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Some History
In Canada, variable annuities have a long history

Historically known as segregated funds
In 2000, a group of us at UofWaterloo organized a workshop
(in Toronto) on segregated funds

Me: “bla, bla, bla, and now we determine the no-arbitrage price
by solving the following PDE”

Actuary from Insurance company X: “But the market is not
complete, and you can’t hedge.”

Me: “But you have to hedge your exposure to these guarantees.”

Actuary from X: “The risk to us is nothing. Everybody knows,
the market is never down over any ten year period.”

What happened?

Insurance company X takes multi-billion dollar hit to balance
sheet in 2008. Did not hedge variable annuities.
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Cost of hedging

To be clear: I am going to discuss the cost of hedging of a
particular class of variable annuities

Guaranteed Lifelong Withdrawal and Death Benefits
(GLWDB)

Separate the cost of hedging from retail consumer behaviour

Worst case for the hedger

→ Holder carries out loss maximizing withdrawal strategy

Unfortunately referred to as the optimal withdrawal strategy

But it may not be optimal for anyone.
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Overview of GLWDBs

Response to declining availability of defined benefit pension plans
(DB).

Attempt to replicate a DB plan (i.e. lifelong guaranteed cash
flows, with possible increase if market does well).

Contract bootstrapped by initial payment to insurance company, S0

Virtual withdrawal account W (t) and death benefit account
D(t) set to S0

S0 invested in risky assets, value S(t).

Fund management fee and guarantee fee withdrawn from
risky asset account S(t)

At a series of event times, ti (usually yearly) various actions
can be triggered.
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Event actions at ti
Withdrawal Event Holder can withdraw

withdrawal amount ∈ [0,G ∗W (t−i )]

G = spec’d contract rate

W = Withdrawal account

Death benefit account D and risky asset account S reduced by
withdrawal amount.
Note: Contract amount can be withdrawn even if S = 0.

Surrender Event Holder withdraws an amount > G ∗W (t−i )

Penalty charged as fraction of withdrawal

W (t+i ),D(t+i ) reduced proportionately

Total amount withdrawn cannot exceed

G ∗W (t−i ) + S(t−i )
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Events c’t’d

Ratchet Event Withdrawal account can ratchet up, i.e.

W (t+i ) = max(S(t−i ),W (t−i )) (1)

Note: W can never decrease1, even if market crashes.

Bonus Event If holder does not withdraw, withdrawal account
increased

W (t+i ) = (1 + B)W (t−i )

B = bonus rate

1except if the holder surrenders
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Death Benefits, Assumptions

If you die, then your estate gets

max(D(t), S(t)) (2)

Estate guaranteed to get back initial payment (less withdrawals)

We assume

Mortality risk is diversifiable, i.e. determine cost of hedging
for a large number of contracts of similarly aged clients.

Risky asset follows a regime switching process

Contracts are long-term (30 years)
Can impose views on possible future states of the economy

Separate the cost of hedging from retail consumer behaviour
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Computational Procedure

Let V (S ,W ,D, t)2 be the cost of hedging of this guarantee.

Assume that no contract holders will be alive at t = T

V (S ,W ,D,T ) = 0

Work backwards to today (t = 0).

t−i+1 → t+i : solve regime switching PDE

Include fee withdrawals and death benefits
Cost of hedging → Q measure.

Advance solution (backwards in time) across the event time

V (S−,W−,D−, t−i ) = V (S+,W+,D+, t+i ) + cash flows

Then, solve PDE t−i → t+i−1, etc.

2Assume single regime for ease of exposition
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Across Event Times

Let γ be the impulse control applied to the system at ti .

Action due to the holder (e.g. surrender) or contract (e.g.
ratchet)

Let

x = (S ,W ,D) = state

x+(x(t−i ), γ(x(t−i )) = state after control is applied

conditional on x = x(t−i )

C (x(t−i ), γ(x(t−i )) = cash flow after control is applied

conditional on x = x(t−i )

Move solution across event times

V (x, t−i ) = V (x+(x, γ), t+i ) + C (x, γ(x))
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Fair fee

Let α be the fee for this guarantee

We can parameterize the solution as a function of this fee, i.e.

V = V (x, t;α)

The fee α∗ which covers the cost of hedging can be determined by
solving

V (S0,S0,S0, 0;α∗) = S0

since no up-front fee is charged.3

3α∗ found by a Newton iteration, each iteration requires a PDE solve.
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Cost of hedging

Once the control γ is given

Cost of hedging completely determined

E.g. delta hedging can be carried out, delta determined from
PDE solve under Q measure

Note: we have made no assumptions (up to now) about how the
control γ is determined.

We have decoupled the specification of the control from the cost
of hedging.
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Worst Case Cost of Hedging

Under a worst case scenario, the cost of hedging is given by

V (x, t−i ) = max
γ

{
V (x+(x, γ), t+i ) + C (x, γ(x))

}
No-arbitrage price if retail customers could buy/sell annuities.

But, the market is not complete

Upper bound to the cost of hedging these annuities

Unlikely that a retail customer would choose to follow this
strategy4

4Empirical studies in Japanese market show moneyness of guarantee explains
much policy holder behaviour (Knoller et al (2013))
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More General Approach

Assume control is determined by a completely separate process.
Example:

Assume policy holder acts so as to maximize

After tax cash flows (e.g. Moenig and Bauer)
A utility function of the cash flows
etc.

In a PDE context

We solve a completely separate PDE system (under the P
measure)

This PDE system represents the value function being
maximized by the policy holder, V̄ (x, t))

Solve backwards in time → optimal control
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Optimal control: consumption utility

Let U(·) be a consumption utility function.

The control γ̄ is determined by maximizing the policy holder value
function V̄ (·)

V̄ (x, t−i ) = V̄ (x+(x, γ̄), t+i ) + U(C (x, γ̄(x)))

γ̄ = argmax
γ

{
V̄ (x+(x, γ), t+i ) + U(C (x, γ(x)))

}
This control is then fed into the cost of hedging V (·)

V (x, t−i ) = V (x+(x, γ̄), t+i ) + C (x, γ̄(x))
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Numerical Example: Q measure regime switching5

Parameter Value
Volatility σ1 σ2 0.0832 0.2141
Risk-free rate r1 r2 0.0521 0.0521

Rate of transition qQ1→2 qQ2→1 0.0525 0.1364
Initial regime I 1
Initial investment S (0) 100
Contract rate G 0.05
Bonus rate B 0.05
Initial age x0 65
Expiry time T 57
Mortality data Padiska et al (2005)
Ratchets Triennial
Withdrawals Annual

5Parameters from O’Sullivan and Moloney (2010), calibrated to FTSE
options, January, 2007
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Hedging Costs: Worst Case and Contract Rate

Hedging fee (bps)
Case Worst Contract Worst Contract

Death Benefit No Death Benefit
Initial Regime 54 48 27 19

Low Vol
Initial Regime 158 113 86 52

High Vol

Table: Fair hedging fee: regime switching

Worst: assume holder’s strategy produces highest possible
hedging cost

Contract: assume holder always withdraws at rate G ∗W ,
i.e. no surrender, no bonus
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No withdrawal Withdrawal at the contract rate Full surrender

Figure: Observed loss-maximizing strategies at D = 100 under regime 2
(high vol). No ratchet. The subfigures, from top-left to bottom-right,
correspond to t = 1, 2, . . . , 6.
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Control determined by utility consumption model

Assume HARA utility of consumption

U(X ) =


log(aX + b) p = 0
1−p
p

(
aX
1−p + b

)p
0 < p < 1

aX p = 1

p, a, b are parameters.

Now, determine hedging fee, solve two systems of PDEs

A PDE for V̄ determines the withdrawal strategy
(holder utility under P measure)

B PDE for V determines the hedging cost, uses
strategy from (A) (Q measure cash flows)
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Utility based control: cost of hedging
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Figure: Left: initial regime low vol. Right: initial regime high vol. Effects
of varying drift and risk-aversion on the hedging cost fee. No death
benefit.

Upper right maximum: parameters reduce to worst case
hedging cost.
Lower right corner: unrealistically large P measure drift.
Flat region: always withdraw at contract rate G
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Conclusions: Pricing GLWBs

Cost of hedging is known once we know the control strategy
of policy holder

Worst case cost of hedging can be determined by maximizing
contract value
But this may not be optimal for the policy holder

Separate control strategy from cost of hedging

Use completely separate model to determine holder’s optimal
control strategy (e.g. maximize consumption utility)

For a wide range of utility function parameters

Policyholder always withdraws at contract rate
Cost of hedging in this case significantly less than worst-case
cost
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