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The Basic Problem

Suppose you are saving for retirement (i.e. 20 years away)

A standard problem is

What is your portfolio allocation strategy?

i.e. how much should you allocate to bonds, and how much to
equities (i.e. an index ETF)

How should this allocation change through time?

Typical rule of thumb: fraction of portfolio in stocks
= 100 minus your age.

Target Date (Lifecycle) funds

Automatically adjust the fraction in stocks (risky assets) as
time goes on
Use a specified “glide path” to determine the risky asset
proportion as a function of time to go
At the end of 2013, over $600 billion invested in US1 2

1Morningstar
2Does not include default allocations in DC plans
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Risk-reward tradeoff

This problem (and many others) involve a tradeoff between risk
and reward.

Intuitive approach: multi-period mean-variance optimization

When risk is specified by variance, and reward by expected
value

→ Even non-technical managers can understand the tradeoffs and
make informed decisions3

In this talk, I will determine the optimal asset allocation strategy

Objective: minimize risk for specified expected gain

Use tools of optimal stochastic control

3I am now a member of the University of Waterloo Pension Committee. I
have seen this problem first-hand
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Multi-period Mean Variance

Criticism: variance as risk measure penalizes upside as well as
downside

I hope to convince you that multi-period mean variance
optimization

Can be modified slightly to be (effectively) a downside risk
measure

Has other good properties: small probability of shortfall

Outcome: optimal strategy for a Target Date Fund

I will show you that most Target Date Funds being sold in the
marketplace use a sub-optimal strategy
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Example: Target Date (Lifecycle) Fund with two assets
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = (µ− λκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− λdt

1 with probability λdt,

log J ∼ N (µJ , σ
2
J). ; κ = E [J − 1]
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Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest
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Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (1)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of Wa(T ) are as observed at time t, initial
state x .
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Basic problem: find Efficient frontier

We construct the efficient frontier by finding the optimal control
c(·) which solves (for fixed λ) 4

sup
c

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

}
(2)

• Varying λ ∈ [0,∞) traces out the efficient frontier

• λ = 0;→ we seek only maximize cash received, we don’t care
about risk.
• λ =∞→ we seek only to minimize risk, we don’t care about the
expected reward.

4We may not find all the Pareto optimal points by this method unless the
achievable set in the (E c [Wa(T )],Var c [Wa(T )]) plane is convex.
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Mean Variance: Standard Formulation

Let c∗t (x , u), u ≥ t be the optimal policy for (3)

sup
c(X (u),u≥t)

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at t

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at t

}
, (3)

Then c∗t+∆t(x , u), u ≥ t + ∆t is the optimal policy which
maximizes

sup
c(X (u),u≥t+∆t))

{
E
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Reward as seen at t+∆t

−λVar
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Risk as seen at t+∆t

}
.
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Pre-commitment Policy

However, in general

c∗t (X (u), u)︸ ︷︷ ︸
optimal policy as seen at t

6= c∗t+∆t(X (u), u)︸ ︷︷ ︸
optimal policy as seen at t+∆t

; u ≥ t + ∆t︸ ︷︷ ︸
any time>t+∆t

,

(4)
↪→ Optimal policy is not time-consistent.

The strategy which solves problem (3) has been called the
pre-commitment policy5

Can force time consistency 6

↪→ sub-optimal compared to pre-commitment solution.

We will look for the pre-commitment solution

Pre-commitment is difficult for most investors!

5Basak,Chabakauri: 2010; Bjork et al: 2010
6Wang and Forsyth (2011)
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Reformulate MV Problem ⇒ Dynamic Programming

Embedding technique7: for fixed λ, if c∗(·) maximizes

sup
c(X (u),u≥t),c(·)∈Z

{
E c
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar ct,x [Wa(T )]︸ ︷︷ ︸
Risk

}
,

Z is the set of admissible controls (5)

→ ∃ γ such that c∗(·) minimizes

inf
c(·)∈Z

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (6)

7Does not require that we have convex constraints. Can be applied to
problems with nonlinear transaction costs. Contrast with Lagrange multiplier
approach. (Zhou and Li (2000), Li and Ng (2000) )
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Construction of Efficient Frontier

Regard γ as a parameter ⇒ determine the optimal strategy c∗(·)
which solves

inf
c(·)∈Z

E
c(·)
t,x

[
(Wa(T )− γ

2
)2

]
Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier8

8Strictly speaking, since some values of γ may not represent points on the
original frontier, we need to construct the upper left convex hull of these points
(Tse, Forsyth, Li (2014), SIAM J. Control Optimization) .
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Equivalence of MV optimization and target problem

MV optimization is equivalent9 to investing strategy which

Attempts to hit a target final wealth of γ/2

There is a quadratic penalty for not hitting this wealth target

From (Li and Ng(2000))

γ

2︸︷︷︸
wealth target

=
1

2λ︸︷︷︸
risk aversion

+ E
c(·)
t=0,x0

[Wa(T )]︸ ︷︷ ︸
expected wealth

Intuition: if you want to achieve E [Wa(T )], you must aim
higher

9Vigna, Quantitative Finance, to appear, 2014
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HJB PIDE

Determination of the optimal control c(·) is equivalent to
determining the value function

V (x , t) = inf
c∈Z

{
E x ,t
c [(Wa(T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV ,

JV ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)
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HJB PIDE II

The value function (and the control c(·)) is given by solving the
impulse control HJB equation

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

if (s + b > 0) (7)

Along with liquidation constraint if insolvent

V (s, b, t) = V (0,Wa(s, b), t)

if (s + b) ≤ 0 and s 6= 0 (8)

We can easily generalize the above equation to handle the discrete
rebalancing case.
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Computational Domain10

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ­∞, +∞]

(0,0)

+∞

­∞

+∞

10If µ > r it is never optimal to short S
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Global Optimal Point

Examination of the HJB equation allows us to prove the following
result (Dang and Forsyth (2014))

Proposition

∀γ > 0, the value function V (s, b, t) is identically zero at

V (0,F (t), t) ≡ 0 ; F (t) =
γ

2
e−r(T−t) , ∀t

Since V (s, b, t) ≥ 0

V (0,F (t), t) = 0 is a global minimum

Any admissible policy which allows moving to this point is an
optimal policy

Once this point is attained, it is optimal to remain at this
point

19 / 33



Globally Optimal Point 11

S

B

Liquidate

W = 0

V(0, F(t) ) = 0

F(t) = e
­r(T­t)

(γ/2)

Increasing
(T­t)

W = F(t)

Move to optimal
point

11This is admissible only if γ > 0
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Optimal semi-self-financing strategy

Theorem (Dang and Forsyth (2014))

If Wa(t) > F (t) ≥ 0,12 t ∈ [0,T ], an optimal MV strategy is13

Withdraw cash Wa(t)− F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

Criticism of quadratic utilities

Correspond to a decreasing utility function if Wa(T ) ≥ F (T )

But for optimal semi-self-financing MV strategy,
Wa(T ) ≤ F (T )

⇒ The optimal semi-self-financing MV strategy is

Equivalent to maximizing a well behaved quadratic utility
function

12F (t) is the discounted wealth target
13A similar semi-self-financing strategy for the discrete rebalancing case was

first suggested in (Cui, Li, Wang, Zhu (2012) Mathematical Finance).
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Intuition: Multi-period mean-variance

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing14 Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account

Optimal control for the target problem ≡ optimal control for the
Mean Variance problem

This strategy dominates any other MV strategy

→ And the investor receives a bonus in terms of a free cash flow

14Idea that withdrawing cash may be mean variance optimal was also
suggested in (Ehrbar, J. Econ. Theory (1990) )
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Numerical Method

We solve the HJB impulse control problem numerically using a
finite difference method

We use a semi-Lagrangian timestepping method

Can impose realistic constraints on the strategy

Maximum leverage, no trading if insolvent
Arbitrarily shaped solvency boundaries

Continuous or discrete rebalancing

Nonlinearities

Different interest rates for borrowing/lending
Transaction costs

Regime switching (i.e. stochastic volatility and interest rates)

We can prove15 that the method is monotone, consistent, `∞
stable

→ Guarantees convergence to the viscosity solution

15Dang and Forsyth (2014) Numerical Methods for PDEs
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Numerical Examples

initial allocated wealth (Wa(0)) 100
r (risk-free interest rate) 0.04450
T (investment horizon) 20 (years)

qmax (leverage constraint) 1.5
ti+1 − ti (discrete re-balancing time period) 1.0 (years)

mean downward jumps mean upward jumps
µ (drift) 0.07955 0.12168

λ (jump intensity) 0.05851 0.05851
σ (volatility) 0.17650 0.17650

mean log jump size -0.78832 0.10000
compensated drift 0.10862 0.10862

Objective: verify that removing cash when wealth exceeds target is
optimal (i.e. if we win the lottery → withdraw cash).
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Efficient Frontier: discrete rebalancing
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Figure: T = 20 years, Wa(0) = 100.
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Example II

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham16, most investors should

Pick a fraction p of wealth to invest in an index fund (i.e.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

16Benjamin Graham, The Intelligent Investor
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Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy

Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.
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Optimal semi-self-financing asset allocation
Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

We do this by determining the value of γ/2 (the wealth
target) by Newton iteration

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.518 816.62 350.12 Prob(W (T ) < 800) = 0.56
Optimal 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
18Continous rebalancing
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Cumulative Distribution Functions
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Risky Asset
Proportion = 1/2

E [WT ] = 816.62 for both
strategies

Optimal policy: Contrarian:
when market goes down →
increase stock allocation;
when market goes up →
decrease stock allocation

Optimal allocation gives up
gains � target in order to
reduce variance and
probability of shortfall.

Investor must pre-commit to
target wealth
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Mean and standard deviation of the control
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p = fraction in risky asset
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Sensitivity to Market Parameter Estimates

Test: We only know the mean values for the market parameters

Compute control using mean values

But: in real market → parameters are uniformly distributed in
a range centered on mean

Compute investment result using Monte Carlo simulations

Interest rate range Drift rate range Volatility range
[.02, .06] [.06, .14] [.10, .20]

Strategy: computed using fixed parameters

Market Expected Stndrd Pr(W (T ) < 800) Expected
Parameters Value Dev Free Cash

Fixed at Mean 817 143 0.19 6.3

Random 807 145 0.19 30.5

31 / 33



Typical Strategy for Target Date Fund: Linear Glide Path
Let p be fraction in risky asset

p(t) = pstart +
t

T
(pend − pstart)

Choose parameters so that we get the same expected value as the
optimal strategy

pstart = 1.0 ; pend = 0.0

Strategy Expected Stndrd Pr(W (T ) < 800) Expected
Value Dev Free Cash

p = 0.5 817 350 0.56 0.0

Linear19 817 410 0.58 0.0
Glide Path

Optimal 817 143 0.19 6.3

19We can prove that for any deterministic glide path, there exists a superior
constant mix strategy
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Conclusions

Optimal allocation strategy dominates simple constant
proportion strategy by a large margin

→ Probability of shortfall ' 3 times smaller!

But

→ Investors must pre-commit to a wealth target
→ Investors must commit to a long term strategy (> 20 years)
→ Investors buy-in when market crashes, de-risk when near target

Standard “glide path” strategies of Target Date funds

→ Inferior to constant mix strategy20

→ Constant mix strategy inferior to optimal control strategy

Optimal stochastic control: teaches us an important life
lesson

Decide on a life target ahead of time and stick with it
If you achieve your target, do not be greedy and want more

20See also “The false promise of Target Date funds”, Esch and Michaud
(2014); “Life-cycle funds: much ado about nothing?”, Graf (2013)
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