
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Graph Cut Optimization for Full CRFs
with Quantized Edges

Olga Veksler

Abstract—Fully connected pairwise Conditional Random Fields (Full-CRF) with Gaussian edge weights can achieve superior results
compared to sparsely connected CRFs. However, traditional methods for Full-CRFs are too expensive. Previous work develops
efficient approximate optimization based on mean field inference, which is a local optimization method and can be far from the
optimum. We propose efficient and effective optimization based on graph cuts for Full-CRFs with quantized edge weights. To quantize
edge weights, we partition the image into superpixels and assume that the weight of an edge between any two pixels depends only on
the superpixels these pixels belong to. Our quantized edge CRF is an approximation to the Gaussian edge CRF, and gets closer to it as
superpixel size decreases. Being an approximation, our model offers an intuition about the regularization properties of the Guassian
edge Full-CRF. For efficient inference, we first consider the two-label case and develop an approximate method based on transforming
the original problem into a smaller domain. Then we handle multi-label CRF by showing how to implement expansion moves. In both
binary and multi-label cases, our solutions have significantly lower energy compared to that of mean field inference. We also show the
effectiveness of our approach on semantic segmentation task.

Index Terms—Discrete optimization, graph cuts, fully connected CRFs.

F

1 INTRODUCTION

T HE work in [1] popularized Fully Connected pairwise Condi-
tional Random Fields (Full-CRF). A Full-CRF models long-

range interactions by connecting every pair of pixels. It achieves
superior results [1] compared to sparsely connected CRFs.

Traditional discrete optimization methods that work well for
sparsely connected CRFs, such as graph cuts [2] or TRWs [3],
are too expensive for Full-CRF, as the number of potentials is
quadratic in the image size. Taking advantage of the special
properties of Gaussian edge weights, in [1] they develop an
approximate optimization algorithm that is sublinear in the number
of pairwise potentials. It is based on mean field inference [4] and
approximate Gaussian filtering [5].

It is well known that mean field inference, although efficient,
is a local technique and its solution can be arbitrarily far from the
optimum. For example, in [6] they compare Belief Propagation
(BP) to mean field, and conclude that mean field is inferior. BP is
not the best performing optimization method itself [7] for loopy
graphs. Discrete optimization methods based on move-making
with graph cuts work significantly better [7].

There are numerous extensions to the original algorithm of [1].
In [8] they extend their previous work to ensure convergence.
In [9] they propose to augment CRFs with object spatial rela-
tionships and develop optimization approach based on quadratic
programming relaxation. In [10] they show how to incorporate
higher order interaction terms. In [11] they propose continuous
relaxation for optimization. The approach in [12] speeds up the
bilateral solver which further improves the overall efficiency of
the mean field algorithm. Full-CRFs are gaining more popularity
because they can be combined with CNNs [13], [14], [15], [16],
[17] in a unified framework.

• O. Veksler iswith the Department of Computer Science, University of
Western Ontario, London, Canada.
E-mail: olga@csd.uwo.ca

Manuscript received April 19, 2005; revised August 26, 2015.

The goal of our work is to develop a better optimization
algorithm for a Full-CRF model. We focus on the commonly
used Potts model [2] for pairwise potentials. For Potts model, the
expansion algorithm [2] is a popular choice for sparsely connected
CRFs due to its efficiency and quality trade-off [7]. In fact the
expansion algorithm has the best approximation factor for the
case of Potts model, namely a factor of two. This motivates us
to develop expansion moves approach for inference in Full-CRFs
with Potts potentials. However, direct application of expansion is
not feasible due to the quadratic number of pairwise potentials.

Similar to [1] who restrict the form of allowed edge weights
to be Gaussian, to obtain a Full-CRF model that can be optimized
efficiently, we also restrict the edge weights to a certain form. In
our model, we assume that image pixels have been tessellated into
superpixels, and the weight of an edge between two pixels depends
only on the superpixels these pixels belong to. Our model is an ap-
proximation to Gaussian edge Full-CRF [1], and approaches it as
superpixel size gets smaller, see Sec. 2.1. Being an approximation,
our model offers novel insights into the regularization properties
of the Full-CRF in [1]. We call our model quantized edge Full
CRF, since intuitively, it quantizes the Gaussian edge weights into
bins. Quantized edge assumption allows us to transform a large
binary labeling problem into a much smaller multi-label problem
that can be efficiently solved with graph cuts.

We first develop optimization for the case of two labels, i.e.
binary Full-CRF, and then extend to the multi-label case with
expansion moves. Inspired by [18], we transform our problem
into a reduced domain at the cost of introducing a larger number
of labels. In particular, we reformulate the problem on the domain
of superpixels [19], [20], [21]. A naive approach would collapse
all pixels in the same superpixel into a single entity, and then apply
the standard expansion algorithm [2]. However, this approach
would only produce a coarse solution at the level of superpixels.
Instead, we change the label space from binary to multilabel in
order to encode different label assignments to pixels inside a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

superpixel. Thus we produce a solution in the original pixel space.
Next we extend our binary quantized edge Full-CRF optimiza-

tion to the multi-label case by applying expansion moves. We
design a transformation that reduces an expansion move to the
energy type required by our binary Full-CRF optimization.

In addition to effective optimization, another advantage of our
approach is that all edge costs are completely accounted for, no
matter how small their weights are. This is unlike most other
methods for Full-CRF inference that disregard small weight edges.

We evaluate our algorithm on semantic image segmentation.
We show that for the binary case, we achieve the global mini-
mum in the overwhelming majority of cases. For the multi-label
case, our algorithm significantly outperforms mean field inference
especially as the strength of the regularization is increased.

This paper is organized as follows. In Sec. 2 we formulate
our energy and explain its connection to the Gaussian edge model
of [1] . In Sec. 3 we address optimization of binary Full-CRFs. In
Sec. 4 we explain how to implement the expansion algorithm in
the case of multi-label CRFs. In Sec. 5 we develop efficient mean
field and ICM implementation for our quantized edge Full-CRF
model. The experiments are in Sec. 6 and conclusion in Sec. 7.

2 ENERGY FUNCTION

In this section we formulate the energy function for our quantized
edge Full-CRF model. Let P be the set of image pixels, and xp ∈
L be the label assigned to pixel p. Let x = (xp | p ∈ P) be the
assignment of labels to all pixels. We wish to minimize

f(x) =
∑
p∈P

fp(xp) +
∑

p,q∈P
fpq(xp, xq), (1)

where
fpq(xp, xq) = wpq · [xp 6= xq].

The unary terms fp(xp) are the cost of assigning pixel p to label
xp. They are usually known a-priori or learned from the data. The
pairwise terms wpq · [xp 6= xq] impose a penalty of wpq whenever
pixels p, q are not assigned to the same label. The pairwise terms
are used to regularize a labeling. In Full-CRFs, the summation in
Eq 1 is over all pairs of pixels in the image. Thus the number of
pairwise terms is quadratic in image size.

We assume an image is partitioned into superpixels. In [1],
wpq are based on Gaussian weighting of color and spatial distance
of pixels p and q. Our edge weights are modeled similarly, but
are based on superpixels. That is wpq is based on Gaussian
weighting of color and spatial distance of superpixels that contain
pixels p and q. This quantizes edge weights and leads to large
computational gains.

Let S(p) be the integer index of the superpixel that pixel p
belongs to. Let µp be the intensity mean and σp the intensity
variance inside superpixel S(p). Note that if S(p) = S(q), then
µp = µq and σp = σq .

We divide all edges into internal and external. Internal edges
connect pixels that lie within the same superpixel. External edges
connect pixels that lie in different superpixels. First we define edge
weights for internal edges, i.e. the case when Sp = Sq:

wpq = λ1 · exp
(
−
σ2
p

2β2
1

)
. (2)

In Eq. 2, we use intensity variance inside a superpixel for
determining the edge strength. The higher is the variance, the

(a) (b)

(c) (d)

Fig. 1. Illustrates edge weights wpq . Input image is in (a), superpixels
computed with [21] are in (b). In (c) we illustrate the weight strength be-
tween pixels inside the same superpixel. Brighter intensities correspond
to stronger edge weights. In (d) we illustrate the strength of the edges
that connect a pixel inside the superpixel highlighted with blue and the
pixels inside other superpixels.

smaller are the weights of edges inside that superpixel. Intuitively,
this corresponds to letting superpixels with higher variance to
break across different labels more easily, since a higher variance
superpixel is more likely to cross object boundaries. Fig. 1(c)
illustrates internal edge weights. The higher variance superpixels
are illustrated with darker intensities.

Next we define the weights for external edges, i.e. the case
when S(p) 6= S(q):

wpq = λ1 ·exp
(
−||dp − dq||

2

2β2
2

)
+λ2 ·exp

(
−||µp − µq||2

2β2
3

)
,

(3)
where dp is the center of superpixel S(p). The larger is the
difference between the superpixel means, the smaller is wpq . The
more distant two superpixels are, the smaller is wpq . Parameters
λ1, λ2, β1, β2 and β3 are estimated from the training data.

The external edge weights between one superpixel (high-
lighted in blue) and all other superpixels are illustrated in Fig.1(d).
Larger edge weights are to the pixels that have similar color and
are closer to the blue superpixel.

2.1 Connection to Gaussian Edge Full CRF

Our quantized edge model is an approximation to the Gaussian
edge Full CRF [1]. As superpixels grow smaller (to one pixel in
the limit) and βs in Eq. 3 larger, the edge weights defined by Eq. 2
and Eq. 3 approach the edge weights of [1].

We experimentally evaluate the convergence rate. We collected
a set of 100 images of size 70 by 70 cropped from PASCAL
dataset [22], validation fold. We computed pairwise energy of
the ground truth labeling for our model and the one in [1]. We
omitted unary energy terms since they are identical between the
two models. When collecting image crops, we ensured that the
ground truth labeling for the crop is not trivial, requiring the most
frequent ground truth label to occupy less than two thirds of the
image. We vary the number of superpixels and the width of the
Gaussian parameters β in Eq. (2) and (3). We used 4900, 500,
150, 80, 50 superpixels, where energy with 4900 superpixels
is equal to the Gaussian CRF energy in [1]. We computed the
relative difference (in percent) of the energy with n superpixels
from the energy with 4900 superpixels, averaged over all images.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

102 103

Number of Superpixels

0

20

40

60

80

100

pe
rc

en
t d

iff
er

en
ce

Energy Value vs. Number of Superpixels

small beta
medium beta
large beta

Fig. 2. Comparison of Gaussian edge model [1] with our quantized edge
model. On the y axis we plot percent average relative difference of
our energy from energy of the Gaussian edge CRF model. Increasing
number of superpixels and increasing β parameters in Eq. 2,3 result in
smaller relative percentage difference.

The larger is β, and the larger is the number of superpixels, the
closer is our model to the one in [1], see Fig. 2.

The regularization properties of sparsely connected CRFs are
well known, in particular, sparse CRFs offer boundary (length)
regularization [23]. In contrast, the regularization properties of
Full-CRFs are not well understood. Most users of Full-CRFs make
either obvious statements, i.e. that Full-CRFs model long-range
interactions, or observational statements from the experiments, i.e.
Full-CRFs preserve fine detail in the image.

As an approximation, our model offers an insight into the
regularization properties of the model in [1]. As we explain in
Sec. 3, assignment of pixels to labels inside each superpixel
depends only on the unary terms and the size (volume) of the
split of pixels between the different labels, with a smaller split
penalized less. In other words, the regularization cost inside the
superpixel depends only on the number of pixels, not their spatial
layout, assigned to a different label. For example, Fig. 3 shows
four different binary labelings of a superpixel. In each case five
pixels are assigned to a different label from the rest, therefore the
regularization cost for all these labelings is the same under our
regularizer. Under length regularizer, the labeling in (d) has the
smallest cost.

This helps to explain why [1] preserve fine detail. If a subset
T of pixels inside a superpixel has a strong unary preference for
a label different from the rest of the pixels inside that superpixel,
then the cost of splitting T from its superpixel, besides the unary
terms, depends only on the number of pixels in T . The shape of
T has no effect, whether it is compact or irregular, the cost is the
same. Thus fine structure can split off from the rest of the pixels
inside a superpixel without a large penalty, provided its pixels
have a strong unary preference for a different label. In contrast,
with length based regularization, fine structure would have to pay
a significant cost for its relatively long boundary.

3 OPTIMIZING FULL CRFS: BINARY CASE

We now explain our efficient optimization algorithm for the case
when the energy in Eq. (1) is binary, i.e. L = {0, 1}. Without loss
of generality, we assume that fp(0) = 0 for all pixels p ∈ P ,
and fp(1) can be positive or negative. Any energy function can
be transformed to this form by subtracting fp(0) from both fp(0)

(a) (b) (c) (d)

Fig. 3. (a,b,c,d) show the same superpixel under four different binary
labelings. These labelings have different regularization cost under length
regularizer [23], but the same cost under our model.

1

2

3

4

s1=2

sort pixels in each
superpixel by cost of
being assigned to label 1

cost of
assignment to
label 1 increases

s2=3 s3=6 s4=11

Fig. 4. The transformation from the binary energy in the pixel domain
to the multi-label energy in the superpixel domain. The input image
is partitioned into four superpixels, each containing 4, 10, 8 and 11
pixels, respectively. Superpixel 1 can be assigned labels from the set
{0, 1, ..., 4}, and similarly for the other three superpixels. We vertically
stack the pixels in each superpixel in order of their preference to label 1
in the original binary problem. Those that prefer label 1 the most are on
the bottom. Superpixel 1 is assigned to state 2. This means that the 2 of
its pixels counting from the bottom are assigned to label 1, and the rest
to label 0 in the original binary problem. Pixels assigned label 1 in the
original binary problem are shown with darker shade in each superpixel.
Similarly for the other superpixels. All pixels in superpixel 4 are assigned
to label 1, which corresponds to the largest label, namely label 11 that
superpixel 4 can be assigned to.

and fp(1) for all p ∈ P . The new energy differs from the old one
up to an additive constant.

Inspired by [18], we transform our optimization problem to
a different domain in order to greatly reduce the computational
cost. In [18] they develop an optimization approach that can find a
global minimum for a certain type of energy functions formulated
on 2D images. The original optimization problem is transfered to
a much smaller 1D domain at the cost of an enlarged label space.
Similarly, we reformulate our optimization problem in a reduced
domain at the cost of introducing a larger number of labels.

We formulate a new multi-label optimization problem whose
minimum corresponds to the minimum of the two-label energy in
Eq. 1. This process is illustrated in Fig. 4. The domain for the new
problem is the set of all superpixels S . Each superpixel s ∈ S has
its own set of labels Ls = {0, 1, ..., ns} that can be assigned to it,
where ns is the number of pixels in superpixel s. Let ys ∈ Ls be
the label assigned to superpixel s ∈ S , and let y = (ys, s ∈ S)
be the assignment of labels to all superpixels.

Let Ps denote the set of all pixels that belong to superpixel
s, and let ns be the number of pixels in Ps. The correspondence
between label ys and the binary labels of pixels in Ps of the
original problem in Eq. 1 is defined as follows. If ys = k, then
exactly k pixels in Ps are assigned to label 1 and the rest are
assigned to label 0 in the original problem. The key observation
that determines the correspondence is that these k pixels must be
those pixels in Ps that have the smallest unary cost for label 1.

Indeed, consider superpixels s, t, and let p, q ∈ Ps and
a ∈ Pt. Let fixed h be the number of pixels in Pt as-
signed to label 1. Let us vary k, the number of pixels in Ps

that have label 1. The pairwise cost inside superpixel Ps is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

wpq · k(ns − k) and the pairwise cost between superpixels s, t is
wpa · (k(nt − h) + (ns − k)h). Thus the pairwise cost depends
only on k, and so the optimal solution must assign to label 1 those
k pixels in Ps that prefer label 1 the most.

Fig. 4 illustrates the transformation of the binary energy in the
pixel domain to the multi-label energy in the superpixel domain.
For computational efficiency, we sort pixels in each superpixel in
the increasing order of unary cost of label 1. This is done once in
the beginning of the algorithm to avoid repeated sorting.

We now define the unary cost gs(ys) of assigning label ys
to superpixel s. Let o(p) be the sorted order of pixel p in the
superpixel it belongs to. That is if p has the smallest cost of being
assigned to label 1, then o(p) = 1. Then

gs(ys) = wpq · ys(ns − ys) +
∑
p∈Ps

o(p)≤ys

fp(1), (4)

where p, q are any distinct pixels in Ps. The first term in Eq. 4
accounts for the pairwise terms of the original energy that depend
only on pixels inside superpixel s. The second terms in Eq. 4
accounts for the unary terms of the original energy in Eq. 1 that
depend only on pixels inside superpixel s. Note that since fp(0) =
0 for any pixel p, it does not have to be accounted for.

Pairwise cost for assigning labels ys, yt to superpixels s, t is

Vst(ys, yt) = wpq · (ys(nt − yt) + yt(ns − ys)) , (5)

where p is any pixel in Ps and q is any pixel in Pt. This cost adds
up how many nonzero pairwise terms of the original energy are
there between pixels in Ps and Pt. These are the costs between ys
pixels of Ps that are labeled as 1 and nt− yt pixels of Pt that are
labeled as 0, plus the costs between ns − ys pixels of Ps that are
labeled as 0 and yt pixels of Pt that are labeled as 1.

The complete energy is

g(y) =
∑
s∈S

gs(ys) +
∑
s,t∈S

Vst(ys, yt). (6)

It is convenient to rewrite Eq. 5 as

Vst(ys, yt) = wpq · (ys − yt)2

− wpq ·
(
y2s + ysnt − y2t + ytns

)
. (7)

We can add wpq(ysnt−y2s) to the unary term of superpixel s,
and wpq(ytns−y2t) to the unary term of superpixel q. This leaves
pairwise term Vst(ys, yt) = wpq(ys − yt)

2. Optimization of
energies with quadratic pairwise terms can be solved exactly [24],
[25]. Thus the energy in Eq. 6 can be optimized exactly with
the algorithm in [24]. However, this approach is only somewhat
more efficient compared to optimizing the original binary energy
directly. This is due to the cost of constructing a graph with nt ·ns
edges for each pair of superpixels s, t. The total number of edges
would be smaller by a factor that is roughly equal to the average
superpixel size. This is still computationally expensive for a fully
connected graph. Note that the algorithm in [26] can be used for
a memory efficient implementation of energy in Eq. 6, however,
computational efficiency is still too high for a Full-CRF.

Instead of optimizing Eq. 6 exactly with the exact by ex-
pensive construction [24], we use the expansion algorithm [2].
Expansion is an iterative optimization method that starts with
some initial solution y and tries to improve it by finding the
optimal subset of superpixels to switch to some fixed label α. The
graph constructed during expansion is only linear in the number
of superpixels, which is very efficient. Several iterations over all

labels in L∗ =
⋃

s Ls may be required. We found that the energy
converges after one or two iterations in most cases. The small
number of iterations required for convergence is probably due to
the energy being relatively easy to optimize.

When expanding on label α ∈ L∗, this label is infeasible for
any superpixel s with size less than α. For such superpixels, we set
the unary cost for α to infinity. We also found it helpful to perform
expansion “in reverse”. The intuitive meaning of expanding on
α is that we are trying to assign the same number α of pixels
in every superpixel to label 1 of the original binary problem.
In this case, the penalty is small. Due to symmetry, it makes
sense to expand on labels in reverse, i.e. switch the meaning of
labels 0 and 1 of the original binary problem. When expanding on
label α in “reverse”, we are trying to assign the same number of
pixels α to the label 0 in every superpixel. Additional optimization
significantly improves the quality.

Since Vst is not a metric [2], expansion is not guaranteed
to find the optimal subset of superpixels to switch to label α in
our case. However, in our experiments we almost always find the
optimal solution, see Sec. 6. We use the “truncation trick” from
[27] to handle non-submodularity of expansion

Note that if the unary terms were also convex, then the energy
in Eq. 6 could be optimized with the jump moves proposed
in [28], [29] without the need to construct a large graph. Our
unary terms are not convex since we add −y2s + ysnt to them.
Still, we evaluated the jump moves and found them inferior to the
expansion moves, see Sec. 6.

4 OPTIMIZING FULL CRFS: MULTI-LABEL CASE

In Sec. 3 we explained our efficient algorithm for optimizing a
quantized edge Full-CRF in case when the energy in Eq. 1 is
binary. We now turn to general multi-label case, i.e. |L| ≥ 2.

We use expansion algorithm for optimization, iterating ex-
pansions on labels in |L|. Each α-expansion is implemented via
optimization of a binary energy. Assigning pixel p to label 0 means
that it stays with its old label xp, while assigning label 1 to pixel
p means that it switches its label to α. Thus finding the best α-
expansion move on Full-CRF can be formulated as optimization of
a binary expansion energy on Full-CRF. However, straightforward
formulation of the binary expansion energy results in an energy
different from the form required in Sec. 3. In this section we
develop a formulation that is in the form required in Sec. 3

We start by describing the binary expansion energy. Let x be
the current labeling for which we wish to find the optimal α-
expansion move. We introduce a binary variable zp for each pixel
p, and collect all these variables into vector z = (zp, p ∈ P). The
meaning of binary variables zp is as follows. If zp = 0, pixel p
stays with its old label. If zp = 1, pixel p switches its label to α.

The unary terms hp(zp) are as follows: hp(0) = fp(xp) and
hp(1) = fp(α). If pixel p has label α in the current solution,
then the new and the old labels for p are the same. In this case we
prohibit assigning label 1 to zp by setting hp(1) = ∞, to ensure
that the algorithm is correct.

The pairwise terms for pixels p and q are

hpq(zp, zq) =


0 if zp = 1, zq = 1
0 if zp = 0, zq = 0 and xp = xq
wpq otherwise.

(8)

Before we can apply the method developed in Sec. 3, we need
to make modifications to the energy h(z), as it is not of the form

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

β α

γ

ε

β

γ

ε

δ

ε

β

α ε

γ α

(a) (b)

Fig. 5. Illustrates formation of new superpixels: (a) for original superpix-
els shown with different colors. The pixels inside these superpixels have
different labels, shown with greek letters; (b) shows the new superpixels
formed by breaking the original four superpixels in (a) according to the
current labeling.

assumed in Eq. 1. The problem is that in Eq. 1, the meaning of
label 0 is always the same, and if two pixels are assigned to label
0, there is no pairwise cost. In the case of expansion, there may
or may not be a pairwise cost, depending on whether these pixels
have the same current label or not.

To convert the binary expansion energy h(z) to the required
form, first we need our superpixels to satisfy the following
property. For any superpixel s and any pixels p, q ∈ Ps, we need
xp = xq . Thus we split the original superpixels we started with
further, according to labeling x, illustrated in Fig. 5. If superpixel
Ps contains pixels currently labeled as α, β, γ, it is split into three
new superpixels each containing pixels that have the same current
label. For simplicity, we will use the same old notation for the new
superpixels. So from now on, we assume that superpixels are split
and the new superpixels Ps have the required property.

We formulate a new energy d(z) equivalent to h(z) as
follows. The pairwise terms are

dpq(zp, zq) = vpq · [zp 6= zq],

where

vpq =

{
wpq if xp = xq
1
2wpq if xp 6= xq

(9)

Thus in the new energy d(z), the pairwise terms are of the form
as needed in Eq. 1. The fraction of 1

2 “underpayment” in the
case when pixels p and q do not have the same current labels
is corrected by the unary terms dp and dq , defined next.

The unary terms dp(zp) are defined as follows

dp(zp) =

{
hp(0) +

∑
q∈P\{p}

wpq

2 if zp = 0

hp(1) if zp = 1.
(10)

This definition ensures that whenever zp = 0, the cost involving
the current label of pixel p is modeled correctly. It is straightfor-
ward to check that d(z) = h(z) for all binary vectors z.

Thus our overall algorithm consists of two nested invocation
of the expansion algorithm. In the outer invocation, we iterate
over the multilabel set L, calling expansion algorithm for each
α ∈ L. In the inner invocation, we transform the binary expansion
energy from the pixel domain to the superpixel domain, and run
the expansion algorithm over the new label set in the superpixel
domain.

5 EFFICIENT ICM AND MEAN FIELD

We now explain how to implement ICM [30] and mean field [1]
inference for our quantized edge Full-CRF efficiently. Unlike the
inference approaches based on approximate filtering [5], for our
energy model, all the mean field iteration steps are exact.

5.1 Efficient Implementation of ICM
There are two versions of ICM that we implement: pixel and
superpixel level. Starting with an initial labeling, the pixel level
ICM iteratively switches the label of each pixel to the one that
gives the best energy decrease. This is repeated until convergence.
The superpixel ICM is similar, except the labels of all pixels in a
superpixel must switch to the same label.

Let us first consider pixel level ICM. To efficiently compute the
best label, instead of computing the full energy, we only compute
the decrease in the energy if a pixel is switched to a new label.
To compute the energy decrease efficiently, for each superpixel,
we store how many pixels it has for each possible label. Given
superpixel s, let nls be the number of pixels that have label l
in superpixel s in the current labeling. Let ns denote the size
of superpixel s. Then the label corresponding to the best energy
decrease can be computed in O(mk) time for each pixel p, where
m is the number of superpixels and k is the number of labels in L.
This is because for each superpixel s, the weight between pixel p
and any pixel in s is constant. Thus we can aggregate information
over the blocks of pixels in each s that have the same label. In
particular, let the current label of pixel p be l, and suppose we
are considering switching pixel p to label a. Let ws

p be the weight
between pixel p and any pixel in superpixel s. If s is the superpixel
that p belongs to, then ws

p is the weight between pixel p and any
other pixel q 6= p, q ∈ s. The energy change is computed as

δ(p, l, a) = fp(a)− fp(l) +
∑

s∈S\{S(p)}

ws
p · (nls − nas)

+ wS(p)
p · (nlS(p) − 1− naS(p)),

(11)

where S is the set of all superpixels, and S(p) is the index of
superpixel that contains p.

Computing δ(p, l, a) for one pixel and all labels a ∈ L
is O(mk), where m is the number of superpixels and k is
the number of labels. One iteration over all pixels is O(nmk),
where n is the number of pixels in the image. Since the number
of superpixels is much smaller than the number of pixels, this
complexity is much better than a naive O(kn2) implementation.

For superpixel ICM, we need to compute the cost of switching
all pixels in superpixel s from label l to label a, computed as

δ(s, l, a) =
∑
p∈Ps

(fp(a)− fp(l))

+
∑

t∈S\{s}

wst · (ns(1− δat)nt − ns(1− δlt)nt),

where Ps be the set of pixels in superpixel s, wst is the cost of
any edge between a pixel in superpixel s and a pixel in superpixel
t. Also δls = 1 if superpixel s is currently assigned to label l, and
δls = 0 otherwise.

For one superpixel, δ(s, l, a) is computed in O(k(ns +m))
time for all labels. One iteration consists of computing δ(s, l, a)
for all superpixels. Thus complexity of one iteration is O(k(m+
n)), which is significantly better than the naive implementation.

5.2 Efficient Implementation of Mean Field Inference
The mean field inference is summarized in Alg. 1. It consists of
the initialization step and the iterations inside the repeat loop.
The only step which is costly if not carefully implemented is
the message passing stage, the first stage of the repeat loop. To

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 1: Mean Field Inference

// Initialization

Qp(xp) =
exp(−fp(xp))∑
l∈L exp(−fp(l)) , ∀p ∈ P,∀xp ∈ L

repeat
for p ∈ P, l ∈ L do

// Message Passing

Q̃p(l) =
∑

q 6=p wpq ·Qq(l)
// Compatibility Transform

Q̂p(l) =
∑

l′∈L [l
′ 6= l] · Q̃p(l

′)
// Local Update

Qp(l) = exp
(
−fp(l)− Q̂p(l)

)
// Normalization

Qp(l) =
Qp(l)∑

l′∈LQp(l′)

end for
until until convergence;

implement it efficiently, observe that for any pixels p, r that are
inside the same superpixel, most of the summation terms when
computing Q̃p(l) and Q̃r(l) are equal. Thus calculations of Q̃p(l)
for pixels inside the same superpixel can be shared. In particular,
for each superpixel s and label l we first precompute

sume(s, l) =
∑

t∈S\{s}

wst
∑
p∈Pt

Qp(l). (12)

In Eq. 12, sume(s, l) is the cost of wpq · Qq(l) terms of the
message passing stage that go between pixel p in superpixel s and
pixels q that are outside of superpixel s. Thus sume(s, l) is shared
by all pixels inside superpixel s.

Next we compute the internal sum

sumi(s, l) =
∑
p∈Ps

wss ·Qp(l). (13)

For any p in superpixel s, sumi(s, l) in Eq. 13 is almost what we
need to add to sume(s, l) in order to get the correct expression
for Q̃p(l). The only problem is that it has one extra term, namely
Qp(l). Therefore, to get the correct calculation, for any p in
superpixel s, we compute

Q̃p(l) = sume(s, l) + sumi(s, l)− wss ·Qp(l). (14)

Performing the calculation in Eq. 12 is O(nk) for one superpixel
and all labels. Performing it for all superpixels is O(mnk). Cal-
culating the sum in Eq. 13 is O(nk) for all labels and superpixels.
thus the total time to perform one iteration of message passing is
O(nkm). The compatibility transform stage is O(nk2), and the
other stages are less expensive. Thus the total cost of one iteration
of the mean field inference is O(nk2 + nkm), which is much
less expensive than naive O(n2) implementation if the number of
superpixels is much less than the number of pixels.

6 EXPERIMENTAL RESULTS

The main goal of our experiments is to demonstrate that our
approach has a superior optimization performance to that of the
mean field inference [1] commonly used for optimization of Full
CRFs. We also compare against ICM [30]. Both ICM and mean
field are implemented efficiently as in Sec. 5.

We use PASCAL VOC2012 segmentation dataset [22]. The
images are of size approximatedly 500 × 300 and there are 21

0 0.5 1 1.5 2
6

0

0.1

0.2

0.3

0.4

m
ea

n
(E

-E
*)

/E
*

Mean Field
ICM-SuperPixel
Ours

0 0.1 0.2 0.3
6

0

1

2

3

4

5

m
ea

n
(E

-E
m

)/
E

m

Mean Field
ICM-SuperPixel
Ours

Fig. 6. Comparison of our method, superpixel ICM, and mean field. Left:
for binary Full-CRF; right: multilabel Full-CRF.

object class labels. For unary terms, we used a pre-trained CNN
classifier from [13], available for downloading from [31]. We
use [21] to compute superpixels, approximately 200 per image.

6.1 Binary Full CRFs
We now evaluate the binary optimization we develop in Sec. 3. In
this case, exact optimum can be computed with a graph cut, but
it is computationally prohibitive. To make computation feasible,
we reduce the size of the images in PASCAL dataset to 70x70.
To obtain a binary labeling problem, we choose the two most
probable labels for each image. In particular, let xl be a labeling
where each pixel is assigned label l. We find l that gives the lowest
value of the energy, and l′ that gives the second lowest value. Then
for the binary energy in this section, L = {l, l′}. We compare our
approach to exact optimization, mean-field, ICM, and superpixel-
ICM. We also evaluated jump moves instead of expansion moves
for optimizing the multi-label energy the original binary energy
gets transformed to according to the approach in Sec. 3.

We perform energy optimization with different settings of the
smoothness parameter λ. Larger λ correspond to energies that are
more difficult to optimize. In Fig. 6, left we show the results for
mean field inference, superpixel ICM, and our method. We omit
the result of pixel ICM and jump moves since they are significantly
worse than the other methods.

The optimal energy is computed with a graph cut. We plot
the difference from the optimal energy normalized by the optimal
energy, averaged over all images in the test dataset. In particular,
if E∗ is the optimal energy and E is the energy returned by the
algorithm, we compute E−E∗

E∗ , the energy increase relative to the
optimal value. We average these relative increase values over the
validation fold of PASCAL VOC 2012 dataset.

Our method finds the globally optimal energy in the over-
whelming majority of the cases, approximately 89%. In the rest
of the cases, the difference from the global optimum is tiny.
The average relative energy increase is 0.00011, with a standard
deviation of 0.0012. That is, on average, our algorithm returns
an energy worse than the optimal one by 0.011%. The maximum
difference from the optimal energy value observed over the whole
test dataset is 0.906, and it happens when the optimal energy
value is 623.773. Thus for practical purposes we can say that our
algorithm finds the global optimum for the binary Full CRF.

Mean field inference works reasonably well for lower values
of λ. For λ = 0.1, it finds an energy only about 5.3% worse than
the optimal one, on average. Then the accuracy diminishes fast
as λ increases. For λ = 2, the average relative energy increase is
close to 40%. Superpixel ICM is worse than mean field for smaller
λ values but outperforms mean field for larger values.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

object class Superpixels Unary Ours
Overall 65.8899 67.143 67.7484

background 91.996607 92.505 92.6236
aeroplane 81.7341 83.5563 83.7498

bicycle 41.1970 51.1836 51.2267
bird 81.2498 81.8296 83.2405
boat 58.5404 60.2947 60.1668

bottle 58.4436 59.62620 59.6262
bus 79.8713 80.30270 81.0952
car 73.8574 75.22980 76.0474
cat 78.1484 78.23960 79.4247

chair 26.9773 27.49680 27.2861
cow 65.7162 66.69770 67.5622

diningtable 55.9211 56.62960 56.6296
dog 68.5041 69.3166 69.9815

horse 66.6537 66.9853 67.7631
motorbike 80.2764 81.5684 82.4261

person 77.1641 77.9252 78.5284
pottedplant 49.1919 49.65990 50.5761

sheep 69.5786 71.6253 71.9729
sofa 42.1142 42.3743 43.0364
train 70.8761 73.0517 73.4008

tvmonitor 65.6757 65.5707 66.3532

TABLE 1
Results on PASCAL VOC 2012 Test data, using the IOU measure.

The average running time for the mean field, superpixel ICM,
our algorithm and the exact method are 0.012, 0.014, 0.31, and
7.1 seconds, respectively.

6.2 Multilabel Full CRFs

We now compare our method with the mean field and superpixel
ICM for the multi-label Full CRF energy. We omit pixel level
ICM since it works significantly worse. Again, we compare
the energy optimization performance for different values of the
smoothness parameter λ. In this case, the exact global optimum
is not available. We still compare the relative energy increase,
but instead of the optimal energy, we use the smallest energy
value found by any method. In all cases, our method has smaller
than or equal energy than that of superpixel ICM and mean field.
Therefore, the plot for our (relative) energy increase, in green, is
always at zero, even though the energy our algorithm finds is not
zero.

Fig. 6, right, shows the relative energy increase plots for
superpixel ICM, mean field, and our method. Here Em stands
for the smallest energy value obtained. For small values of λ,
all methods do well. For larger λ, superpixel ICM gets worse
fast. This is because for larger λ it tends to return the original
labeling, unable to escape a bad local minimum. As λ grows,
the disparity in the performance increases even more. Thus the
mean field inference is an appropriate inference method only if
the unary terms are reliable, that is when there is no need to use a
larger setting of λ. The average running times for the mean field,
superpixel-ICM and our method are 2.16, 0.11, and 15.73 seconds,
respectively.

Note that for this particular dataset, the lower values of λ
(from 0.05 to 0.15) correspond to labelings that are more accurate
in terms of ground truth. For larger λ, the labelings are too
regularized. Still the point that Fig. 6 is making holds: if data terms
are such that a significant amount of regularization is required,
mean field optimization is not a good choice.

6.3 Semantic Segmentation Results
Even though our primary goal is a more effective optimization
algorithm, we also evaluate its usefulness for the task of semantic
image segmentation. Table 1 summarizes results on test PASCAL
VOC 2012 set, using the Intersection over Union (IOU) measure.
Using only unary terms (middle column) the IOU measure is
67.143. With our Full-CRF optimization (last column), the IOU
measure goes up to 67.7484. To insure that our improved results
over the unary terms are not just due to superpixel tessellation,
we also calculate the accuracy of the labeling based just on
superpixels, without optimization. Namely we assign all pixels
within the same superpixel the best single label that fits them.
The IOU measure goes down to 65.8899 (first column). For
comparison, mean field optimization of our energy has a lower
IOU measure of 67.3.

A sample of results is shown in figure 7. Notice that some fine
structures, like the airplane parts, the bird legs, person’s hands are
nicely preserved. Other fine structures get washed out, for example
one of the horse’s legs. The degree to which the fine structure gets
preserved depends on the quality of the data terms and the degree
the fine structure gets preserved in super-pixel tessellation. We
used relatively compact superpixels, as can be observed in column
(b). However, bird legs are not precisely tesselated as superpixels,
and yet still get segmented accurately, due to the strength of the
data terms.

Superpixel quality and size does affect the quality of the result-
ing segmentation. We found that with roughly 200 superpixels per
image, we get a good trade-off in terms of accuracy and speed. The
IOU measure is 67.7484. If we lower the number of superpixels
to 150, the IOU measure drops to 67.3217. If we raise the number
of superpixels to 250, the IOU measure is only slightly better,
67.9142, but the running time is about 20% worse.

7 CONCLUSION

We introduced a new Full-CRF model with quantized edge
weights, as well as an efficient method for optimization in case
of Potts pairwise potentials. Our quantized edge model is an
approximation, and as such, offers insights into regularization
properties of Gaussian edge Full CRF. In the case of binary
Full-CRFs, our model experimentally produces a globally optimal
solution in the overwhelming majority of the cases. In the multi-
label case, we obtain significantly better results compared to other
frequently used methods, especially as the regularization strength
is increased. The main advantage of our model is that all edge
weights are accounted for, no edge gets disregarded for the sake
of approximation. We show the usefulness of our model and
optimization for the task of semantic image segmentation.

REFERENCES

[1] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs
with gaussian edge potentials,” in NIPS, 2011, pp. 109–117. 1, 2, 3, 5, 6

[2] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” PAMI, vol. 23, no. 11, pp. 1222–1239,
November 2001. 1, 4

[3] V. Kolmogorov and T. Schoenemann, “Generalized seq. tree-reweighted
message passing,” arXiv:1205.6352, 2012. 1

[4] D. Koller and N. Friedman, Probabilistic Graphical Models. The MIT
Press, 2009. 1

[5] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,” IJCV, pp. 24–52, 2009. 1, 5

[6] Y. Weiss, “Comparing the mean field method and belief propagation,”
2001. 1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Input image (b) superpixels (d) our result (e) ground truth (c) unary terms labeling

Fig. 7. A sample of results.

[7] J. H. Kappes and et.al., “A comparative study of modern inference
techniques for discrete energy minimization problem,” in CVPR, 2013,
pp. 1328–1335. 1

[8] P. Krähenbühl and V. Koltun, “Parameter learning and convergent infer-
ence for dense random fields,” in ICML, 2013, pp. 513–521. 1

[9] Y. Zhang and T. Chen, “Efficient inference for fully-connected crfs with
stationarity,” in CVPR, 2012. 1

[10] V. Vineet, J. Warrell, and P. H. S. Torr, “Filter-based mean-field inference
for random fields with higher-order terms and product label-spaces,”
IJCV, vol. 110, no. 3, pp. 290–307, 2014. 1

[11] A. Desmaison, R. Bunel, P. Kohli, P. H. S. Torr, and M. P. Kumar,
“Efficient continuous relaxations for dense CRF,” in ECCV, 2016, pp.
818–833. 1

[12] J. T. Barron and B. Poole, “The fast bilateral solver,” in European
Conference on Computer Vision, 2016, pp. 617–632. 1

[13] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural
networks,” in ICCV, 2015, pp. 1529–1537. 1, 6

[14] A. G. Schwing and R. Urtasun, “Fully connected deep structured
networks,” CoRR, vol. abs/1503.02351, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02351 1

[15] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” in ICLR, 2015. 1

[16] L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun, “Learning deep
structured models,” in ICML, 2015. 1

[17] V. Jampani, M. Kiefel, and P. V. Gehler, “Learning sparse high dimen-
sional filters: Image filtering, dense crfs and bilateral neural networks,”
in Conference on Computer Vision and Pattern Recognition, 2016, pp.
4452–4461. 1

[18] P. F. Felzenszwalb and O. Veksler, “Tiered scene labeling with dynamic
programming,” in CVPR, 2010, pp. 3097–3104. 1, 3

[19] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson,

and K. Siddiqi, “Turbopixels: Fast superpixels using geometric flows,”
TPAMI, vol. 31, no. 12, pp. 2290–2297, 2009. 1

[20] O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels in
an energy optimization framework,” in ECCV, 2010, pp. 211–224. 1

[21] R. Achanta and et.al, “Slic superpixels,” TPAMI, 2012. 1, 2, 6
[22] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, June 2010. 2, 6

[23] Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal
surfaces via graph cuts,” in 9th IEEE International Conference on
Computer Vision (ICCV 2003), 14-17 October 2003, Nice, France, 2003,
pp. 26–33. 3

[24] H. Ishikawa, “Exact optimization for markov random fields with convex
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10, pp.
1333–1336, 2003. 4

[25] D. Schlesinger and B. Flach, “Transforming an arbitrary minsum problem
into a binary one,” Dresden University of Technology, Technical Report
TUD-FI06-01, 2006. 4

[26] T. Ajanthan, R. I. Hartley, and M. Salzmann, “Memory efficient max
flow for multi-label submodular mrfs,” CoRR, vol. abs/1702.05888,
2017. [Online]. Available: http://arxiv.org/abs/1702.05888 4

[27] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake, “Digital tapestry,” in
CVPR, 2005. 4

[28] O. Veksler, “Efficient graph-based energy minimization meth. in comp.
vis,” Ph.D. dissertation, 1999. 4

[29] V. Kolmogorov and A. Shioura, “New algorithms for convex cost tension
problem with application to computer vision,” Discrete Optimization,
vol. 6, no. 4, pp. 378–393, 2009. 4

[30] J. Besag, “On the statistical analysis of dirty pictures (with discussion),”
Journal of the Royal Statistical Society, Series B, vol. 48, no. 3, pp.
259–302, 1986. 5, 6

[31] A. Vedaldi, K. Lenc, and A. Gupta, “Matconvnet: Cnns for matlab,”
http://www.vlfeat.org/matconvnet/pretrained/. 6

http://arxiv.org/abs/1503.02351
http://arxiv.org/abs/1702.05888
http://www.vlfeat.org/matconvnet/pretrained/

