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Abstract. Many methods for object recognition, segmentation, etc.,
rely on tessellation of an image into “superpixels”. A superpixel is an
image patch which is better aligned with intensity edges than a rect-
angular patch. Superpixels can be extracted with any segmentation al-
gorithm, however, most of them produce highly irregular superpixels,
with widely varying sizes and shapes. A more regular space tessellation
may be desired. We formulate the superpixel partitioning problem in
an energy minimization framework, and optimize with graph cuts. Our
energy function explicitly encourages regular superpixels. We explore
variations of the basic energy, which allow a trade-off between a less
regular tessellation but more accurate boundaries or better efficiency.
Our advantage over previous work is computational efficiency, princi-
pled optimization, and applicability to 3D “supervoxel” segmentation.
‘We achieve high boundary recall on 2D images and spatial coherence on
video. We also show that compact superpixels improve accuracy on a
simple application of salient object segmentation.
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1 Introduction

Many vision applications benefit from representing an image as a collection of su-
perpizels, for example [1-8], to cite just a few. While the exact definition of a
superpixel is not feasible, it is regarded as a perceptually meaningful atomic
region. A superpixel should contain pixels that are similar in color, texture, etc.,
and therefore are likely to belong to the same physical world object. The atomic
region notion is old, but a popular term superpizel has been coined recently [1].

The assumption that all pixels in a superpixel belong to the same object
leads to the advantage of superpixel primitives over pixel primitives. The first
advantage is computational efficiency. If one needs to compute a property that
stays approximately constant for an object, then superpixel representation is
more efficient since the total number of primitives is greatly reduced [9]. Com-
putational efficiency also comes from a reduction in the number of hypothesis.
Instead of exhaustive examining of all rectangular patches [10], an alternative is
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to examine only superpixels [1,2,4-7]. In addition to efficiency, superpixels are
used for computing features that need spatial support [3].

To obtain superpixels, one often uses image segmentation algorithms such as
meanshift [11], graph based [12], normalized cuts [13]. To increase the chance
that superpixels do not cross object boundaries, a segmentation algorithm is run
in an oversegmentation mode. However, most segmentation algorithms produce
regions of highly irregular shape and size, for example the meanshift [11] and
the graph-based [12], see Fig. 1, first two images. The boundaries are also highly
irregular, since there is no explicit constraints on length. A large superpixel with
a highly irregular shape is likely to straddle more than one object.

Fig. 1. From left to right: meanshift [11], graph based [12], turbopixels [14], NC super-
pixels [1]. Implementation was obtained from the authors’ web sites.

There are advantages to superpixels with regular shapes and sizes, such as
those in Fig. 1, on the right. A regular shape is less likely to cross object bound-
aries, since objects rarely have wiggly shapes. If a superpixel does cover more
than one object, if its size is not too large, the overall error rate is controlled.

The normalized cuts algorithm [13] can be adapted to compute superpixels
that are regular in size and shape [1], see Fig. 1. Many methods that need regular
superpixels use normalized cuts [9,1,2,4,5]. However, NC superpixels [1] are
very expensive, and have the following unappealing property, noticed by [14].
The smaller is the size of target superpixels, the longer the computation takes.

Our work was inspired by the TurboPixel algorithm [14], see Fig. 1. Their
algorithm is based on curve evolution from seeds placed regularly in the image.
They produce regular “turbopixel” space tessellation. Using various constraints
during curve evolution, they encourage uniform space coverage, compactness of
superpixels in the absence of image edges, and boundary alignment when image
edges are present. They have to devise a collision detection mechanism to insure
no turbopixels overlap. The algorithm runs in seconds on the images in Berkeley
dataset [15], as compared to minutes with NC superpixels [1].

We propose a principled approach to compute superpixels in an energy min-
imization framework. Our method is simple to understand and implement. The
basic algorithm, illustrated in Fig. 2, is similar in spirit to texture synthesis [16].
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Fig. 2. Overview of our algorithm. Left: the original image overlayed with square
patches. Each patch corresponds to a label. This label can be assigned only to pixels
covered by the patch. Middle: result of patch stitching. Right: superpixel boundaries.

An image is covered with overlapping square patches of fixed size, Fig. 2, left.
Each pixel is covered by several patches, and the task is to assign a pixel to
one of them. If two neighboring pixels are assigned to the same patch, there is
no penalty. If they belong to different patches, then there is a stitching penalty
that is inversely proportional to the intensity difference between the pixels. In-
tuitively, we are stitching patches so that the seams are encouraged to align
with intensity edges. The stitching result is in Fig. 2, middle, and superpixel
boundaries are in Fig. 2, right. Boundaries are regularized due to the stitching
energy function. A superpixel cannot be too large, not larger than a patch size.
Small superpixels are discouraged because they contribute a higher cost to the
stitching energy. Thus the sizes of superpixels are also regularized. We extend
this basic algorithm to other formulations, which allow a trade-off between a less
regular space tessellation but more accurate boundaries or better efficiency.

Our work has several advantages over turbopixels [14]. First, we have an
explicit energy, and a principled way to optimize it. In contrast, the method
in [14] is described only procedurally. Our approach is simpler to understand
and analyze. We do not need a collision detection mechanism, like in [14], we
do not allow overlap by design. Since we have an explicit energy function, we
can change its terms to encourage different superpixel types. One modification
we add is a term that encourages intensity homogeneity inside a superpixel,
not something that is easy to include explicitly into [14]. Another advantage is
optimization. Turbopixels are based on level set evolution [17], which is known
to have numerical stability issues. We optimize with graph cuts [18], which is
known to perform well [19]. Our running time is better. Last, but not least, our
approach naturally transfers to 3D for “supervoxel” segmentation of video.

An interesting work on superpixels is in [20, 21]. Their goal is somewhat differ-
ent from ours. They seek superpixels that conform to a grid, which has storage
and efficiency advantages. The work in [20] is based on greedy optimization,
and [21] uses a more global optimization, which, like our work, is also based on
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graph cuts. The formulation in [20,21] poses certain restrictions on superpixel
shapes: the boundary between superpixels cannot “turn back” on itself.

We evaluate our approach on Berkeley dataset [15] and show that we achieve
high boundary recall and low undersegmentation error, similar or better than
that of [1,14]. We also show that our supervoxels have high spatial coherence
on 3D volumes constructed from video. To show that compact superpixels are
more appropriate for some applications, we compare the performance of our su-
perpixels vs. those of [12] on a simple application of salient object segmentation.

2 Superpixels Segmentation

In this section we give a detailed description of our superpixel segmentation
approach. We review graph cut optimization in Sec. 2.1. Then we explain the
basic “compact” superpixel algorithm is in Sec. 2.2. In Sec. 2.3 we show how
to incorporate variable patch size. The resulting algorithm is called “variable
patch” superpixels. Variable patch superpixels are more efficient computation-
ally, and their boundary recall does not suffer a performance loss. However they
do have more widely varying sizes. Lastly, in Sec. 2.4 we show how to incorporate
intensity constancy constraints, and the resulting algorithm is called “constant
intensity” superpixels. Constant intensity superpixels perform better on bound-
ary recall, but, again, have more widely varying sizes.

2.1 Energy Minimization with Graph Cuts

We now briefly review the graph-cut optimization approach [18]. Many problems
in vision can be stated as labeling problems. Given a set of pixels P and a finite
set of labels £, the task is to assign a label I € £ to each p € P. Let f, denote
the label assigned to pixel p, and let f be the collection of all label assignments.
There are two types of constraints. Unary constraints Dy (l) express how likely
is a label [ for pixel p. Binary constraints V,,(l1,l2) express how likely labels [
and [o are for neighboring pixels p and ¢. An energy function is:

E(f):ZDp(fp)+/\ Z Wpq * Viq(fp: fo); (1)

peP {p,a}eN

In Eq. (1), the first and the second sums are called the data and the smooth-
ness terms, and N is a collection of neighboring pixel pairs. We use 8-connected
grid, and Potts model V,q(fp, fy) = min(1,|f, — f4|*). The coefficients w,, are
inversely proportional to the gradient magnitude between p and ¢, encouraging
discontinuities to coincide with intensity edges. This energy is NP-hard to opti-
mize. We use the expansion algorithm from [18], which guarantees a factor of 2
approximation. For the max-flow /min-cut algorithm, we use [22].

2.2 Compact Superpixels

First recall the intuitive explanation, Fig. 2. We cover an image with overlapping
square patches of fixed size, equal to the maximum allowed superpixel size. We
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(a) Three patches (b) Their optimal stitching (c) In the final stitching

Fig. 3. A simple illustration of patch stitching. Left: three patches, orange, green, and
purple. Right: their optimal stitching.

seek a stitching of the patches, or, in other words, an assignment of each pixel to
a unique patch. The stitches cost cheaper if they coincide with intensity edges. A
simple illustration in Fig. 3. Suppose only three patches in Fig. 3(a) participate.
There is a strong intensity gradient on the lip boundary, and therefore the cut
between the patches aligns to the lip boundary, Fig. 3(b). Fig. 3(c) shows the
shape of these patches in the final stitching, with all patches participating.

We now formalize the problem in the energy minimization framework. We
number allowed patches with consecutive integers 1, ..., k, where k is the number
of allowed patches. We identify ith patch with an integer label ¢, therefore £ =
{1,2, ..., k}. Even though L is ordered, this order has no meaning. Let S(I) denote
the set of the pixels contained in patch | € L. For example, in Fig. 3(a), if [ is
the “orange” label, then S(I) is the set of pixels covered by the orange square.
Label [ can be assigned only to pixels in S(I). Therefore the data term is:

_f1 itpe S

Dy(1) = { oo otherwise (2)
We have to decide how many patches to use and how to spread them out in the
image. We address these issues after the energy function is completely specified.
We now discuss the smoothness term. To better approximate Euclidean

metric [23] we use 8-connected N. V,, is Potts model with wy, from [24]:

2
Wpg = e:rp(—%). Here I, is the intensity of pixel p, and dist(p,q) is

the Euclidean distance between p and q.

Observe that with D,, as defined in Eq. (2), the data term in Eq. (1) is equal
for all finite energy labelings. This implies that parameter A in Eq. (1) has no
effect on optimization, so we set A = 1. Usually X is an important parameter
to choose correctly as it controls the relative weight between the data and the
smoothness terms, and, therefore, the length of the boundary. Parameter \ is
often set by hand through a tedious trial and error process. We do have a pa-
rameter that controls the boundary length. This parameter is the patch size.
Larger patches lead to fewer boundaries in the optimal labeling. Patch size is in
some sense a more “natural” parameter since it is chosen by the user to control
the size of the maximum superpixel, as appropriate for an application.

We now address the question of how many patches to place in the image.
Observe that only some labels (patches) are present in the final labeling. It is
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clear from our energy function that the more patches we have, the lower is the
final energy, since adding patches only helps to discover better stitches. Thus for
the best stitching, we should use a dense strategy, i.e. put a patch at every image
pixel. The dense strategy is too expensive. In practice we obtain good results by
spreading patches at intervals four times less than the length of the square side.

We use the expansion algorithm [18] for optimization. It does not guarantee
an optimum but finds a good approximation. We initialize by randomly picking
a label [, and assigning pixels in S(I) to [ until there are no uninitialized pixels.
An intuitive optimization visualization is as follows. An expansion for label [
improves the boundaries under the patch S(I) and its border.

In addition to the maximum size, the minimum superpixel size is also con-
trolled. Suppose that there is a small superpixel A. Then for any neighboring
superpixel B, there is no label [ s.t. the patch S(I) completely covers A and
B. Otherwise, an expansion on [ would obtain a smaller energy by assigning [
to pixels in A U B, since the boundary between B and A disappears and no
new boundary is created. The smaller is A, the less likely it is that there is no
neighboring superpixel B s.t. A and B are covered completely by some patch.

Despite a large number of labels, for our energy the expansion algorithm is
very efficient. An expansion on label [ needs to be performed only for pixels in
S(1). This is both memory and time efficient. We run the expansion algorithm
for two iterations, and it takes about 5 seconds for Berkeley images [15]. Our
algorithm would be easy to implement on multiple processors or GPU.

To summarize, the properties of compact superpixels are as follows. In the
presence of image gradient, superpixel boundaries are encouraged to align with
image edges. In the absence of gradient, superpixels tend to divide space into
equally sized regular cells. Superpixel sizes tend to be equalized, and their bound-
aries are encouraged to be compact by the energy function.

2.3 Variable Patch Superpixels

In the previous section we assumed that the patch size is fixed. This helps to
ensure that the superpixel sizes are equalized. If one is willing to tolerate a wider
variance in superpixel sizes, then it makes sense to allow larger superpixels in
the areas with lower image variance.

We develop a simple approach to variable patch superpixels. We allow a
variable set of square patches, with the smallest side of size k,,;, and the largest
of size kpmqz. Let S be a be a patch centered at pixel p. Let C(S) be the square
patch of side twice less than the side of S also centered at p, i.e. C(S) is the
“central” part of S. Let P(S) be the set of pixels contained in S but not in
C(S). As a measure of quality of S we take Q(S) = var(C(S)) — var(P(S)) .
Here var(S) measures the intensity variance in the patch S. The lower is Q(.5),
the better is the quality of a patch. That is we want the central part of a patch
to be of low variance and the periphery to have high variance. The expectation
is that the inside part of patch S is not going to contain stitches, and therefore
should be uniform in intensity. The cuts are encouraged to lie in the periphery
of the patch S, therefore this part is encouraged to have high variance.
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We measure the quality of all possible patches of sizes in the range from ky,;p,
t0 kmaz. This can be done efficiently using integral images [10]. After this, we
sort all patches in terms of quality and select the m best ones so that each pixel
is contained in at least 4 patches. We found experimentally that variable patch
superpixels do not improve boundary recall compared to compact superpixels,
but do improve efficiency by about a factor of 2.

2.4 Constant Intensity Superpixels

Since we formulate superpixel segmentation in the energy minimization frame-
work, we can change certain properties of superpixels by simply changing the
energy function. We now address one useful change. In the energy for compact
superpixels, Sec. 2.2, there is no explicit encouragement that superpixels have
constant intensity. Say we have a black image with a grey and white rectangles
adjacent to each other. If there is a patch that covers both the grey and white
rectangles, they will get assigned to the same superpixel, there is no incentive
to split the two superpixels, no matter how different their intensities are.

We can explicitly encourage constant intensity inside a superpixel but at the
price of relaxing the requirement that superpixels are of roughly equal sizes. Let
¢(l) be the pixel at the center of patch S(I). We change the data term to:

00 otherwise

Dp(l) _ { |IP - Ic(l)| it pe Sl (3)

Fig. 4. Two enlarged pieces overlayed over original superpixel images. Left: Compact
superpixels, part of the boundaries between elephant legs and on top are missed. Right:
constant intensity superpixels, these boundaries are captured.

Now each pixel that is assigned label [ is encouraged to be of the same
intensity as the center of patch S(1). To ensure this new energy is not increasing
during optimization, we have to make sure that that if p is assigned label [, then
the center of the patch ¢(1) is also assigned [. We can easily do this with addition
of the following new term T, (f) to the energy in Eq. (1):
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Tnew(f) = Z W(fp: fc(fp))a (4)

pEP

where W(a, 5) = oo if @ # 3 and 0 otherwise.

See Fig. 4 for an example where intensity constancy constraint helps to get
more accurate boundaries. The cost is that approximately 20% more superpixels
are found for the same patch size, some being quite small.

3 Compact Supervoxels

Fig. 5. Supervoxels. Left: video frames are stacked into a 3D volume and covered by a
set of 3D blocks. Right: supervoxels, shown separately in each frame. Three supervoxels
are highlighted with color (red, yellow, light blue). This figure is better viewed in color.

Our approach naturally extends to segmenting “supervoxels” in 3D space. A
supervoxel is a set of spatially contiguous voxels (a voxel has three coordinates
(z,y,t), with ¢ being the third dimension) that have similar appearance (inten-
sity, color, texture, etc.). Notice that the slices of a voxel at different values of
the coordinate ¢ do not necessarily have the same shape. Segmentation of vol-
umes into supervoxels can be useful, potentially, for medical image and for video
processing. In particular, for video processing, there is an interest in coherent
3D segmentation for video abstraction and animation [25, 26].

First we create a 3D volume by stacking the frames together, Fig. 5, left.
Analogously to the 2D case, we cover the 3D volume by overlapping 3D blocks.
For clarity, in Fig. 5 we show only a few non-overlapping blocks. The depth of a
block can be different from its width and height. The larger the depth, the more
temporal coherency is encouraged. As before, each block corresponds to a label.
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N is now 16-connected and contains neighbors between the frames. Just as in
the 2D case, we place blocks overlapping in step size equal to a quarter of the
size of the block (in each dimension). The algorithm is efficient, since we only
need to work on a little more than a single block at a time.

Fig. 5, right, shows the results on four consecutive frames of the “tennis”
video sequence. We show the section of supervoxels with each frame separately.
Notice the high degree of spatial coherency between the frames.

4 Experimental Results
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Fig. 6. Performance vs. number of superpixels. Left: boundary recall vs. number of
superpixels. Right: undersegmentation error vs. number of superpixels

First we evaluate how well superpixel boundaries align to image edges. We
use the Berkeley database [15] that has ground truth provided by human sub-
jects. We use the same measure of boundary recall as in [1, 14]. Given a boundary
in the ground truth, we search for a boundary in superpixel segmentation within
a distance of ¢ pixels. For experiments we set t = 2. Recall is the percentage of
ground truth boundary that is also present in superpixel segmentation (within a
threshold of t). Fig. 6(a) plots the dependency of boundary recall on the number
of superpixels. The smaller is the number of superpixels, the less boundaries
there are, and the worse is the recall. These results were obtained by averaging
over 300 images in the database. We compare our compact (OursCompact) and
constant intensity (OursIntConstant) superpixels with the Turbopixels (Turbo),
method from [12] (FH), and NC superpixels (NC) [1]. Our variable patch super-
pixels have performance similar to compact superpixels, and we omit them from
Fig. 6 for clarity. From the plot, it is clear that our constant intensity super-
pixels have comparable performance to FH and NC methods, and are superior
to Turbopixels, at least for lower superpixel number. For high superpixel num-
ber, all methods have similar performance. Our constant intensity superpixels
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are superior to compact superpixels for any number of superpixels. The running
time of our algorithm is better than that of Turbopixel and NC algorithms.

Fig. 7. Top: Compact superpixels, bottom: Constant Intensity superpixels

In Fig. 6(b) shows the undersegmentation error from [14]. Given a ground
truth segment and superpixel segmentation of image, undersegmentation error
measures what fractions of pixels “leak” across the boundary of a ground truth
segment. The FH algorithm [12] is particularly susceptible to this error because
it produces segments of highly variable sizes and shapes. Our normalization is
slightly different from that in [14], so the vertical axis is on a different scale.

The running times of our algorithms for the images in Berkeley dataset are, on
average, as follows. The variable patch superpixels take 2.7 seconds to compute.
The compact superpixels take from 5.5 to 7.4 seconds to compute, depending on
the patch size. Larger the patch sizes corresponds to slightly longer running time.
The constant intensity superpixels take from 9.7 to 12.3 seconds to compute,
again depending on the patch size. Patch sizes are from 20 by 20 to 90 by 90.
The turbopixel algorithm [14] takes longer to compute, on average 21.3 seconds.
The average running time of NC superpixels [1] is 5.7 minutes.

‘We now compare the dense strategy of using all patches with the sparse patch
placement described in Sec. 2.2. In both cases, we run the expansion algorithm
for two iterations. Since the dense strategy is expensive, we ran the experiment
for 20 images chosen at random from the Berkeley database [15]. To compare
energies across different images, we measure the relative energy difference. For
an image I, let £%(I) be the energy with dense patch placement, and E*(I) be

the energy with the sparse patch placement. Then the relative percent difference

E*(1)-EY(I)
E4(I)

was 123.5 seconds, whereas for the sparse strategy it was 5.8 seconds. The mean

in energy is 100 - . The mean running time for the dense strategy
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energy difference is 13%, with standard deviation of 0.8%. It makes sense to gain
a factor of 21 in computational efficiency while worsening the energy by 12%.

Fig. 1 and Fig. 2 can be used to visually compare our results with turbopix-
els [14] and NC superpixels [1]. Visually the results are similar, except the NC
superpixels appear to have smoother boundaries. This is because in [1] they use
a sophisticated boundary detector from [27]. We could incorporate this too in
our framework, but it is rather expensive, it takes approximately 30 seconds to
compute boundaries for one image. In Fig. 7, we show some of our segmentations.
The top row is compact and the bottom row is intensity constant superpixels.

Fig. 5(b) shows the results on four frames of the “tennis” video sequence.
We show the section of supervoxels with each frame separately. Notice the high
degree of spatial coherency, even in the areas that are not stationary. Between
the first and the last frames shown, the ball moves by about 5 pixels, and the
hand by about 8 pixels in the vertical direction. The fingers and the ball are
segmented with a high degree of temporal coherency between the frames. We
highlight 3 different supervoxels: the one on the ball with red, on the hand with
light blue, and on the wall with yellow. The wall is stationary and the supervoxel
shape is almost identical between the time slices. The ball and hand are moving,
but still the supervoxels slices have a high degree of consistency.

(a) Left column: results with our su- (b) Worst failures. Top row: results
perpixels, middle column: results with our superpixels. Bottom row: first
with FH superpixels [12], last col- result is with boxes, the other two are
umn: results with boxes. with FH superpixels [12]

Fig. 8. Some results for salient object segmentation.
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The results of supervoxel segmentation are best to be viewed in a video pro-
vided in the supplementary material. We show the original “tennis” sequence
and the result of supervoxel segmentation. For visualization, we compute the
average intensity of each supervoxel and repaint the video with the average
supervoxel intensity. To appreciate the degree of temporal coherence in the su-
pervoxel segmentation, we also perform superpixel segmentation on each frame
of the “tennis” sequence separately, using the algorithm in Sec. 2.2. We display
the results by painting superpixels with their average intensity. The result of
segmentation on each frame separately has much less temporal coherence, as
expected. We also provide several other video sequences.

The code for superpixel segmentation will be made available on our web site.

5 Application to Salient Object Segmentation

To show that regular superpixels are useful, we evaluated them for salient object
segmentation, similar to [28]. The goal is to learn to segment a salient object(s)
in an image. We use Berkeley dataset [15], 200 images for training and 100 for
testing. Using human marked boundaries as a guide, we manually select salient
object(s). Of course, our ground truth is somewhat subjective.

We segment images using rectangular boxes, FH superpixels [12], and our
Compact superpixels. For boxes, we found that different sizes with overlap give
better results. We used 4 different box sizes, from 80 by 80 to 20 by 20. For
segmentation, we choose parameters that give the best results on the training
data. From each box/superpixel, we extract features similar to those used in [3].
We use features based on color, position (relative to the image size) in the image,
and texture. We use Gentleboost [29] for training?.

The testing error is as follows. Our Compact superpixels: 20.5%, FH superpix-
els [12]: 27.4%, rectangular boxes: 24.0%. Thus performance with our superpixels
is significantly better than that of boxes and of FH superpixels [12]. With boxes,
the size is controlled, but boxes do not align well to object boundaries. With FH
superpixels [12], boundaries are reasonable, but segment size is not controlled,
some segments are very large. Thus it appears to be important that our com-
pact superpixels have both regularized size and boundary alignment. We expect
that we would have gotten performance similar to ours using turbopixels [14] or
superpixels from [1], but our computational time is much better. Our results in
this section are consistent with those of [6], who show that having more accurate
spatial support (more accurate superpixels) improves object segmentation.

We also investigate whether the results from classification can be further im-
proved by spatial coherence. We apply the binary segmentation algorithm of [24]
to separate an image into the salient object and background components. For the
data term, we use the confidences provided by boosting. Using confidences only
can smooth results, but will not help to rectify large errors. Additional informa-
tion is gathered from the histogram of pixels with a high confidence either the

! The implementation by A. Vezhnevets downloaded from  graph-
ics.cs.msu.ru/ru/science/research /machinelearning/adaboosttoolbox.
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object or background class. Thus the data term is computed from quantized color
histogram weighted by class confidences. After binary graph cut segmentation
the errors are as follows. Our compact superpixels: 21.1%, FH superpixels [12]
25.6%, rectangular boxes 28.4%. Interestingly, the results for FH superpixels [12]
improve, results for our superpixels slightly worsen, and results for boxes worsen
significantly. Fig. 8(a) shows some results after graph cut segmentation. While
what exactly constitutes a salient object may be arguable, our results most often
correspond to recognizable object(s) occupying a significant portion of a scene,
with minimal holes. For most images, results with our superpixels are better or
comparable than that of boxes and superpixels of [12]. However sometimes there
are significant failures, the worst of them are in Fig. 8(b).

6 Future Work

In the future, we plan to investigate more variations on the “basic” energy func-
tion to produce superpixels with other interesting properties, such as certain
predetermined orientations, etc. Another direction is to change patch size as a
function of local image variance. We can also use our algorithm to integrate
results from different segmentation algorithms, taking advantages or their re-
spective strengths.
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