test: Jan 1, 1985 - Dec 31, 201418
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18W (1985) = 100. GBM parameters estimated from 1934− 1984 data.
Estimated E [W (Dec 31 2014) | t = Jan 1, 1985] = 967 same for both
strategies. Estimated parameters: µ = .11, σ = .16, r = .037. MV optimal
target 1010.5. Historical returns used for 1985− 2014. Maximum leverage 1.5 40 / 43
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Bootstrap Resampling Backtest: 1926-2014

CRSP data January 1 1926 - December 31 2014

Three month US T-bills January 1 1926 - December 31 201419

Estimate GBM parameters:

CRSP T-Bill (3-month)
Drift (µ) Volatility (σ) Mean rate (r)

.112 .189 .0352

Strategy Expected Standard Pr(W (T )) < 800
Value Deviation

Graham p = 0.520 915 506 0.50
Optimal 915 200 .13

Table: T = 30 years. W (0) = 100. Optimal: semi-self-financing; no
trading if insolvent; maximum leverage = 1.5, rebalancing once/year.

19From Federal Reserve website. Starts in 1934. 1926-1934 data from NBER
20Continuous rebalancing
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Bootstrap Resampling: 1926-2014

Now, use real historical data, quarterly returns

For each MC simulation, draw 30 years of returns (with
replacement) from historical returns (blocksize 10 years)

10,000 simulations, each block starts at random quarter

Strategy Expected Standard Pr(W (T )) < 800 Expected
Value Deviation Free Cash

Graham p = 0.521 953 514 0.47 0.0
Optimal 922 164 0.09 129

Table: T = 30 years. W (0) = 100. Optimal: semi-self-financing; no
trading if insolvent; maximum leverage = 1.5, rebalancing once/year.

21yearly rebalancing
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Conclusions

Optimal allocation strategy dominates simple constant
proportion strategy by a large margin

→ Probability of shortfall ' 3 times smaller!

But

→ Investors must pre-commit to a wealth target
→ Investors must commit to a long term strategy (> 20 years)
→ Investors buy-in when market crashes, de-risk when near target

Standard “glide path” strategies of Target Date funds

→ Inferior to constant mix strategy22

→ Constant mix strategy inferior to optimal control strategy

Optimal mean-variance policy

Seems to be insensitive to parameter estimates
Good performance even if jump processes modelled
Historical backtests: works as expected

22See also “The false promise of Target Date funds”, Esch and Michaud
(2014); “Life-cycle funds: much ado about nothing?”, Graf (2013)
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Outline

1 Dynamic mean variance

Embedding result
Equivalence to quadratic target
Removal of spurious points

2 HJB PDE

Intuitive discretization
Semi-Lagrangian timestepping and explicit control
Unconditionally stable, monotone and consistent
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Dynamic Mean Variance: Abstract Formulation

Define:

X = Process
dX

dt
= SDE

x = (X (t) = x) = State

W (X (t)) = total wealth

Control c(X (t), t) is applied to X (t)
Define admissible set Z, i.e.

c(x , t) ∈ Z(x , t)
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [W (T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [W (T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of W (T ) are as observed at time t, initial
state x .
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Basic Problem: Find Pareto Optimal Strategy

We desire to find the investment strategy c∗(·) such that, there
exists no other other strategy c(·) such that

E
c(·)
t,x [WT ]︸ ︷︷ ︸

Reward under strategy c(·)

≥ E
c(∗·)
t,x [WT ]︸ ︷︷ ︸

Reward under strategy c∗(·)

Var
c(·)
t,x [WT ]︸ ︷︷ ︸

Risk under strategy c(·)

≤ Var
c∗(·)
t,x [WT ]︸ ︷︷ ︸

Risk under strategy c∗(·)

and at least one of the inequalities is strict.

In other words

There exists no other strategy which simultaneously has
higher expected value and smaller variance

This is a Pareto optimal strategy

There is a family of such strategies
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Pareto optimal points

Let

E = E
c(·)
t,x [WT ] ; V = Var

c(·)
t,x [WT ]

The achievable set V is

Y = {(V, E) : c(·) ∈ Z} ,

Given λ > 0, define1

YP(λ) = {(V, E) ∈ Ȳ : λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗}

The efficient frontier YP is

YP =
⋃
λ>0

YP(λ)

The efficient frontier is a collection of Pareto points
1Ȳ is the closure of Y.
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Efficient Frontier2

Consider a straight line in the (V, E) plane (for fixed λ)

λV − E = C1 (1)

From

YP(λ) = {(V, E) ∈ Ȳ : λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗}

we can find points on the efficient frontier by choosing C1 as small
as possible so that

Intersection of Y and straight line (1) has at least one point

2We may not get all the Pareto points here if Y is not convex
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Intuition

M-V achievable set Y

V

E

(E∗,V∗)

Move dotted lines line λV − E = C1 to the left as much as possible
(decrease C1)

Line will touch Y at Pareto point
8 / 39
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Problem
Pareto point

λV − E = inf
(V∗,E∗)∈Y

(λV∗ − E∗} (2)

Problem arises from variance

V = E c [W (T )2]− (E c [W (T )])2

(E c [W (T )])2 cannot be handled with standard dynamic
programming

Cannot directly formulate (2) as an HJB equation

Consider an objective function of form (for fixed γ)

inf
(V,E)∈Y

V + E2 − γE (3)

Note that

V + E2 = E c [W (T )2]

Minimizing (3) can be done using dynamic programming
9 / 39
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Embedded Objective Function Intuition
Examine points (V, E) ∈ Y such that (for fixed γ)

V + E2 − γE = inf
(V∗,E∗)∈Y

V∗ + E2
∗ − γE∗

Consider the parabola

V + E2 − γE = C2 (4)

Choose C2 as small as possible, so that

Intersection of parabola and Y has at least one point

Rewriting equation (4)

V = −
(
E2 − γE

)
+ C2

= − (E − γ/2)2 + γ2/4 + C2

= − (E − γ/2)2 + C3. (5)

Parabola faces left, symmetric about line E = γ/2
10 / 39
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Embedded Pareto Points
Suppose (V∗, E∗) is a Pareto point → ∃λ > 0, C1, s.t.

λV∗ − E∗ = C1

M-V achievable set Y

V

E

(E∗,V∗)

Move parabola to left as much as possible, and intersect line
λV∗ − E∗ = C1 at a single point.
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Tangency Condition

M-V achievable set Y

V

E

(E∗,V∗)

Parabola V = − (E − γ/2)2 + C3 tangent to line λV − E = C1 at (V∗, E∗)(
∂E
∂V

)
parabola

= λ ; λ = slope of dotted lines

→ γ/2 = 1/(2λ) + E∗
12 / 39
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Embedding Result

Theorem 1 ((Li and Ng (2000); Zhou and Li (2000))
If

λV0 − E0 = inf
(V,E)∈Y

(λV − E), (6)

then

V0 + E2
0 − γE0 = inf

(V,E)∈Y
(V + E2 − γE), (7)

γ =
1

λ
+ 2E0

Implication

We can determine all the Pareto points from (6) by solving
problem (7)
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Value function

Note:

V + E2 − γE = E c
t,x [W 2(T )]− (E c

t,x [W (T )])2 + (E c
t,x [W (T )])2

− γE c
t,x [W (T )]

= E c
t,x [(W (T )− γ

2
)2] +

γ2

4
,

Define value function (ignore γ2/4 term when minimizing)

U(x , t) = inf
c(·)∈Z

E
c(·)
t,x [(W (T )− γ/2)2] (8)

Implication: Given point (V∗, E∗) on the efficient frontier,
generated by control c∗(·), then ∃γ s.t.

→ c∗(·) is the optimal control for (8)
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Spurious points
But, converse not necessarily true: i.e. there may be some
γ ∈ (−∞,+∞) s.t. c∗(·) which solves

U(x , t) = inf
c(·)∈Z

E
c(·)
t,x [(W (T )− γ/2)2] (9)

which does not correspond to a point on the efficient frontier

M-V achievable set Y

V

E

P

Q

R

1
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Remove Spurious Points3

Suppose we solve value function ∀γ ∈ (−∞,+∞)

Generate set of candidate points on the efficient frontier A
Determine upper left convex hull S(A)

Valid points on efficient frontier: A ∩ S(A)

b
b

b

b

b

b
b

b

b

b

b S(A)

upper left boundary of convex hull

b A \ S(A)

3Tse, Forsyth, Li (2014, SIAM Cont. Opt.); Dang,Forsyth, Li (2015, Num.
Math.)
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Review: asset allocation, bond and stock
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = (µ− λκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− ρdt

1 with probability ρdt,

log J ∼ N (µJ , σ
2
J). ; κ = E [J − 1]

17 / 39



Lecture 3

Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Constraints on the strategy

The investor can continue trading only if solvent

W (s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (10)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = W (s, b) ; if W (s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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HJB PIDE
Determination of the optimal control c(·) is equivalent to
determining the value function

V (x , t) = inf
c∈Z

{
E x ,t
c [(W (T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− ρκ)sVs + rbVb − λV ,

JV ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density ; ρ = jump intensity

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)
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HJB PIDE II

The value function (and the control c(·)) is given by solving the
impulse control HJB equation

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

if (s + b > 0) (11)

Along with liquidation constraint if insolvent

V (s, b, t) = V (0, s + b, t)

if (s + b) ≤ 0 and s 6= 0 (12)

We can easily generalize the above equation to handle the discrete
rebalancing case.
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Computational Domain4

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ­∞, +∞]

(0,0)

+∞

­∞

+∞

4If µ > r it is never optimal to short S 22 / 39
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Discretization
Define nodes in the s and b direction

{s1, s2, . . . , simax} ; {b1, . . . , bjmax}

Assume constant timesteps

∆τ = τn+1 − τn

Assume:

∆smax = max
i

(si+1 − si ) ; ∆bmax = max
j

(bj+1 − bj) ; ∆τmax = max
n

(τn+1 − τn)

Assume control B+ is discretized

∆B+
max = max

j
(B+

j+1 − B+
j ) = ∆bmax

Discretization parameter h such that

∆smax = C1h ; ∆bmax = C2h ; ∆τmax = C3h
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Notation

Recall that we want to solve

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

(13)

where

LV = PV + rbVb

and

PV =
σ2s2

2
Vss + (µ− ρκ)sVs − λV ,
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Intuitive Derivation of Discretization

Consider a set of discrete rebalancing times {t1, t2, . . .}
Define

t+
m = tm + ε ; t−m = tm − ε ; ε→ 0+ (14)

Portfolio has s = S(t) and b = B(t) stock and bond at t = t+
m

Over [t+
m , t

+
m+1]

1. [t+
m , t

−
m+1]: stock evolves randomly, bond unchanged (no

interest paid)

2. [t−m+1, tm+1]: interest paid B → Ber∆t

3. [tm+1, t
+
m+1]: rebalance portfolio
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Details: steps 1 and 2

Step [t+
m , t

−
m+1] (bond amount constant)

The value function V̄ (s, b, t) evolves according to the PIDE

Vt +

No rbVb term︷︸︸︷
PV +

Jump term︷︸︸︷
JV = 0,

Step [t−m+1, tm+1] (Stock amount constant)

Pay interest earned in [t+
m , t

−
m+1]

V (s, b, t−m+1) = V (s, ber∆t , tm+1) ; by no-arbitrage

∆t = tm+1 − tm
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Detail: Step 3

Step [tm+1, t
+
m+1]

Optimal rebalance

V (s, b, tm+1) = min

[ do nothing︷ ︸︸ ︷
V (s, b, t+

m+1),

rebalance︷ ︸︸ ︷
min
c

V (S+(s, b, c),B+(s, b, c), t+
m+1)

]
Combine Steps 2 and 3 (pay interest and rebalance)

V (s, b, t−m+1) = min

[
V (s, ber∆t , t+

m+1),

min
c

V (S+(s, ber∆t , c),B+(s, ber∆t , c), t+
m+1)

]
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Backwards time: discrete solution

Let Vh(si , bj , τ
n) be the discrete approximate solution at (si , bj , τ

n)

Now, we write these steps down in backwards time τ = T − t

τn− = T − t+
m+1 ; τn+ = T − t−m+1 ; τn+1

− = T − t+
m ; τn+1

+ = T − t−m .

We proceed from τn− → τn+1
− (note reverse time order)

Step τn− → τn+: (rebalance and pay interest)

Vh(si , bj , τ
n
+) = min

[
Vh(si , bje

r∆τ , τn−),

min
c∈Zh

Vh(S+(si , bje
r∆τ , c),B+(si , bje

r∆τ , c), τn−)

]
.
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Solve PIDE

Step τn+ → τn+1
− : with Vh(si , bj , τ

n
+) as the initial condition.

Fully implicit timestepping Ph,Jh discretized operators)

Vh(si , bj , τ
n+1
− )−∆τPhVh(si , bj , τ

n+1
− )−∆τJhVh(si , bj , τ

n+1
− )

= Vh(si , bj , τ
n
+)
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Final Discretization

Let V n
i ,j ≡ Vh(si , bj , τ

n)

V n+1
i ,j

∆τ
− PhV n+1

i ,j − JhV n+1
i ,j =

Ṽ n
i ,j

∆τ

Ṽ n
i ,j =

(
min

[
Vh(si , bje

r∆τ , τn),

min
c∈Zh

Vh(S+(si , bje
r∆τ , c),B+(si , bje

r∆τ , c), τn)

])
. (15)

This is actually

Semi-Lagrangian timestepping applied to PIDE

Impulse control is handled explicitly
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Discretization Properties

1 Central, forward, backward differencing used to discretize P,
positive coefficient condition enforced

PhV n
i ,j = αi ,jVi−1,j + βi ,jV

n
i+1,j − (αi ,j + βi ,j + λ)V n

i ,j

αi ,j ≥ 0 ; βi ,j ≥ 0 . (16)

2 FFT and interpolation used to discretize jump term, such that

JhV n
i ,j =

∑
k

qi ,j
k V n

k,j (17)

0 ≤ qi ,j
k ≤ 1 ;

∑
k

qi ,j
k ≤ 1 . (18)

3 Linear interpolation used to approximate Vh at off grid points
(needed for optimal control)
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Convergence

Lemma 2
If properties (1-3) hold, then discretization (15) is monotone,
consistent (in the viscosity sense) and unconditionally `∞ stable.

Theorem 3 (Convergence)

Provided that the original impulse control problem satisfies the
strong comparison property, then discretization (15) converges to
the viscosity solution of (13).

Proof.
This follows from Lemma 2 and results in (Barles, Souganidis
(1993)).
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Implementation
Note that this discretization method consists of two steps:

1 Determine optimal control at each node (linear search of
discretized control Zh used)

Ṽ n
i,j =

(
min

[
Vh(si , bje

r∆τ , τn),

min
c∈Zh

Vh(S+(si , bje
r∆τ , c),B+(si , bje

r∆τ , c), τn)

])
2 Time advance step: solve linear PIDE (use method in

d’Halluin et al, 2005)

V n+1
i,j

∆τ
− PhV n+1

i,j − JhV n+1
i,j =

Ṽ n
i,j

∆τ

This is very simple to implement

Easy to alter existing Semi-Lagrangian software to add
impulse control
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Validation Test

Refinement Timesteps S Nodes B Nodes
(also Zh nodes)

0 50 58 115
1 100 115 229
2 200 229 457
3 400 457 913

No-jump case, qmax =∞, exact solution known

Investment Horizon 10
Lending rate rl .04
Borrowing rate rb .04
Trading ceases if insolvent yes
Volatility σ 0.15
Drift µ 0.15
Initial Wealth 100
Maximum Leverage Ratio qmax ∞
Jumps No
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Validation Test

Refine Mean Change Ratio Standard Change Ratio
Deviation

0 377.714 62.069
1 381.379 3.665 56.292 -5.776
2 383.104 1.724 2.1 53.503 -2.789 2.1
3 383.966 0.862 2.0 52.108 -1.394 2.0
Exact 384.826 N/A N/A 50.686 N/A N/A

Table: A single point on the efficient frontier γ = 800. No jumps,
qmax =∞.
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Numerical Results: Jumps vs. No-jumps

Jumps No Jumps
Investment Horizon T 10 10
Lending rate r` .0445 .0445
Borrowing rate rb .0445 .0445
Trading ceases if insolvent yes yes
Volatility σ 0.1765 .281751
Drift µ .0795487 .0795487
Initial Wealth 100 100
Maximum Leverage Ratio qmax ∞ ∞
Jump Intensity λ .0585046 N/A
log J ∼ N (µJ , σ

2
J) µJ = −.79, σJ = .45 NA

For the no-jump case, the volatility is the effective volatility
computed based on jump parameters, as in (Navas, 2000).
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Jumps vs. No Jumps5

Std Dev

E
x

p
 V

a
l

0 100 200 300 400 500 600
150

200

250

300

350

Jump
Refine = 1

Jump
Refine =  2

No jump 
Refine = 1

No jump
Refine = 2

No jump
Exact

5Maximum leverage qmax = ∞.
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Leverage constraint, Jumps6

Std Dev

E
x

p
 V

a
l

0 100 200 300 400 500 600

150

200

250

300

350

trading allowed
if bankrupt

Jump
Refine = 2

Jump, q    = 1.5,
r   = r   = r,
Refine = 2

max

l b

Jump, q     = 1.5,
r  = r  ­ 1%,
r  = r + 1%,
Refine = 2

max

l 

b

6qmax = ∞ unless noted. No trading if bankrupt: exact solution. Unequal
lending/borrowing rates r`, rb if shown.
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Conclusions

Can reformulate continuous time mean-variance using an
embedding method

Embedded problem can be solved using HJB equation
Spurious points on emebedded efficient frontier easily removed.

HJB Discretization

Semi-Lagrangian timestepping, explicit impulse control
Unconditionally monotone, consistent, `∞ stable
Guaranteed to converge to viscosity solution
Easy to implement
Transaction costs, unequal borrowing/lending rates, discrete
rebalancing straightforward to model
Regular additions/withdrawals of capital can be easily handled.

Efficient frontiers

Exact solution known for simple cases (trading continues if
bankrupt, no leverage constraint)
Realistic constraints: large influence on efficient frontiers
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Costs and benefits of hydro

Hydro is considered an environmentally friendly source of
power.

Water release rates can be easily adjusted to meet peak
demands.

Environmental damage to the aquatic ecosystem by frequent
changes in water flows.

Negative environmental impacts from changing water release
rates is case specific.
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Restrictions on hydro operations

Regulators may impose restrictions on

minimum and maximum water levels in reservoirs
release rates
the rate of change in the release rate - ramping rate

How should these restrictions be chosen?
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Restrictions on hydro operation

Regulators need to consider impact of restrictions on hydro
profitability as well as ability of electricity grid to meet peak
demands.

If restrictions imply greater reliance on fossil fuels to meet
peak electricity demands, there would be other negative
environmental consequences.

Optimal choice balances all of these costs an benefits.

This research considers only one aspect of the problem:
consequences for the hydro operator.
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Research Questions

What is the effect of ramping restrictions on:

The value of a hydro operation
The optimal operation of a hydro plant

What factors cause ramping restrictions to have a larger or
smaller effect?

The answers to these questions can help inform a regulator’s policy
decisions about ramping restrictions.
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Hydro dam
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Optimal operation of a hydro dam

A complex dynamic optimization problem

Electricity production depends in a non-linear fashion on the
speed of water released through turbines as well as on
reservoir head

Releasing water reduces the head and negatively affects the
amount of power produced in the next period.

Must balance water inflows and outflows while responding to
changing electricity demandand prices, and meeting regulatory
restrictions.
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Complex nature of electricity prices

Marked daily patterns and seasonal patterns.

Limited storage, so price spikes are not uncommon

Significant changes in electricity markets over the past decade.

Government incentives to expand solar and wind energy to
reduce carbon emissions.

Intermittent power sources are thought to increase volatility
of electricity prices

Hydro operators can benefit from this volatility..
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This research

Models the optimal decision of a hydro operator under various
ramping restrictions as a stochastic control problem.

Uses a regime switching model of electricity prices - more
realistic than some other models used in the literature.

Results in a Hamilton Jacobi Bellman equation solved
numerically using a fully implicit finite difference approach
with semi-Lagrangian time stepping

Analyzes the impact of ramping restrictions for a prototype
hydro dam using using a model of German EEX spot
electricity prices.
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Figure 1: EEX Daily Average Electricity Prices EUR/ MWh, Market
Data Day-ahead Auction, German/Austria Phelix, Source: Datastream.
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Figure 2: EEX Daily Average Electricity Prices EUR/ MWh, Market
Data Day-ahead Auction, German/Austria Phelix, Source: Datastream.
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Table 1: Descriptive Statistics for EEX, Market Day-ahead Auction
Prices, Selected Years

2001-2004 2005-2008 2009-2012 2013-2015

Mean, EUR/MWh 29.14 55.56 47.42 37.74
Median 26.96 49.13 47.41 35.97
Maximum 1719.72 2436.63 210 130.27
Minimum 0 -101.52 -221.99 -62.03
Standard Deviation 23.32 40.56 16.77 14.11
Skewness 24.68 17.1959 -1.5367 0.379
Kurtosis. 1350.59 777.88 29.92 5.05
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Electricity Price Models

Weron (2014) provides a good review of the different
approaches.

We desire a parsimonious model which captures important
features, but is not so complex as to make computation
intractable.

Structural versus reduced form models - We use a reduced
form model

Regime switching is thought to do a good job of replicating
key characteristics - the existence of price spikes and “spike
clusters”.
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Electricity Price Models

Spot price models (P-measure) versus risk neutral price
models (Q-measure)

For optimal decisions and valuation, the risk neutral price
process is desired as its parameters are adjusted for risk

Current literature has tended to estimate spot price models

To use a spot price model for determining optimal decisions,
risk adjustment must be made through an estimate of the
market price of risk.
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Janczura and Weron estimates

Janczua and Weron (2009) estimate a regime switching
electricity price model using German EEX spot prices from
2001-2009.

Base regime: CIR (Cox-Ingersoll-Ross) process

Spike regime: shifted lognormal distribution (with higher
mean and variance than those in the base regime) which
assigns zero probability to prices below the median m.

dP = η(µ1 − P)dt + σ1
√
PdZ .

log(P −m) ∼ N(µ2, σ
2
2), P > m.
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Janczura and Weron estimates

J and W use two time samples to compare estimates under
different market conditions, 2001-2005 and 2005-2009. The
latter is more volatile, the former gives a better fit of data to
model.

Like much of the literature, Janczura and Weron use mean
daily spot prices to estimate their model.

Ideally we would like a model estimated using hourly data, to
incorporate the regular daily cycle in electricity prices.

We use the JW estimates and then in a sensitivity case we
impose a daily cycle to determine the impact on results.
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Janczura and Weron estimates

Table 2: Parameter Values Estimated by Janczura and Weron 2009

Parameter Jan. 1 2001 - Jan. 2 2005 Jan. 3 2005 - Jan 3 2009

µ1 47.194 EUR/MWh 46.033 EUR/MWh
µ2 3.44 3.41
η 0.36 0.30
σ1 0.73485 1.28452
σ2 0.83066 1.66433
m 46.54 EUR/MWh 45.19 EUR/MWh
λ12 0.0089 0.0116
λ21 0.8402 0.6481

Base regime: dP = η(µ1 − P)dt + σ1
√
PdZ .

Spike regime: log(P −m) ∼ N(µ2, σ
2
2), P > m.
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P-measure price process

We adapt this model to conform to a standard Ito process and
model base and spike regimes as follows.

dP = η(µ1 − P)dt + σ1
√
PdZ + P(ξ12 − 1)dX12.

dP = σ2(P −m)dz + P(ξ21 − 1)dX21, P > m.
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Q-measure price process

We deduct a market price of risk to derive SDE’s to be used for
hydro plant valuation.

dP = [η(µ1 − P)− Λ1σ1
√
P]dt + σ1

√
PdẐ + P(ξ12 − 1)dX̂12.

dP = σ2(P −m)dẑ + P(ξ21 − 1)dX̂21, P > m.

dẐ and dẑ are increments of the standard Gauss-Wiener
processes under the Q measure

Λ1 is the market price of risk which adjusts the drift term in
the base regime from the P to the Q measure

dX̂12 and dX̂21 indicate the transition of the Markov chain
under the Q measure.
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Base case parameter values

Table 3: Parameters for the Regime Switching Model, Benchmark

Parameter Value Parameter Value

µ1 47.194 EUR/MWh η 0.36
m 46.54 EUR/MWh c 20 EUR/MWh
σ1 0.73485 σ2 0.83066
ξ12 1.6470 ξ21 0.6072

λQ12 0.0089 λQ21 0.8402

Λ1 -0.2481 - -

Pmax
1 200 EUR/MWh Pmax

2 200 EUR/MWh
Pmin
1 0 EUR/MWh Pmin

2 48 EUR/MWh

T 168h r̄ 0.05 annually

Base regime:
dP = [η(µ1 − P)− Λ1σ1

√
P]dt + σ1

√
PdẐ + P(ξ12 − 1)dX̂12. Spike

regime: dP = σ2(P −m)dẑ + P(ξ21 − 1)dX̂21, P > m. 23 / 64
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Market price of risk

Empirical evidence is mixed in terms of magnitude, variability
and sign.

This paper uses an estimated value from Cartea and Figueroa
(2005) for England and Wales. Their estimate is -0.2481.

We undertake sensitivity analysis for a range of values.
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Physical and environmental constraints

minimum and maximum water release rates: rmin≤r≤rmax

minimum and maximum water content: wmin≤w≤wmax

Equation of motion for water:

dw = a(`− r)dt

where a is a constant converting water measurement units, r
is the release rate, ` is the inflow rate.
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Ramping rate control

The ramping rate z is the control variable.

dr = zdt

Up-ramping and down-ramping constraints:

dr ≤ rudt

−dr ≤ rddt

where ru and rd represent the maximum allowed up-ramping
and down-ramping rates respectively.

Ramping constraints may be written as:

−rd ≤ z ≤ ru
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Parameterizing the hydro dam

Empirical analysis is done for a medium sized dam.

Physical details of the dam are based on the Abitibi Canyon
generating station in NE Ontario.

Constant water inflow is assumed of 6671 CFS

Other details given in the next table
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Parameter Values for the Prototype Hydro Station

Table 4: Base case parameter values for hydro station

Parameter Value Parameter Value
inflow rate, ` 6671 CFS wmax 17000 acre-feet

grav constant, g 32.15 feet/sec2 wmin 7000 acre-feet
constant, head/water, b 0.0089 rmax 15000 CFS

efficiency factor, e 0.87 rmin 2000 CFS
generator capacity 19000 CFS qmax 336 MW

− − qmin 0 MW
− − ru 3000 CFS-hr
− − rd 3000 CFS-hr
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Power production

General power production relation

q(r ,w) ∝ r × h(r ,w)× e(r , h).

where q= power output, r = water release rate, h = gross
head, w = water content, e = the efficiency factor.

Under some simplifying assumptions we use:

q(r , h(w)) = 0.001× g × r × h(w)× e

= 0.28× r × h(w).

where g = gravitational constant , e = 0.87.

Linear functional form between the head and water content:

h(w) = b × w . (1)

where b is assumed to be 0.0089.
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Present value of net revenue from power generation

∫ T

t1

e−ρtq(r , h(w))(P − c)dt. (2)

where,

ρ is the discount rate,

q is the amount power produced which is a function of the
water release rate r and the head h,

c is the unit cost of hydro power production, which is
assumed to be a positive constant.

32 / 64



lecture 4

Objective function

V ı(P,w , r , t1): value of the hydro plant under the optimal control in
regime ı under the risk neutral measure.

V ı(P,w , r , t1) = max
z

EQ

[ ∫ T

t1

e−ρ(t−t1)H(r ,w)q(r , h(w))(P − c)dt

|P(t1) = P̃,w(t1) = w̃ , r(t1) = r̃

]
.

subject to
Z (r) ⊆ [zmin, zmax].

dw = H(r ,w)a(`− r)dt.

dr = zdt.

dP = µı(P, t)dt + σı(P, t)dZ +
N∑
=1

P(ξı − 1)dXı.
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HJB equation

r̄V ı = sup
z∈Z(r)

(z
∂V ı

∂r
) + H(r ,w)a(`− r)

∂V ı

∂w
+

1

2
(σı)2(P , t)

∂2V ı

∂P2

+ (µı(P , t)− Λıσı(P , t))
∂V ı

∂P

+ H(r ,w)q(r , h(w))(P − c) +
∂V ı

∂t
+

N∑
=1
6=ı

λQı (V
 − V ı).

where r̄ is the risk free interest rate, Λı is the market price of risk
in state ı and λQı is the risk-neutral transition intensity from state ı
to  ( 6= ı).
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Boundary conditions

At t = T (τ = 0), we assume the value of the plant is zero:

V ı(P ,w , r , τ = 0) = 0. (3)

For P → 0 we take the limit of the HJB equation to obtain
the boundary condition.

For P→∞, we apply the commonly used boundary condition
V ı
PP = 0 , which implies that

V ı'x(w , r , τ)P + y(w , r , τ).

No special boundary conditions are required at
wmin,wmax, rmin, rmax.
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Base Case

Results for base case parameter values, as presented in Tables
2 and 3

Ramping restrictions set at 3000 CFS-hr

Spike regime is only defined for prices above 46.54
EUR/MWH

Decision variable is z , but hydro plant can only ramp up or
down by changing the release rate, r .

The next figures plots hydro plant value given today’s price
and release rate, with a full reservoir, based on optimal
choices for ramping rates in all subsequent periods.
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(a) Base regime (b) Spike regime

Figure 3: Value over Price and Release Rate, Base Case, (Ramping
Restrictions 3000 CFS-hr)
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Base case results commentary

Value increases with price and release rate for prices above
variable cost (c = 20 EUR/MWh)

For P < c , value declines with release rate.

Value in spike regime exceeds value in base regime - but not
by much.
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(a) Base regime (b) Spike regime

Figure 4: Optimal Ramping Rate over Price and Time, Base Case
(Ramping Restrictions 3000 CFS-hr)
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Base case results commentary

Ramp down when price is low and ramp up when price is high.

In spike regime, mostly ramp up at the maximum.

Constant strategy over time except at the boundary.

At the boundary t = T , ramp up for all prices.
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(a) Base regime (b) Spike regime

Figure 5: Optimal Ramping Rate over Price and Reservoir Level, Base
Case (Ramping Restrictions 3000 CFS-hr)
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Base case results commentary

Optimal ramping rate depends on reservoir level.

When the reservoir is full, in general there is a wider range of
prices over which it is optimal to ramp up.

At lower water reservoir level the operator should be more
inclined to let the reservoir fill up again.
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Effect of ramping restrictions

We try a range of ramping restrictions from 250 CFS-hr to no
restrictions.

The maximum impact is a decline in value of 8.3% for the
most restrictive (250 CFS-hr) compared to no restrictions.

The next two graphs show the impact on value and on
optimal strategy.
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Effect of ramping rate restrictions

The previous figure shows that the operator switches from
down to up ramping at a higher price under ramping
restrictions compared to no restrictions.

Under ramping restrictions it is more valuable to maintain the
water in the reservoir.

If an operator starts ramping up when ramping restrictions are
in place, it may be costly since the decision cannot be quickly
reversed.

Ramping restrictions result in hysteresis of optimal actions.

Counterfactual in Figure 6 shows value under the most severe
restrictions if the operator did not follow the optimal control -
i.e. the restrictions are met but there is not change on when
to switch from down-ramping to up-ramping.
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Figure 9: Sensitivity Cases, Base Regime, full reservoir, P0 = 40
EUR/MWh, Percent change in value for 250 CFS-hr restriction
compared to no restriction
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Summary of sensitivities

A higher speed of mean reversion reduces value and reduces
the relative impact of ramping restrictions.

Higher probability of being in the spike regime increases value
and increases the relative impact of ramping restrictions.

Higher volatilities increase value and increase the relative
impact of ramping restrictions.

Lower production cost increases value and reduces the impact
of ramping restrictions.

2005-2009 case uses parameter estimates in a more volatile
period with more price spikes. Value of the hydro plant is
increased and relative impact of ramping restrictions is
increased.
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Observation about ramping restrictions

Ramping restrictions have a large impact in cases when the
operator would like to change water release rates frequently -
such as when prices are volatile and spikes are frequent.

Ramping rates have a large impact when there is a greater
possibility that price will drop below variable costs. In these
circumstances it is important to be able to ramp down quickly.

53 / 64



lecture 4

Observation about ramping restrictions

Ramping restrictions have a large impact in cases when the
operator would like to change water release rates frequently -
such as when prices are volatile and spikes are frequent.

Ramping rates have a large impact when there is a greater
possibility that price will drop below variable costs. In these
circumstances it is important to be able to ramp down quickly.

53 / 64



lecture 4

Outline

Introduction

Electricity prices

Modelling hydro operations

Optimization Problem

Empirical Results: Base Case

Empirical results: Changing ramping restrictions

Sensitivity cases

Including a daily price cycle

54 / 64



lecture 4

Daily price cycle

Electricity prices typically follow regular daily cycles, rising
during the hours of peak demand.

This is ignored in the price process estimated by Janczura and
Weron which is used in this paper.

To determine the impact of a regular cycle we add a
deterministic cyclical component to the SDE representing
price.
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Stochastic price process with a daily cycle

dP = [η(µ(t)− P)− Λ1σ1
√
P]dt + σ1

√
PdẐ + P(ξ12 − 1)dX̂12.

µ(t) = µ1 + φ sin
(2π(t − t0)

24

)
.

dP = σ2(P −m)dẑ + P(ξ21 − 1)dX̂21, P > m.

where

µ(t) is the long-term equilibrium price with the daily price
cycle;

µ1 is the equilibrium price without the daily price fluctuation;

φ is the daily price trend;

t0 is the time of the daily peak of the equilibrium price;
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(a) Base regime (b) Spike regime

Figure 12: Optimal Ramping Rate over Price and Time including a
Daily Cycle), Ramping restrictions of 3000 CFS-hr

59 / 64



lecture 4

1.200

1.250

1.300

1.350

1.400

1.450

1.500

1.550

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Eu
ro

s,
 m

ill
io

ns

M
ill

io
ns

CFS-hr

Comparing benchmark and seasonality cases

base regime, seasonality, 40 EUR/MWh spike regime , seasonality, 80 EUR/MWh

base regime, no seasonality, 40 EUR/MWh spike regime, no seasonality, 80 EUR/MWh

Figure 13: Comparing the Impact of Ramping Restrictions with and
without Daily Seasonality, Dashed Lines Show Cases with Seasonality

60 / 64



lecture 4

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Benchmark
case

Higher
mean

reverting
rate

Higher
prob of
spike

regime

Higher
volatilities

Lower
mean price

in base
regime

Lower
production

cost

Single
regime

2005-2009
case

Daily
seasonality

Eu
ro

s,
 th

ou
sa

nd
s

No restrictions 250 CFS-hr

Figure 14: Repeat of earlier diagram, Sensitivity Cases, Base Regime,
full reservoir, P0 = 40 EUR/MWh, Comparing value for no restrictions
(left bars) with 250 CFS-hr restriction (right bars)

61 / 64



lecture 4

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

Benchmark
case

Higher
mean

reverting
rate

Higher
prob of
spike

regime
Higher

volatilities

Lower
mean price

in base
regime

Lower
production

cost
Single
regime

2005-2009
case

Daily
seasonality

%
 c

ha
ng

e 
in

 v
al

ue
 

Figure 15: Repeat of earlier diagram, Sensitivity Cases, Base Regime,
full reservoir, P0 = 40 EUR/MWh, Percent change in value for 250
CFS-hr restriction compared to no restriction
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Concluding remarks

A benefit of hydro power is its ability to respond quickly to
changing demand by ramping up and down water release
rates.

Restrictions imposed on ramping rates will reduce the value of
hydro power assets to the owner, but the impact is case
specific. The impact is more severe for:

Higher volatility
More time in the spike regime
Higher variable costs

The optimal operating policy changes when ramping
constraints are imposed. The operator waits for a higher price
to ramp up.
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Concluding remarks

Policy decisions about imposing ramping rate restrictions need
to be taken with an understanding of all of the costs and
benefits including environmental benefits and costs. This
paper looks at only one part of the cost-benefit analysis.

Future work is needed on estimating electricity price processes
using hourly data and estimating a risk-neutral process in the
Q-measure.

Consideration needs to be given to recent changes in
electricity markets - increased use of wind and solar as well as
the appearance of negative prices.

Another avenue of future research include stochastic water
flows as well as longer term trends for less abundant water
supplies.
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Outline

Need to guarantee numerical scheme converges to viscosity
solution

Sufficient conditions (Barles, Souganidis (1991))

Monotone, consistent (in the viscosity sense) and `∞ stable

Examples known where seemingly reasonable (non-monotone)
discretizations converge to incorrect solution

Up to now, we have looked at

One stochastic factor, several path dependent factors

Easy to construct a monotone scheme

But suppose we have two (or more) stochastic factors

→ Not so easy to construct monotone schemes if we have
nonzero correlation
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Example I: two factor uncertain volatility

Suppose we have two stochastic factors S1, S2 (equities).

Risk neutral processes:

dS1 = (r − q1)S1 dt + σ1S1 dW1,

dS2 = (r − q2)S2 dt + σ2S2 dW2,

r = risk free rate

qi = dividend rate

σi = volatility

dW1 dW1 = ρ dt = correlation

(1)
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HJB PDE
No arbitrage value of a contingent claim U(S1,S2, τ = T − t)

Uτ = L(σ1, σ2, ρ) U

Initial condition

U(S1, S2, 0) = W(S1, S2) = payoff

where

L(σ1, σ2, ρ) U =
σ2

1S2
1

2
US1S1 +

σ2
2S2

2

2
US2S2

+(r − q1) US1 + (r − q2) US2 − rU
+ ρσ1σ1S1S2 US1S2︸ ︷︷ ︸

cross derivative term
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Uncertain Volatilites, Correlation
Suppose σ1, σ2, ρ are uncertain

Define the set of controls Q

Q = (σ1, σ2, ρ)

With the set of admissible controls Z
Z = [σ1,min, σ1,max]× [σ2,min, σ2,max]× [ρmin, ρmax]

σ1,min ≥ 0, σ2,min ≥ 0

− 1 ≤ ρmin ≤ 1, −1 ≤ ρmax ≤ 1.

Worst case price short, LQ ≡ L(σ1, σ2, ρ)

Uτ = sup
Q∈Z
LQU

Worst case long

Uτ = inf
Q∈Z
LQU
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Aside: a useful result

Consider the objective function

max
(σ1,σ2,ρ)∈Z

(
σ2

1S2
1

2
US1S1 + ρσ1σ1S1S2 US1S2 +

σ2
2S2

2

2
US2S2

)
. (2)

Proposition 1

Suppose that ∂2U
∂Si∂Sj

exist ∀i , j . The optimal value of the objective

function in (2) can be determined by examining values only on the
boundary of Z, denoted by ∂Z.

max
(σ1,σ2,ρ)∈Z

(
Equation (2)

)
= max

(σ1,σ2,ρ)∈∂Z

(
Equation (2)

)
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Discretization
Localize computational domain

(S1, S2) = [0, (S1)max]× [0, (S2)max]

Define a set of nodes, timesteps

{(S1)1, (S1)2, . . . , (S1)N1} ; {(S2)1, (S2)2, . . . , (S2)N2}
τn = n∆τ, n = 0, . . . ,Nτ

And

∆(Sk)max = max
i

∆(Sk)i , ∆(Sk)min = min
i

∆(Sk)i ,

∆(Sk)i = (Sk)i+1 − (Sk)i

k = 1, 2

With a discretization parameter h

∆(S1)max = C1h, ∆(S2)max = C2h,

∆(S1)min = C
′
1h, ∆(S2)min = C

′
2h, ∆τ = C3h

C1,C2,C
′
1,C

′
2,C3 > 0
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First Attempt:First Attempt: Fixed Stencil

Finite difference of cross-derivative term

We approximate the cross-partial derivative at ((S1)i, (S2)j , τ
n) using one of the following stencils, as illus-164

trated in Figure 4.1, depending on the sign of ρ. For ρ ≥ 0, we use165

∂2U
∂S1∂S2

≈
2Un

i,j + Un
i+1,j+1 + Un

i−1,j−1

Δ+(S1)iΔ+(S2)j +Δ−(S1)iΔ−(S2)j
−

Un
i+1,j + Un

i−1,j + Un
i,j+1 + Un

i,j−1

Δ+(S1)iΔ+(S2)j +Δ−(S1)iΔ−(S2)j
. (4.4)

For ρ < 0, we use166

∂2U
∂S1∂S2

≈ −
2Un

i,j + Un
i+1,j−1 + Un

i−1,j+1

Δ+(S1)iΔ−(S2)j +Δ−(S1)iΔ+(S2)j
+

Un
i+1,j + Un

i−1,j + Un
i,j+1 + Un

i,j−1

Δ+(S1)iΔ−(S2)j +Δ−(S1)iΔ+(S2)j
. (4.5)

�

�

�

�

�

�

�

(a) ρ ≥ 0

�

�

�

�

�

�

�

(b) ρ < 0

Figure 4.1: The seven-point stencil for ρ ≥ 0 and ρ < 0. The seven points used in the stencil depend on the
sign of ρ.

Standard three point differences are used for the ∂2U
∂S1∂S1

and ∂2U
∂S2∂S2

terms. First order partial derivatives167

in (2.5a) are approximated with second order central differencing as much as possible. Algorithm A.1 in168

Appendix A shows how to select central, forward and backward differencing to minimize the appearance of169

negative coefficients in the discretization (Wang and Forsyth, 2008). The linear differential operator L in170

(2.5a) is discretized to form the discrete linear operator LQ
f .171

LQ
f Un

i,j = (αS1
i,j − γi,j)Un

i−1,j + (βS1
i,j − γi,j)Un

i+1,j + (αS2
i,j − γi,j)Un

i,j−1 + (βS2
i,j − γi,j)Un

i,j+1

+ 1ρ≥0(γi,jUn
i+1,j+1 + γi,jUn

i−1,j−1) + 1ρ<0(γi,jUn
i+1,j−1 + γi,jUn

i−1,j+1)

− (αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r)Ui,j ,
(4.6)

where αS1
i,j , β

S1
i,j , α

S2
i,j , β

S2
i,j , and γi,j are defined in Appendix A. The notation LQ

f indicates that the equation172

coefficients are functions of the control Q.173

The positive coefficient condition (Forsyth and Labahn, 2007) is174

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, βS2

i,j − γi,j ≥ 0,

γi,j ≥ 0, αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r ≥ 0, 1 ≤ i < N1, 1 ≤ j < N2.
(4.7)

Due to the presence of the γi,j term in (4.6), the discretization does not ensure that the positive coefficient175

condition (4.7) is satisfied even if our choice of the seven-point operator ensures that γi,j ≥ 0. However,176

our algorithm makes the positive coefficient condition hold on as many grid nodes as possible with a fixed177

stencil. Only when the cross derivative term disappears in the HJB equation (2.5a) can we guarantee that178

the positive coefficient condition always holds for a fixed stencil.179

Remark 4.1. It is possible to carry out a logarithmic transformation on equation (2.5a). In the new180

coordinate system (logS1, logS2), the diffusion tensor becomes constant for a fixed control. If we discretize the181

6

Other terms:

Three point second derivative finite difference

Central/forward/backward for first derivative terms

Try to produce a positive coefficent scheme
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Positive Coefficient Scheme1

Un
i ,j ≡ approximate solution at ((S1)i , (S2)j , τ

n)

Discretization operator LQ
f (fixed stencil)

LQ
f Un

i,j = (αS1

i,j − γi,j)Un
i−1,j + (βS1

i,j − γi,j)Un
i+1,j + (αS2

i,j − γi,j)Un
i,j−1

+ (βS2

i,j − γi,j)Un
i,j+1 + 1ρ≥0(γi,jUn

i+1,j+1 + γi,jUn
i−1,j−1)

+ 1ρ<0(γi,jUn
i+1,j−1 + γi,jUn

i−1,j+1)

− (αS1

i,j + βS1

i,j + αS2

i,j + βS2

i,j − 2γi,j + r)Ui,j ,

Definition 1 (Positive Coefficient Discretization)

LQ
f is a positive coefficient discretization if ∀Q ∈ Z

αSk
i ,j − γi ,j ≥ 0, βSki ,j − γi ,j ≥ 0 ; k = 1, 2

γi ,j ≥ 0

1Note that α, β, γ are functions of the control Q.
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Monotone Schemes

Consider fully implicit timestepping:

Un+1
i ,j = Un

i ,j + ∆τ max
Q∈Z
LQf Un+1

i ,j (3)

which we can write as

Gi ,j(Un+1
i ,j ,Un

i ,j ,Un+1
i+1,j , . . .) = Un+1

i ,j − Un
i ,j −∆τ max

Q∈Z
LQf Un+1

i ,j = 0 (4)

Definition 2 (Monotone Scheme)

Scheme (3) is monotone if Gi ,j(Un+1
i ,j ,Un

i ,j ,Un+1
i+1,j , . . .) is a

nonincreasing function of (Un
i ,j ,Un+1

i+1,j , . . .).

Theorem 3 (Positive Coefficient Scheme, see (Forsyth and
Labahn (2007))

A positive coefficient scheme is monotone.

10 / 46



Lecture 5

Conditions for a Positive Coefficient Scheme: Fixed Stencil

Recall that the positive coefficient property has to hold ∀Q ∈ Z
(i.e. αi ,j , βi ,j , γi ,j are functions of Q)

The problem is the cross-derivative term

For general Z, this requires severe restrictions on the grid
spacing

May be impossible to satisfy

Alternative: wide stencil method
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Wide Stencil Method

Wide stencil2

Grid spacing O(h)

At each node, do virtual rotation, eliminate x-derivative term,
finite difference on rotated grid

Values are interpolated from real grid

Size of virtual stencil O(
√

h)

We interpolate data for stencil from actual grid
Stencil is O(

√
h) → guarantees consistency

2Debrebant and Jakobsen (2013) factor the diffusion tensor
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Local Rotation

S1

S2

θi,j

√

h

b

b

b

b

b

Note: local rotation angle θi ,j depends on

Node location, i.e. (Si ,Sj)

Control Q at this node
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Lecture 5

Wide Stencil II

Why is this called a wide stencil method?

Size of (virtual) stencil O(
√

h)

Grid spacing O(h)

Relative stencil length

√
h

h
→∞ as h→ 0

What happens near the boundaries?

Simple application of wide stencil

→ Stencil may require data outside computational domain
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Wide Stencil: near boundaries

If we need data S1 > (S1)max or S2 > (S2)max

Localization

→ Use artificial boundary conditions at (S1)max, (S2)max based on
asymptotic form of solution

Use same asymptotic form for data needed from wide stencil

Errors small if (S1)max, (S2)max sufficiently large

But, what about near S1 = 0,S2 = 0?

Wide stencil may need data for S1 < 0 or S2 < 0

Solution:

Shrink stencil arm so that we do not go outside domain
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Shrink Stencil Arm

h

h
1/2

if (S1)i >
√

h or (S2)j >
√

h) ⇒ discretization is consistent O(
√

h)
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What about lower left corner?

h
h
1/2

O(h)

h
1/2

h
1/2

Discretization of 2nd order derivative inconsistent here O(1)

Region (S1,S2) ∈ [0,
√

h]× [0,
√

h]

Equation coefficient O(h) → consistent discretization of PDE!
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Convergence of wide stencil method LQ
w

Lemma 4 (Ma and Forsyth (2015))

The fully implicit wide stencil scheme

Un+1
i ,j = Un

i ,j + ∆τ sup
Q∈Z
LQwUn+1

i ,j

is consistent (in the viscosity sense), `∞ stable and monotone.

Theorem 5 (Convergence)

The wide stencil method converges to the viscosity solution of the
uncertain volatility HJB PDE.

Proof.
The HJB PDE satisfies the strong comparison property (Guyon
and Henry-Labordere (2011)). Result follows from Lemma 4 and
(Barles and Souganidis (1993)).
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Hybrid Method

Algorithm 1 Hybrid Discretization Method (LQH )i ,j

1: for i = 1, . . . ,N − 1; j = 1, . . . ,N2 do
2: if (LQf )i ,j monotone ∀Q ∈ Z then

3: Use fixed stencil at this node (LQH )i ,j = (LQf )i ,j
4: else
5: Use wide stencil at this node (LQH )i ,j = (LQw )i ,j
6: end if
7: end for

Fixed stencil used as much as possible (more accurate).

We do not enforce any grid conditions

We simply check to see if the monotonicity conditions are
satisfied at a given node

Algorithm 1 only done once at start
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Fully Implicit Timestepping

Un+1
i,j = Un

i,j + ∆τ sup
Q∈Z
LQ
H Un+1

i,j

sup
Q∈Z

[
−(1−∆τLQ

H ) Un+1
i,j + Un

i,j

]
= 0

Define:

Un =
(
Un

1,1,Un
2,1, . . . ,Un

N1,1, . . . ,U
n
1,N2

, . . . ,Un
N1,N2

)
Un
` = Un

i ,j , ` = i + (j − 1)N1.

Similarly the vector of optimal controls is

Q = (Q1,1, . . . ,QN1N2)

The nonlinear algebraic equations are then3

sup
Q∈Z

{
−A(Q)Un+1 + C(Q)

}
= 0, (5)

A = matrix of discretized equations ; C(Q) = rhs vector
3Row ` of A,C depends only on Q` 20 / 46
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Policy Iteration4

Algorithm 2 Policy Iteration

1: Let (Û)0 = Initial estimate for Un+1

2: for k = 0, 1, 2, . . . until converge do

3: Qk
` = argmax

Q`∈Z

{
−[A(Q)]Ûk + C(Q)

}
`

4: Solve [A(Qk)]Ûk+1 = C(Qk)
5: if converged then
6: break from the iteration
7: end if
8: end for

4Use ILU-PCG method to solve matrix, complexity = O((N1N2)5/4).
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Policy Iteration II

Let (Û)0 = Initial estimate for Un+1

for k = 0, 1, 2, . . . until converge do

Qk
` = argmax

Q`∈Z

{
−[A(Q)]Ûk + C(Q)

}
`

Solve [A(Qk )]Ûk+1 = C(Qk )
if converged then

break from the iteration
end if

end for

Theorem 6 (Convergence of Policy Iteration)

If ∀Q ∈ Z, [A(Q)] is an M matrix, then Policy iteration converges
to the unique solution of equation (5).

For wide stencil nodes

The rotation angle is a function of Q
→ The stencil changes at each policy iteration

But, we can still prove policy iteration converges!
• Positive coefficient → A(Q) is an M matrix
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Numerical Example (nonconvex payoff)
Butterfly on maximum (worst case short)

Smax = max(S1,S2),

Payoff = max(Smax − K1, 0) + max(Smax − K2, 0)

− 2 max(Smax − (K1 + K2)/2, 0).

Parameter Value

Time to expiry (T ) 0.25
r 0.05
σ1 [.3, .5]
σ2 [.3, .5]
ρ [.3, .5]
K1 34
K1 46
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Grid/timesteps

Refine Level Timesteps S1 nodes S2 nodes ∂Z nodes

1 25 91 91 24
2 50 181 181 46
3 100 361 361 90
4 200 721 721 178

For fixed stencil, analytic expression for global maximum of
objective function on ∂Z.

For wide stencil, need to discretize control and do linear search on
∂Z.
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Convergence study

Hybrid Scheme Pure Wide Stencil

Refine Value Diff Value Diff

1 2.7160 2.6371
2 2.6946 0.0214 2.6397 0.0026
3 2.6880 0.0066 2.6650 0.0252
4 2.6862 0.0018 2.6744 0.0094

Table: Butterfly call on max of two, worst case short, value at
(S1 = S2 = 40, t = 0)

Refine Hybrid Scheme Pure Wide Fraction Fixed
(Hybrid)

1 4.0 3.7 0.38
2 3.8 3.7 0.42
3 3.6 3.6 0.44
4 3.3 3.3 0.45

Table: Average number of policy iterations per timestep
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Summary: Uncertain Volatility

Cross derivative term → difficult to construct monotone
scheme

Wide stencil method

→ Unconditionally monotone, but only first order

Hybrid scheme: use fixed stencil as much as possible

→ Converges faster than pure wide stencil

26 / 46



Lecture 5

Example II: mean variance portfolio allocation: Heston
stochastic volatility

Long term investor can allocate wealth into two assets:

Amount in Risk-free bond B

dB = r B dt

r = risk-free rate

Amount in risky-asset S

dS

S
= (r + ξV ) dt +

√
V dZ1

ξV = market price of volatility risk

Variance process V

dV (t) = κ(θ − V (t)) dt + σ
√

V (t) dZ2

σ = vol of vol ; κ = Mean-reversion speed

θ = mean variance ; ρ dt = dZ1 dZ2
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SDE for Total Wealth
The investor’s total wealth W = S + B follows the process

dW (t) = (r + pξV (t)) W (t) dt + p
√

V W (t) dZ1.

p =

(
S

W

)
= fraction invested in risky asset

Constraints on control p

Trading must stop if W = 0

Leverage is constrained: p ≤ pmax

Objective: determine optimal control p(W ,V , t) which generates
points on the efficient frontier

sup
p

{
E p(·)[W (T )]︸ ︷︷ ︸
ExpectedValue

−λVarp(·)[W (T )]︸ ︷︷ ︸
Variance

}

• Varying λ ∈ [0,∞) traces out the efficient frontier
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Reformulate MV Problem ⇒ Dynamic Programming

Embedding technique5 for fixed λ, if p∗(·) maximizes

sup
p(·)∈Z

{
Ep[W (T )]︸ ︷︷ ︸
ExpectedValue

−λVarp[W (T )]︸ ︷︷ ︸
Variance

}
,

Z is the set of admissible controls

→ ∃ γ such that p∗(·) minimizes

inf
p(·)∈Z

Ep(·)
[(

W (T )− γ

2

)2]
.

5Zhou and Li (2000), Li and Ng (2000)
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Value Function U(w , v , τ)6

U(w , v , τ) = inf
p(·)∈Z

E p(·)
τ,w ,v

[(
W (T )− γ

2

)2]
w = wealth ; v = local variance ; τ = T − t

HJB PDE for optimal allocation strategy p(·):

Uτ = inf
p∈Z

{
(r + pξv)w Uw + κ(θ − v) Uv

+

(
(p
√

vw)2

2

)
Uww +

x−derivative term︷ ︸︸ ︷
(pρσ

√
vw) Uwv +

(
σ2v

2

)
Uvv
}
,

U(w , v , 0) =

(
w − γ

2

)2

.

Given p(·), compute Ep(·)[WT ],Varp(·)[WT ]
6For a fixed γ, this gives one point on the efficient frontier.
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Discretization
Write HJB PDE as

sup
p∈Z
{Uτ − (r + pξv)wUw − LpU} = 0, (6)

where

LpU = κ(θ − v)Uv +
1

2
(p
√

vw)2Uww + pρσ
√

vwUwv +
1

2
σ2vUvv .

Define the Lagrangian derivative DU
Dτ (p) by

DU
Dτ

(p) = Uτ − (r + pξv)wUw ,

→ rate of change of U along the characteristic w = w(τ), depends
on risky asset fraction p

dw

dτ
= −(r + pξv)w .
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Semi-Lagrangian form

Rewrite equation (6) (use Lagrangian derivative)

sup
p∈Z

{
DU
Dτ
− LpU

}
= 0. (7)

Construct finite difference grid

{wi , vj}i=1,...,N1 ; j=1,...,N2

Solve characteristic equation (backwards) from τn+1 to τn, for
fixed wn+1

i .

Point at foot of characteristic (backwards in time from (wi , vj))

(wi∗ , vj) = (wie
(r+pξvj )∆τn , vj), (8)
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Discretization7

Lagrangian derivative:

DU
Dτ

(p) ≈
Un+1
i ,j − Un

i∗,j(p)

∆τn
, (9)

Un
i∗,j(p) = U(wi∗(p), bj , τ

n): wi∗ depends on control p through
equation (8).

Final discretization (h is the mesh size parameter)

sup
p∈Zh

{
Un+1
i ,j

∆τn
−
Un
i∗,j(p)

∆τn
− Lp

hUn
i ,j

}
= 0

Lp
h = wide stencil discretization

Zh = discretized control set

7No fixed stencil will be monotone for all p ∈ Z
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Numerical details

Policy iteration used to solve nonlinear discretized equations
at each timestep

Linear interpolation used at foot of characteristic

Scheme is

Monotone, consistent, stable

Construct efficient frontier

Pick γ, solve HJB PDE for controls, store at each
grid/timestep

Use stored controls, solve linear PDEs for expected value,
variance

This is one point on frontier

Repeat for different value of γ
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Numerical Example

κ θ σ ρ ξ
5.07 0.0457 0.48 −0.767 1.605

Table: P measure Heston parameters8

Investment Horizon T 10
The risk free rate r 0.03
Leverage constraint pmax 2
Initial wealth w0 100
Initial variance v0 0.0457

8Aıt-Sahalia, Kimmel, Journal of Financial Economics (2007)
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Discretization Details

Refinement Timesteps W Nodes V Nodes Zh Nodes

0 160 112 57 8
1 320 223 113 16
2 640 445 225 32
3 1280 889 449 64
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First Attempt
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Figure: Close-up of efficient frontier: small standard deviations

But, when std dev → 0, we know the optimal strategy

Invest all wealth in bond

Point on frontier (Varp[W (T )],Ep[W (T )]) = (0, 134.99)

Convergence is very slow near Varp[W (T )] = 0
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Why is convergence so slow?

Recall that

U(w , v , τ) = inf
p(·)∈Z

E
p(·)
τ,w ,v

[(
W (T )− γ

2

)2]
Consider:

Wopt =
γ

2
e−r(T−t)

Proposition 2

If W (t∗) = Wopt , then an optimal strategy is to set p = 0 9

∀t > t∗. This implies that

U(
γe−rτ

2
, v , τ) = 0

9Proof: E [(W (T )− γ/2)2] = 0 with certainty.
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Culprit: linear interpolation
Recall we have to interpolate at the foot of the characteristic for
the Semi-Lagrangian method

Linear interpolation will diffuse solution near this optimal point

0 0.5 1 1.5
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Data Point
Data Point

Linear
Interpolant

Linear
Interpolant
Using Known
Zero Value

Zero Value
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A better interpolant

Solution to inaccurate linear interpolation

→ When interpolating, take into account we know exact solution

at point (γe
−rτ

2 , v).

Note:

Optimal strategy at (w , v) = (γe
−rτ

2 , v) is p = 0

PDE degenerates to first order PDE when p = 0

Simple backward differencing for Uw would be very diffusive

Semi-Lagrangian timestepping allows us to interpolate with
knowledge of exact solution when w = Wopt(t)
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Improved linear interpolation
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Figure: Close-up of efficient frontier: small standard deviations. Linear

interpolation using U(γe
−rτ

2 , v , τ) = 0
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One more trick

Recall that for each point on the frontier (fixed γ) we solve HJB
PDE and store controls at each point

Compute (Varp[·],Ep[·])
1 PDE Method

Use stored controls, and linear PDEs to determine
(Varp[·],E p[·])

2 Alternative: Hybrid PDE and Monte Carlo method

Use stored controls, solve SDES, compute (Varp[·],E p[·]) by
Monte Carlo

Note: controls computed using HJB PDE in both cases
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Convergence: Pure PDE vs. Hybrid(PDE + MC)
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Figure: Comparison of Hybrid (PDE + Monte Carlo) and pure PDE
approach
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Efficient Frontier (vary speed of mean reversion κ)
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Figure: T = 10 years. w0 = 100. κ = 5 ' 2.5 months mean reversion
time. Curves for κ = 5, 20 very close.
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Long Term Investment: Stochastic Volatility Unimportant?
Fix γ (parameter that traces out efficient frontier)

A Assume constant volatility GBM10, compute and store optimal
strategy

B Assume stochastic volatility11, compute and store optimal
strategy

Assume real world follows stochastic volatility, compute result
using MC simulations, for both A and B

γ = 540 γ = 1350
Mean Stndrd Dev Mean Stndrd Dev

GBM Control A 212.68 58.42 329.13 207.23
Stoch Vol Control B 213.99 58.53 331.28 207.37

Table: κT > 20, stochastic vol well approximated by GBM.

10Constant volatility = mean value from stochastic vol model
11κ ' 5, T = 10 years
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Conclusions

If the control appears only in the first derivative term

→ Semi-Lagrangian timestepping simple and effective

Similar timestepping method can be used for impulse control.

Control appearing in 2nd derivative terms

→ For non-zero correlation, need monotone discretization (wide
stencil)

→ Non-linear algebraic equations easily solved using Policy
iteration

Low accuracy control (e.g. GBM for stoch vol, coarse control
set discretization)

→ Accurate value function. Why?

Challenges:

Higher dimensions
Wide stencil only 1st order
Solution of local optimization problem at each node (need
global optimum)
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Regime Switching: Motivation

Basic idea: stochastic process consists of different regimes

Stocks: low, high volatility regimes

Commodities: low, high mean reversion values

Intuitive economic interpretation, produces smiles (equities), spike
phenomena (electricity), jumps.

Computationally inexpensive compared to a stochastic volatility,
jump diffusion model.

Example applications:

Long term insurance guarantees
Electricity markets
Natural gas
Trading strategies
Stock loans

Convertible bonds
Interest rate derivatives
Foreign exchange
Optimal Forest Harvesting
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Electricity Prices: GBM plus spikes
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Stock Price Bubbles
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Objective

Many methods have been proposed for pricing American options
under regime switching.
→ Which ones actually work?

We will consider this problem as a special case of an abstract
stochastic control problem (an HJB equation).

This will allow us to analyze most existing methods, as well as
consider some new techniques.

Our abstract methods can be immediately applied to more
general control problems, assuming regime switching and/or
jumps.

Easy extension to Markov modulated jump diffusion.

Singular control problems also fall under the abstract
formulation.
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Requirements for our methods

We are looking for general purpose methods with the properties

(a) Unconditionally stable

(b) Do not require special forms for drift, diffusion, transition rates

Note that most semi-analytic methods violate (b)

Commodities (e.g. natural gas): price, time dependent mean
reversion levels, jump terms, common

Convertible bonds: transition rates (default intensities) are
usually asset price dependent.

For example, FFT methods can be very fast, but have problems if
the PDE cannot be transformed to having constant coefficients.
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Regime Switching: Equity Model

P measure process

dS = µPj S dt + σj S dZ +
K∑

k=1

(ξjk − 1) S dXjk ; j = 1, . . . ,K ,

σj volatility in regime j

dZ increment of a Wiener process

µPj drift in regime j

where dX controls the transition of the Markov chain

dXjk =

{
1 with probability λPjk dt + δjk
0 with probability 1− λPjk dt − δjk

When a transition j → k occurs, S → ξjkS . ξjk are deterministic
functions of (S , t).
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No arbitrage value: contingent claim
Let Vj be the value of the option in regime j .
Construct hedging portfolio

P = −Vj + e S +
K−1∑
k=1

wkFk

e = units of the underlying asset

Fk = price of additional hedging instrument

wk = units of asset priced Fk

If assets with prices {S ,F1, . . . ,FK−1} form a non-redundant set
(Kennedy, 2008; Forsyth, Vetzal, JEDC, 2014), then perfect hedge
possible.
Define risk neutral transition rates λjk , and

λjj = −
K∑

k=1
k 6=j

λjk ; ρj =
K∑

k=1
k 6=j

λjk(ξjk − 1) ; λj =
K∑

k=1
k 6=j

λjk .
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HJB Equation

Define operators

LjVj =
σ2j S2

2
DSSVj + (r − ρj)SDSVj − (r + λj)Vj

JjV =
K∑

k=1
k 6=j

λjk
λj
Vk(ξjkS , τ) ,

where r is the risk free rate, DS ,DSS differential operators.

American option price given by coupled system of PDEs:

min

[
Vj ,τ − LjVj − λjJjV, Vj − V∗

]
= 0 ; j = 1, . . . ,K ,

V∗ = option payoff
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Discretization

Define a set of nodes {S1,S2, ...,Simax}, τn = n∆τ .

Let V n
i ,j be the approximate solution at (Si , τ

n), regime j .

Define vector of size N = K × imax

V n = [V n
1,1, ...,V

n
imax,1, . . . ,V

n
1,K , ...,V

n
imax,K ]′

Define Lhj as the discrete form of Lj . Use forward, backward,
central differencing

(Lhj V n)ij = αiV
n
i−1,j + βiV

n
i+1,j − (αi + βi + r + λi )V n

i ,j

αi ≥ 0 ; βi ≥ 0

• Central differencing as much as possible (Wang and Forsyth,
2008)
• Positive coefficient discretization

11 / 40



Lecture 6

Jump Terms

The interesting parts of this problem are the coupling terms
between regimes (regime j → k):

[J h
j V n]i ,j =

K∑
k=1
k 6=j

λjk
λj

I hi ,j ,kV n ,

where I hi ,j ,kV n is a linear interpolation operator in regime k

I hi ,j ,kV n = wV n
m,k + (1− w)V n

m+1,k , w ∈ [0, 1]

' Vk(min(Smax, ξjkSi ), τ
n) .

• Jumps localized to [0, Smax].
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Explicit American constraint and regime coupling
Simplest approach (first order in time)(

1

∆τ
− Lhj

)
V̂ n+1
i ,j =

V n
i ,j

∆τ
+ λj [J h

j V n]i ,j

V n+1
i ,j = max(V̂ n+1

i ,j ,V∗i ) (1)

Proposition (Unconditional stability)

If a positive coefficient method is used to form Lhj , and linear

interpolation is used in J h
j , then scheme (1) is unconditionally

stable.

Proof.
This is easily proven using maximum analysis.

Remark (Computational Cost)

This method requires solution of K decoupled tridiagonal systems
in each timestep, and is consequently very inexpensive.
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Direct Control Formulation

Rewrite HJB equation in control form, with control ϕ

max
ϕ∈{0,1}

[
Ω ϕ(V∗ − Vj)− (1− ϕ)(Vj ,τ − LjVj − λjJjV)

]
= 0 , (2)

• Scaling factor Ω > 0 introduced
↪→ No effect for exact solution

• Discretize (2), replace Lj by Lhj , etc.
↪→Crank-Nicolson timestepping

• Scaling factor important for discretized equations
↪→ Iterative methods compare two non-zero terms in max(·)
expression
↪→ Note terms in max(·) have different units
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Penalty Formulation
Control form of penalized equations:

Vεj ,τ = LjVεj + λjJjVε + max
ϕ∈{0,1}

[
ϕ

(V∗ − Vεj )

ε

]
.

This is mathematically equivalent to

max
ϕ∈{0,1}

[
ϕ

{
(V∗ − Vεj )− ε(Vεj ,τ − LjVεj − λjJjVε)

}
−(1− ϕ)(Vεj ,τ − LjVεj − λjJjVε)

]
= 0 , (3)

• Discretize (3), replace Lj by Lhj , etc.

If ε = ∆τ/C , then this is a consistent discretization of the
American option problem control problem
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Viscosity Solution

Remark (Convergence to the Viscosity Solution)

Regime switching is a special case of the more general systems of
Variational Inequalities (VIs) considered in (Crepey, 2010), where it
is shown that such VIs have unique, continuous viscosity solutions.
Note that the definition of a viscosity solution must be generalized
for systems of PDEs.
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Form of the Discretized Equations
If the American constraint, and regime coupling terms implicit
↪→ A nonlinear set of equations are solved each timestep
↪→ For both penalty and direct control methods, equations have
same form.

[A(Q)− B(Q)] U = C(Q)

with Q` = argmax
Q∈Z

[
−A(Q)U + B(Q)U + C(Q)

]
`

.

where Q is the vector of controls

Q = [ϕn+1
1,1 ., ϕ

n+1
imax,1

, . . . , ϕn+1
1,K , ..., ϕ

n+1
imax,K

]′

and U is the vector of solution values at τn+1

U = [V n+1
1,1 , ...,V n+1

imax,1
, . . . ,V n+1

1,K , ...,V n+1
imax,K

]′
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Splitting

Remark (Dependence on Control)

It is important to note that [A]`,m, [B]`,m, [C]` depend only on Q`.
Consequently, we can write the equations in more compact form

max
Q∈Z

{
−A(Q)U + B(Q)U + C(Q)

}
= 0

Z is the set of admissible controls (4)

A contains only terms which couple nodes within the same regime.
↪→ A is block tridiagonal, easy to factor.

B contains terms which couple different regimes.

[A− B]U = C may be non-trivial to solve
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Properties of A,B

Since a positive coefficient discretization is used, we have the
following results

B ≥ 0

(A− B) and A are strictly diagonally dominant M matrices

Remark (M matrices)

We remind the audience that a matrix A is an M matrix if the
offdiagonals are nonpositive, and A−1 ≥ 0.
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Policy Iteration

Algorithm 1 Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Qk
` = argmax

Q`∈Z

{
[−A(Q) + B(Q)]Uk + C(Q)

}
`

4: Solve [A(Qk)− B(Qk)]Uk+1 = C(Qk)
5: if converged then
6: break from the iteration
7: end if
8: end for

Theorem (Convergence of Policy Iteration)

If [A(Q)− B(Q)] is an M matrix, Policy iteration converges to
the unique solution of equation (4).
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Fixed Point Policy Iteration

We would like to avoid solving the full Policy matrix on each
iteration.

Algorithm 2 Fixed Point-Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Qk
` = argmax

Q`∈Z

{
−
[
A(Q)− B(Q)

]
Uk + C(Q)

}
`

4: Solve A(Qk)Uk+1 = B(Qk)Uk + C(Qk)
5: if converged then
6: break from the iteration
7: end if
8: end for
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The following results are proven in (Huang, Forsyth, Labahn, 2012,
SINUM)

Theorem (Convergence of Fixed Point-Policy Iteration)

If A(Q) is an M matrix, B(Q) ≥ 0, and ∃C4 < 1 such that

‖A(Qk)−1B(Qk−1)‖∞ ≤ C4 and ‖A(Qk)−1B(Qk)‖∞ ≤ C4 ,

then the fixed point-policy iteration in Algorithm 2 converges.

Corollary

The fixed point-policy iteration converges unconditionally for the
penalty discretization and converges for the direct control
discretization if the scaling factor satisfies

Ω > θ · λ̂ where λ̂ = max
j
λj .

θ =

{
1 fully implicit

1/2 Crank Nicolson
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Local Policy Iteration

Salmi and Toivanen (2010) suggest the following idea for American
options under jump diffusion (single regime)

Lag jump terms one iteration

Solve American LCP (Linear Complementarity) problem with
frozen jump terms

Convergence is proven using properties of LCP

We can write this algorithm within our general framework

We can also obtain a general convergence result, applicable to
our abstract control problem

This idea can be applied to many HJB problems

Regime switching is a special case of this general result
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Local Policy Iteration

Algorithm 3 Local Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Solve : max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
= 0

4: if converged then
5: break from the iteration
6: end if
7: end for

Remark (Local Nonlinear Solution)

Note that line 3 of this algorithm requires the solution of the
nonlinear local control problem with the regime coupling terms
(that is BUk) lagged one iteration.
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Convergence: Local Policy Iteration

The following results are given in (Huang, Forsyth, Labahn, 2011,
SISC)

Theorem (Convergence of Local Policy Iteration)

If A(Q) is an M matrix, B(Q) ≥ 0 and

max
Q∈Z
‖A(Q)−1B(Q)‖∞ ≤ C5 < 1 , (5)

then the local policy iteration (3) converges. Furthermore, if U∗ is
the solution to equation (4), and E k = Uk − U∗, then

‖E k+1‖∞ ≤ C5‖E k‖∞ . (6)
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Convergence Rate for Regime Switching

Using the convergence theorem for local policy iteration and the
properties of A(Q) and B(Q), we easily obtain the following

Corollary

Local Policy Iteration for either the penalty or direct control
formulation of the regime switching, American option problem
converges at the rate

‖E k+1‖∞
‖E k‖∞

≤ θλ̂∆τ

1 + θ(r + λ̂)∆τ
where λ̂ = max

j
λj

θ = 1, fully implicit; θ = 1/2, CN

• Note that since usually λ̂∆τ is small (e.g. < 10−2), convergence
is rapid.
• However we are left with the problem of having to solve the local
nonlinear problem at each iteration.
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A Bad Idea: iterated optimal stopping

Recently, several authors have suggested an iterated optimal
stopping approach in several contexts (including American options
under regime switching)

Freeze regime coupling terms

Obtain entire solution (over all timesteps) with these frozen
terms

Update coupling terms and repeat

Note: each iteration requires storage of the entire solution (all
mesh points) for all timesteps.

We can show that iterated optimal stopping

Converges slower than Local Policy iteration

Takes more storage

⇒ Forget it!
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Numerical Example: Three Regimes
Payoff: Put, Butterfly

Expiry Time .50
Exercise American
Strike: Put 100
Butterfly Parameters K1,K2 90, 110
Risk free rate r .02
Penalty Parameter ε 10−6∆τ
Scale factor Ω 1/ε
Smax 5000
Relative Convergence Tolerance 10−8

λ =

 −3.2 0.2 3.0
1.0 −1.08 .08
3.0 0.2 −3.2

 ; ξ =

 1.0 0.90 1.1
1.2 1.0 1.3

0.95 0.8 1.0

 ; σ =

 .2
.15
.30

 .

λi ,j transition probability regime i → j . S → Sξi ,j when transition
i → j occurs.
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American Butterfly

Contract can only
be early exercised as
a unit.

Severe numerical
test case used by
several authors.
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Sequence of Grids/timesteps

Refine S Nodes Timesteps Timesteps Unknowns
Level (Put) (Butterfly)

0 51 34 34 153
1 101 66 67 303
2 201 130 132 603
3 401 256 261 1203
4 801 507 519 2403
5 1601 1010 1033 4803
6 3201 2015 2062 9603
7 6401 4023 4118 19203

Table: Grid/timestep data for convergence study, regime switching
example. On each grid refinement, new fine grids are inserted between
each two coarse grid nodes, and the timestep control parameter is halved.
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Implicit coupling vs. explicit coupling (butterfly)

Explicit Coupling Fully Implicit Crank Nicolson1

Refine Value Ratio Value Ratio Value Ratio
0 3.9168371 N/A 4.4089970 N/A 4.4442032 N/A
1 4.1594341 N/A 4.4352395 N/A 4.4526625 N/A
2 4.2819549 1.98 4.4352395 1.8 4.4582809 1.5
3 4.3512466 1.8 4.4554933 2.4 4.4598662 3.5
4 4.3916690 1.7 4.4580458 2.3 4.4602286 4.4
5 4.4158036 1.7 4.4592283 2.2 4.4603215 3.9
6 4.4308340 1.6 4.4597991 2.1 4.4603452 3.9
7 4.4404872 1.55 4.4600781 2.04 4.4603512 3.9

Table: Value at t = 0, S = 93, Regime 2. Ratio is the ratio of successive
changes as the grid is refined. Butterfly payoff.

Implicit coupling 3− 5 iterations per step
↪→ More efficient than explicit coupling

1With Rannacher timestepping
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Full Policy Iteration

Recall basic step of full policy iteration

[A(Qk)− B(Qk)]Uk+1 = C(Qk)

compared with fixed point policy iteration

A(Qk)Uk+1 = B(Qk)Uk + C(Qk)

Full policy iteration requires solving [A− B]Uk+1 = C
↪→ This may be costly.

Fixed point policy requires solving AUk+1 = BUk + C
↪→ This is easy (tridiagonal)
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Full Policy Iteration vs. Fixed Point Policy

Linear Solution Outer Itns Inner Itns CPU time
Method per step per Outer Itn (Normalized)

Full Policy Iteration, Algorithm 1
Direct (Min degree) 2.4 N/A 48.50

GMRES (ILU(0)) 2.4 1.91 4.85
Simple Iteration2 2.4 2.06 1.53

Fixed Point Policy Iteration, Algorithm 2
Direct

(tridiagonal) 3.22 N/A 1.0

Table: Grid refinement level 5. Regime switching, American option,
penalty formulation, put payoff. All methods used the same number of
timesteps. Crank Nicolson timestepping used.

• Fixed point policy iteration is the winner

2A(Qk)Um+1 = B(Qk)Um + C(Qk); m = 1, ...
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Comparison: Direct Control, Penalty Method

Number of iterations/step
Refinement Direct Control Penalty

Ω = 100 Ω = 104 Ω = 106/(∆τ) 1/ε = 106/(∆τ)
0 5.40 5.40 5.40 5.40
1 4.75 4.75 4.75 4.75
2 4.25 4.25 4.25 4.25
3 3.99 3.75 3.75 3.75
4 3.97 3.70 3.50 3.55
5 4.12 3.75 3.17 3.22
6 4.65 4.26 3.00 3.04
7 6.48 5.19 3.00 3.03

Table: Number of fixed point-policy iterations per timestep. Crank
Nicolson timestepping used. American put. Fixed point policy iteration.

• Scaling is important for the Direct Control method
↪→ A good choice is Ω = 1/ε, where ε is the penalty parameter.
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Floating Point Considerations

Both penalty and direct control methods require computing a term

Penalty
Vi ,j − V∗i

ε
Direct Control Ω(Vi ,j − V∗i )

Ω =
1

ε
=

C

∆τ

Near the exercise region
• We subtract two nearly equal numbers, and divide by a small
number
• Round off error will cause a nonconvergence of the iteration if C
is too large
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Floating Point Analysis: ε = ∆τ/C
We can estimate the maximum value for C = Cmax which can be
used.
↪→ If C > Cmax, then nonlinear iteration will not converge, due to
roundoff contamination.

Cmax '
tolerance

2δ
tolerance = is the nonlinear convergence tolerance ' 10−8

δ = is the unit roundoff ' 10−16 ; ⇒ Cmax ' 108

On the other hand if C is too small, then the fixed point policy
iteration may not converge for the direct control method.

Cmin ' λ̂∆τ

Note that accuracy (for a fixed grid size) will degrade for the
penalty method for C small
↪→ We should choose C as large as possible for the penalty method
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Effect of Ω or 1/ε

Ω or 1/ε Direct Control Penalty
C/(∆τ) = 109/(∆τ) *** ***

108/(∆τ) 7.618333108 7.618333108
107/(∆τ) 7.618333108 7.618333108
106/(∆τ) 7.618333108 7.618333107
105/(∆τ) 7.618333108 7.618333106
104/(∆τ) 7.618333108 7.618333088
103/(∆τ) 7.618333108 7.618332912
102/(∆τ) 7.618333108 7.618331174
101/(∆τ) 7.618333108 7.618314664

1/(∆τ) 7.618333108 7.618144290
. . . . . .

10−6/(∆τ) 7.618333108
10−7/(∆τ) ***

Table: Value of the American put, t = 0, S = 100. ∗ ∗ ∗ indicates
algorithm failed to converge. Level 5 grid refinement. Fixed point policy
iteration. Cmax = 108, Cmin = 10−3. Bounds are conservative.
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Direct Control vs. Penalty

A good conservative rule of thumb: choose

Ω =
1

ε
=

C

∆τ

C = 10−2Cmax = 10−2
(tolerance)

2δ

With this choice of C , both penalty and direct control have
similar accuracy, number of iterations

However, we can choose a very wide range for C for the direct
control formulation, and still have virtually no effect on the
solution

The direct control method appears to be superior to the
penalty method in this regard.
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Local Policy vs. Fixed Point Policy

Method Outer Itns Inner Itns Normalized
per timestep per Outer Itn CPU time

American Butterfly
Fixed point policy 3.23 N/A 1.0

Local policy 3.20 1.75 1.44
American Put

Fixed point policy 3.17 N/A 1.0
Local policy 3.16 1.73 1.41

Table: Penalty formulation. Refinement level five.

• Number of outer iterations is almost the same for both Fixed Point
Policy and Local Policy
↪→ Does not seem worthwhile to solve the inner nonlinear problem to
convergence
↪→ Fixed Point Policy has the edge here
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Conclusions

Do not use iterated optimal stopping
→ Local Policy Iteration converges faster and uses less storage

Fixed Point Policy Iteration is the best method, Local Policy
Iteration the runnerup

Both Penalty and Direct Control methods require a
dimensionless scaling parameter

We can estimate the sizes of this parameter (to ensure
convergence in inexact arithmetic, see (Huang et al, APNUM
2013))
Direct Control method is less sensitive to this parameter
compared with the Penalty method

Our formulation is based on an abstract control problem
We can immediately apply these same ideas to more complex
problems, e.g. singular control (Huang et. al (2012), IMAJ
Num Anal), optimal switching (power plant operation).

Local Policy Iteration may be useful for these more complex
control problems
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