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The Basic Problem

Suppose you are saving for retirement (i.e. 20 years away)

What is your portfolio allocation strategy?

i.e. how much should you allocate to bonds, and how much to
equities (i.e. an index ETF)

How should this allocation change through time?

Typical rule of thumb: fraction of portfolio in stocks
= 100 minus your age.

Target Date (Lifecyle) funds

Automatically adjust the fraction in stocks (risky assets) as
time goes on
Use a specified “glide path” to determine the risky asset
proportion as a function of time to go
At the end of 2013, over $600 billion invested in US1

1Morningstar
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Risk-reward tradeoff

This problem (and many others) involve a tradeoff between risk
and reward.

Intuitive approach: multi-period mean-variance optimization

When risk is specified by variance, and reward by expected
value

→ Even non-technical managers can understand the tradeoffs and
make informed decisions2

In this talk, I will determine the optimal asset allocation strategy

Objective: minimize risk for specified expected gain

Use tools of optimal stochastic control

2I am now a member of the University of Waterloo Pension Committee. I
have seen this problem first-hand
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Multi-period Mean Variance

Criticism: variance as risk measure penalizes upside as well as
downside

I hope to convince you that multi-period mean variance
optimization

Can be modified slightly to be (effectively) a downside risk
measure

Has other good properties: small probability of shortfall

Outcome: optimal strategy for a Target Date Fund

I will show you that most Target Date Funds being sold in the
marketplace use a sub-optimal strategy
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“All models are wrong: some are useful” 4

Let S be the price of an underlying asset (i.e. TSX index).

A standard model for the evolution of S through time is
Geometric Brownian Motion (GBM)

Basic assumption: price process is stochastic, i.e.
unpredictable3

dS

S
= µ dt + σφ

√
dt

µ = drift rate,

σ = volatility,

φ = random draw from a

standard normal distribution

3If this were not true, then I (and many others) would be rich
4G. Box, of Box-Jenkins and Box-Muller fame.
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Monte Carlo Paths: GBM
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Figure: Ten realizations of possible random paths. Assumption: price
processes are stochastic, i.e. unpredictable. µ = .10, σ = .25.
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What’s Wrong with GBM?

Equity return data suggests market has jumps in addition to
GBM

Sudden discontinuous changes in price

Most asset allocation strategies ignore the jumps, i.e. market
crashes

But, it seems that we get a financial crisis occurring about
once every ten years

Does it make sense to ignore these events?

Jumps are also known as:

Black Swans (see the book with the same title by Nassim
Taleb)
Fat tail events
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TSX Composite monthly log returns 1979-2014
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A Better Model: Jump Diffusion

dS

S
=

GBM︷ ︸︸ ︷
(µ− λκ) dt + σφ

√
dt +

Jumps︷ ︸︸ ︷
(J − 1)dq

dq =

{
0 with probability 1− λdt

1 with probability λdt,

λ = mean arrival rate of Poisson jumps; S → JS

J = Random jump size ; κ = E [J − 1].

GBM plus jumps (jump diffusion)

When a jump occurs, S → JS , where J is also random

This simulates a sudden market crash
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Monte Carlo Paths
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Figure: The arrival rate of the Poisson jump process is .1 per year. Most
of the time, the asset follows GBM. In only one of ten stochastic paths,
in any given year, can we expect a crash. µ = .10, σ = .25.

10 / 35



Example: Target Date (Lifecyle) Fund with two assets

Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = jump diffusion process

Total wealth W

W = S + B (1)

Objective:

Optimal allocation of amounts (S(t),B(t)), which is
multi-period mean-variance optimal

Optimal strategy is in general a function of (W , t)
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Optimal Control
Let:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest
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Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (2)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of Wa(T ) are as observed at time t, initial
state x .
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Basic problem: find Efficient frontier

We construct the efficient frontier by finding the optimal control
c(·) which solves (for fixed λ) 5

max
c

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

}
(3)

• Varying λ ∈ [0,∞) traces out the efficient frontier

• λ = 0;→ we seek only maximize cash received, we don’t care
about risk.
• λ =∞→ we seek only to minimize risk, we don’t care about the
expected reward.

5All investors should pick one of the strategies on the efficient frontier.
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Given this variance:
no other point has a
higher expected value

Conversely: given this
expected value, no other
point has a smaller variance

Each point on the efficient frontier represents a different strategy c(·).
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Mean Variance: Standard Formulation

max
c(X (u),u≥t)

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at t

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at t

}
,

λ ∈ [0,∞) (4)

• Let c∗
t (x , u), u ≥ t be the optimal policy for (4).

Then c∗
t+∆t(x , u), u ≥ t + ∆t is the optimal policy which

maximizes

max
c(X (u),u≥t+∆t))

{
E
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Reward as seen at t+∆t

−λVar
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Risk as seen at t+∆t

}
.
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Pre-commitment Policy

However, in general

c∗
t (X (u), u)︸ ︷︷ ︸

optimal policy as seen at t

6= c∗
t+∆t(X (u), u)︸ ︷︷ ︸

optimal policy as seen at t+∆t

; u ≥ t + ∆t︸ ︷︷ ︸
any time>t+∆t

,

(5)
↪→ Optimal policy is not time-consistent.

The strategy which solves problem (4) has been called the
pre-commitment policy

Your future self may not agree with your current self!
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Ulysses and the Sirens: A pre-commitment strategy

Ulysses had himself tied to the mast of his ship (and put wax in his

sailor’s ears) so that he could hear the sirens song, but not jump to his

death.
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Re-formulate MV Problem → Dynamic Programming6

For fixed λ, if c∗(·) maximizes

max
c(X (u),u≥t)

{
E c
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar ct,x [Wa(T )]︸ ︷︷ ︸
Risk

}
,

(6)

→ There exists γ such that c∗(·) minimizes

min
c(·)

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (7)

Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier

6Li and Ng (2000), Zhou and Li (2000)
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Equivalence of MV optimization and target problem

MV optimization is equivalent7 to investing strategy which

Attempts to hit a target final wealth of γ/2

There is a quadratic penalty for not hitting this wealth target

From (Li and Ng(2000))

γ

2︸︷︷︸
wealth target

=
1

2λ︸︷︷︸
risk aversion

+ E
c(·)
t=0,x0

[Wa(T )]︸ ︷︷ ︸
expected wealth

Intuition: if you want to achieve E [Wa(T )], you must aim
higher

7Vigna, Quantitative Finance, 2014
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HJB PIDE

Determination of the optimal control c(·) ⇒ find the value
function

V (x , t) = min
c(·)

{
E
c(·)
x ,t [(Wa(T )− γ/2)2]

}
,

Value function

Given from numerical solution of a Hamilton-Jacobi-Bellman
(HJB) partial integro-differential equation (PIDE)

This also generates the optimal control c(·).
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Optimal semi-self-financing strategy

Let

F (t) =
γ

2
e−r(T−t)

= discounted target wealth

Theorem (Dang and Forsyth (2014))

If Wa(t) > F (t), t ∈ [0,T ], an optimal MV strategy is

Withdraw cash Wa(t)− F (t) from the portfolio

Invest the remaining amount F (t) in the risk-free asset.

What should you do with the cash you withdraw (the free cash)?

Anything you like (e.g. buy an expensive car).

You are better off withdrawing the cash!
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Intuition: Multi-period mean-variance

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing8 Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account

This strategy dominates any other MV strategy

We never exceed the target

No “upside penalization”

→ And the investor receives a bonus in terms of a free cash flow

8Idea that withdrawing cash may be mean variance optimal was also
suggested in (Ehrbar, J. Econ. Theory (1990) )
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Numerical Examples

initial allocated wealth (Wa(0)) 100
r (risk-free interest rate) 0.04450
T (investment horizon) 20 (years)

qmax (leverage constraint) 1.5
ti+1 − ti (discrete re-balancing time period) 1.0 (years)

mean downward jumps mean upward jumps
µ (drift) 0.07955 0.12168

λ (jump intensity) 0.05851 0.05851
σ (volatility) 0.17650 0.17650

mean log jump size -0.78832 0.10000

Objective: verify that removing cash when wealth exceeds target is
optimal.
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Efficient Frontier: sometimes its optimal to spend money
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Figure: T = 20 years, Wa(0) = 100.
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Example II

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham9, most investors should

Pick a fraction p of wealth to invest in an index fund (e.g.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

9Benjamin Graham, The Intelligent Investor
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Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy

Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.

29 / 35



Optimal semi-self-financing asset allocation

Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
Optimal 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
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Cumulative Distribution Functions
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Investor must pre-commit to
target wealth
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Mean and standard deviation of the control
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Typical Strategy for Target Date Fund: Linear Glide Path
Let p be fraction in risky asset

p(t) = pstart +
t

T
(pend − pstart)

Choose parameters so that we get the same expected value as the
optimal strategy

pstart = 1.0 ; pend = 0.0

Strategy Expected Stndrd Pr(W (T ) < 800) Expected
Value Dev Free Cash

p = 0.5 817 350 0.56 0.0

Linear11 817 410 0.58 0.0
Glide Path

Optimal 817 143 0.19 6.3

11We can prove that for any deterministic glide path, there exists a superior
constant mix strategy
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Sensitivity to Market Parameter Estimates

Test: We only know the mean values for the market parameters

Compute control using mean values

But: in real market → parameters are uniformly distributed in
a range centered on mean

Compute investment result using Monte Carlo simulations

Interest rate range Drift rate range Volatility range
[.02, .06] [.06, .14] [.10, .20]

Strategy: computed using fixed parameters

Market Expected Stndrd Pr(W (T ) < 800) Expected
Parameters Value Dev Free Cash

Fixed at Mean 817 143 0.19 6.3

Random 807 145 0.19 30.5
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Conclusions

Optimal allocation strategy dominates simple constant
proportion strategy by a large margin

→ Probability of shortfall ' 3 times smaller!

But

→ Investors must pre-commit to a wealth target
→ Investors must commit to a long term strategy (> 20 years)
→ Investors buy-in when market crashes, de-risk when near target

Standard “glide path” strategies of Target Date funds

→ Inferior to constant mix strategy12

→ Constant mix strategy inferior to optimal control strategy

Optimal stochastic control: teaches us an important life
lesson

Decide on a life target ahead of time and stick with it
If you achieve your target, do not be greedy and want more

12See also “The false promise of Target Date funds”, Esch and Michaud
(2014); “Life-cycle funds: much ado about nothing?”, Graf (2013)
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