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Abstract
We propose a novel patch-based image representation

that is useful because it (1) inherently detects regions with
repetitive structure at multiple scales and (2) yields a pa-
rameterless hierarchical segmentation. We describe an im-
age by breaking it into coherent regions where each region
is well-described (easily reconstructed) by repeatedly in-
stantiating a patch using a set of simple transformations. In
other words, a good segment is one that has sufficient repe-
tition of some pattern, and a patch is useful if it contains a
pattern that is repeated in the image.

Our criterion is naturally expressed by the well-
established minimum description length (MDL) principle.
MDL prefers spatially coherent regions with consistent ap-
pearance and avoids parameter tuning. We minimize the
description length (in bits) of the image by encoding it with
patches. Because a patch is itself an image, we measure its
description length by applying the same idea recursively:
encode a patch by breaking it into regions described by yet
simpler patches. The resulting hierarchy of inter-dependent
patches naturally leads to a hierarchical segmentation.

We minimize description length over our class of image
representations (all patch hierarchies / partitions). We for-
mulate this problem as a recursive multi-label energy. Ex-
isting optimization techniques are either inapplicable or get
stuck in poor local minima. We propose a new hierarchical
fusion (HF) algorithm for energies containing a hierarchy
of ‘label costs’. Our algorithm is a contribution in itself and
should be useful for this new and difficult class of energies.

1. Introduction
Automatic image segmentation is classical problem in

computer vision. Many segmentation methods maintain an
appearance model for each segment by computing a com-
bination of color, texture, and shape statistics. In such ap-
proaches, a good segment is one that has a consistent ap-
pearance, while a good appearance model is one that de-
scribes the segment well [15, 21, 1]. Simultaneously finding
a good segmentation and good appearance models is diffi-
cult, and local minima are the best we can hope for even
with the simplest class of appearance models [15].

In unsupervised segmentation the complexity of the par-
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Figure 1. Our representation breaks the image into regions (yel-
low,red,orange,green) that are well-described by patches (1,2,5,6).
Patches 5 & 6 are recursively segmented using 1-pixel patches. We
detect repetition and allow arbitrary dependencies among patches.
Top-level segmentation: dark boundaries delineate regions repre-
sented by different patches; faded boundaries delineate different
transformations to match a patch to the image. The bottom-level
segmentation is a consequence of the MDL patch hierarchy.

tition must be balanced against the complexity of appear-
ance models; this avoids a trivial segmentation with the im-
age itself as the model. Appearance models are traditionally
kept simple by explicitly restricting the number and class of
such models (histograms, mixture of gaussians [15, 21]).
Partitions are kept simple by penalizing some combination
of boundary length, curvature, or segment size.

Leclerc [12] was first to argue that minimizing bound-
ary length corresponds to applying the minimum description
length (MDL) principle to partitions. The MDL principle
also prefers segments with consistent appearance because
their interior can be described with fewer bits using one ap-
pearance model. Subsequent works [23, 6] applied MDL to
penalize the number of required appearance models in addi-
tion to boundary length. All these works can be interpreted
as optimizing over a class of image representations, or en-
codings, that describe the image by a partition and a flat list
of appearance models. However, they do not apply MDL to
the complexity of appearance models themselves.

Recursive Patch-Based Representation We propose a
patch-based image representation that can capture a hier-
archy of repeated patterns and provides multiple segmenta-
tions. Patches preserve spatial information and have been
shown useful for many computer vision tasks, e.g. super-



Figure 2. Representation of image containing near-regular pattern.
The large blue region is well-described by repeatedly transforming
the apple patch to the image; faded boundaries delineate regions
that use a constant transformation rule (explained in Sec. 3.2).

resolution and de-noising [8], image re-targeting [2] and
completion [18]. One of our main contributions is incor-
porating patch-based appearance models within an MDL
framework. Unlike the aforementioned MDL segmentation
methods [12, 23, 6] our patch-based appearance models can
be arbitrarily complex so their internal complexity must be
explicitly measured and penalized to avoid trivial solutions.

We describe an image by breaking it into coherent seg-
ments where each segment is well-described (encoded) by
repeatedly instantiating a patch using a set of simple trans-
formations. Because a patch is itself an image, we nat-
urally measure its complexity by applying the same idea
recursively, i.e. we segment the patch and encode it using
even simpler patches. This recursive process results in a
set of inter-patch dependencies that form a rooted directed
acyclic graph (RDAG1) with the input image being the root.
Each level in the RDAG hierarchy induces a segmentation
(see Fig. 1). Our hierarchy represents dependencies among
patches and is not a hierarchy of regions in the image. This
is novel and fundamentally different from bottom-up merg-
ing approaches to hierarchical segmentation, e.g. [14].

We adopt the MDL principle and seek a representation
requiring the fewest bits to encode the original image. This
objective corresponds to minimizing a recursive multi-label
energy (Sec. 3). When applied to our class of representa-
tions, the MDL criterion:

1. naturally leads to recursion and thereby a hierarchy,
2. accounts for complexity of appearance models in a

novel and principled way,
3. avoids parameter tuning common in segmentation, and
4. provides compact description of natural images.

Fig.1 shows an RDAG with only two non-trivial patches,
and yet these small patches can describe the highly-
structured regions by undergoing only a few transforma-
tions. The joint description length (dependencies, parti-
tions, transformations, color) is more compact than the raw
image data and thus favored by MDL. Moreover, when the
entire image is covered by near-regular texture, one small

1An RDAG is similar to a tree, except nodes can share subtrees.

patch is enough to represent most of the image (Figure 2).
Figures 8, 11 show how our recursive MDL formulation can
detect more complex repetitive structures.

Our representation captures a hierarchy of color, shape,
and texture comprising the image. Information at the bot-
tom of the hierarchy is naturally propagated to higher levels
until the original image is fully described. Propagating par-
tition information results in a hierarchy of segmentations.
Note that although our patches are square, the partitions
can be arbitrarily shaped to follow perceptually meaning-
ful boundaries when mapped to the image.

Furthermore, if we propagate partitions and color infor-
mation, we can reconstruct the image to varying degrees of
accuracy as follows: first decode the raw pixels, then de-
code the simplest patches, working upwards until the root
of the RDAG (the original image). If we drop information
from our representation, e.g. the color information at the top
level, we can still try to reconstruct the image using trans-
formations of the remaining patches (Figs.1,2, top-right).

Hierarchical Fusion Algorithm To compute an image
representation of minimal length we must simultaneously
optimize over all possible partitions, all possible transfor-
mations, and all subsets of possible patches. We show that
our minimization problem is related to a class of multi-
label energies with “label subset costs” described by De-
long et al. [6]. The label costs in our energy are defined
over very large subsets. To the best of our knowledge, no
existing method can optimize our energy effectively, includ-
ing the variant of α-expansion in [6].

We propose a new hierarchical fusion (HF) algorithm to
better optimize energies that contain label costs defined on
large subsets. This algorithm first optimizes a collection
of sub-energies determined by the hierarchy of label costs
in the energy. The result is a set of labelings that are then
stitched together via α-expansion with label costs. This pro-
cess (Sec. 4.2) is specifically designed to avoid local min-
ima that are problematic for the method in [6], and has prov-
ably better optimality guarantees [5]. Though we introduce
HF in the context of segmentation, it should be effective in
any setting where labels are naturally grouped into subsets,
e.g. hierarchical clustering / model-fitting.

2. Additional Related Work
Wang et al. [19] build a “condensed epitome” along with

a transformation map, but their goal is image compression
and real-time decompression for rendering. The work of
Jojic et al. [10] introduced image epitomes for a number of
applications, including figure/ground segmentation. How-
ever, epitome-based methods require considerable effort to
arrange salient image data into a small 2D chart (in [10] the
size is fixed), whereas our representation is an RDAG of
inter-dependent patches and requires no such ‘2D packing’.

Detecting repetitive structures is an important problem
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in its own right [8, 2, 18]. Hays et al. [9] proposed a
method to discover a lattice of near-regular texture (fabric,
fence, window), and Wu et al. [20] rely on detecting van-
ishing points and architecture-specific symmetries. Zeng &
Van Gool [22] use point-wise repetition to improve multi-
label segmentation. We are first to combine patch-based ap-
pearance models with the MDL principle for segmentation.

There are number of hierarchical segmentation meth-
ods, e.g. [16, 14]. In these works, a segment’s appearance is
described by a vector of color/texture statistics determined
by the hierarchy of its sub-segments. These methods of-
ten find good segmentations, but do not search for repetitive
content in the image nor seek compact representations.

On an algorithmic level we are closely related to
α-expansion methods [3, 6] and in particular the fusion
moves of Lempitsky et al. [13] and hierarchical graph cut
process of Kumar & Koller [11]. Like [11] we apply fu-
sion moves in a bottom-up hierarchical fashion, but un-
like [13, 11] our fusions are guided by the structure of our
label costs. Again, the entire motivation for our HF algo-
rithm is to better optimize energies with a hierarchy of “la-
bel subset costs,” an element entirely missing from [13, 11].

3. Our Recursive MDL Image Representation
Our aim is to find an image representation of minimal

description length and to thereby achieve a good segmenta-
tion. We begin by proposing a general recursive energy that
evaluates the description length of an image w.r.t. a set of
patches (Sec. 3.1). We then show more precisely how each
recursive step encodes its corresponding patch by breaking
into regions described by other patches (Sec. 3.2). This re-
cursive process naturally leads to an RDAG among patches
via their partitions.

3.1. MDL Representation via Recursive Energy
We express the description length of an image I w.r.t. a

fixed set of patches S = {I1, I2, . . .} recursively as

E̊(S ; I)=min
f

Eenc(f ;S, I) + min
I′∈S

E̊(S\{I ′};I ′) + lg|S|

(1)

E̊({}; I)=Edirect(I). (2)

The first term in (1) minimizes the description length Eenc of
encoding the image I by using patches from S via labeling
f : Ω(I) → L that maps each image pixel to a discrete label
that identifies a transformed patch. The second term in (1)
recursively defines the total description length of the set S
itself. This term is minimized over all possible orderings of
repeatedly eliminating one patch from the set and encoding
it using the remaining ones. The final term is the number of
bits required to identify the next patch I ′ to be recursively
encoded. The recursion terminates in base case (2) where I
must be encoded directly. In this work we use 24-bit color
per pixel and thus Edirect(I) = 24|Ω(I)|.

exemplars labelings

I3I4

I5

f3f4

f5

S2

S
5

S
4

S
3

recursive structure

I2I1 f1 f2

Figure 3. Illustration of how (1) represents image I leading to an
RDAG over patches. Each recursive step k encodes patch Ik by
finding a labeling fk that optimally partitions Ik using patches
from Sk={I1, ..., Ik−1}. Here, f5 partitions I = I5 into three
unique appearance models based on patches {I2, I3, I4} ⊂ S5

and I1 is only used indirectly through the encodings of I3 and I4.

The choice of Eenc is application-specific, and in this
work we focus on encodings that find good image segmen-
tations. Figure 3 depicts the recursive process of energy (1)
for an optimal set S and how it yields a hierarchical rep-
resentation for image I = I5. Section 3.2 describes our
segmentation-based representation in more detail.

A minimal description length for I can be found, in
principle, by minimizing E̊(S; I) over all possible sets of
patches S. The problem we ultimately want to solve is

E(I) = min
S

E̊(S; I) + 2 lg|S|+ 1 (3)

where 2 lg |S|+ 1 is enough bits to identify |S|. Our recur-
sive energy is designed to favor sets that have no redundant
patches (i.e. not used by any encoding). However, search-
ing over all possible S is intractable. In practice we select
from patches that were sampled from the image at various
positions and scales.

3.2. Encoding via Segmentation & Exemplars
Our choice of Eenc(f ;S, I) defines description length of

image I of size n×n w.r.t. a set of patches S as

Eenc(f ;S, I) = 2 + 2 lgn+min
{
Edirect(I), (4)

Edata(f ;S, I) + Epartition(f ;S)
}

(5)

where labeling f : Ω(I) → L maps each image pixel to
a discrete label. Each label (e, t) ∈ L identifies a patch-
based exemplar Ie under some transformation rule indexed
by t ∈ T (e). Index t identifies a mapping Ω(I) → Ω(Ie)
from the image coordinate space to the patch coordinate
space. Each set of transformation rules T (e) is specifically
associated with patch Ie, and therefore |L| =

∑
e |T (e)|.

Eenc can choose either to encode I directly (4) using 24-bits
per pixel, or to partition I into segments (5) defined by opti-
mal labeling f where each segment is described by a patch
from S. (One bit is paid to distinguish between these two
options, and 1 + 2 lgn bits to encode the size of image I)
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Figure 4. An example of mapping image pixels p to pixels p′ in
the coordinate space of patch Ik (size n×n). Regions A and B are
labeled by transformations ta:(x, y) 7→ (x mod n, y mod n) and
tb:(x, y) 7→ (x+ n

2
mod n, y+ n

2
mod n) respectively. We refer

to this class of transformations as tilings. Note that one patch and
two tiling rules are enough to represent the image (left).

In the case where I is partitioned, Eenc chooses a label-
ing f that balances the complexity of the partition against
the quality of the match between patches and the image.
(Recall that the complexity of the set S itself is inherently
minimized by (1).)
Data Cost Energy Given labeling f that maps each image
pixel to a known patch pixel, the data cost energy Edata eval-
uates the number of additional bits required to reconstruct
the original image w.r.t. the patch color values.

For each pixel p ∈ Ω(I) let its label be fp = (ep, tp) ∈ L
where ep indexes patches from S and tp ∈ T (ep) indexes
one of transformation rules available for patch Iep . Figure 4
illustrates one possible class of such transformations we call
‘tilings’; these are the only transformation rules we use, but
others are possible (rotation, perspective). Let I(p) denote
the color at image pixel p and Iep(tp(p)) be a corresponding
color from the patch as determined by fp. The total number
of bits to encode I in terms of S given f is then

Edata(f ;S, I) =
∑

p∈Ω(I)

D(I(p)− Iep(tp(p))) (6)

where D(·) is the number of bits to encode each difference.
The above definition of Edata is the simplest way to en-

code the color differences but, for natural images, incorpo-
rating non-rigid local deformations is necessary. Our exper-
iments use a definition for Edata that allows mapped pixels
to locally deviate from tp and encode that deviation if it
benefits the overall description length.
Partition Energy The partition energy evaluates the num-
ber of bits required to encode the labeling f itself, i.e. the
partitioning of the image. We aim for labelings that are sim-
ple in the sense of being spatially coherent. This means f
should be highly compressible w.r.t. some scanning order
or neighborhood N (I) over the image pixels. For simplic-
ity, we first define our partition energy w.r.t. to a simple 1D
scanning pattern (e.g., zig-zag scan). However, for percep-
tual reasons suggested by Leclerc [12], in practice, we use
multiple scanning patterns (resulting in 8-neighborhood)
and average their expected description length.

The complexity of a partition depends directly on both

the number of unique labels and the number of discontinu-
ities fp ̸= fq for any pq ∈ N (I). Because each fp has
two components and ep ̸= eq ⇒ tp ̸= tq , there are two
possible types of discontinuities: either the transformation
rule changes, or both the patch and the transformation rule
change (see faded and black lines in Figures 1, 2). We ex-
press the overall number of bits to encode partition f as

Epartition(f ;S) = Elookup(f ;S) +
∑

pq∈N (I)

V (fp, fq, f) (7)

where V is the number of bits to encode a transition from la-
bel fp to label fq , and Elookup represents the number of extra
bits needed to know which patches and transformations are
used in f . The effect of Elookup is to make the description
length V for transitions shorter and to encourage labelings
that use fewer unique labels and are thus simpler.

Given the set of patches S and the labeling f , define Ŝ=
{i | ∃ep = i} to be the set of patch indices actually used
in the labeling f and similarly let T̂i = {j ∈ T (i) | ∃fp =
(i, j)} be the indices of transformation rules actually used
for each patch Ii. The smoothness cost V is then defined as
the number of bits needed to describe a label transition

V (fp, fq, f) =


2+lg|T̂eq|+ lg|Ŝ| ep ̸= eq, tp ̸= tq,

2+lg|T̂eq| ep = eq, tp ̸= tq,

1 otherwise.
(8)

Since V depends only on the number of unique labels
actually used in f , a lookup table is required to index the
patches and transformations used. Elookup represents the
number of bits required for such a table and is defined as

Elookup(f ;S) = |Ŝ| lg|S|+
∑
i

|T̂i| lg|Ti|. (9)

Note that our pairwise costs V depend on the orientation
of a scanning path, i.e. V (fp, fq, f) ̸= V (fq, fp, f). In this
case V is not submodular w.r.t α-expansion moves [3] and
cannot be directly optimized with α-expansion. To address
this we average pairwise costs over opposite orientations. It
can be shown that for 1D scanning paths the minima of this
modified energy correspond to minima of the original.

4. Optimizing Our Recursive Energy
In Sec. 4.1 we describe our greedy approach to opti-

mize (3) . The problem is difficult, first because we cannot
search over all possible S in practice, and second because
even the key subproblem of minimizing Eenc inside each
recursive step is NP-hard. This subproblem requires min-
imizing a multi-label energy with label costs defined over
very large subsets of labels. Unfortunately, the algorithm
in [6] can easily get stuck in poor local minima for such
energies. In Sec. 4.2 we introduce our hierarchical fusion
algorithm to better optimize such energies in practice.
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4.1. Greedy RDAG Construction Over Patches
Since we cannot search over all possible subsets of

patches in (3) we restrict our search space to a set S̄ of
patches sampled from the image, including the image it-
self. We adopt a greedy approach and sort all the patches
in S̄ by ascending order of size. This greedy order deter-
mines the elimination order in (1), as illustrated in Fig. 3.
To build the RDAG we add one patch at a time, and at
step k of our greedy algorithm we compute the minimal de-
scription length of encoding Ik using patches from the set
S̄k = {I1, . . . , Ik−1}, S̄k ⊆ S̄. We assume that patches
{I1, . . . , Ik−1} have already been encoded, their respective
optimal partitions {f1, . . . , fk−1} computed, and therefore
the dependencies between current patches in S̄k are fixed.
Figure 5 illustrates a few steps of building the RDAG for
the example and elimination order given in Fig. 3.

Finding an MDL representation for Ik entails choosing a
good subset of patches from S̄k. The main difficulty is that
a patch Ii ∈ S̄k can be used both directly and indirectly
(through its parent) to encode Ik, yet the cost of encoding Ii

itself must be paid at most once. For example, consider step
5 in Fig. 5. The optimal labeling f5 uses I2 directly in one
region, and indirectly (e.g. through I3) in another. However,
the cost of encoding I2 must be paid even if only I3 is used.
This dependency cannot be represented by independent per-
label costs for using I2 and I3 when computing f5.

We use energies with label subset costs [6] to correctly
account for the inter-patch dependencies at step k. These
costs represent the description length in (1) computed by
recursion on any possible subset of S̄k. In order to define
the necessary label subsets we begin with a formal descrip-
tion of the dependencies in the hierarchy of patches. We
denote by Gk = {Vk,Ak} the dependecies in the RDAG at
step k, with vertices Vk = {v1, . . . , vk−1} corresponding
to the patches in S̄k. Whenever patch Ij depends directly
on patch Ii for its encoding (i < j < k), we use an arc
(vj , vi) ∈ Ak to denote this dependency. For each vertex
vi ∈ Vk we denote its graph predecessors and successors
by sets Xi and Yi respectively.

Xi = { j | vi is reachable from vj} ∪ {i}
Yi = { j | vj is reachable from vi}

Xi indexes all patches that (directly or indirectly) use the
patch Ii for encoding. Yi indexes all patches that are di-
rectly or indirectly used to encode patch Ii (Fig. 5, right).

Let Li = {(e, t) ∈ L | e ∈ Xi} be the set of labels in
L corresponding to patches that depend on Ii for encoding.
Our energy must be defined such that if any fp ∈ Li then the
cost of encoding patch Ii is paid. Denote by hLi the cost
assigned to label subset Li. At each step k of our greedy
RDAG construction we optimize

Ẽk = min
f

Eenc(f ; S̄k, Ik) +

k−1∑
i=1

hLiδLi(f) (10)

f3

greedy step 3

f4

step 4

f5

step 5

I3I4

I2I1

I5

v2v1

v4 v3

Y4

X2

step 5

dependency graph

for label costs

Figure 5. Steps k=3,4,5 of our greedy approach. At step 3, the
patch I3 is encoded using the set S̄3 = {I1, I2}. For this trivial
case, finding optimal f3 in (10) is a two-label energy where the
“label cost” of using each label is Edirect. After step 5, the final
representation for patch I5 depends directly on I2, I3, I4 and in-
directly on I1. Note that I2 is also used indirectly through the
encoding of I3. The rightmost column is explained in the text.

where the indicator function δLi
is defined on a label sub-

set Li as
δLi(f) =

{
1 ∃p : fp ∈ Li

0 otherwise.

The label costs in Ẽk must be carefully designed to ac-
count for the specific dependency structure already present
in Gk. We define label costs as hLi = Ẽi−

∑
j∈Yi

hLj .
To understand why hLj are subtracted consider the follow-
ing. First, when Ẽi was computed it included (by defini-
tion) the cost of encoding all patches Ij , j ∈ Yi on which it
depends. This also means that i ∈ Xj ∀j ∈ Yi and the costs
hLj will already be activated whenever the patch Ii is used.
Hence, in order not to double count the costs hLj , j ∈ Yi

they should be subtracted from hLi .
Consider for example step 5 in Fig. 5. The label subsets

that are used at this step are as follows:

X1 = {1, 3, 4} with hL1 = Ẽ1

X2 = {2, 3, 4} with hL2 = Ẽ2

X3 = {3} with hL3 = Ẽ3 − hL1 − hL2

X4 = {4} with hL4 = Ẽ4 − hL1 − hL2

The costs hL1 and hL2 were subtracted from hL3 and hL4

because the sets L1 and L2 already include the patches I3

and I4. Without the subtraction, any labeling that uses both
I1 and I3 together will pay hL1 twice. Below we provide
pseudo-code for greedy RDAG construction.

Greedy RDAG Construction
1 for k = 1..|S̄|
2 S̄k = S̄k−1 ∪ {Ik}, Vk+1 = Vk ∪ {vk}
3 set up label subsets Li and label costs hLi using Gk

4 fk = argminf Ẽ
k // minimize with HF (Sec. 4.2)

5 if Ẽk(fk) did not use Edirect(I
k)

6 Ak+1 = Ak ∪ {(vk, vj)|∃fk
p = (j, ·)}

7 create Xk,Yk, update Xj ∀j < k
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local minimum fp=(1,1) global optimum f *

(1,1)(1,1)

(2,1) (2,2) (2,3)

I1 I2

1×1 5×5

Figure 6. A local minimum for α-expansion with label subset
costs [6]. Here the subset L2 includes labels (2, 1), (2, 2), (2, 3).
If the current labeling uses only patch I1, the label cost hL2 of in-
troducing patch I2 is too high for any one transformation (2, t) to
be worth expanding. Only by simultaneously expanding on three
transformations of I2 can we find an optimal labeling.

4.2. Hierarchical Fusion (HF) Algorithm
Since energy (10) has label costs, the natural approach

to optimizing it would be the α-expansion-based method
proposed in [6]. However, this method has poor optimality
guarantees when label costs are defined over large label sub-
sets and, in practice, gets stuck in local minima. Figure 6
illustrates an example of a problematic local minimum for
our formulation using [6]. The fundamental problem faced
by expansion is that no individual label (i, t) from a subset
Li is worth expanding due to high label cost hLi . Only by
expanding on many labels from Li simultaneously can the
decrease in data costs compensate for paying high label cost
hLi . As suggested by Fig. 6, this means that for patch i we
need to effectively expand on all its labels (i, t), t ∈ T (i) at
once (i.e. all possible transformation rules).

We now describe our hierarchical fusion (HF) algorithm
for optimizing the energy Ẽk (10) at step k. Our algorithm
begins by optimizing a set of independent sub-energies, one
for each of k−1 patches (Fig. 7, bottom). Each sub-energy
is defined by Ẽk over a restricted set of labels and is opti-
mized by running α-expansion [6] until convergence. For
sub-energy j we restrict its set of labels to Lj={(j, ·)},
i.e. the transformation rules T (j) available for patch Ij .

The result is a set C = {c1, . . . , ck−1} of pixel labelings
cj : Ω(Ik) → Lj . Each labeling cj tries its best to ‘recon-
struct’ the color data in Ik by transforming patch Ij via the
rules in T (j). The particular example in Fig. 7 shows how
image I5 is perfectly reconstructed by labeling c4, but must
pay heavy smooth costs to do so in regions that match I4

poorly. In general, regions of Ik that locally match Ij will
have low data costs (similar color) and low smooth costs
(coherent regions with constant transformation). Regions
that do not match will have either high data costs or high
smooth costs. This fact is essential for the subsequent fu-
sion step of our algorithm (Fig. 7).

Once labeling cj is computed, each cjp designates a fixed
transformation rule from T (j) for pixel p ∈ Ω(Ik). The
labelings in C are then stitched in a multi-label fusion en-
ergy still corresponding to (10). For each pixel, we define
its label set for fusion as Lfuse

p ={(j, cjp) | j ∈ 1...k−1}. In
other words, by assigning label (j, cjp) to pixel p, the fusion

αααα----expansion (fusion)expansion (fusion)expansion (fusion)expansion (fusion)
ℓ2ℓ1 ℓ3 ℓ4

f5 h{1,3,4} = Ẽ
1

h{2,3,4} = Ẽ
2

h{3} = Ẽ
3
− Ẽ2 − Ẽ1

h{4} = Ẽ
4
− Ẽ2 − Ẽ1

label costs during fusion

different 
transformations

ℓ4
ℓ3

ℓ1

reconstruct
from c

∈ T(4)t1

αααα----expansionexpansionexpansionexpansion αααα----expansionexpansionexpansionexpansion
t2 t3 t4 t5 ... t1 t2 t3 t4 t5 t6 t7 t8 ...∈ T(3)

I1 I2 I3 I4

reconstruct
from c

Figure 7. A portrayal of how hierarchical fusion computes the im-
age representation in step 5 of Fig. 5. The upper-right region in
labeling c3 uses a constant transformation rule (a ‘tiling’) to syn-
thesize a striped pattern. The fusion step therefore chooses ℓ3 to
represent this region in the encoding of I5, and similarly chooses
ℓ4 to represent the checkerboard region.

step has chosen to represent p by patch j under transforma-
tion cjp. Optimizing over Lfuse drastically reduces the effec-
tive size of each label subset Li in (10) from

∑
j∈Xi

|T (j)|
to |Xi|. We thereby avoid local minima caused by subset
costs hLi (Fig. 6). In summary, the fusion at step k chooses
an MDL representation for image Ik by partitioning it and
applying transformation rules to a good subset of patches
from S̄k = {I1, . . . , Ik−1}. This final partition determines
the RDAG structure at step k (line 6 in Greedy RDAG).

HF Algorithm at step k († = α-exp. w/ label costs[6])

1 for j = 1..k − 1

2 Lj = {(j, ·) ∈ L}
3 cj = argmincẼ

k, c : Ω(Ik) → Lj †
4 Lfuse

p ={(j, cjp) | j ∈ 1...k−1} ∀p
5 fk = argminf Ẽ

k, f : Ω(Ik) → Lfuse †

One important detail in our MDL formulation is the de-
pendence of V on the number of unique labels in f dur-
ing each α-expansion. This is a question of V being as
large as necessary according to (8), but no larger. Each
invocation of α-expansion (lines 3,5) begins with an under-
estimate of the number of unique labels. If the solution con-
tains more unique labels than could be encoded by current
V , we restart α-expansion with a higher estimate until we
find a feasible solution. This process is guaranteed to termi-
nate because increasing the estimate results in larger smooth
costs and encourages fewer labels in the output.

5. Experiments
We collected a number of natural images and applied

our method. As described in Sec. 4.1, we sample candidate
patches from the image at various locations and scales. We
eliminate redundant candidates by clustering the patches
based on SSD of their Lab color values; this is done for
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reconstruction

Figure 8. MDL image representations computed by our approach.

performance reasons only, as our energy prefers represen-
tations with no redundant patches and would not have se-
lected them anyway. Figures 1,2,11 and 8 show results
that are typical for images with repetitive structures. For
each input image we show the dependency graph of patches
along with their partitions and the top- and bottom-level
segmentations. Notice in the top example of Fig. 8 that the
left building is encoded by a patch of windows, which is
in turn encoded by a single window, which is in turn en-
coded by solid colors (1-pixel patches). Also shown at top-
right is a reconstruction of the image using only patch data,
i.e. we drop the top-level information about color difference
between patches and matching regions.

The top-level segmentation does not always follow ob-
ject boundaries because our method has no semantic in-
formation about objects and therefore happily, and cor-
rectly, finds repetitive patterns along inter-object boundaries
(e.g. roof/sky, soldier/wall). However, the low-level seg-
mentations tend not to mix statistics between objects since
they must be described by simpler patches. Fig. 9 shows
how our bottom-level segmentations qualitatively compare

Input Ours NC [17] MS [4] FH [7]

Figure 9. Our representation gives bottom-level segmentation
where repeating elements tend to have the same appearance label,
unlike methods not designed to detect repetition. For [17, 4, 7] we
tuned parameters to give good segment sizes.

Level 1 Level 2 Level 3 Level 4

Figure 10. Four levels of a typical hierarchical region-merging ap-
proach [14]. Such methods are not designed to capture repetitive
content and most of the merging happens in arbitrary order; this
makes it difficult to know at which level (if any) the segmentation
can be meaningfully analyzed. (Compare to ours in Figs.1,2,8)

to well-known superpixel methods. Fig. 10 shows how a
standard region-merging method behaves on images with
repetitive content.

6. Discussion
Our class of representations is not limited to patch-

based appearance models. Hierarchies are a natural conse-
quence of MDL when representing data by highly-complex
models, and can be applied to other classes of appearance
models (histograms, GMM, bag-of-features). Furthermore,
more sophisticated transformations can easily improve re-
sults (reflections, rotations, or perspective transformations).

Though we introduced our HF algorithm in the context
of automatic segmentation, we expect the scope of its ap-
plications to be much larger. The algorithm is designed to
optimize energies that contain a hierarchy of label costs, and
we foresee many applications for such energies.

Lastly, though this paper is not about compression, our

7



Figure 11. More results computed by our approach. Notice the dependencies at top-left: the largest patch (3 windows) is recursively
encoded by repeating a smaller patch (1 window); this is shorter than encoding directly, and likewise for repetitive regions in the image.

representations can potentially be used to compress data
with repetitive structures. For example, it is interesting
to note that for the image shown in Fig. 8 top (taken
from [19]), we obtain a compression rate of 8:1 for the
lossy reconstruction shown and 3:1 for lossless represen-
tation, which is comparable to the rate reported in [19].
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