Stereo Correspondence with Compact Windows via

Minimum Ratio Cycle

Olga Veksler
NEC Research Institute, 4 Independence Way Princeton, NJ 08540

olga@research.nj.nec.com

Abstract

One of the earliest and still widely used methods for dense stereo correspondence
is based on matching windows of pixels. The main difficulty of this method is choosing
a window of appropriate size and shape. Small windows may lack sufficient intensity
variation for reliable matching, while large windows smooth out disparity discontinu-
ities. We propose an algorithm to choose a window size and shape by optimizing over a
large class of “compact” windows. The word compact is used informally to reflect the
fact that the ratio of perimeter to area of our windows is small. We believe that this is
the first area based method which efficiently constructs non rectangular windows. Fast
optimization over compact windows is achieved via the minimum ratio cycle algorithm
for graphs. The algorithm has only a few parameters which are easy to fix.

Index Terms — Stereo correspondence, adaptive windows, compact windows,

minimum ratio cycle, graph algorithms.

1 Introduction

Area based matching is one of the oldest and still widely used approaches to dense stereo
correspondence [11, 12, 13, 7, 6]. This approach makes a reasonable assumption that a pixel
is surrounded by a patch of pixels which have approximately the same disparity. Thus to
estimate how likely disparity d is for pixel p, a window of pixels centered at p in the left image
is overlapped with the same window shifted by d' in the right image. Then the cost between

the two windows is computed using, for example, sum of squared differences, normalized

IHere we assume that the stereo pair is rectified, so that d has dimension 1.

correlation, etc. See [16] for comparisons between different window costs. In the end, pixel
p gets assigned the disparity d which gives the best window cost.

While the assumption that each pixel is surrounded by a patch at approximately the
same disparity is usually valid, the shape and size of that patch is unknown beforehand, of
course. Ignoring this, most methods use a rectangular window of fixed size. In this case the
implementation is very efficient: the running time is linear in the number of pixels times the
number of disparities, i.e. it is independent of the window size [3].

The popularity of window based correspondence is due in part to its efficiency and ease
of implementation. However there is a well known problem with this method, which was
realized by researchers as early as [11]. For a reliable estimate a window must be large
enough to include enough intensity variation, but at the same time small enough not to
cross a disparity discontinuity,? so that the assumption that the window contains only pixels
at approximately the same disparity remains valid. This means that different pixels in the
same image usually require windows of different sizes: for a small window the results are
unreliable in low texture areas; as the window size is increased, the results in low texture
areas become more reliable while disparity boundaries get increasingly blurred. In addition,
no fixed window shape works well for all pixels. Pixels that are near a disparity discontinuity
frequently require windows of different shapes to avoid crossing that discontinuity.

There are relatively few algorithms which vary window size or shape. Their common
weakness is that they use naive optimization methods for the best window shape search.
Previous methods can be roughly divided into two groups, according to the optimization
method used. First there are methods such as [12, 9, 15] which use greedy local search.
These algorithms improve an initial window estimate by expanding a window in a certain
direction until a local maximum is reached. This is not only suboptimal but also quite slow.
In the second group are the direct search methods [5, 4, 2]. They use direct search over
several window shapes. For each pixel a small number of different window shapes are tried,
and the one with best cost is retained. To be efficient, the number of windows is severely
limited and cannot cover the whole range of different sizes and shapes needed.

The distinguishing property of our algorithm from the previous work is that we employ
a powerful optimization technique to find the window with the best cost out of a huge
class of windows. For each pixel we find an optimal window size and shape by optimizing
an appropriate window cost over a large class of “compact” windows. We use the word
“compact” loosely to reflect that our windows have small perimeter to area ratio. While our

compact window class is not completely general, it is still rather large, its size is exponential

2Informally, a disparity discontinuity occurs between pixels with significantly different disparities.

in the height of the largest allowed window. Furthermore, our compact window class contains
all possible rectangles, but the majority of shapes are not rectangles. As far as we know,
this is the first area based method which can efficiently construct non rectangular windows.

Efficient optimization over compact windows is achieved via minimum ratio cycle (MRC)
algorithm for graphs. If the largest allowed window is n by n, for our graphs optimization
takes O(ny/n) time in theory, but is linear in practice. MRC algorithm restricts the window
cost, but it is still quite general. We can include normalization by the window size which is
crucial since we compare windows of different sizes. Stated briefly, our window cost is the
average measurement error over window pixels with slight bias towards larger windows.

The straightforward algorithm computes the optimal window for each pixel-disparity
pair. Even though we perform this step efficiently, it still depends on the window size, which
is too slow for many applications. We devised simple heuristics which significantly reduce
the number of optimal window computations while giving practically the same results.

We show results on real imagery including the ground truth database compiled by D.
Scharstein and R. Szeliski. They also performed an extensive evaluation of different stereo
correspondence algorithms. For the results, as well as taxonomy of different stereo algo-
rithms, see [14]. Our method performs better than all other local methods that they evalu-
ated. It is inferior only to some of the global methods, but global methods are less efficient.
Besides the speed, the advantages of our algorithm is that it has few parameters which are

easy to choose and the same parameters work well for different imagery.

2 The Compact Window Class

In this Section we define a compact window class. It is defined with respect to each pixel-
disparity pair (p, d), since we use this class to estimate the likelihood of disparity d for pixel
p. We denote the compact window class for pixel-disparity pair (p,d) by Cp4. A natural way
to define C,q is through a certain directed graph, which we denote by G,4. This graph is
embedded into the image patch around pixel p. An example of G, and its embedding is in
Fig. 1(a). The squares correspond to image pixels, and the central thick square is the pixel
p. The black dots in the corner of each pixel square are the graph nodes, and the directed
arrows are the graph edges. Edges connect only the closest nodes, but not all such edges
are in G,q. The edges that are included have a special structure, which is easiest to see in
Fig. 1(b). The central gray region has no edges inside, and each of the four quadrants has
only the edges in the directions shown. Notice that the edges trace out clockwise cycles,
where in each quadrant a cycle follows a path in the general direction shown in Fig. 1(b).

We define windows in C,4 through the cycles of the graph G,,. Every directed cycle in

1

- | 4

(b) Edge directions in each quadrant

Figure 1: Graph structure

Gpa encloses a connected area, and this connected area is a window in Cpy. An example of
a compact window is shown in gray in Fig. 1(a), with the corresponding cycle in dashed
arrows. There is one to one correspondence between cycles in G,4 and compact windows,
thus we frequently say “cycle corresponding to the window”and vice versa.

First we state a few obvious facts about C,q. By construction, each window of C,4 contains
pixel p. This is of course crucial because we use Cpy to estimate how likely disparity d is
for pixel p. The largest window in C,q is limited by the graph size. It is useful to limit the
largest size because we may wish to prevent windows to be as large as the whole image. The
smallest window in C,q is the central gray region with no arcs in Fig. 1(b). A limit on the
smallest window is helpful because matching with a single pixel window is too unreliable. In
practice we set the largest and the smallest windows to be 31 by 31 and 3 by 3, respectively.

Now we state the less obvious properties of C,q. If the largest window in C,q is n by n,
then there are O(2") windows in Cp4®, so direct search is ruled out. All rectangles which
contain the smallest one are in our class. However our class is much more general than the
rectangles, the rectangles form only a small O(n?*) part. Notice that our windows shapes are
compact?, that is they have low perimeter to area ratio.

Although window shapes in Cp4 are not completely general, they are adequate for our
purposes. Assume that there is a patch of pixels around pixel p with approximately the same
disparity as p. We do not need to extract all the pixels in that patch, as long as we construct
a sufficiently large window of pixels from that patch. In contrast our windows do not work
for applications like image segmentation since the goal there is to extract all pixels in a

region. The compactness of our windows may be an advantage over general shape. The best

3Count the number of paths in our graph; at each step, there are 2 possible directions for a path.
4However they do not contain all shapes that one might call compact

general shape window may have thin subparts which do not belong to the disparity of most
pixels in the window, but do match well at that disparity due to the image structure. Thus

the results may be plagued by these artifacts. Fig. 3(a) shows examples of our windows.

3 Window Cost

In this section we describe the general window cost that we can handle, and the one that we
actually use. Let err(q, d) be the measurement error if pixel p has disparity d. Approximately
err(q, d) is the absolute difference in intensities between pixel ¢ in the left image and ¢ shifted
by d in the right image. For the exact description of err(q, d) see Section 6.

Let (p, d) be a pixel-disparity pair for which we want to find the optimal window. Recall
that C,q denotes the set of all compact windows for the (p, d)-pair. For convenience, a window
contains only pixels of the left image. For window W € C,q let Cy be the corresponding

cycle, and e be an edge of Cyy. Then the most general window cost that we can handle is

quw 67“7“((], d) + ZeeCW b(ea d)
quw n(‘]a d) .

Functions err(q,d) and b(e, d) can be arbitrary. For n(q, d) there is a restriction that it has

B(W) =

to be positive. Notice that b(e,d) and n(q, d) may depend on the particular edge e, pixel ¢

and disparity d, however we currently we do not make use of it. Our actual window cost is:

quw eTr(Q: d) + ZeGC’W b
ZQEW 1 ZqGW 1

The first term in the sum of equation (1) is the average window error. That is it accu-

E(W) = (1)

mulates err(q, d) over all pixels ¢ in a window and normalizes by the window size. This first
term is a good criterion to exclude outliers®, since inclusion of outliers in a window increases
average error. Exclusion of outliers means that the disparity discontinuities are not smoothed
out. We need more than that however. In low texture areas two windows may have different
sizes but approximately equal average error. We want to favor the larger one since larger
windows are more reliable. Thus the second term in the sum of equation (1) implements a
bias towards larger windows. It is the ratio of window perimeter to window area multiplied
by a parameter b. The second term is smaller for larger compact windows since area scales
approximately quadratically while perimeter scales approximately linearly. Constant b has

low positive value, since we want the bias term to differentiate only between window with

5Qutliers are pixels whose error differs significantly from that of the other window pixels. Robust statistic

deals with outliers by decreasing their weight in a window. In contrast we aim to avoid outliers altogether.

approximately equal average error. Thus our window cost is the average measurement error
with bias towards larger windows. We found that this window cost discourages windows

from crossing a disparity discontinuity while encouraging large windows in textureless areas.

4 Minimization via Minimum Ratio Cycle

The minimum ratio cycle algorithm (MRC) was first introduced into vision community by
Jermyn and Ishikawa in their interesting image segmentation work [8]. In this Section we
sketch the MRC problem and its complexity, and also describe how we use it to minimize

the cost function in equation 1. For a thorough description of MRC algorithms see [1].

4.1 Minimum Ratio Cycle

Suppose G = (V, E) is a directed graph with integer valued functions w : F — Z and
t: F — Z on its edges. Function w can be arbitrary while ¢ has the following restriction:

Y ecctle) > 0 for every cycle C. The problem then is to find a directed cycle C' which
>eecw(e)
Ze€0t(e) ’
The MRC can be reduced to a repeated detection of a negative cycle. This algorithm

minimizes the ratio: p(C) =

was first described by Lawler [10]. Suppose p* is the optimal value of (C), and ji is a guess
at p*. Set the new edge weights I(e) = w(e) — fu - t(e). It is easy to see that if there is a
negative cycle with the new weights, then i > p*. Similarly if there is a zero weight cycle
then 1 = p*, and if there is no negative cycle then i < p*.

Since w and ¢ are integral, p* must lie in the interval [-W, W], where W = max{|w(e)| :
e € E}. We use linear search to find p*. We start with 4 = W, and compute the new edge
weights [(e) = w(e) — f1-t(e). Then we run a negative cycle detection. If there is a negative
cycle C, we set i = pu(C') as the next guess and continue the search. If there is a zero weight
cycle, then p* = i and we terminate the search. There is always a negative or zero weight
cycle, since fi is an upper bound. This search must terminate after O(WT?) cycles, see [8].

A generic negative cycle detection takes O(n?) time for a graph with O(n) edges, see [1].
However for our graphs, the worst case complexity is O(ny/n), see [17]. Combining the
negative cycle and the linear search complexity, the MRC has pseudopolynomial complexity.
That is if we assume that the weights ¢ and w are independent of the graph size (which they
are for our problem), then the running time is polynomial, O(ny/n) in our case. In practice
we found that the average number of iteration to complete the linear search is around 3, and
the average number of passes over the graph for the negative cycle detection is around 5.

Thus the MRC algorithm needs about 15 passes over the graph to complete.

Figure 2: (a) edge e lies above pixel p,; (b) cycle in dashed arrows, window in gray.

4.2 Conversion to Minimum Ratio Cycle

To find the optimum window in a C,4 , we have to search for a minimum ratio cycle in the
graph G4, with properly defined edge weights w and ¢. First we need more notation. Recall
the embedding of the graph G,; in the image, shown in Fig. 1. We treat horizontal and
vertical graph edges differently. A horizontal edge e lies above some pixel of the image, and
we use notation p, to denote this pixel. For example in Fig. 2(a) the thick edge e lies above
pixel p.. We use notation p. | i to denote the pixel directly below p, by i spots, and h(p,)
to denote the total number of pixels directly below pixel p.. There is a special case when
e lies on the very bottom edge of the image so that there is no pixel below it. In this case
we set h(p.) = —1, and we set the value of the empty sum to 0. We break up w into two

functions w = wy + wsy. If edge e is vertical, then w;(e) = 0. For horizontal e:

(e) Zh(o err(pe 4 i,d) if e points right
wi(e) =
1 - Zh(o err(pe | i,d) if e points left

That is an edge that points to the right accumulates the positive error in the column below
it, and an edge pointing to the left accumulates the negative error in the column below.
Now consider a window W and its corresponding cycle Cy,. Each column of W is bounded
by cycle edges € on top and e on the bottom, as illustrated in Fig. 2(b). Edge € points to
the right and e points to the left. The weight w;(€) accumulates the positive error in the
column starting at pixel pe and all the way down. All pixels that contribute to wi(€) are
marked with “+” sign in Fig. 2(b). The edge weight w;(e) accumulates the negative error in
the column starting at pixel p. and all the way down. All pixels that contribute to w;(e) are

marked with “-” sign in Fig. 2(b). Thus the sum of w;(€) and w;(e) gives exactly the total

7

error in the window column between edges € and e. Now it easily follows that the sum over
all the edge weights w; in the cycle Cy gives the total measurement error in the window W.
Similarly we can define ¢ so that the sum of weights ¢ over a cycle counts the total number

of pixels in the corresponding window. For vertical e, t(e) = 0. For horizontal e:

He) h(pe) +1 if e points right
e) =
—(h(pe) + 1) if e points left

Now we only have to add a bias towards larger windows, which we do by defining ws(e) =
b for all edges e. It is easy to check that with w(e) = w;(e) + wq(e) and t as defined,
pu(Cw) = E(W) for window W and corresponding cycle Cyy. Thus the cycle with minimum
ratio p corresponds to the window with the optimal cost E.

Observe that ¢ satisfies the restriction of the MRC algorithm, that is its sum over any cycle
is positive since it is just the corresponding window size. This holds because by construction
our cycles are always clockwise. For any counterclockwise cycle, ¢ would accumulate the
negative window size, and we would not be able to use the MRC algorithm. If the MRC

algorithm placed no restrictions on ¢, then we could find the best window of general shape.

5 Approximation and Pruning

The straightforward compact window algorithm computes the optimal window for each pixel-
disparity pair (p, d). Even though we devised a very efficient method to compute the optimal
window, it still depends on the largest window size in Cp,4, which is too slow for many
applications. To speed things up, we develop an approximation and a pruning heuristics.
The approximation heuristic is based on the following observation. Fig. 3(a) shows the
scene in Fig. 5(a) with several computed windows, and the true disparities are in Fig. 3(b).
The black areas are the optimal windows, and the white dots are the pixels for which they
were computed. The disparity of the windows is the correct disparity for the white pixels.
Notice an optimal window tends to include only pixels at the same disparity as the pixel for
which the window was computed. This is because our window cost discourages crossing a
disparity discontinuity. Thus we can use the optimal window cost computed for pixel p to
approximate the optimal window cost for pixels ¢ which belong to the optimal window of p.
That is we do the following. Let W, be the optimal window and W, be the smallest
window in C,q. We start computing optimal windows for (p, d)-pairs in the order of increasing
E(W;,). For a computed W2, we set E(W¢,) = E(Wp,) for all ¢ € Wy, and do not compute
oo If we get several estimates on E(W,,), we retain the lowest one. This approximation

heuristic lets us to significantly reduce the number of optimal window computations.

(b)

Figure 3: (a) sample optimal windows; (b) true disparities

The second heuristic is simple pruning. We do not compute the optimal window for pixel-
disparity pairs (p, d) if err(p, d) is too large. Before computing Wp,, we check if p already has
a good match at disparity d' with computed or estimated E(Wp,). If E(W,;)/c > E(Wy,),
we exclude (p, d) from optimal window computation. We set ¢ = 1.5 in our experiments. This
pruning improves efficiency by excluding unlikely pixel-disparity pairs from computation. As
in a typical area based matching, after all E(pod)’s are computed or approximated, pixel p

gets assigned disparity d which gives the lowest E(W,).

6 Measurement Error

Before presenting our experimental results, we describe our model for the measurement
error err(p,d). For low noise image pairs our algorithm performs quite well with err(p, d)
set to squared intensity difference. However frequently there is brightness difference between
corresponding image patches or even nonlinear errors, especially in fine textured areas. For
such image pairs it is beneficial to use err(p, d) which models the above noise types.

We use the smallest window W, to estimate the average brightness in the left and right
image patches around p. Let I1, and I be the average intensity in W}, in the left image and
average intensity in W, shifted by d in the right image. Let I1(g) is the intensity of ¢ in
the left image, and Ir(q @ d) is the intensity of ¢ shifted by d in the right image. We correct

for brightness differences between the left and right image patches:

erri(q,d) = |(I(q) — Ip)) — (Ir(q ® p) — Ig)|.

This estimate would be more reliable if all pixels in W}, were used to compute I; and Ip.

9

However W, is not known in advance. In our experiments [W,| = 9, and it seems sufficient.

Besides brightness differences, there are frequently nonlinear errors between the corre-
sponding patches. We develop another function erry(q, d) which works well in such cases.
This function exploits local differences in intensities, retaining only their signs and not
the magnitude. Let us define functions sgn;(q), sgn.(q), sgn.(q), and sgny(q) as follows:
sgni(q) = sign(I;(q) — I(¢ — ©)). Here ¢ — i stands for the pixel to the left, right, above,
or below of ¢ if i = [, r, a, b correspondingly. The sign(x) function just retains the sign of the
argument, i.e. sign(z) = 1if z > 0, sign(z) = —1 if z < 0, and finally sign(z) = 0 if z = 0.
Functions sgn; (¢ ® d), sgn,(q® d), sgn.(q® d), and sgn,(q ® d) are defined similarly on the
right image. Now define erra(q, d) = f(D ;¢ (1 ,.apy [597i(q) — sgni(¢ @ d)|), where f(z) = z if
x <4 and f(z) = oo otherwise.

Thus erry(q, d) measures how well signs of local variations match around ¢ in the left
image and ¢@®d in the right image. This is robust to all monotonic nonlinear changes. Notice
that if the argument to function f is larger than 4, less than two of sgn; functions match,
so the use of erry is unreliable and it is set to infinity. Our final measurement error is a

combination: err(q,d) = min (erri(q, d), erry(q, d)).

7 Experimental Results on Stereo Data

Our algorithm works well with the same parameters for all image pairs we tried. For all
the experiments, we set the minimum window to 3 by 3, the maximum window to 31 by 31
(both centered at p); the pruning parameter ¢ = 1.5, and the bias parameter b = 1.

First we evaluate our algorithm on the Middlebury database with dense ground truth due
to D.Scharstein and R.Szeliski. They computed ground truth for several stereo pairs and also
took one stereo pair with ground truth from the Tsukuba University. They have implemented
several major approaches to stereo correspondence themselves and invited researchers to
submit their results. They evaluated 20 algorithms, including graph cuts, dynamic program-
ming, and area based methods. Summary of the evaluation is in Fig. 4, for their full report
see [14], and the results can be found on http://www.middlebury.edu/stereo /results. html.

The first column in Fig. 4 gives names of each of the 20 stereo algorithms. The algorithms
are arranged roughly in the order of performance, with the better ones on top. The next 4
columns give percentage errors each algorithm makes on the 4 scenes from the database. A
computed disparity is counted as an error if it is more than 1 away from the true disparity.
Each of these 4 columns is broken into 3 subcolumns: the all column gives the total error
percentage, the untex column gives error percentage in the untextured areas of the image

(where intensity gradient is smaller than some threshold), and the disc column gives the

10

Tsukuba Sawtooth Venus Map

Algorithm all untex disc | all untex disc all untex disc | all disc
Layered 1.58 1.06 88 1034 0.00 335 | 1.52 2.96 26 | 037 5.2
GraphCut 1.94 1.09 9.5 | 1.30 0.06 6.34 | 1.79 2.61 6.9 | 0.31 3.9
BeliefProp 1.15 0.42 6.3 {098 030 483 | 1.00 076 9.1 |08 53
GC+occl 1.27 0.43 6.9 | 036 0.00 3.65 | 2.79 5.39 2.5 | 1.79 10.1
GraphCut 1.86 1.00 94 1042 014 3.76 | 1.69 2.30 54 1239 94
MultiCut 8.08 6.53 253|061 046 460 | 0.53 0.31 80 | 0.26 3.3
CompWin 336 3.54 129|161 045 7.87 | 1.67 218 13.2|0.33 4.0
Realtime 4.25 447 150 1.32 0.35 9.21 1.53 1.80 123|081 114
Bay. diff. 6.49 11.62 123 | 145 0.72 9.29 | 4.00 721 184 | 020 25
Cooperative | 3.49 3.65 148 | 2.03 2.29 1341 | 2.57 3.52 264|022 24
SSD+MF 523 380 247|221 072 1397 | 3.74 6.82 13.0|0.66 9.4
Stoch. diff. 395 408 155|245 090 10.58 | 2.45 241 218|131 7.8
Genetic 296 266 1501221 276 13.96 | 2.49 2.89 23.0 | 1.04 10.9
Pix-to-Pix 5.12 706 146|231 179 1493 | 630 11.37 146 | 0.50 6.8
Max Flow 298 200 15.1 347 3.00 14.19| 2.16 224 21.7 | 3.13 16.0
Scanl. opt. 5.08 6.78 119|406 264 1190 | 944 1459 182 | 1.84 10.2
Dyn. Prog. 412 463 123|484 3.71 13.26 | 10.10 15.01 17.1 | 3.33 14.0
Shao 9.67 7.04 3561|425 319 30.14| 6.01 6.70 439|236 33.0
MMHM 9.76 13.85 244|476 187 2249 | 6.48 10.36 31.3 | 842 12.7
Max. Surf. 11.10 10.70 42.0 | 5.51 556 2739 | 436 4.78 41.1 | 417 279

Figure 4: Middlebury stereo evaluation results

error percentage near discontinuities (at a small distance from some disparity discontinuity).
For the Map scene there is not untex column because it is well textured everywhere.

The performance of our algorithm with approximation heuristics (CompWin) is high-
lighted by 2 horizontal lines. It performs better than all the local methods and some of the
global ones®. In the table, above our algorithm are only to the graph cuts based methods and
belief propagation. However our algorithm is faster than the global methods. The running
time for the Tsukuba, Sawtooth, Venus, and Map scenes are 17, 29, 33, and 12 seconds,
respectively. For the graph cuts the running times are approximately 3 times longer (when
performed on the same machine). For the better textured scene Map, our algorithm performs
better or just slightly worse than all the global methods which are ranked higher.

The Middlebury evaluation did not include a fixed window results because a shiftable
window works much better. A shiftable window uses direct search over several window

shapes, and its results are under the name SSD+MF. Our algorithm is significantly better

6Stereo algorithms can be roughly divided in 2 groups. Local methods make decision at a pixel by looking

at just the local patch around that pixel. For global methods a pixel can influence a very distant pixel.

11

(a) Left image (b) CompWind, 3.30%

(¢) CW with approx., 3.36% (d) left-right consistency, 1.95%

Figure 5: Tsukuba head and lamp scene

than SSD+MF, especially in the disc column, that is especially around discontinuities.

Now we evaluate if our error model in Section 6 helps on the Middlebury database.
If instead of that model we use just the absolute difference in intensities, then the error
percentages for Tsukuba, Sawtooth, Venus, and Map scenes are 3.72%, 1.92%, 2.27%, and
2.28% respectively. These percentages are slightly worse for the first three scenes, and
significantly worse for the Map scene. The reason is that there is brightness differences
between the left and right images of the Map scene, so modeling them helps.

The running time of our algorithm is influenced by image content. It is faster for the
better textured images because the pruning heuristic is more effective then. For example for
the better textured scene Map the algorithm processes 153,360 pixels per second. For the
lowest, textured scene Tsukuba, the algorithm processes only 97,581 pixels per second. Thus
the running time is not completely predictable beforehand, but can be estimated depending
on the type of imagery expected (for example textured outdoors versus low textured indoors).

In Fig. 5(a) is the left image of the Tsukuba stereo pair. In Figs. 5(b,c) are the results of
our compact window without and with approximation heuristics, respectively. The ground
truth for this scene is in Fig. 3(b). Under each image we show the percent of errors, 3.30%

and 3.36% respectively. The running time without approximations is 22 minutes, and with

12

(a) Left image (b) True disparities (c) Compact window

Figure 6: Tsukuba plant scene

approximations it is 18 seconds. The number of pixels different between the two versions is
10%. However most of these differences are +1 disparity and are due to close window costs
in low textured areas. Thus percentage error counts are almost equal for these algorithms.

Currently our algorithm does not deal with occlusion, i.e. with pixels which are visible in
only one of the images. A standard way to detect occluded pixels is to run the algorithm with
the left and right images reversed, and then remove pixels which get inconsistent disparity
assignments between the two answers. The results of such procedure are shown in Fig. 5(d).
Excluding pixels found inconsistent, the error count drops to 1.95%.

In Figs. 6(a,b) is another stereo pair with ground truth from the Tsukuba University,
which is not included in the Middlebury database. In Fig. 6(c) is the result of our algorithm.
Here our algorithm gives 16% error count, which is slightly better than graph cuts algorithm
whose error count is 18% for this scene. We omit the results of the graph cuts algorithm, but
they look quite similar to ours. In this experiment for the graph cuts algorithm we manually
picked the best parameters, while for our algorithm parameters are fixed. The running time
for our algorithm was 24 seconds, while for the graph cuts algorithm it was 72 seconds.

Fig. 7 shows our results on another common stereo sequence from SRI. Two results are
shown, one for narrow and one for wide baselines. For the wide baseline this sequence has
significant nonlinear errors in the grass region. Our algorithm performs well, the fine branch
detail is preserved and the slopes of the ground plane are captured. The running times are
4 seconds for the small and 22 seconds for the large baselines.

The algorithm is quite robust to noise and brightness differences between the images, in
our experience. The scenes in this section have different degrees of noise. The Map scene has
significant brightness distortions, the wide baseline SRI trees have severe noise especially in
the grass region. However the algorithm performs quite well with the same parameters for

all the imagery.

13

(a) Tree sequence (b) Small baseline (c) Large baseline

Figure 7: Results on SRI trees

8 Conclusions

We presented an algorithm which gives an efficient way to optimize a window cost over a huge
class of compact windows. This class contains all rectangular shapes, but the majority of
shapes are not rectangular. We believe that our algorithm is a first one to efficiently construct
non rectangular windows. Experimental results on the Middlebury database show that our
algorithm performs better than all the other local methods tested there. It is inferior only
to some of the global methods, but global methods are less efficient. The compact window
algorithm can be used for other applications where window matching approach is used, as

long as the window cost is the one that we can handle.

Acknowledgments

We thank Dr. Y. Ohta and Dr. Y. Nakamura for providing ground truth imagery; and Dr.

Sharstein and Dr. Szeliski for providing ground truth imagery and stereo evaluation results.

References

[1] K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[2] A.F. Bobick and S.S. Intille. Large occlusion stereo. In Vismod, 1999.

(3] O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron, L. Moll,
G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time correlation-based stereo:

algorithm, implementatinos and applications. Technical Report 2013, INRIA, 1993.

14

[4]

[11]

[12]

[13]

[14]

A. Fusiello and V. Roberto. Efficient stereo with multiple windowing. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 858-863, 1997.

D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo. International
Journal of Computer Vision, 14:211-226, 1995.

D.B. Gennery. Modelling the environment of an exploring vehicle by means of stereo
vision. In Ph. D., 1980.

M.J. Hannah. Computer matching of areas in stereo imagery. In Ph. D. thesis, 1978.

I[. Jermyn and H. Ishikawa. Globally optimal regions and boundaries as minimum ratio

cycles. IEEFE Trans. on Pattern Analysis and Machine Intelligence, 2001.

T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window:
Theory and experiment. IEEE Trans. on Pattern Analysis and Machine Intelligence,
16:920-932, 1994.

E. Lawler. Optimal cycles in doubly weighted directed linear graphs. In Int. Symp. on
Theory of Graphs, pages 209-232. Gordon and Breach, 1966.

M.D. Levine, D.A. O’Handley, and G.M. Yagi. Computer determination of depth maps.
CGIP, 2:131-150, 1973.

K. Mori, M. Kidode, and H. Asada. An iterative prediction and correction method for
automatic stereocomparison. CGIP, 2:393-401, 1973.

D.J. Panton. A flexible approach to digital stereo mapping. PhEngRS, 44(12):1499-
1512, December 1978.

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. IJCV, 47(1-3):7-42, April 2002.

S. Scherer, W. Andexer, and A. Pinz. Robust adaptive window matching by homogeneity
constraint and integration of descriptions. In ICPRY8, page CVP1, 1998.

N. Sebe, M.S. Lew, and D.P. Huijsmans. Toward improved ranking metrics. PAMI,
22(10):1132-1143, October 2000.

O. Veksler. Stereo correspondence with compact windows via minimum ratio cycle.
NEC Research Institute Technical Report, 2001.

15

