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Abstract

We propose an effective optimization algorithm for a
general hierarchical segmentation model with geometric in-
teractions between segments. Any given tree can specify
a partial order over object labels defining a hierarchy. It
is well-established that segment interactions, such as in-
clusion/exclusion and margin constraints, make the model
significantly more discriminant. However, existing opti-
mization methods do not allow full use of such models.
Generic a-expansion results in weak local minima, while
common binary multi-layered formulations lead to non-
submodularity, complex high-order potentials, or polar do-
main unwrapping and shape biases. In practice, applying
these methods to arbitrary trees does not work except for
simple cases. Our main contribution is an optimization
method for the Hierarchically-structured Interacting Seg-
ments (HINTS) model with arbitrary trees. Our Path-Moves
algorithm is based on multi-label MRF formulation and can
be seen as a combination of well-known a-expansion and
Ishikawa techniques. We show state-of-the-art biomedical
segmentation for many diverse examples of complex trees.

1. Introduction
Basic cues like smooth boundaries and appearance mod-

els are often insufficient to regularize complex segmentation
problems. This is particularly true in medical applications
where objects have weak contrast boundaries and over-
lapping appearances. Thus, additional priors are needed,
e.g. shape-priors [29], volumetric constraints [3], or seg-
ments interaction [31, 8]. The latter constraint is the essence
of Hierarchically-structured Interacting Segments (HINTS)
model [8, 31], which was successfully applied to many seg-
mentation problems, e.g. cells [23], joint cartilage [31], and
cortical [24] or tubular [21] surfaces.

HINTS model overview: Any hierarchically-structured1

segments could be represented as a label tree T , see Fig. 1.
Tree T defines topological relationship between segments
as follows; (a) child-parent relation means the child seg-

1We use hierarchically-structured and partially ordered interchangeably.

ment is inside its parent’s segment, (b) sibling relation
means the corresponding segments exclude each other. For
example, in Fig. 1 A is inside R, E is inside B, while B,
C and D exclude each other in A. Min-margin is one form
of interaction between regions. If region X has δX min-
margin then its outside boundary pushes away the outside
boundary of its parent and siblings by at least δX , Fig.1(b).

(a) tree T & margins δ (b) a feasible segmentation

Figure 1. (a) tree with 6 labels, and δB and δC are min-margins
of labels B and C, respectively. None displayed margins im-
ply zero min-margin. (b) feasible segmentation that satisfies the
hierarchical-structure, i.e. partial ordering, and margins defined by
T and δ. Notice how B’s outside boundary pushes its parent’s and
siblings’ outside boundaries to be at least δB pixels away from it.

ground truth a-exp[7, 8] QPBO [26, 8] ours

Figure 2. HINTS segmentation of brain using different optimiza-
tion methods where white-matter (yellow), grey-matter (green)
and background are nested regions, and cerebrospinal fluid (red)
and sub-cortical grey-matter (blue) are mutually exclusive regions
inside white-matter. Starting from a trivial solution a-exp con-
verged to a bad local minimum unlike Path-Moves which explores
more solutions. QPBO failed to label some pixels (shown in white)
due to the non-submodular energy and ambiguous color models.
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Limitations of previous algorithms: We extend [8],
which introduced HINTS for arbitrary trees. In [8] a-
expansion (a-exp) [7] was used to optimize the multi-
label formulation of HINTS, but it often results in bad lo-
cal minima due to complexities of interaction constraints,
e.g. Fig. 2. The contribution of [8] is a binary multi-layered
HINTS formulation. They use high-order data terms, which
are not easy to convert into unary and pairwise potentials for
arbitrary trees. Their algorithm’s global optimality guar-
antee depends on the tree at hand. Only trees that do not
yield frustrated cycles [26] have this guarantee, but this is
not immediately obvious for any given tree. In [8], non-
submodular binary energy implied by frustrated cycles were
addressed by QPBO [26]. In practice, QPBO produces only
partial solutions for most trees, see Figs. 2, 10 and 12.

As an alternative to QPBO, [28] formulated HINTS as
constraint optimization. They solve the Lagrangian dual of
this NP-hard problem using an iterative sequence of graph
cuts. However, the duality gap may be arbitrarily large and
the optimum for HINTS is not guaranteed. Their super-
gradient optimization of Lagrange multiplier guesses ini-
tial solutions and time-step parameters. Also, according
to Lemma 5 in [28] their super-gradient corresponds to
the hard exclusion constraint of HINTS, which is {0,∞}-
valued. They do not discuss how this affects the algorithm.

In [31] the authors generalize their earlier method [21]
for segmenting multiple nested surfaces, i.e. T is a chain.
In [31] the aim was to segment multiple mutually exclusive
objects each with a set of nested surfaces, i.e. T is a spider2.
But, the proposed approach can handle only a single pair of
mutually exclusive objects in a given image region. As such
[31] requires a prior knowledge of the region of interaction
for two excluded objects, or computes it using a problem
specific trained classifier [31]. Such prior knowledge is
not required for our method. In contrast to our approach,
[31] requires a sufficiently close initial segmentation satis-
fying interaction constraints. In all of our experiments we
started from a trivial solution. Unlike our approach, [31]
implicitly imposes a star like shape prior [29] and use non-
homogeneous anisotropic polar grids.

If interactivity (min-margin) constraints are dropped
HINTS degenerates to tree-metric labeling. Certain tree-
metric labeling problems are addressed in [10] using DP
to find the global optima if the data terms are also a tree-
metric. Recently, [1] used convex relaxation to approxi-
mate labeling problems where labels are leafs of a DAG.
This problem can be reduced3 to general metric labeling
[18]. Such labeling problems are significantly different
from HINTS due to lack of interactions between segments.

Motivation for Path-Moves: In the context of multi-label
HINTS formulation, we propose an effective move-making

2Tree with one node of degree ≥ 3 and all others with degree ≤ 2.
3Personal communication with the authors of [1].

algorithm applicable to arbitrary label trees T avoiding lim-
itations of the previous optimization methods.

In contrast to a-exp [7], our Path-Moves are non-binary:
when expanding label α any pixel can change its current la-
bel to any label in the path between its current label and α
in the tree. Note that the path is specific to each pixel. Op-
timization uses our generalization of the well-known multi-
layered Ishikawa technique [16] for convex potentials over
strictly ordered labels. In essence, Path-Moves combine a-
exp and Ishikawa. Indeed, in the special case of a chain-
tree (nested segments) our algorithm reduces to Ishikawa-
like construction in [8, 16] finding global minimum in one
step. On the contrary, when T is a single-level star our al-
gorithm reduces to a-exp. Note that closely related multi-
label range-moves [30] also combine a-exp and Ishikawa
for non-convex pairwise potentials over strictly ordered la-
bels (a chain). In contrast to Path-Moves, in range-moves
all pixels have the same set of feasible labels.

Our contributions are summarized below:
• we propose Path-Moves - approximate optimization

method applicable to HINTS. Unlike [8, 31], Path-
Moves work for arbitrary trees avoiding weak local
minima typical of a-exp [7] in the context of HINTS.
• we show how a generalization of star shape priors,

e.g. [29, 12, 14], integrate into multi-label HINTS
model, if needed. Path-Moves can address this too.

• we show state-of-the-art biomedical segmentation re-
sults for complex trees.

The paper is organized as follows. Section 2 defines
multi-label formulation of HINTS. Section 3 introduces
our multi-label expansion move, which we call Path-Move.
Separately, in Section 4 we discuss shape priors as they are
not mandatory for HINTS when using Path-Moves, unlike
[31, 21]. We validate and compare our approach to [26, 7, 8]
on multiple medical segmentation applications in Section 5.
Section 6 discusses space complexity and limitations of our
method. Finally, Section 7 concludes.

2. Hierarchically-structured Interacting Segments

Given pixel set Ω, neighborhood system N , and labels
(regions) L the HINTS model can be formulated as

E(f) =

data︷ ︸︸ ︷∑
p∈Ω

Dp(fp) +

smoothness︷ ︸︸ ︷
λ
∑
pq∈N

Vpq(fp, fq) +

interaction
constraints︷ ︸︸ ︷
T (f) (1)

where fp is a label assigned to p and f = [fp ∈ L| ∀p ∈ Ω]
is a labeling of all pixels.

The data and smoothness terms are widely used in seg-
mentation, e.g. [6, 4]. Data term Dp(fp) is the cost incurred
when pixel p is assigned to label fp. Usually,Dp is negative
log likelihood of the label’s probabilistic model, which for
example is fitted using scribbles [4, 25] or known a priori.
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The smoothness term regularizes segmentation disconti-
nuities. A discontinuity occurs when two neighboring pix-
els (p, q) ∈ N are assigned to different labels. Parameter λ
weights the importance of the smoothness term. The most
commonly used smoothness potential is Potts model [7].
We use tree-metric smoothness [10, 11] which is more true
to the physical structure of the labels in some settings, es-
pecially medical segmentation as we explain shortly.

A function V is tree-metric if there exists a tree with non-
negative edge weights and V (u,w) is equal to the sum of
edge weights along the unique path between nodes u and w
in the tree. In our setting T is such a tree and Vpq is com-
pletely defined by assigning non-negative weights to every
edge in T . Thus, for any α, β in L

Vpq(α, β) =
∑

ij∈Γ(α,β)

Vpq(i, j), (2)

where Γ(α, β) is the set of ordered labels on the path be-
tween α and β in the undirected tree T . The summation in
(2) is between pairs of neighbouring labels on path Γ(α, β).

To motivate tree-metric smoothness consider T in
Fig.1(a). This tree implies that regions R, A and D are
nested. For example,R,A andD could be background, cell
and nucleus, respectively. In the physical world boundaries
of nested regions never merge into a single boundary. That
is, if in the image we observe a boundary betweenD andR,
this corresponds to two boundaries, namely D/A and A/R
in the physical world. Therefore, the D/R boundary cost
should be the sum of D/A and A/R boundary costs. The
summation property of nested boundaries can be modeled
as tree-metric smoothness. In contrast, Potts model penal-
izes multiple nested boundaries as a single boundary.

The interaction term in (1) ensures that the min-margin
constraints are satisfied at every pixel, see Fig. 3,

T (f) = w∞
∑
`∈L

∑
p∈Ω

fp∈T (`)

∑
q∈Ω

‖p−q‖<δ`

[fq 6∈ {T (`)∪P(`)}] (3)

where w∞ is an infinitely large scalar, T (X) are the nodes
of the subtree rooted at X , P(X) is X’s parent in T , and [ ]
is the Iverson bracket4. This term guarantees that any label-
ing that violates min-margin constraint has infinite energy.

In general, the interaction term could model not only
min-margin but also region attraction [8], scene parsing
[22, 8], or a combination of these constraints. However, the
focus of this paper is developing an effective combinatorial
optimization move for energy (1). Thus, for simplicity of
exposition we only cover min-margins.

We now compare our formulation to that in [8]. Inclusion
is an easy constraint to impose in both formulations as it re-
duces to using tree-metric smoothness. In our formulation

4[True]= 1 and [False]=0

(a) tree (b) min-margin constraint at pixel p

Figure 3. (a) tree T with 6 labels, T (B) is the subtree rooted at
B and P(B) is B’s parent. (b) visually illustrates the min-margin
constraint δB at an arbitrary pixel p with label fp ∈ T (B). For
a labeling f to be valid w.r.t. min-margin δB ; if fp ∈ T (B) then
any neighboring pixel q within δB pixels from p must be assigned
to eitherB, one of its descendants or its parent, i.e. fq ∈ {T (B)∪
P(B)}. Note that if q was assigned to either one of A’s ancestors
or B’s siblings this means we encountered the outside boundary
of A or B’s siblings within the δB margin.

(a) tree T & margins δ (b) current labeling

(c) largest expansion [7] on C (d) largest Path-Move on C

Figure 4. (a) shows tree and margins. (b) shows the current la-
beling. (c) and (d) show the largest possible expansion of label
C using binary expansion move [7] and our multi-label expansion
move (Path-Move), respectively. Unlike [7], Path-Move is capa-
ble of pushing all regions’ boundaries when expanding C without
violating the interaction constraints.

exclusion is satisfied by definition because we use multi-
label formulation and each pixel is assigned to only one la-
bel. In contrast, in [8] the label of a pixel is represented by
several binary variables. Therefore, [8] needs to explicitly
enforce exclusion to maintain the validity of these binary
variables w.r.t. tree T . Often this leads to non-submodular
terms that are difficult to optimize.

3. Optimization
The authors in [8] showed that HINTS is non-

submodular for a general tree T and they used either QPBO
or a-exp for optimization. Unfortunately, QPBO does not
guarantee to label all pixels and we observed that in our ex-
periments, see Fig. 2. The a-exp algorithm [7] is guaranteed
to label all pixels but prone to bad local minima, see Fig. 2.
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We build on a-exp algorithm [7], which maintains a valid
current labeling f ′ and iteratively tries to decrease the en-
ergy by switching from the current labeling to a nearby la-
beling via a binary expansion move. In a binary expansion,
a label α ∈ L is chosen randomly and allowed to expand.
Each pixel is given a binary choice to either stay as f ′p or
switch to α, i.e. fp ∈ {f ′p, α}. The algorithm stops when it
cannot decrease the energy anymore.

A-EXPANSION ALGORITHM [7]

1 f ′ := initial valid labeling
2 repeat
3 for each α ∈ L
4 fα := argminf E(f ) where f is an a-expansion of f ′

5 if E(fα) < E(f ′)
6 f ′ := fα

7 until converged

Due to the “binary” nature of the expansion move inter-
action constraints cause a-exp to be highly sensitive to ini-
tialization and more prone to converge to a bad local minima
even for simple trees, see Fig. 4.

Instead of using a binary expansion move [7] in step 4
of the a-exp algorithm, we propose a more powerful “multi-
label” move, namely, Path-Move. Figure 4(d) shows how
robust a Path-Move is compared to a binary one [7].

3.1. Path-Move

In a Path-Move on α each pixel p can choose any label
in the ordered set Γ(f ′p, α) where f ′p is the current label of
p. Thus, the set of feasible labels for p is Γ(f ′p, α), see
examples in Fig. 5.

Figure 5. shows for some T the sets of feasible labels when ex-
panding on D for pixels whose current labels are B (green), F
(red), E (blue) and G (brown). Unlike Path-Move, in [16, 30] the
feasible set of labels during an expansion is the same for all pixels.

Given an arbitrary T , current labeling f ′ and label α, we
now show how to build a graph such that the min-cut on this
graph corresponds to the optimal Path-Move. We use s and
t to denote source and sink nodes of the min-cut problem,
respectively. Our construction is motivated by [16, 7, 30].

Data Term: For each pixel pwe generate a chain of nodes
Cp whose size is |Γ(f ′p, α)| − 1. Let us rename Γ(f ′p, α) to
(u1, u2, . . . , uh) where u1 = f ′p and uh = α. Note that ui
and h depend on p but we drop explicit dependence on p
from notation for clarity. Fig. 6(a) illustrates chain Cp and
how it is linked to s and t. The edge weights along the

(a) data encoding (b) smoothness encoding

Figure 6. (a) shows the part of our graph that encodes the data term
of pixel p. The black nodes represent Cp. Next to each edge along
(s, Cp, t) we show in light grey the label that pixel p is assigned to
if that edge is cut. (b) shows the part of our graph that encodes the
smoothness term for neighboring pixels p and q with current labels
f ′
p and f ′

q , respectively. Grey edges in (b) are those ones illustrated
in (a) but redrawn in (b) without their weights for clarity.

directed path (s, Cp, t) encode the the data terms of p while
the weights along the opposite direction are w∞. If the ith

edge along the (s, Cp, t) is cut, then pixel p is assigned to
label ui. The w∞ edges ensure that any min-cut severs only
one edge on the (s, Cp, t) path as proposed by [16]. Thus,
the sum of severed edges on paths (s, Cp, t) for all pixels p
adds to the data term in (1).

Smoothness: Let p and q be a pair of neighboring pix-
els. Note the overlap between Γ(f ′p, α) and Γ(f ′q, α) is at
least one label, see Fig. 5. Our graph construction treats
the sequence of overlapping labels of paths Γ(f ′p, α) and
Γ(f ′q, α) differently from the non-overlapping parts. There-
fore we rename Γ(f ′p, α) = (b1, . . . , bm, a1, . . . , ak) and
Γ(f ′q, α) = (c1, . . . , cn, a1, . . . , ak) to emphasize the over-
lap. Figure 6(b) shows the newly added weighted edges that
encode the smoothness penalty Vpq .

The overlapping part (a1, . . . , ak) forms a linear order-
ing for which the smoothness cost is encoded as proposed
by [16]. The non-overlapping parts (b1, . . . , bm, a1) and
(c1, . . . , cm, a1) each forms a linear ordering independent
of the other, but extending (a1, . . . , ak) linear ordering. In
this case the smoothness penalties are handled by additional
links from the source. See [13] for proof of correctness.

Interaction Constraints: Let p and q be δA > 0 within
each other. As per energy (3), to impose the δA margin con-
straint between p and q we need to add edges to our graph to
ensure that whenever fp ∈ T (A) and fq 6∈ {T (A)∪P(A)}
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(a) α ∈ T (A) (b) α 6∈ T (A)

f ′
p, f

′
q 6∈ T (A) f ′

p, f
′
q ∈ T (A)

Figure 7. (a) and (b) show the required w∞ edge for the two
main cases that occur when imposing δA. The red dashed curves
illustrate prohibitively expensive cuts that violate δA constraint.
For clarity we only show the newly added edges to our graph.

the corresponding energy is infinite. To impose such con-
straint there are several cases to consider depending on
whether each of α, f ′p or f ′q is in T (A) or not as follows.
Scenario I when α ∈ T (A):

Case 1, f ′p 6∈ T (A) and f ′q 6∈ T (A): in this case we can
deduce that A and P(A) are both in Γ(f ′p, α) and Γ(f ′q, α).
Thus, there is possibility of forbidden configurations and we
handle them by adding a w∞ edge as shown in Fig.7(a).

Case 2, f ′q ∈ T (A): in this case we can deduce that
Γ(f ′q, α) ⊆ T (A). Thus, additional edges are not needed
since fq is guaranteed to be in T (A).

Case 3, f ′p ∈ T (A) and f ′q 6∈ T (A): in this case we
can deduce that P(A) ∈ Γ(f ′q, α). If f ′q = P(A) then
no additional edges needed since fq ∈ {T (A) ∪ P(A)}.
The case f ′q 6= P(A) is not possible as the current labeling
would violate the margin constraint.
Scenario II when α 6∈ T (A):

Case 1, f ′p ∈ T (A) and f ′q ∈ T (A): this case follows the
same reasoning as scenario I, case 1. To handle the forbid-
den configuration we add a w∞ edge as shown in Fig.7(b).

Case 2, f ′p 6∈ T (A): in this case we can deduce that
fp 6∈ T (A) and no new edges are needed, as we are only
interested in the case when fp ∈ T (A).

Case 3, f ′p ∈ T (A) and f ′q 6∈ T (A): here we can de-
duce that f ′q = P(A) otherwise the current labeling would
violate δA. If f ′q = P(A) the construction is as shown in
Fig.7(b) except there are no nodes above P(A) for q.

For a more thorough discussion and illustrations of the
aforementioned cases the reader is referred to [13].

4. Shape Priors for HINTS

In this section we extend star-shape [29], Geodesic-star
[12] and Hedgehogs [14] priors to the HINTS model and
show how to enforce these priors during a Path-Move.

(a) star-shape prior [29] (b) star-shape prior + HINTS

Figure 8. (a) and (b) illustrate star-shape prior constraint for label
A in binary and partially ordered segmentations, respectively. cA
denotes star-center. (a) and (b) show a valid star-shape for label A.

In the context of binary segmentation, star-shape prior
[29] on label A with star center cA reduces to the following
constraint. If pixels p and q lie on any line originating from
cA with q in the middle and p is labeled A, then q must also
be labeled A, see Fig.8(a). Geodesic-star [12] and Hedge-
hogs [14] differ from star-shape prior in terms of what de-
fines the center and how lines from the center (or geodesic
paths) are generated. Furthermore, Hedgehogs [14] allow
control over shape constraint tightness, see [14] for details.

For partially ordered segments we generalize the star-
shape prior constraint as follows. If pixels p and q lie on
any line originating from cA with q in the middle and fp is
in T (A), then fq must also be in T (A), see Fig.8(b).

The shape prior penalty term is

S(f) = w∞
∑
`∈L

∑
p∈Ω

fp∈T (`)

∑
pq∈S`

[fq 6∈ T (`)], (4)

where S` is the set of all ordered pixel pairs5 (p, q) along
any line containing c` such that q is between p and c`. Using
[12] or [14] instead of [29] results in a different S`.

(a) α ∈ T (A) (b) α 6∈ T (A)

f ′
p, f

′
q 6∈ T (A) f ′

p, f
′
q ∈ T (A)

Figure 9. Assume pixels p and q lie on a line originating from
star-center cA of labelA, and that q lies between cA and p. (a) and
(b) show the two cases that require a w∞ edge to impose the star-
shape prior on Label A. The red dashed curves are prohibitively
expensive cuts that violate the star-shape constraint.

Let pixels p and q lie on a line passing through cA, and q
is between cA and p. To impose star-shape prior for label A
during a Path-Move, there are multiple cases to consider de-
pending on whether each of α, f ′p and f ′q is inT (A)or not.

5In practice, it is enough to include only consecutive pixel pairs in S`.
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Scenario I: when α ∈ T (A):
Case 1, f ′p 6∈ T (A) and f ′q 6∈ T (A): in this case we can

deduce that A and P(A) are both in Γ(f ′p, α) and Γ(f ′q, α).
Thus, there are possible forbidden configurations and to
handle them we add an w∞ edge as in Fig. 9(a).

Cases 2, f ′q ∈ T (A): we can deduce that Γ(f ′q, α) ⊆
T (A). Thus, no additional edges are needed since fq is
guaranteed to be in T (A).

Case 3, f ′p ∈ T (A) and f ′q 6∈ T (A): impossible case as
the current labeling would be violating the shape-prior.
Scenario II: when α 6∈ T (A):

Case 1, f ′p ∈ T (A) and f ′q ∈ T (A): this case is similar
to scenario I, case 1, the added edge is shown in Fig. 9(b).

Cases 2, f ′p 6∈ T (A): we can deduce that Γ(f ′p, α) 6⊆
T (A). Thus, no edge needed since fp can not be in T (A).

Case 3, f ′p ∈ T (A) and f ′q 6∈ T (A): see case 3 above.

5. Experiments
Our 2D medical segmentation experiments focus on

comparing Path-Moves for optimizing energy (1) or (1)+(4)
to QPBO [26, 8] and a-exp [7, 8]. In all experiments λ was
set to 1. To define our tree-metric, every edge (γ, β) in
T was assigned a non-negative weight Vpq(γ, β) computed
using a non-increasing function of difference in p and q in-
tensities similar to [2]. Also, whenever a Hedgehog [14]
shape prior was used its tightness parameter was set to π/9.

The experiments evaluate the effectiveness of Path-
Moves. As such we assume that color models are known
a priori. One can easily integrate Path-Moves in a frame-
work that estimates initial color models using user inter-
action and iteratively alternates between labeling and re-
estimating color models in an EM fashion, e.g. [25, 9, 15].

Brain Segmentation: We combined the labeled regions
in dataset [20] (T1W MRI) to create the tree shown in
Fig. 10(a). In this setting, the data term is the sum of color
model penalty and an L2 shape prior [5] based on an auto-
matically extracted brain mask using [17],

Dp(fp) =

{
− ln(Pr(Ip|fp)) background
− ln(Pr(Ip|fp)) +DT (p) otherwise, (5)

where Ip is the intensity at pixel p and DT is the Euclidean
Distance Transform of the extracted brain mask. The min-
margins are shown in Fig. 10(a). We also added a Hedge-
hog prior [14] for the sub-cortical grey-matter to help our
energy differentiate between grey-matter and sub-cortical
grey-matter. See [13] for results without shape prior.

In this application our method outperformed QPBO in
most cases and a-exp in all cases. In fact a-exp always con-
verged to a bad local minima. See Fig. 10 for results.

Figure 2 shows the results for Subject 1 when using min-
margins and Hedgehog prior. Figure 11 (Top row) show the
results for the same subject but without using min-margins.
Path-Moves converged after two iterations to a lower energy

than a-exp, which converged after six iterations. In this case
a-exp local minimum was due to the Hedgehog prior. See
Fig. 11 (Bottom row) for results without using min-margins
or Hedgehog prior.

(a) tree and min-margins
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t4

ground truth a-exp [7, 8] QPBO [26, 8] ours
Figure 10. sample results when using tree in (a). An arc weight in
(a) represent the min-margin of the head node. White pixels were
unlabeled by QPBO.
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a-exp [7, 8] QPBO [26, 8] ours
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a-exp [7, 8] QPBO [26, 8] ours
Figure 11. Subject 1 results (Top) without min-margins, (Bottom)
without min-margins or Hedgehog prior.
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Grey-Matter White-Matter CSF SGM
Ours QPBO a-exp Ours QPBO a-exp Ours QPBO a-exp Ours QPBO a-exp

F1 Score 0.92 0.83 0.32 0.92 0.9 0.56 0.85 0.82 0.04 0.83 0.81 0.37
Precision 0.87 0.87 0.88 0.92 0.92 0.46 0.78 0.83 0.02 0.92 0.93 0.23

Recall 0.97 0.80 0.19 0.93 0.88 0.74 0.93 0.82 0.56 0.76 0.71 0.92

Table 1. Compares our Path-Moves optimization to QPBO [26] and a-exp [7] which were proposed by [8]. The precision and recall were
averaged over 15 examples. Our method and QPBO clearly outperformed a-exp which was very sensitive to initialization and the order in
which labels were expanded on. On average QPBO left 2.8% of the pixels unlabeled and in one instance 7%. These values rise significantly
when not using the Hedgehog shape prior, see Fig. 11(Bottom) and [13] for more results.

Table 1 compares the precision, recall and F1 score for
each region individually, where F1 = 2 precision·recall

precision + recall .
The higher F1 values corresponds to better segmentation.

Heart Segmentation: In this setting we only used color
models for the data term and no shape priors. Figure 12(a)
shows the used tree. For a-exp to escape its local minimum
it needs to first expand the left ventricle and then the left
papillary muscles. However, expanding on left ventricle
would lead to a higher energy than the current one. Path-
Moves avoids this local minimum by allowing both labels
to expand simultaneously when performing a Path-Move on
the left papillary muscles.

(a) heart tree

(b) ground truth (c) a-exp[7, 8]

(d) QPBO [26, 8] (e) ours (Path-Moves)

Figure 12. Heart segmentation using tree shown in (a). Using a-
exp leads to a local minimum. Path-Moves avoids this minimum
via multi-label expansions. QPBO leaves many pixels unlabeled.

Abdominal Organ Segmentation: We used a CT dataset
and extended the work in [14] which used Hedgehogs to
segment liver and kidneys. In contrast to [14], we utilized
more detailed structures reaching 13 labels.

We computed for each example the weighted precision∑
`∈L

|f∗=`|
|Ω| × precision` where f∗ is the ground truth la-

beling. The weighted recall is defined similarly. As shown
in Table 2, all methods performed comparably due to the use
of Hedgehog priors and the star-like tree of T that a-exp is
well suited for. Figure 13 shows the tree and our result for
one test case. Interestingly, QPBO labeled all the pixels in
all 7 test cases.

Ours QPBO a-exp
F1 Score 0.95 0.95 0.93

Weighted Precision 0.95 0.95 0.94
Weighted Recall 0.95 0.95 0.92

Table 2. Weighted precision and recall were averaged over 7 test
cases. When using shape priors all methods performed compara-
bly. For results without shape priors see [13].

(a) tree

(b) ground truth (c) ours (Path-Moves)

Figure 13. (a) abdominal organs structure used for this example.
Void is the empty space around the body. We only show our result
as QPBO and a-exp results were almost identical to ours.
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(a) tree

(b) ground truth (c) a-exp

(d) QPBO (e) ours (Path-Moves)

Figure 14. (a) a challenging abdominal organs structure. Sx and
Ty denote liver segment x and tumor y, respectively. The liver
label in (a) is a conceptual/artificial label with infinity data term
penalty. Our method significantly outperformed QPBO and a-exp.

We pursued a more challenging structure, see Fig.14(a).
The objective in this case was to segment the liver into three
different segments and any tumors inside them separately.
Due to the large overlap between color models and the com-
plex structure, having hedgehog priors was not enough for
QPBO or a-exp to converge to an adequate solution, see
Fig.14(c-e). Path-Moves was able to achieve good results
avoiding local minima as in Fig.14(c). Furthermore, Path-
Moves always results in full labeling compared to QPBO,
which left 7.4% of the pixels unlabeled, see Fig.14(d).

6. Discussion
Path-Moves is applicable to tree-metrics which could be

used to approximate arbitrary metrics [19, 10]. Even in
the absence of interactions, Path-Moves is a more powerful
move making algorithm than a-exp [7] because of the multi-
label nature of its moves. Thus, Path-Moves is a better fit
for applications that rely on tree-metrics such as [19]. In
the presence of interaction constraints the optimality bound
of [7] is not valid. The proof in [7] assumes that given any
labeling every pixel with ground truth label X could switch
toX via a binary expansion onX . This is no longer guaran-
teed as interaction constraints limit [7] expansion domain,

e.g. see Fig.4(c). Our experiments empirically show that
Path-Moves finds optimal or near optimal solution. In the
cases where QPBO found full labeling, i.e. optimal solu-
tion, Path-Moves either found the same solution or a very
close one, see Table 2 and Fig.10 Subject 4.

In terms of space complexity a-exp is the most efficient
as it requires building a graph with O(|Ω|) nodes while
QPBO requires a significantly larger graph with O(|Ω||L|)
nodes. A Path-Move graph size depends on T . When T is
balanced it requires O(|Ω| ln(|L|)) nodes and O(|Ω||L|) in
the worse case when T is a chain.

There is one limitation when using our Path-Moves to
optimize (1) compared to [8]. In [8] it is possible to explic-
itly control the min. exclusion margin between two siblings,
say A and B in T . In our model the min. exclusion margin
is implicit and it is equal to max(δA, δB). Because siblings
such as A and B are not directly connected in the tree.

Another limitation are interaction constraints that are not
Path-Move representable. An interaction constraint is not
Path-Move representable if there exists α, β and γ ∈ L
where a < b ∈ Γ(γ, α) and c < d ∈ Γ(β, α) while config-
uration [a, d] is prohibited and [b, c] is permissible [27], see
[13] for illustration. In general, this could be avoided ei-
ther by slightly modifying tree T or relaxing the interaction
constraints, see [13] for an example.

7. Conclusion
The proposed multi-labeling move is effective in op-

timizing models with hierarchically-structured segments
(partially ordered labels) and interaction constraints. In
contrast to binary expansion move [7], our move avoids lo-
cal minima caused by interaction constraints.

Our experiments cover various medical segmentation ap-
plications, e.g. brain and heart segmentation. Our results
show that Path-Moves always perform at least as well as
prior methods. Moreover, Path-Moves significantly outper-
form prior methods when using complex trees and/or re-
gions with ambiguous color models.

Path-Moves is applicable to arbitrary trees. This is in
contrast to [8] which is not easy to generalize for an arbi-
trary tree as it relies on the cumbersome process of reducing
high-order data terms to unary and pairwise potentials.

We generalized star-like shape priors in the context of
partially ordered labels. Extending preexisting commonly
used priors to partially ordered labels is an interesting idea
on its own and we leave this for future work.
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