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omAbstra
tOne of the earliest and still widely used methods for dense stereo 
orresponden
eis based on mat
hing windows of pixels. The main diÆ
ulty of this method is 
hoosinga window of appropriate size and shape. Small windows may la
k suÆ
ient intensityvariation for reliable mat
hing, while large windows smooth out disparity dis
ontinu-ities. We propose an algorithm to 
hoose a window size and shape by optimizing over alarge 
lass of \
ompa
t" windows. The word 
ompa
t is used informally to re
e
t thefa
t that the ratio of perimeter to area of our windows is small. We believe that this isthe �rst area based method whi
h eÆ
iently 
onstru
ts non re
tangular windows. Fastoptimization over 
ompa
t windows is a
hieved via the minimum ratio 
y
le algorithmfor graphs. The algorithm has only a few parameters whi
h are easy to �x.Index Terms | Stereo 
orresponden
e, adaptive windows, 
ompa
t windows,minimum ratio 
y
le, graph algorithms.1 Introdu
tionArea based mat
hing is one of the oldest and still widely used approa
hes to dense stereo
orresponden
e [11, 12, 13, 7, 6℄. This approa
h makes a reasonable assumption that a pixelis surrounded by a pat
h of pixels whi
h have approximately the same disparity. Thus toestimate how likely disparity d is for pixel p, a window of pixels 
entered at p in the left imageis overlapped with the same window shifted by d1 in the right image. Then the 
ost betweenthe two windows is 
omputed using, for example, sum of squared di�eren
es, normalized1Here we assume that the stereo pair is re
ti�ed, so that d has dimension 1.1




orrelation, et
. See [16℄ for 
omparisons between di�erent window 
osts. In the end, pixelp gets assigned the disparity d whi
h gives the best window 
ost.While the assumption that ea
h pixel is surrounded by a pat
h at approximately thesame disparity is usually valid, the shape and size of that pat
h is unknown beforehand, of
ourse. Ignoring this, most methods use a re
tangular window of �xed size. In this 
ase theimplementation is very eÆ
ient: the running time is linear in the number of pixels times thenumber of disparities, i.e. it is independent of the window size [3℄.The popularity of window based 
orresponden
e is due in part to its eÆ
ien
y and easeof implementation. However there is a well known problem with this method, whi
h wasrealized by resear
hers as early as [11℄. For a reliable estimate a window must be largeenough to in
lude enough intensity variation, but at the same time small enough not to
ross a disparity dis
ontinuity,2 so that the assumption that the window 
ontains only pixelsat approximately the same disparity remains valid. This means that di�erent pixels in thesame image usually require windows of di�erent sizes: for a small window the results areunreliable in low texture areas; as the window size is in
reased, the results in low textureareas be
ome more reliable while disparity boundaries get in
reasingly blurred. In addition,no �xed window shape works well for all pixels. Pixels that are near a disparity dis
ontinuityfrequently require windows of di�erent shapes to avoid 
rossing that dis
ontinuity.There are relatively few algorithms whi
h vary window size or shape. Their 
ommonweakness is that they use naive optimization methods for the best window shape sear
h.Previous methods 
an be roughly divided into two groups, a

ording to the optimizationmethod used. First there are methods su
h as [12, 9, 15℄ whi
h use greedy lo
al sear
h.These algorithms improve an initial window estimate by expanding a window in a 
ertaindire
tion until a lo
al maximum is rea
hed. This is not only suboptimal but also quite slow.In the se
ond group are the dire
t sear
h methods [5, 4, 2℄. They use dire
t sear
h overseveral window shapes. For ea
h pixel a small number of di�erent window shapes are tried,and the one with best 
ost is retained. To be eÆ
ient, the number of windows is severelylimited and 
annot 
over the whole range of di�erent sizes and shapes needed.The distinguishing property of our algorithm from the previous work is that we employa powerful optimization te
hnique to �nd the window with the best 
ost out of a huge
lass of windows. For ea
h pixel we �nd an optimal window size and shape by optimizingan appropriate window 
ost over a large 
lass of \
ompa
t" windows. We use the word\
ompa
t" loosely to re
e
t that our windows have small perimeter to area ratio. While our
ompa
t window 
lass is not 
ompletely general, it is still rather large, its size is exponential2Informally, a disparity dis
ontinuity o

urs between pixels with signi�
antly di�erent disparities.2



in the height of the largest allowed window. Furthermore, our 
ompa
t window 
lass 
ontainsall possible re
tangles, but the majority of shapes are not re
tangles. As far as we know,this is the �rst area based method whi
h 
an eÆ
iently 
onstru
t non re
tangular windows.EÆ
ient optimization over 
ompa
t windows is a
hieved via minimum ratio 
y
le (MRC)algorithm for graphs. If the largest allowed window is n by n, for our graphs optimizationtakes O(npn) time in theory, but is linear in pra
ti
e. MRC algorithm restri
ts the window
ost, but it is still quite general. We 
an in
lude normalization by the window size whi
h is
ru
ial sin
e we 
ompare windows of di�erent sizes. Stated brie
y, our window 
ost is theaverage measurement error over window pixels with slight bias towards larger windows.The straightforward algorithm 
omputes the optimal window for ea
h pixel-disparitypair. Even though we perform this step eÆ
iently, it still depends on the window size, whi
his too slow for many appli
ations. We devised simple heuristi
s whi
h signi�
antly redu
ethe number of optimal window 
omputations while giving pra
ti
ally the same results.We show results on real imagery in
luding the ground truth database 
ompiled by D.S
harstein and R. Szeliski. They also performed an extensive evaluation of di�erent stereo
orresponden
e algorithms. For the results, as well as taxonomy of di�erent stereo algo-rithms, see [14℄. Our method performs better than all other lo
al methods that they evalu-ated. It is inferior only to some of the global methods, but global methods are less eÆ
ient.Besides the speed, the advantages of our algorithm is that it has few parameters whi
h areeasy to 
hoose and the same parameters work well for di�erent imagery.2 The Compa
t Window ClassIn this Se
tion we de�ne a 
ompa
t window 
lass. It is de�ned with respe
t to ea
h pixel-disparity pair (p; d), sin
e we use this 
lass to estimate the likelihood of disparity d for pixelp. We denote the 
ompa
t window 
lass for pixel-disparity pair (p; d) by Cpd. A natural wayto de�ne Cpd is through a 
ertain dire
ted graph, whi
h we denote by Gpd. This graph isembedded into the image pat
h around pixel p. An example of Gpd and its embedding is inFig. 1(a). The squares 
orrespond to image pixels, and the 
entral thi
k square is the pixelp. The bla
k dots in the 
orner of ea
h pixel square are the graph nodes, and the dire
tedarrows are the graph edges. Edges 
onne
t only the 
losest nodes, but not all su
h edgesare in Gpd. The edges that are in
luded have a spe
ial stru
ture, whi
h is easiest to see inFig. 1(b). The 
entral gray region has no edges inside, and ea
h of the four quadrants hasonly the edges in the dire
tions shown. Noti
e that the edges tra
e out 
lo
kwise 
y
les,where in ea
h quadrant a 
y
le follows a path in the general dire
tion shown in Fig. 1(b).We de�ne windows in Cpd through the 
y
les of the graph Gpd. Every dire
ted 
y
le in3



(a) Graph Gpd (b) Edge dire
tions in ea
h quadrantFigure 1: Graph stru
tureGpd en
loses a 
onne
ted area, and this 
onne
ted area is a window in Cpd. An example ofa 
ompa
t window is shown in gray in Fig. 1(a), with the 
orresponding 
y
le in dashedarrows. There is one to one 
orresponden
e between 
y
les in Gpd and 
ompa
t windows,thus we frequently say \
y
le 
orresponding to the window"and vi
e versa.First we state a few obvious fa
ts about Cpd. By 
onstru
tion, ea
h window of Cpd 
ontainspixel p. This is of 
ourse 
ru
ial be
ause we use Cpd to estimate how likely disparity d isfor pixel p. The largest window in Cpd is limited by the graph size. It is useful to limit thelargest size be
ause we may wish to prevent windows to be as large as the whole image. Thesmallest window in Cpd is the 
entral gray region with no ar
s in Fig. 1(b). A limit on thesmallest window is helpful be
ause mat
hing with a single pixel window is too unreliable. Inpra
ti
e we set the largest and the smallest windows to be 31 by 31 and 3 by 3, respe
tively.Now we state the less obvious properties of Cpd. If the largest window in Cpd is n by n,then there are O(2n) windows in Cpd3, so dire
t sear
h is ruled out. All re
tangles whi
h
ontain the smallest one are in our 
lass. However our 
lass is mu
h more general than there
tangles, the re
tangles form only a small O(n4) part. Noti
e that our windows shapes are
ompa
t4, that is they have low perimeter to area ratio.Although window shapes in Cpd are not 
ompletely general, they are adequate for ourpurposes. Assume that there is a pat
h of pixels around pixel p with approximately the samedisparity as p. We do not need to extra
t all the pixels in that pat
h, as long as we 
onstru
ta suÆ
iently large window of pixels from that pat
h. In 
ontrast our windows do not workfor appli
ations like image segmentation sin
e the goal there is to extra
t all pixels in aregion. The 
ompa
tness of our windows may be an advantage over general shape. The best3Count the number of paths in our graph; at ea
h step, there are 2 possible dire
tions for a path.4However they do not 
ontain all shapes that one might 
all 
ompa
t4



general shape window may have thin subparts whi
h do not belong to the disparity of mostpixels in the window, but do mat
h well at that disparity due to the image stru
ture. Thusthe results may be plagued by these artifa
ts. Fig. 3(a) shows examples of our windows.3 Window CostIn this se
tion we des
ribe the general window 
ost that we 
an handle, and the one that wea
tually use. Let err(q; d) be the measurement error if pixel p has disparity d. Approximatelyerr(q; d) is the absolute di�eren
e in intensities between pixel q in the left image and q shiftedby d in the right image. For the exa
t des
ription of err(q; d) see Se
tion 6.Let (p; d) be a pixel-disparity pair for whi
h we want to �nd the optimal window. Re
allthat Cpd denotes the set of all 
ompa
t windows for the (p; d)-pair. For 
onvenien
e, a window
ontains only pixels of the left image. For window W 2 Cpd let CW be the 
orresponding
y
le, and e be an edge of CW . Then the most general window 
ost that we 
an handle isE(W ) = Pq2W err(q; d) +Pe2CW b(e; d)Pq2W n(q; d) :Fun
tions err(q; d) and b(e; d) 
an be arbitrary. For n(q; d) there is a restri
tion that it hasto be positive. Noti
e that b(e; d) and n(q; d) may depend on the parti
ular edge e, pixel qand disparity d, however we 
urrently we do not make use of it. Our a
tual window 
ost is:E(W ) = Pq2W err(q; d)Pq2W 1 + Pe2CW bPq2W 1 (1)The �rst term in the sum of equation (1) is the average window error. That is it a

u-mulates err(q; d) over all pixels q in a window and normalizes by the window size. This �rstterm is a good 
riterion to ex
lude outliers5, sin
e in
lusion of outliers in a window in
reasesaverage error. Ex
lusion of outliers means that the disparity dis
ontinuities are not smoothedout. We need more than that however. In low texture areas two windows may have di�erentsizes but approximately equal average error. We want to favor the larger one sin
e largerwindows are more reliable. Thus the se
ond term in the sum of equation (1) implements abias towards larger windows. It is the ratio of window perimeter to window area multipliedby a parameter b. The se
ond term is smaller for larger 
ompa
t windows sin
e area s
alesapproximately quadrati
ally while perimeter s
ales approximately linearly. Constant b haslow positive value, sin
e we want the bias term to di�erentiate only between window with5Outliers are pixels whose error di�ers signi�
antly from that of the other window pixels. Robust statisti
deals with outliers by de
reasing their weight in a window. In 
ontrast we aim to avoid outliers altogether.5



approximately equal average error. Thus our window 
ost is the average measurement errorwith bias towards larger windows. We found that this window 
ost dis
ourages windowsfrom 
rossing a disparity dis
ontinuity while en
ouraging large windows in textureless areas.4 Minimization via Minimum Ratio Cy
leThe minimum ratio 
y
le algorithm (MRC) was �rst introdu
ed into vision 
ommunity byJermyn and Ishikawa in their interesting image segmentation work [8℄. In this Se
tion wesket
h the MRC problem and its 
omplexity, and also des
ribe how we use it to minimizethe 
ost fun
tion in equation 1. For a thorough des
ription of MRC algorithms see [1℄.4.1 Minimum Ratio Cy
leSuppose G = (V;E) is a dire
ted graph with integer valued fun
tions w : E ! Z andt : E ! Z on its edges. Fun
tion w 
an be arbitrary while t has the following restri
tion:Pe2C t(e) > 0 for every 
y
le C. The problem then is to �nd a dire
ted 
y
le C whi
hminimizes the ratio: �(C) = Pe2C w(e)Pe2C t(e) .The MRC 
an be redu
ed to a repeated dete
tion of a negative 
y
le. This algorithmwas �rst des
ribed by Lawler [10℄. Suppose �� is the optimal value of �(C), and �̂ is a guessat ��. Set the new edge weights l(e) = w(e) � �̂ � t(e). It is easy to see that if there is anegative 
y
le with the new weights, then �̂ > ��. Similarly if there is a zero weight 
y
lethen �̂ = ��, and if there is no negative 
y
le then �̂ < ��.Sin
e w and t are integral, �� must lie in the interval [�W;W ℄, where W = maxfjw(e)j :e 2 Eg. We use linear sear
h to �nd ��. We start with �̂ = W , and 
ompute the new edgeweights l(e) = w(e)� �̂ � t(e). Then we run a negative 
y
le dete
tion. If there is a negative
y
le C, we set �̂ = �(C) as the next guess and 
ontinue the sear
h. If there is a zero weight
y
le, then �� = �̂ and we terminate the sear
h. There is always a negative or zero weight
y
le, sin
e �̂ is an upper bound. This sear
h must terminate after O(WT 2) 
y
les, see [8℄.A generi
 negative 
y
le dete
tion takes O(n2) time for a graph with O(n) edges, see [1℄.However for our graphs, the worst 
ase 
omplexity is O(npn), see [17℄. Combining thenegative 
y
le and the linear sear
h 
omplexity, the MRC has pseudopolynomial 
omplexity.That is if we assume that the weights t and w are independent of the graph size (whi
h theyare for our problem), then the running time is polynomial, O(npn) in our 
ase. In pra
ti
ewe found that the average number of iteration to 
omplete the linear sear
h is around 3, andthe average number of passes over the graph for the negative 
y
le dete
tion is around 5.Thus the MRC algorithm needs about 15 passes over the graph to 
omplete.6



(a) (b)Figure 2: (a) edge e lies above pixel pe; (b) 
y
le in dashed arrows, window in gray.4.2 Conversion to Minimum Ratio Cy
leTo �nd the optimum window in a Cpd , we have to sear
h for a minimum ratio 
y
le in thegraph Gpd, with properly de�ned edge weights w and t. First we need more notation. Re
allthe embedding of the graph Gpd in the image, shown in Fig. 1. We treat horizontal andverti
al graph edges di�erently. A horizontal edge e lies above some pixel of the image, andwe use notation pe to denote this pixel. For example in Fig. 2(a) the thi
k edge e lies abovepixel pe. We use notation pe # i to denote the pixel dire
tly below pe by i spots, and h(pe)to denote the total number of pixels dire
tly below pixel pe. There is a spe
ial 
ase whene lies on the very bottom edge of the image so that there is no pixel below it. In this 
asewe set h(pe) = �1, and we set the value of the empty sum to 0. We break up w into twofun
tions w = w1 + w2. If edge e is verti
al, then w1(e) = 0. For horizontal e:w1(e) = ( Ph(pe)i=0 err(pe # i; d) if e points right�Ph(pe)i=0 err(pe # i; d) if e points leftThat is an edge that points to the right a

umulates the positive error in the 
olumn belowit, and an edge pointing to the left a

umulates the negative error in the 
olumn below.Now 
onsider a windowW and its 
orresponding 
y
le CW . Ea
h 
olumn ofW is boundedby 
y
le edges e on top and e on the bottom, as illustrated in Fig. 2(b). Edge e points tothe right and e points to the left. The weight w1(e) a

umulates the positive error in the
olumn starting at pixel pe and all the way down. All pixels that 
ontribute to w1(e) aremarked with \+" sign in Fig. 2(b). The edge weight w1(e) a

umulates the negative error inthe 
olumn starting at pixel pe and all the way down. All pixels that 
ontribute to w1(e) aremarked with \-" sign in Fig. 2(b). Thus the sum of w1(e) and w1(e) gives exa
tly the total7



error in the window 
olumn between edges e and e. Now it easily follows that the sum overall the edge weights w1 in the 
y
le CW gives the total measurement error in the window W .Similarly we 
an de�ne t so that the sum of weights t over a 
y
le 
ounts the total numberof pixels in the 
orresponding window. For verti
al e, t(e) = 0. For horizontal e:t(e) = ( h(pe) + 1 if e points right�(h(pe) + 1) if e points leftNow we only have to add a bias towards larger windows, whi
h we do by de�ning w2(e) =b for all edges e: It is easy to 
he
k that with w(e) = w1(e) + w2(e) and t as de�ned,�(CW ) = E(W ) for window W and 
orresponding 
y
le CW . Thus the 
y
le with minimumratio � 
orresponds to the window with the optimal 
ost E.Observe that t satis�es the restri
tion of the MRC algorithm, that is its sum over any 
y
leis positive sin
e it is just the 
orresponding window size. This holds be
ause by 
onstru
tionour 
y
les are always 
lo
kwise. For any 
ounter
lo
kwise 
y
le, t would a

umulate thenegative window size, and we would not be able to use the MRC algorithm. If the MRCalgorithm pla
ed no restri
tions on t, then we 
ould �nd the best window of general shape.5 Approximation and PruningThe straightforward 
ompa
t window algorithm 
omputes the optimal window for ea
h pixel-disparity pair (p; d). Even though we devised a very eÆ
ient method to 
ompute the optimalwindow, it still depends on the largest window size in Cpd, whi
h is too slow for manyappli
ations. To speed things up, we develop an approximation and a pruning heuristi
s.The approximation heuristi
 is based on the following observation. Fig. 3(a) shows thes
ene in Fig. 5(a) with several 
omputed windows, and the true disparities are in Fig. 3(b).The bla
k areas are the optimal windows, and the white dots are the pixels for whi
h theywere 
omputed. The disparity of the windows is the 
orre
t disparity for the white pixels.Noti
e an optimal window tends to in
lude only pixels at the same disparity as the pixel forwhi
h the window was 
omputed. This is be
ause our window 
ost dis
ourages 
rossing adisparity dis
ontinuity. Thus we 
an use the optimal window 
ost 
omputed for pixel p toapproximate the optimal window 
ost for pixels q whi
h belong to the optimal window of p.That is we do the following. Let W opd be the optimal window and W spd be the smallestwindow in Cpd. We start 
omputing optimal windows for (p; d)-pairs in the order of in
reasingE(W spd). For a 
omputed W opd we set E(W oqd) = E(W opd) for all q 2 W opd and do not 
omputeW oqd. If we get several estimates on E(W oqd), we retain the lowest one. This approximationheuristi
 lets us to signi�
antly redu
e the number of optimal window 
omputations.8



(a) (b)Figure 3: (a) sample optimal windows; (b) true disparitiesThe se
ond heuristi
 is simple pruning. We do not 
ompute the optimal window for pixel-disparity pairs (p; d) if err(p; d) is too large. Before 
omputingW opd, we 
he
k if p already hasa good mat
h at disparity d0 with 
omputed or estimated E(W opd0). If E(W spd)=
 > E(W opd0),we ex
lude (p; d) from optimal window 
omputation. We set 
 = 1:5 in our experiments. Thispruning improves eÆ
ien
y by ex
luding unlikely pixel-disparity pairs from 
omputation. Asin a typi
al area based mat
hing, after all E(W opd)'s are 
omputed or approximated, pixel pgets assigned disparity d whi
h gives the lowest E(W opd).6 Measurement ErrorBefore presenting our experimental results, we des
ribe our model for the measurementerror err(p; d). For low noise image pairs our algorithm performs quite well with err(p; d)set to squared intensity di�eren
e. However frequently there is brightness di�eren
e between
orresponding image pat
hes or even nonlinear errors, espe
ially in �ne textured areas. Forsu
h image pairs it is bene�
ial to use err(p; d) whi
h models the above noise types.We use the smallest window W spd to estimate the average brightness in the left and rightimage pat
hes around p. Let IL and IR be the average intensity in W spd in the left image andaverage intensity in W spd shifted by d in the right image. Let IL(q) is the intensity of q inthe left image, and IR(q� d) is the intensity of q shifted by d in the right image. We 
orre
tfor brightness di�eren
es between the left and right image pat
hes:err1(q; d) = j(IL(q)� IL))� (IR(q � p)� IR)j:This estimate would be more reliable if all pixels in W opd were used to 
ompute IL and IR.9



However W opd is not known in advan
e. In our experiments jW spdj = 9 , and it seems suÆ
ient.Besides brightness di�eren
es, there are frequently nonlinear errors between the 
orre-sponding pat
hes. We develop another fun
tion err2(q; d) whi
h works well in su
h 
ases.This fun
tion exploits lo
al di�eren
es in intensities, retaining only their signs and notthe magnitude. Let us de�ne fun
tions sgnl(q), sgnr(q), sgna(q), and sgnb(q) as follows:sgni(q) = sign(IL(q)� IL(q ! i)). Here q ! i stands for the pixel to the left, right, above,or below of q if i = l; r; a; b 
orrespondingly. The sign(x) fun
tion just retains the sign of theargument, i.e. sign(x) = 1 if x > 0, sign(x) = �1 if x < 0, and �nally sign(x) = 0 if x = 0.Fun
tions sgnl(q� d), sgnr(q� d), sgna(q� d), and sgnb(q� d) are de�ned similarly on theright image. Now de�ne err2(q; d) = f(Pi2fl;r;a;bg jsgni(q)� sgni(q� d)j); where f(x) = x ifx � 4 and f(x) =1 otherwise.Thus err2(q; d) measures how well signs of lo
al variations mat
h around q in the leftimage and q�d in the right image. This is robust to all monotoni
 nonlinear 
hanges. Noti
ethat if the argument to fun
tion f is larger than 4, less than two of sgni fun
tions mat
h,so the use of err2 is unreliable and it is set to in�nity. Our �nal measurement error is a
ombination: err(q; d) = min (err1(q; d); err2(q; d)) :7 Experimental Results on Stereo DataOur algorithm works well with the same parameters for all image pairs we tried. For allthe experiments, we set the minimum window to 3 by 3, the maximum window to 31 by 31(both 
entered at p); the pruning parameter 
 = 1:5, and the bias parameter b = 1.First we evaluate our algorithm on the Middlebury database with dense ground truth dueto D.S
harstein and R.Szeliski. They 
omputed ground truth for several stereo pairs and alsotook one stereo pair with ground truth from the Tsukuba University. They have implementedseveral major approa
hes to stereo 
orresponden
e themselves and invited resear
hers tosubmit their results. They evaluated 20 algorithms, in
luding graph 
uts, dynami
 program-ming, and area based methods. Summary of the evaluation is in Fig. 4, for their full reportsee [14℄, and the results 
an be found on http://www.middlebury.edu/stereo/results.html.The �rst 
olumn in Fig. 4 gives names of ea
h of the 20 stereo algorithms. The algorithmsare arranged roughly in the order of performan
e, with the better ones on top. The next 4
olumns give per
entage errors ea
h algorithm makes on the 4 s
enes from the database. A
omputed disparity is 
ounted as an error if it is more than 1 away from the true disparity.Ea
h of these 4 
olumns is broken into 3 sub
olumns: the all 
olumn gives the total errorper
entage, the untex 
olumn gives error per
entage in the untextured areas of the image(where intensity gradient is smaller than some threshold), and the dis
 
olumn gives the10



Tsukuba Sawtooth Venus MapAlgorithm all untex dis
 all untex dis
 all untex dis
 all dis
Layered 1.58 1.06 8.8 0.34 0.00 3.35 1.52 2.96 2.6 0.37 5.2GraphCut 1.94 1.09 9.5 1.30 0.06 6.34 1.79 2.61 6.9 0.31 3.9BeliefProp 1.15 0.42 6.3 0.98 0.30 4.83 1.00 0.76 9.1 0.84 5.3GC+o

l 1.27 0.43 6.9 0.36 0.00 3.65 2.79 5.39 2.5 1.79 10.1GraphCut 1.86 1.00 9.4 0.42 0.14 3.76 1.69 2.30 5.4 2.39 9.4MultiCut 8.08 6.53 25.3 0.61 0.46 4.60 0.53 0.31 8.0 0.26 3.3CompWin 3.36 3.54 12.9 1.61 0.45 7.87 1.67 2.18 13.2 0.33 4.0Realtime 4.25 4.47 15.0 1.32 0.35 9.21 1.53 1.80 12.3 0.81 11.4Bay. di�. 6.49 11.62 12.3 1.45 0.72 9.29 4.00 7.21 18.4 0.20 2.5Cooperative 3.49 3.65 14.8 2.03 2.29 13.41 2.57 3.52 26.4 0.22 2.4SSD+MF 5.23 3.80 24.7 2.21 0.72 13.97 3.74 6.82 13.0 0.66 9.4Sto
h. di�. 3.95 4.08 15.5 2.45 0.90 10.58 2.45 2.41 21.8 1.31 7.8Geneti
 2.96 2.66 15.0 2.21 2.76 13.96 2.49 2.89 23.0 1.04 10.9Pix-to-Pix 5.12 7.06 14.6 2.31 1.79 14.93 6.30 11.37 14.6 0.50 6.8Max Flow 2.98 2.00 15.1 3.47 3.00 14.19 2.16 2.24 21.7 3.13 16.0S
anl. opt. 5.08 6.78 11.9 4.06 2.64 11.90 9.44 14.59 18.2 1.84 10.2Dyn. Prog. 4.12 4.63 12.3 4.84 3.71 13.26 10.10 15.01 17.1 3.33 14.0Shao 9.67 7.04 35.6 4.25 3.19 30.14 6.01 6.70 43.9 2.36 33.0MMHM 9.76 13.85 24.4 4.76 1.87 22.49 6.48 10.36 31.3 8.42 12.7Max. Surf. 11.10 10.70 42.0 5.51 5.56 27.39 4.36 4.78 41.1 4.17 27.9Figure 4: Middlebury stereo evaluation resultserror per
entage near dis
ontinuities (at a small distan
e from some disparity dis
ontinuity).For the Map s
ene there is not untex 
olumn be
ause it is well textured everywhere.The performan
e of our algorithm with approximation heuristi
s (CompWin) is high-lighted by 2 horizontal lines. It performs better than all the lo
al methods and some of theglobal ones6. In the table, above our algorithm are only to the graph 
uts based methods andbelief propagation. However our algorithm is faster than the global methods. The runningtime for the Tsukuba, Sawtooth, Venus, and Map s
enes are 17, 29, 33, and 12 se
onds,respe
tively. For the graph 
uts the running times are approximately 3 times longer (whenperformed on the same ma
hine). For the better textured s
eneMap, our algorithm performsbetter or just slightly worse than all the global methods whi
h are ranked higher.The Middlebury evaluation did not in
lude a �xed window results be
ause a shiftablewindow works mu
h better. A shiftable window uses dire
t sear
h over several windowshapes, and its results are under the name SSD+MF. Our algorithm is signi�
antly better6Stereo algorithms 
an be roughly divided in 2 groups. Lo
al methods make de
ision at a pixel by lookingat just the lo
al pat
h around that pixel. For global methods a pixel 
an in
uen
e a very distant pixel.11



(a) Left image (b) CompWind, 3.30%
(
) CW with approx., 3.36% (d) left-right 
onsisten
y, 1.95%Figure 5: Tsukuba head and lamp s
enethan SSD+MF, espe
ially in the dis
 
olumn, that is espe
ially around dis
ontinuities.Now we evaluate if our error model in Se
tion 6 helps on the Middlebury database.If instead of that model we use just the absolute di�eren
e in intensities, then the errorper
entages for Tsukuba, Sawtooth, Venus, and Map s
enes are 3.72%, 1.92%, 2.27%, and2.28% respe
tively. These per
entages are slightly worse for the �rst three s
enes, andsigni�
antly worse for the Map s
ene. The reason is that there is brightness di�eren
esbetween the left and right images of the Map s
ene, so modeling them helps.The running time of our algorithm is in
uen
ed by image 
ontent. It is faster for thebetter textured images be
ause the pruning heuristi
 is more e�e
tive then. For example forthe better textured s
ene Map the algorithm pro
esses 153,360 pixels per se
ond. For thelowest textured s
ene Tsukuba, the algorithm pro
esses only 97,581 pixels per se
ond. Thusthe running time is not 
ompletely predi
table beforehand, but 
an be estimated dependingon the type of imagery expe
ted (for example textured outdoors versus low textured indoors).In Fig. 5(a) is the left image of the Tsukuba stereo pair. In Figs. 5(b,
) are the results ofour 
ompa
t window without and with approximation heuristi
s, respe
tively. The groundtruth for this s
ene is in Fig. 3(b). Under ea
h image we show the per
ent of errors, 3.30%and 3.36% respe
tively. The running time without approximations is 22 minutes, and with12



(a) Left image (b) True disparities (
) Compa
t windowFigure 6: Tsukuba plant s
eneapproximations it is 18 se
onds. The number of pixels di�erent between the two versions is10%. However most of these di�eren
es are �1 disparity and are due to 
lose window 
ostsin low textured areas. Thus per
entage error 
ounts are almost equal for these algorithms.Currently our algorithm does not deal with o

lusion, i.e. with pixels whi
h are visible inonly one of the images. A standard way to dete
t o

luded pixels is to run the algorithm withthe left and right images reversed, and then remove pixels whi
h get in
onsistent disparityassignments between the two answers. The results of su
h pro
edure are shown in Fig. 5(d).Ex
luding pixels found in
onsistent, the error 
ount drops to 1.95%.In Figs. 6(a,b) is another stereo pair with ground truth from the Tsukuba University,whi
h is not in
luded in the Middlebury database. In Fig. 6(
) is the result of our algorithm.Here our algorithm gives 16% error 
ount, whi
h is slightly better than graph 
uts algorithmwhose error 
ount is 18% for this s
ene. We omit the results of the graph 
uts algorithm, butthey look quite similar to ours. In this experiment for the graph 
uts algorithm we manuallypi
ked the best parameters, while for our algorithm parameters are �xed. The running timefor our algorithm was 24 se
onds, while for the graph 
uts algorithm it was 72 se
onds.Fig. 7 shows our results on another 
ommon stereo sequen
e from SRI. Two results areshown, one for narrow and one for wide baselines. For the wide baseline this sequen
e hassigni�
ant nonlinear errors in the grass region. Our algorithm performs well, the �ne bran
hdetail is preserved and the slopes of the ground plane are 
aptured. The running times are4 se
onds for the small and 22 se
onds for the large baselines.The algorithm is quite robust to noise and brightness di�eren
es between the images, inour experien
e. The s
enes in this se
tion have di�erent degrees of noise. The Map s
ene hassigni�
ant brightness distortions, the wide baseline SRI trees have severe noise espe
ially inthe grass region. However the algorithm performs quite well with the same parameters forall the imagery. 13



(a) Tree sequen
e (b) Small baseline (
) Large baselineFigure 7: Results on SRI trees8 Con
lusionsWe presented an algorithm whi
h gives an eÆ
ient way to optimize a window 
ost over a huge
lass of 
ompa
t windows. This 
lass 
ontains all re
tangular shapes, but the majority ofshapes are not re
tangular. We believe that our algorithm is a �rst one to eÆ
iently 
onstru
tnon re
tangular windows. Experimental results on the Middlebury database show that ouralgorithm performs better than all the other lo
al methods tested there. It is inferior onlyto some of the global methods, but global methods are less eÆ
ient. The 
ompa
t windowalgorithm 
an be used for other appli
ations where window mat
hing approa
h is used, aslong as the window 
ost is the one that we 
an handle.A
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