CS 791 Project Report: Reptile Playground

Patrick Nicholson

May 11, 2010

Abstract

This report describes an interactive software tool, called Reptile Playground, which can be used
to assist in the specification of substitution tilings. As we will demonstrate, in many cases we can
easily draw sets of substitution rules using Reptile Playground that would otherwise be difficult to
specify.

1 Introduction and terminology

Reptile Playground is a program for specifying and drawing substitution tilings. Substitution tilings are
tilings of the plane which are created by iterating a set of substitution rules. Many intricate designs can
be created from a seemingly simple set of rule. Furthermore, these tilings have practical applications in
crystallography, as they are used to model quasi-crystals [6]. Substitution tilings are a great example of
a mathematical idea which predates an incredibly useful application; in this case by almost about eight
years!

Before going any further, we should provide some idea about what substitution tilings are, and how
they work. The goal here is to give some intuition without diving into the actual math behind them.
Mathematically rigorous definitions for the topics discussed here can be found in [6, 4, 8, 11]. However,
to use and enjoy Reptile Playground, only the basic ideas are needed.

I like to think of substitution tilings as a kind of grammar, and substitution rules as production
rules for that grammar. Depending on if you have an undergraduate degree in computer science this
comparison might be helpful. In a substitution tiling, we begin with a single tile, analogous to a start
symbol in a grammar. To proceed, we replace this initial tile with one or more tiles specified by the
substitution rules. The orientation and position of these new tiles is governed by the substitution rules.
An example of this can be seen in Figure 1. These new tiles are often scaled down, or deflated, versions
of either the original tile, or possibly other tiles; each having their own substitution rules’.

This procedure of replacing tiles by smaller tiles can then proceed ad infinitum, allowing us to tile
the plane using simple substitution rules. We refer to the process of replacing all of the current tiles by

L Alternatively, we may inflate the original tile before applying the substitution rules. There is no difference between
these two methods other than that the size of tiles remains fixed if we inflate first. For our purposes we will refer to the
deflation method, since Reptile Playground operates in that way.

Figure 1: Applying substitution rules: (top) A pinwheel is replaced by (bottom) 5 scaled down pinwheels,
oriented to completely cover the original.

Figure 2: Scherer’s “B12” irreptile.

new tiles as iterating the substitution rules. Since the rules are applied relative to the orientations of
the individual tiles, we often abstract the notion of a set of tiles with the same set of substitution rules,
referring to this set of tiles as a single prototile. Usually a substitution tiling can be represented as a
small set of prototiles, and rules which act upon those prototiles.

In general, there is no requirement that the scaled down tiles exactly cover a prototile. In fact, in
many cases the scaled down tiles extend beyond the boundary of the original tile, causing overlapping
tiles as the rules are iterated. In most cases these overlapping tiles are congruent, so there is no difference
between iterating the tiling with overlapping tiles and iterating the tiling without overlapping tiles.

We finish our terminology section by explaining the name of the program. A reptile is a substitution
tiling consisting of only one prototile, in which the rules completely cover the original prototile; see
Figure 1. Although it is often the case that the deflation factor is the same for all of the rules within a
given tiling, our program supports various deflation factors within a tiling. This allows the user to create
so-called irreptiles [11], an example of which can be seen in Figure 2.

Reptile Playground is designed so that a user can interactively apply transformations to tiles in order
to define substitution rules by what the rules should do, rather than specifying transformation matrices
manually. Because of this interface, we often abuse proper definitions and refer to the scaled down tiles
as rules: for example, we might say Figure 1 illustrates five rules. The reason for this is brevity, as it
is much easier to say “five rules” rather than “five tiles specified by five transformation matrices, which
when combined comprise the substitution rules for this tiling”.

2 Similar software available on the Internet

While developing Reptile Playground, I was able to find a few pieces of tiling software that were related.
In no particular order they are:

e Subtile [3]: a Tcl/Tk program designed to display a set of predefined substitution rules to the user.
The user can interactively iterate the rules and view the results. However, Subtile does not allow
the specification of new rules, other than by hard coding them into the program.

e Quasitiler [1]: a great program for visualizing tilings with quasicrystal structure. The program
allows the user to modify several parameters interactively to create colorful tilings. Although
Quasitiler uses the “cut and project” method rather than substitution rules, we mention it because
the two methods are related.

e Tilewizard [9]: a command line tool for creating substitution tilings. The tilings are specified in a
file format, where each rule consists of a transformation matrix and color information. This program
was used to create many of the beautiful tilings found on the Tiling Encyclopedia webpage [7].

e We note that there are also several programs available, written in both Matlab or Mathematica,
that can be used to generate certain kinds of substitution tilings, for example [5].

Of all of the software that is available, none provide an interactive way of specifying substitution
rules. Therefore, interactivity is the main purpose of Reptile Playground.

3 Implementation and Program Description

Reptile Playground was implemented entirely in Java using the Graphics2D library for drawing and
Swing for the user interface. For exporting SVG images the Batik SVG Toolkit was used [10]. To give

Rep-Tile Playground T [E]x
File Edit Tools Algorithms View Run

EDIT_MODE | lord | Rule[lord,8] | 8=(331.379667)

Figure 3: A screenshot of Reptile Playground in edit mode.

an overview of how it works, it is probably most instructive to simply describe the program and how it is
used. For this reason, we will jump right into a description of the features by looking at the screenshot
in Figure 3.

The first thing to notice is that there is a line of text drawn on the canvas area of the program. This
text contains important information about the current state of the program. It can be interpreted as
the fields:

mode | prototile name | selected rule | transformation
Where each of these fields means the following:

e mode: The current mode that the program is in: either Edit Mode or Draw Mode. Edit Mode
allows the user to define and manipulate tiles and rules, while Draw Mode allows the user to iterate
the rules and view the resulting tilings.

e prototile name: The name of the prototile that we are editing. In the figure the tile being edited
is from the Lord tiling; hence the name “lord”. Tile names can be assigned and changed by the
user.

e selected rule: An identifier for the rule the is currently selected. Since rules map tile A to tile
B, this identifier contains the name of tile B as well as a unique number identifier for the rule. In
Figure 3, the selected rule maps the lord tile, a thomb, to another lord tile, and the rule has an id
of 6.

e transformation: The user can apply certain transformations to rules by dragging them. When
the user is dragging the mouse, this field is populated by information about the transformation
that is occurring. In Figure 3, a rotation is being applied to a rule, and thus the angle of this
rotation is displayed.

The state information string can be toggled via the View menu. We will now proceed by describing
the two modes of Reptile Playground.

3.1 Edit Mode

Edit Mode is the bulk of Reptile Playground, and as such contains most of the features. It is within
Edit Mode that the user defines tiles and the rules which act upon them. In this section we will describe
how this occurs, and the features which make this process easy for the user.

3.1.1 Defining prototiles by creating polygons

Before the user can do anything, they need to define prototiles. To accomplish this, the user must first
define the shape of the prototile, by creating a polygon. There are two methods for creating polygons:

Rep-Tile Playground

File Edit Tools Algorithms View Run
EDIT_MODE | triangle

Figure 4: What the user sees when they select the prototile “triangle”.

e The first method is to use a predefined macro command. This method can be used if the shape
of the tile is somewhat common, such as a regular polygon, rhombus, triangle, etc. The macros
usually require the user to enter the necessary information about the polygon into a dialog. For
example, the Triangle (SSS) macro, located in the Tools menu allows the user to draw a triangle
by specifying the length of all three of its sides.

e The second method is for the user to draw the polygon using the Create Polygon tool. This tool
allows the user to draw the polygon they desire with the mouse. A left click adds a point to the
polygon, and a right click indicates that the polygon is complete. To allow more exact specification
of the polygon, the user can hold ctrl + shift when they left click, which will open a dialog
allowing them to exactly specify the length and angle of the edge want to add to the polygon.

In both cases, after the user has defined a polygon, they must attach a name to it in order to later
identify the polygon. These named polygons are stored internally in the “polygon library”. Users can
then make a prototile based on any of the shapes in the polygon library. The reason for this level of
abstraction is because there may be many prototiles with different substitution rules which all have the
same shape. As with the polygons, when a user creates a prototile they are prompted to give it a name.

Defining prototiles is probably the least polished part of Reptile Playground. The problem is that
many of the interesting substitution tilings involve very strange polygons, which have weird dimensions.
For example, many of the tilings defined by Robert Ammann are rectilinear polygons that have irrational
side lengths (see for example the Ammann Chair, A3, A4 [7]). Drawing rectilinear polygons is easy with
the Create Polygon tool, but there is no good way I can think of for specifying irrational numbers using
just the mouse!

3.1.2 Defining Rules

As we discussed earlier, substitution rules are defined by the user in terms of how they should look, rather
than the actual transformations that achieve that look. To accomplish this, the user can manipulate the
rules via a drag and drop interface.

Before adding a rule, the user must first select a prototile. This can be done using the Select
Prototile command in the Edit menu. Once a prototile is selected, it will appear, centered on the
screen, outlined by a thick dashed line; see Figure 4. At this point the user can fix a deflation factor, if
they desire, so that all rules added will be automatically scaled to the correct size. This is done by using
the Set Deflation Factor command in the Edit menu.

Now the user can start adding rules. This is done using the Add Rule command in the Edit menu.
A popup will ask the use to select a prototile at this point. This prototile will then appear somewhere
on the screen, deflated to be smaller than usual. At this point, we have defined the rule which maps the
selected prototile to the smaller prototile. We can define any number of such rules in this way for the
selected prototile. However, we need to be able to control the orientation of these smaller prototiles in
order to be able to specify nice tilings.

3.1.3 Manipulating Rules

To manipulate a given rule, it must first be selected by the user. This can be done by right clicking on
the rule. To cut down time, the user can select many rules at once by holding down shift when they
right click. When a rule is selected, a small arrow and marking is drawn on the rule in order to give
some indication of its orientation; keep in mind that rules can be reflected. However, when a group of
rules is selected only one rule is designated as the main selected rule. This rule is shown in a brighter
color, and has two other features drawn on it:

e The selected point: this is shown in the Figure 3 as a square over one of the vertices of the
selected rule. When the user right clicks a rule, the closest vertex of the rule to the clicked point
becomes the selected point. The selected point acts as the centre for all transformations that are
applied to the selected rules.

e The vector of rotation: shown in Figure 3 as the dashed blue line between the selected point and
another vertex of the selected rule. Imagine the vector as pointing ‘out’ from the selected point.
This vector can be changed by the user by spinning the mousewheel. The point of the vector is
to provide a reference for scaling and rotation transformation applied to the selected rules. For
example, if the user drags the mouse to apply a rotation, the vector of rotation will be aimed
towards the point at which the user is dragging.

Applying transformations to rules can be done entirely using the mouse. The user can apply the
Translate, Rotate, and Scale tools to the selected rules in an intuitive way by dragging the mouse on
the canvas. However, this alone is not enough to be allow the user to precisely specify rules. Many rules
require very precise transformations that would be impossible to specify by simply dragging the mouse.
For this reason, there is also a snap feature, which automatically moves the mouse’s location towards a
set of special anchor points. The following snap options are supported:

e Snap to vertices and centroids: The anchor points in this mode are the set of vertices and
the centroids of the non-selected rules and the selected prototile.

e Snap to grid: The anchor points in this mode are a set of regularly spaced grid points. This
mode is useful for drawing polyominos: see Section 3.3.

e Angular snap: This is a feature that is enabled by holding the shift key while applying a rotation.
It rounds the angle of rotation to the nearest degree.

All of the substitution tilings I have ever seen are created such that the rules form what I will refer to
as a closed patch of tiles: a group of tiles where the edges of the tiles only overlap other edges, each tile
shares at least one vertex with some other tile, and each subset of the tiles has these properties. Using
the transformations described in this section, along with the snap features, we make the following claim:

Claim 3.1. Assume that the user is able to specify their prototiles using the Create Polygon tool. Then
using only the mouse, the user will be able to draw any substitution tiling where the rules form a closed
patch of tiles, provided the following conditions are met:

1. At least one rule r shares a vertex vy with the prototile p.

2. Let V. be the set of vertices in r and V), be the set of vertices in p. Define C, be the set of line
segments {(vo,v;)|lv; € Vi \ vo} and C, to be the set of line segments {(vo,v;)|v; € V, \ vo}. One
(or more) of the line segments from C, is collinear with a segment from C,.

Condition two of the claim is a bit complicated, but basically means that r and p are aligned in
some reasonable way. It is easy to see that if the user draws the aligned rule first, then the rest of
the rules will be easy to draw. The class of tilings this claim covers are reptiles, irreptiles, and many
substitution tilings. Examples of tilings that do not fall into this category seem rare. In fact the only
kinds of substitution rules that I am aware of that fall into this category are fractal reptiles. See the
Future Work section for more information.

Figure 5: The sphinx-4 tiling drawn using Rule-based Coloring. I apologize to all Canadians for the
use of “color”, Java forced me into it!

AT
CRIRER
00, 0 %
(o

)
<

Figure 6: The Lord tiling drawn using Orientation Coloring.

3.2 Draw Mode

Now that we have shown Edit Mode is powerful enough to create the rules for wonderful substitution
tilings, we will turn our attention to actually drawing the tilings. This is done by switching into Draw
Mode located in the View menu. Once in draw mode, the only commands which can be used are those
in the View and Run menus.

As we discussed in the introduction, to begin iterating the substitution rules we need to specify a
start tile. This can be done using the Set Start Tile command in the Run menu. Once the start tile
is set, it will appear in the center of the screen. The user can then Iterate the substitution rules a few
times to see how the tiles change. Since just drawing the tiles in black and white is boring, there are
several methods to spice up a substitution tiling. These methods can be toggled in the View menu.

3.2.1 Rule-based coloring

When a user defines rules, they have to option to assign them a color. This is done using the Set rule
color command in the Edit menu. This is the simplest method of decorating a tiling, allowing the
user to select a color from a Swing ColorPicker dialog box. The sphinx-4 tiling, drawn using rule-based
coloring, can be seen in Figure 5.

3.2.2 Orientation coloring

Some substitution tilings, like the Lord tiling, look substantially better when colored not by fixed rules,
but rather by how the tiles are oriented. The color this method chooses is determined by the angle of
the first two points in a tile, relative to a horizontal line (i.e. take the angle modulo 180 degrees). Call
this angle 6. We then define a color having RGB values (%, %, 1), where the values are in the range [0, 1].

The last value is simply an arbitrary choice to make the colors have a bluish tint, see Figure 6.

3.2.3 Texture tiles

The final, and most complicated option for decorating the tilings is to use textures. Java’s Graphics2D
library doesn’t really support textures, so this feature is a bit of a hack. The idea is to allow the user to
create an image which has the same proportions as a prototile, using a 3rd party graphics program. To

o
:
o

AE SO R ONRI/ O
ENezlz e Fant e

: IOV
S N
ANy &

CHELAHE
PR TSRS
Ninsiae i
TSSO n@sg‘."!’,ﬂg‘v 7
FONGIAS = CONE/ 0N SN e
L e N SV e
S eeoNn e g al R SN o
EIQ?!.Q PO E‘Q.!ﬂ‘“’;; a.%m@‘ i)
ENGR L0 SN ER /BN GG/ T ¢
BN E/0n STasB0a b al
Bt st S o
it
R R LA R

NS
45
2
<

0

15

T\ EEE\)

8l
AN ES

\

O

3
I’Q

\

\
o

K5
e
A5

]
9

/
3

B
s

\

0
3"
2

6‘;‘
O3
af

!6\
0

L

\
\
[/
7
3]

1
&
-‘}
X
2

]

af
\

f

H\
o
%
50
3]

)
N

/

\
\

\

>

(A
N5
SO

\E

7

)
\
\
/
0

N

&
O
%)

<5

/

Y,
/
N
5

\
\

FU7S
5
O
>
e
2
1

X
7
=4
/)

>

e
AL

o
4’0‘2

L]

SO
N

\

/

\

>

\

N

Figure 7: The Penrose rhomb tiling drawn using Texture Tiling.

work properly the image needs to have the same width to height ratio as the bounding box of the tile,
and transparency set in all pixels outside the boundary of the tile.

After creating a texture, the user can associate it with the selected prototile using the Set Texture
To Prototile command found in the Edit menu. Once the user is back in Draw Mode, they can select the
Texture Tiling option. The images for each textured prototile will be properly transformed, creating
a very pleasing tiling, as can be seen in Figure 7.

3.3 Algorithms

The Algorithms menu is kind of a mysterious part of the program. Internally, Reptile Playground was
developed so that anyone can develop their own algorithms to be run inside Edit Mode. The idea was to
eventually develop an algorithm that could be used to discover reptiles for arbitrary prototiles. However,
designing such an algorithm is quite ambitious, so instead I focus only on polyomino prototiles.

3.3.1 Polyomino Reptile Search

This feature attempts to determine whether or not a given polyomino is a reptile. To use Polyomino
Reptile Search, the polyomino in question must have been created using Snap To Grid. It will not
work properly unless the vertices of the polyomino are exactly on grid points. Once a prototile has been
created in this manner, the user can select it and execute the search.

As input to the search, the user will be asked to input a scaling factor. The scaling factor indicates
how many copies of the polyomino the algorithm needs to pack into the original prototile. For example,
a scaling factor of two will get the algorithm to try to pack four copies of the polyomino, each having
edge lengths % that of the original.

The second part of the input is the number of seconds the user is willing to wait for an answer.
Determining whether or not a polyomino packs itself for some scaling factor is not an easy problem. The
algorithm I use is a very simple backtracking algorithm, which runs into problems once the scaling factor
gets to around ten?. The program is set up so that the search will terminate and display a message if it
fails to find a solution within the allotted time. If however, it does find a solution, the set of rules will
be automatically created and displayed to the user.

Unfortunately, going into this, I didn’t realize that most polyomino reptiles are pretty boring. With
the exception of the P-pentomino, most of the packings that the simple algorithm can discover are trivial,
and do not make very interesting tilings. There are several interesting packings that exist at high scaling
factors, which can be viewed at [2]. However, without a significant rewrite of the backtracking algorithm,
these kinds of packings are out of reach.

4 Examples

With the exception of the drawing features, which are easy to described using still images, most of the
features we have discussed are purely interactive. As such, I have created several videos to illustrate the
features. The videos can be found at http://cs.uwaterloo.ca/~p3nichol/rtpg/videos.

2The algorithm does contain a few simple checks to prune away bad search branches, but nothing fancy.

Figure 8: The Koch snowflake

5 Future Work

There are many paths for future work on this program. The main feature that I wanted to implement but
did not get around to was the ability to draw fractal reptiles. As it turns out, the rules that govern fractal
reptiles are actually quite different than those that govern regular reptiles. Implementing the fractal rules
would not be an immense amount of work, but to get them to working alongside one another elegantly
seems difficult. It would probably be easier to write an entirely new program just for fractal reptiles.

I did however implement a very basic motif drawing algorithm. A motif is a simple rule that replaces
an edge by a more complicated series of edges at each iteration. An example of a fractal created by
iterating motifs in can be seen in Figure 8. So, as it stands, Reptile Playground can do basic fractal
drawing, but not fractal reptiles. However, there is currently no good way of specifying motifs within
the program.

Finally, as I mentioned in Section 3.3, I wanted to implement a general reptile search algorithm. The
input to the algorithm would be the similar to the input to Polyomino Reptile Search algorithm: a
prototile with an arbitrary shape, and a scaling factor. Since any prototile created by the program has
a fixed number of points, I believe it would be reasonable to implement a backtracking algorithm for
discovering reptiles. The algorithm would certainly be a lot slower than the polyomino backtracking
algorithm, as it would have to perform complex transformations at each step in the search. However, I
believe it would work for reasonably small scaling factors.

References

[1] Pierre Baillargeon. Quasitiler. Sourceforge project, September 2008.
http://sourceforge.net/projects/quasitiler/.

[2] Andrew L. Clarke. The poly pages. http://www.recmath.com/PolyPages/PolyPages/
index.htm?Reptiles.htm.

[3] Roger Evans Critchlow. Subtile. http://elf.org/pub/subtile-0.3.tcl.

[4] N.P. Frank. A primer of substitution tilings of the Euclidean plane. Exzpositiones Mathematicae,
26(4):295-326, 2008.

[5] N.P. Frank and B.J. Rinaldi. Tiling generator 3.0. MATLAB freeware available at
http://vassar.edu.faculty/Frank/default.html.

[6] C. Goodman-Strauss. Matching rules and substitution tilings. The Annals of Mathematics,
147(1):181-223, 1998.

[7] E. Harriss and D. Frettloh. Tilings encyclopedia. A very large collection of tilings with descriptions
and references, http://tilings.math.uni-bielefeld.de/.

[8] C.S. Kaplan. Introductory Tiling Theory for Computer Graphics, volume 4. Morgan & Claypool
Publishers, 2009.

[9] Jan Pieniak. Tilewizard. A Perl program for generating substitution tilings, written at Bielefeld
University. Personal communication with D. Frettloh.

[10] Apache XML Graphics Project. Batik svg toolkit. http://xmlgraphics.apache.org/batik/.
[11] C. Richter. Families of irreptiles. Elemente der Mathematik, 64:109-121, 2009.

