
Tiered Scene Labeling with Dynamic Programming

Pedro F. Felzenszwalb
University of Chicago
pff@cs.uchicago.edu

Olga Veksler
University of Western Ontario

olga@csd.uwo.ca

Abstract

Dynamic programming (DP) has been a useful tool for a
variety of computer vision problems. However its applica-
tion is usually limited to problems with a one dimensional
or low treewidth structure, whereas most domains in vision
are at least 2D. In this paper we show how to apply DP
for pixel labeling of 2D scenes with simple “tiered” struc-
ture. While there are many variations possible, for the ap-
plications we consider the following tiered structure is ap-
propriate. An image is first divided by horizontal curves
into the top, middle, and bottom regions, and the middle re-
gion is further subdivided vertically into subregions. Under
these constraints a globally optimal labeling can be found
using an efficient dynamic programming algorithm. We ap-
ply this algorithm to two very different tasks. The first is
the problem of geometric class labeling where the goal is
to assign each pixel a label such as “sky”, “ground”, and
“surface above ground”. The second task involves incor-
porating simple shape priors for segmentation of an image
into the “foreground” and “background” regions.

1. Introduction
In a pixel labeling problem the goal is to assign a label

to each pixel in an image. Pixel labeling is a very general
framework that can be used to solve a variety of problems
in computer vision [14]. Pixel labeling problems in 2D are
usually NP-hard [4], but can be solved efficiently in some
special cases [8, 10, 18, 12]. If the domain is 1D or of low
treewidth, then optimal labelings can be found using dy-
namic programming (DP). A simple example involves la-
beling each scanline of an image independently [17].

In this paper, we consider a new class of pixel labeling
problems in 2D domain that can be solved efficiently and
exactly with dynamic programming.

We consider labelings that have simple tiered structure.
We focus on the structure shown in Figure 1. In this case,
an image is partitioned into a top, bottom and middle part.
Pixels in the top receive the “top” label, pixels in the bottom
receive the “bottom” label, and pixels in each column of the

T

B

c b
d c a

Figure 1. A tiered labeling. The labeling is defined by two hori-
zontal curves α and β that partition the image into a top, bottom
and middle region. The middle region is subpartitioned by verti-
cal boundaries. The top region is labeled T , the bottom region is
labeled B and the middle regions take labels from M .

middle region receive a label from a finite set.
Our main technical contribution is a DP algorithm for

computing a globally optimal tiered labeling of an n × m
image in O(mn2K2) time. Here K is the number of pos-
sible labels for pixels in the middle region. This algorithm
is quite fast in practice, taking just a few seconds to find an
optimal labeling of fairly large images.

Our method works by reducing the 2D labeling problem
to a 1D optimization problem, equivalent to finding a short-
est path in a very large state space. Standard DP methods
for this 1D problem would take O(mn4K2) time, which is
too slow for practical use. We exploit special structure from
the 2D problem to obtain a much faster solution.

Global optimization for 2D labeling is quite rare, but
its importance cannot be understated. Even the relatively
strong, widely used expansion algorithm [4] gets trapped in
a local minima very far from the global one, and fails to find
an acceptable solution in our segmentation application.

Our work is the only method we know of that uses DP for
optimization of a 2D labeling, except for the simple case in
[1]. The problem in [1] involves binary segmentation where
the foreground object is constrained to be a connected re-
gion bounded by two horizontal curves. The objective func-
tion in [1] simply penalizes regions with high variance and
does not have any smoothness terms.

input result from [9] our result
Figure 2. Geometric labeling application. Each intensity repre-
sents a different geometric class.

We evaluate our algorithm on two very different appli-
cations. One is the geometric class labeling problem [9],
where the goal is to assign each pixel a label such as “sky”,
“ground” and “surface above ground”. In this case the tiered
constraints arise naturally. The sky and ground correspond
to the top and bottom region, and different labels model dif-
ferent kinds of surfaces above ground in the middle region.

We use [9] as a baseline, and show how the geometric
constraints imposed by tiered labelings improve the accu-
racy of solutions. An example is shown in Figure 2.

Our second application is binary segmentation, where
the goal is to classify each pixel into “foreground” or “back-
ground”. Here the usefulness of a tiered structure is not
immediately obvious. We use the tiered structure to incor-
porate a novel type of shape prior for the foreground. Thus,
in addition to showing the application of our labeling algo-
rithm for segmentation, we develop a novel approach for
shape priors in segmentation, which is of interest in itself.

The idea behind our shape prior is as follows. A shape
is partitioned vertically into several parts, each part corre-
sponds to a “middle” label. The top and bottom regions in
a labeling correspond to the background. We encourage (or
enforce using hard constraints) the boundary between the
background labels and the foreground parts to follow cer-
tain paths, for example a diagonal slanted to the right, etc.

We demonstrate several shape priors that are tuned for
generic classes of objects. An example is in Figure 3. The
input image (top row) has several objects with identical in-
tensity histograms. There are four shape priors: a plane,
leaf, bow, and cross. Depending on which shape prior is
used, we get the results in the bottom four rows. To help
visualize the constraints between different parts, we display
them with different intensity. We illustrate results in both
unsupervised and interactive settings and show that using
shape priors helps to obtain more accurate segmentations.

Related Work Optimization algorithms for pixel labeling
problems is a very active area of research [19]. The ma-
jority of the work is concerned with approximate solutions
for NP-hard energies, which is not our case. The closest
method, and also the one that motivated our work is [15].

The method in [15] is a graph-cut based algorithm for a
five-label energy function with certain restrictions on geo-
metric relationships between labels. The restrictions lead to

Figure 3. Segmentation with shape prior. Top row: the input im-
age. Next rows show segmentation results with a “plane”, “leaf”,
“bow, and “cross” shape priors, respectively.

a special case of tiered labelings where there are only three
possible labels for the middle region. Moreover, in [15] the
middle region is constrained to be partitioned into 3 sequen-
tial subregions with the second one in the shape of a rectan-
gle. Furthermore, since [15] uses graph-cuts, they require
submodular [12] Vpq (see Section 2). While the problem
is polynomially solvable, the algorithm in [15] finds only
an approximate solution. The authors note that a global
minimum could be found using O(n2) graph-cuts (n is the
height of the image), but this would be impractical.

For a 4-connected neighborhood our model is a strict
generalization of [15]. We find an optimum solution to a
more general problem with a much smaller complexity. The
only advantage of [15] is that they can handle more general
neighborhoods, but these have rarely been used in practice.

One of our applications is the geometric class labeling
problem popularized by [9]. Since the original paper sev-
eral advances were made, most of them addressing how to
better handle the problem in an energy optimization frame-
work [11, 7, 15]. Except for [15] these methods can offer
only approximate optimization, since they rely on NP-hard
energies. In contrast, we compute a globally optimal solu-
tion within the class of tiered labelings. The disadvantage,
is, of course, limitation to tiered scenes, which are never-
theless much more general than those considered in [15].

Our other application is segmentation with a shape prior,
which is a natural approach for getting more robust segmen-
tation results [13, 5]. Segmentation with shape priors usu-
ally leads to NP-hard problems. In rare cases [6, 21, 7] when

a global minimum can be computed, the shape prior is very
restrictive. We model a shape by partitioning it into several
regions and imposing (soft) constraints on the boundaries
between different regions and the background. Most closely
related is the work of [22], who also decompose an object
into parts and model geometric relationships between them.
However, our models are more generic, while [22] is based
on a deformable model framework. Another related idea is
in [15] who model a shape prior by geometric relationships
between a single object label and four background labels.
Having only a single label for the object severely restricts
the possible shape priors, in fact, they experiment only with
a rectangle and a trapezoid prior.

2. The Model
In a pixel labeling problem we have an image I with

pixels P and a set of labels L. A labeling f assigns a label
fp ∈ L to each pixel p ∈ P . The goal is to find a labeling
minimizing an energy function of the form,

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq). (1)

Here Dp(fp) and Vpq(fp, fq) are the data and smoothness
terms, andN is a neighborhood system on P . We assumeN
is the 4-connected neighborhood with ordered pairs (p, q)
such that p is directly to the left or above q.

The data term Dp(a) specifies a cost for assigning label
a to pixel p. This usually depends on the value of I at p.
The smoothness term Vpq(a, b) specifies a cost for assigning
labels a and b to pixels p and q. This can be independent of
p and q but often depends on the value of I at p and q.

Most work on pixel labeling assumes Vpq is of a particu-
lar form (e.g. metric or semi-metric [4]). Here we make no
assumptions onDp or Vpq . Instead we consider the problem
of minimizing E over a restricted class of labelings. In par-
ticular we can handle arbitrary Vpq , including asymmetric,
Vpq(a, b) 6= Vpq(b, a), and repulsive, Vpq(a, a) > Vpq(a, b).

Let L be a set of labels with two distinguished labels T
and B. Let M = L\{T,B}. In a tiered labeling of I each
column is partitioned into 3 regions corresponding to the
top, bottom and middle parts. Here we consider labelings
where pixels in the top are labeled T , pixels in the bottom
are labeled B, while the pixels in the middle are labeled `
for some ` ∈M . Figure 1 illustrates an example.

More formally we define tiered labelings as follows. Let
I be an image with n rows and m columns. We index rows
and columns starting at zero. A tiered labeling is defined
by a sequence of m triples (ik, jk, `k), one per column of
I . For each column k we have a triple (i, j, `) with 0 ≤
i ≤ j ≤ n and ` ∈ M . This triple defines labels for all
pixels in column k. Pixels in rows 0, . . . , i − 1 are labeled
T , pixels in rows j, . . . , n − 1 are labeled B and pixels in
rows i, . . . , j − 1 are labeled `. See Figure 4.

i

j

k

B

�

T
T

�
B
B

B

T

0

n− 1

Figure 4. The labeling in each column is defined by 2 indices 0 ≤
i ≤ j ≤ n and a label ` for the middle region.

Intuitively the sequence of indices α = (i0, . . . , im−1)
defines a boundary between the top and middle region. Sim-
ilarly β = (j0, . . . , jm−1) defines a boundary between the
middle and bottom region. The middle region is subparti-
tioned as each column can take a different label.

We can think of α and β as “horizontal curves” in the
sense that they go between the left and right boundaries of
I , going through each column exactly once. The two curves
do not cross because ik ≤ jk. Conversely, tiered labelings
can be defined by two non-crossing horizontal curves plus
labels for the middle region in each column.

3. Dynamic Programming
Let Z = {(i, j) | 0 ≤ i ≤ j ≤ n}.
Let S = Z ×M .
A tiered labeling is defined by a sequence of m triples

sk = (ik, jk, `k) ∈ S, 0 ≤ k ≤ m− 1. (2)

We can see a labeling as a path in S×{0, . . . ,m−1}, going
through points (sk, k). This path simultaneously traces the
two boundaries α and β in the image, moving from one
column to the next in each step.

When f is a tiered labeling, the energy function in equa-
tion (1) can be expressed as

E(f) =
m−1∑
k=0

Uk(sk) +
m−2∑
k=0

Hk(sk, sk+1). (3)

This form is obtained by putting all data terms and ver-
tical smoothness terms within column k into Uk, while the
horizontal smoothness terms between columns k and k + 1
go into Hk. We note that Uk(s) can be computed in O(1)
time if we precompute cumulative sums of data terms and
vertical smoothness terms up to each row in each column
of the image. Similarly Hk(s, t) can be computed in O(1)
time using cumulative sums of the horizontal smoothness
terms leaving each column. We describe this approach for
computing Hk in equation (13).

The problem of finding a sequence of states minimizing
(3) can be solved via standard dynamic programming tech-
niques. It is equivalent to computing a MAP estimate for

an HMM, which can be solved using the Viterbi algorithm.
However, a standard implementation of the Viterbi algo-
rithm is too slow in our setting because it takes O(m|S|2)
time. Since for us |S| = O(n2K) the standard algorithm
runs in O(mn4K2) time. In a square image with n2 pixels
this is more than quadratic in the number of pixels.

Our algorithm exploits the special form of the pairwise
terms Hk in our problem. This makes it possible to speed
up the standard dynamic programming method to run in
O(mn2K2) time. Note that in the case of a square image
with n2 pixels our algorithm runs in O(n3K2) time.

Before introducing our algorithm, we review the stan-
dard DP for equation (3). The method builds m tables, Ek,
indexed by states s ∈ S. The value in Ek[s] is the cost of
an optimal sequence of k + 1 states ending in state s.

Since we are essentially solving a shortest path problem,
if (s0, . . . , sk) is an optimal sequence ending in sk then
(s0, . . . , sk−1) is an optimal sequence ending in sk−1. This
allows us to compute Ek in order of increasing k using a
simple recurrence,

E0[s] = U0(s), (4)
Ek[s] = Uk(s) + min

s̄
(Ek−1[s̄] +Hk−1(s̄, s)). (5)

When computing Ek[s] we also record the optimum previ-
ous state in a table Pk[s]. After all tables are computed a so-
lution is obtained by selecting sm−1 = argmaxsEm−1[s]
and tracing the optimal path using Pk.

Note that when computing Ek, for each state s ∈ S we
need to search over all possible previous states s̄ ∈ S. This
means it takes O(|S|2) time to compute each table. Since
we need to compute m tables the runtime of the algorithm
is O(m|S|2) = O(mn4K2).

3.1. Fast Algorithm

We can speed up the DP algorithm to run in O(mn2K2)
time in our setting. The method works by speeding up the
computation of each table Ek from O(n4K2) to O(n2K2).

Let g be an array of size n. The running-min of g is an
array h, also of size n, defined by

h[i] = min
i′≤i

g[i′]. (6)

There is a simple algorithm for computing h in O(n) time.
First we set h[0] = g[0]. We then sequentially set h[i] =
min(g[i], h[i− 1]). We use this algorithm below.

Consider the standard DP algorithm specified in the last
section. We will speed it up by considering the basic com-
putation that propagates information from one stage to the
next. In each stage the basic computation is of the form

F [s] = min
s̄∈S

(E[s̄] +H(s̄, s)). (7)

Here E specifies the cost of solutions up to the previous
column, and F can be used to compute solutions up to the
current column. BothE and F have |S| = O(n2K) entries.

For each s ∈ S we need to search over s̄ ∈ S. If these
searches are done independently it takes O(n4K2) time to
compute F . In our algorithm we break the search for s̄
into different sub-cases so that we can do all searches much
faster. First, for each state s = (i, j, `) we will separately
minimize over choices for ¯̀. Suppose ` and ¯̀ are fixed. In
this case we need to compute quantities of the form,

F`,¯̀[i, j] = min
(̄i,j̄)∈Z

(E`,¯̀[̄i, j̄] +H`,¯̀((̄i, j̄), (i, j))). (8)

The subscripts on E, F and H indicate we are working on
subproblems defined by fixed ` and ¯̀. After computing F`,¯̀

for each choice of ` and ¯̀we can simply pick the best ¯̀ for
each state (i, j, `).

Our algorithm works by breaking the minimization in
equation (8) into 6 cases. Let Z1(i, j), . . . , Z6(i, j) be sub-
sets of Z such that Z = Z1(i, j) ∪ · · · ∪ Z6(i, j). Then we
can compute F`,¯̀ as follows

Ft[i, j] = min
(̄i,j̄)∈Zt(i,j)

(E`,¯̀[̄i, j̄] +H`,¯̀((̄i, j̄), (i, j))), (9)

F`,¯̀[i, j] = min
1≤t≤6

Ft[i, j]. (10)

The sets Zt(i, j) are defined in terms of the positions of
ī and j̄ relative to i and j. Note that ī and j̄ can each be
less than or equal to i, between i and j, or greater than or
equal to j. There are 3 possible choices for each, but since
ī ≤ j̄ there are only 6 choices total. This leads to a partition
of Z into 6 subsets. For example, we have one subset for
i ≤ j ≤ ī ≤ j̄ and another for i ≤ ī ≤ j̄ ≤ j.

The speedup For each t, computing Ft via brute force
search takes O(n4) time, which is no better than computing
F`,¯̀ directly. Now we describe an algorithm for computing
Ft in O(n2) time for the case

Zt(i, j) = {(̄i, j̄) | ī ≤ i ≤ j̄ ≤ j}. (11)

The other cases are analogous.
Our method relies on two key ideas. First, we note that

we can decouple the search for ī from the search for j̄. Sec-
ond, we note that the resulting searches can be done quickly
using running-min computations.

Let I(a, b)[x] be the sum of the horizontal smoothness
terms for labels a and b between the previous and current
columns in rows 0 through x− 1. That is, I(a, b) is the sum
of Vpq(a, b) for p in the previous column, q in the current
column, and both p and q in rows 0 through x− 1. We can
express the smoothness terms inH((̄i, j̄), (i, j)) using these

TT

B B

�

i

j

k

�̄

ī

j̄

I(�̄, T)[i]− I(�̄, T)[̄i]

I(B,B)[n]− I(B,B)[j]

Figure 5. Computing H((̄i, j̄), (i, j)) when ī ≤ i ≤ j̄ ≤ j. The
horizontal Vpq can be defined by integral arrays.

cumulative sums, see Figure 5.

H((̄i, j̄), (i, j)) = d1 + d2 + d3 + d4 + d5 (12)
where d1 = I(T, T)[̄i] (13)

d2 = I(¯̀, T)[i]− I(¯̀, T)[̄i] (14)
d3 = I(¯̀, `)[j̄]− I(¯̀, `)[i] (15)
d4 = I(B, `)[j]− I(B, `)[j̄] (16)
d5 = I(B,B)[n]− I(B,B)[j] (17)

Note that we can re-group the terms so that H is a sum
of functions of a single index plus a constant.

H((̄i, j̄), (i, j)) = I(i) + J (j) + Ī (̄i) + J̄ (j̄) + C, (18)

Now we have Ft[i, j]

= min
ī≤i≤j̄≤j

(E [̄i, j̄] + I(i) + J (j) + Ī (̄i) + J̄ (j̄) + C)

= I(i) + J (j) + C + min
i≤j̄≤j

(J̄ (j̄) + min
ī≤i

(E [̄i, j̄] + Ī (̄i)))

Since neither E [̄i, j̄], or Ī (̄i) depend on j we can solve for
the optimum ī as a function of i and j̄,

E′[i, j̄] = min
ī≤i

(E [̄i, j̄] + Ī (̄i)). (19)

Now note that we can compute E′ by doing n running-min
computations, one for each choice of j̄. For each j̄ let g be
an array of size j̄ + 1 (since ī ≤ j̄) with

g[i] = E[i, j̄] + Ī(i). (20)

Then E′[i, j̄] = h[i] where h is the running-min of g. Since
it takes O(n) time to compute each running-min we can
compute E′ in O(n2) time. Once E′ is computed we have

Ft[i, j] = I(i)+J (j)+C+ min
i≤j̄≤j

(J̄ (j̄)+E′[i, j̄]). (21)

Once again we can use running-mins. For each i let g be an
array of size n− i+ 1 (since j ≥ i) with

g[j − i] = J̄ (j) + E′[i, j]. (22)

Then Ft[i, j] = I(i) + J (j) + C + h[j − i] where h is the
running-min of g.

This procedure will compute Ft in O(n2) time for a par-
ticular t. As discussed above the other cases are very similar
and we omit their details here.

Now we can compute F`,¯̀ inO(n2) time, and by search-
ing over ` and ¯̀we get an O(n2K2) algorithm for comput-
ing F , and thus Ek in each stage of the Viterbi algorithm.
This leads to an O(mn2K2) labeling algorithm.

3.2. Generalizations

Our algorithm can be generalized in a number of inter-
esting ways. One direction involves using more sophisti-
cated data costs that take into account statistics of the pixels
in each column of a region. We can optimize equation (3)
for any choice of Uk as long as Uk(s) can be computed in
O(1) time. We could penalize labelings if the variance of
pixel values in each column of a region is high. In this case
Uk(s) can be computed in O(1) using cumulative sums of
x and x2 where x is the value of a pixel in column k.

We can also generalize the algorithm to handle several
possible labels for the top and bottom region, just like it
handles several labels for the middle region. One could also
consider labelings with more than 3 tiers, but this would
significantly increase the complexity of the algorithm.

Another generalization involves requiring the middle re-
gion to form a single component. We can modify the algo-
rithm so the top and bottom boundaries separate only once.
We do this for segmentation in Section 5.

4. Geometric Class Labeling
Geometric class labeling [9], is an application particu-

larly suitable for tiered labelings because of naturally aris-
ing geometric constraints on labels. The goal is to obtain
a coarse 3D structure from a single image by labeling each
pixel with a geometric label that represents a rough surface
orientation. We use five labels, namely T (sky), B (ground)
and three labels for the middle region, namely L (facing
left), R (facing right), C (front facing). The tiered scene
restriction implies that any single image column can have
only one of L, R or C labels. While this is somewhat re-
strictive, it is much more general than the model in [15]. In
fact [15] is not applicable to general outside scenes, they re-
port a significant worsening of results on the dataset of [9]
(compared to [9]), whereas we get an improvement.

We use the dataset of 250 outdoor images with ground
truth from [9] (the ground truth is somewhat subjective).
We do not model classes “porous” and “solid”, used in [9].
Therefore we do not count errors for pixels with these la-
bels in the ground truth. Here we are not concerned with
the particular form of the data terms Dp(fp), since our goal
is to test whether our tiered labeling algorithm is useful for

Figure 6. Some results on the dataset from [9]. Top row: original images, second row: confidence only results [9], last row: our results.

Figure 7. A failure case. Left: original image, middle: confi-
dence [9] only result, last: our result.

improving on the results that do not use global optimiza-
tion. We use the per-pixel class confidences provided by
the authors of [9], generated from five-fold cross validation.
We refer to those results as confidence only. Since we omit
classes “porous” and “solid”, the confidence only error rates
shown here are better than those in [9].

We use the following observations for Vpq: labels L and
R are less often adjacent than L and C or C and R. The
boundary between R and B is more likely to be slanted
up to the right, while between L and B it is more likely
to be up to the left. The boundary between T and L, C,
R regions is less predictable, because the skyline can be
highly irregular. As in [4, 15] we encourage label changes to
align with changes in image intensity. We use Vpq(a, b) =
wpq · fpq(a, b), where wpq is inversely proportional to im-
age gradient. For vertical neighbors fpq(a, b) = 1(a 6= b),
while when p is to the left of q fpq(a, b) is given by:

p\q B L C R T
B 0 1 1 3 2
L 3 0 1 4 1
C 1 1 0 1 1
R 1 4 1 0 1
T 2 1 1 1 0

Figure 6 shows some results. As expected, our labelings
(last row) are regularized with smoother boundaries, com-
pared to the confidence only labelings. Of course, if an im-
age violates tiered constraints our results can be worse than

when using confidence only, see Figure 7. In this case our
algorithm smooths out the right-facing (R) part in the left
corner of the image.

The regularization imposed by the tiered labeling algo-
rithm improves the overall per-pixel accuracy in this appli-
cation. Using confidence only, the accuracy is 78.1%. Our
accuracy is 81.4%. The confusion matrices for these two
cases are shown below.

confidence only tiered labeling
B L C R T

B 85 1 12 2 0
L 10 42 40 9 0
C 10 7 67 15 1
R 4 3 39 52 2
T 0 2 7 1 90

B L C R T
B 94 0 4 0 0
L 16 38 36 9 1
C 17 4 62 13 4
R 10 4 35 48 3
T 1 1 5 1 94

The average time to find an optimal labeling (for images
approximately 300 by 250 and K = 5) was 9.4 sec.

5. Binary Segmentation

We now discuss the application of our tiered labeling al-
gorithm to segmentation with a shape prior. Our approach
to shape prior is novel. The prior captures geometric rela-
tionships between different parts of an object and the back-
ground. The background is divided into two parts (T and
B) and the object is divided into as many parts as needed.
The availability of a global optimization algorithm lets us
use Vpq’s that are most appropriate, without worrying about
local minima in the energy function, a rare freedom.

We illustrate the idea on a simple example of a “pear”
shape in Figure 8. The object is divided into two parts, L
andR. The background is divided into T andB. The L part
is encouraged to have a boundary with T that is slanted up
and to the right, and boundary with B that is slanted down
and to the right, etc. As before, Vpq(a, b) = wpq · fpq(a, b),

Figure 8. “Pear” shape prior illustration. Left: shows the encour-
aged boundary directions between the two object labels (L and R)
and the two background labels (T andB). Right: table of penalties
fpq(a, b) when pixel p is to the left of pixel q.

where wpq is inversely proportional to the image gradient.
If p and q are horizontal neighbors, fpq(a, b)’s are summa-
rized in the table in Figure 8. If p and q are vertical neigh-
bors, then Vpq(a, b) = wpq · 1(a 6= b), i.e. the Potts model.
If we wanted to encourage a thinner (or wider) shape, we
could make vertical wpq’s more (or less) expensive than the
horizontal wpq’s. Notice that the penalties listed in Figure 8
are finite, thus the shape encouragement is “soft”. Hard con-
straints can be incorporated too with infinite penalties.

We can use similar ideas to encode various generic shape
priors, see Figures 3, 9, 10. We show the recovered object
parts with a unique constant intensity. The number of parts
needed to model an object depends on the complexity of its
shape. In Figure 3 we use four parts for the airplane and
bow, seven for the cross (not all parts are clearly visible at
the given image resolution), and two for the leaf.

While each object part can have its own data model Dp,
for experiments in this section we used the same model for
each part, as well as the same model for the two background
labels (T and B). The data models were obtained either
interactively from the user (Figure 9), as in [3], or set as a
mixture of Gaussians (Figures 3 and 10), as in [2].

The middle column in Figures 9 and 10 shows segmenta-
tion results without shape prior, i.e. the object consists of a
single part. All other parameter settings between the middle
column and the last column are equal. As expected, shape
prior helps to achieve a more accurate segmentation.

A limitation of our shape prior is the tiered labeling
structure. That is each column must contain only one ob-
ject part label. The class of such shapes is still rather rich,
since each object part has several choices of slants to en-
courage with respect to the background boundary, and the
number of object parts to combine is unlimited, although
the complexity does increase with K.

If we prefer one object part to be larger than another, we
can bias the data terms Dp accordingly. If Dp is smaller for
a part we have a bias towards making that part bigger. This
was done for the middle part of the shape in the second row
of Figure 10, to encourage a flat, rather than triangular roof.

Our shape priors are invariant to translations and they

Figure 9. Interactive segmentation with a “plane” shape prior.
Middle column: segmentation without shape prior. Last column:
segmentation with shape prior. Foreground and background seeds
are in black and white respectively.

can represent objects of a variety of sizes, since the slant of
a boundary does not change if we scale an object. There
is also some amount of invariance to rotations. Consider
the third row in Figure 9. In general there is a trade-off
between being able to tolerate rotations and the “softness”
of the prior. If we reduce penalties for unlikely slants, the
shape prior becomes more forgiving of rotations, but at the
cost of becoming weaker (less specific).

We tried the expansion algorithm [4] to optimize our en-
ergy on the examples in Figure 10. We used the truncation
trick of [16], since our energy is not a metric. This attempt
was a total failure. Initializing with a constant labeling, the
expansion algorithm gets stuck immediately. Initialized at
random, it moves to a totally unreasonable local minimum.

The running time depends on the image size and the
number of parts in the shape prior. The range for the ex-
amples shown here was between 3 and 30 seconds. Our
algorithm would be trivial to parallelize for GPU.

Figure 10. Segmentation without interaction. Middle column: seg-
mentation without shape prior. Last column: segmentation with
shape prior. We used a different prior for each example.

6. Conclusion

Our main technical result is an efficient DP algorithm for
finding labelings that satisfy tiered constraints. DP can be
used because a tiered labeling can be seen as a path in a
large state space. In contrast to currently popular optimiza-
tion methods, such as graph cuts, we find globally optimal
solutions with arbitrary smoothness terms Vpq . In particu-
lar, this allows for modeling fairly interesting shape priors
for segmentation and will likely have other applications as
well. We also outlined several possible generalizations of
our algorithm that may be useful in different applications.

The shape priors introduced here are novel and appear to
be quite powerful. One direction for future work involves
learning shape priors from examples. Learning such models
can be done using standard techniques for learning 1D (hid-
den) Markov models. Discriminative learning from fully
labeled examples can be done using structured SVMs [20].
This would be applicable in the geometric class labeling ap-
plication. In the case of binary segmentation, discrimina-
tive learning from examples that are not pre-segmented into
parts can be done using latent structured SVMs [23].

Acknowledgements

We would like to thank Derek Hoiem for providing data
for the geometric class labeling experiments. Pedro Felzen-
szwalb was supported in part by NSF award 0746569. Olga
Veksler would like to acknowledge support provided by
NSERC, CFI and ERA grants.

References
[1] T. Asano, D. Chen, N. Katoh, and T. Tokuyama. Efficient algorithms

for optimization-based image segmentation. IJCGA, 11(2):145–166,
2001.

[2] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive
image segmentation using an adaptive GMMRF model. In ECCV,
2004.

[3] Y. Boykov and G. Funka Lea. Graph cuts and efficient n-d image
segmentation. IJCV, 69(2):109–131, 2006.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. PAMI, 23(11):1222–1239, 2001.

[5] D. Cremers, S. Osher, and S. Soatto. Kernel density estimation and
intrinsic alignment for shape priors in level set segmentation. IJCV,
69(3):335–351, 2006.

[6] P. Das, O. Veksler, S. Zavadsky, and Y. Boykov. Semiautomatic seg-
mentation with compact shapre prior. In CRV, 2006.

[7] A. Delong and Y. Boykov. Globally optimal segmentation of multi-
region objects. In ICCV, 2009.

[8] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society,
Series B, 51(2):271–279, 1989.

[9] D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from
an image. IJCV, 75(1):151–172, 2007.

[10] H. Ishikawa. Exact optimization for markov random fields with con-
vex priors. PAMI, 25(10):1333–1336, 2003.

[11] P. Kohli, L. Ladický, and P. H. Torr. Robust higher order potentials
for enforcing label consistency. IJCV, 82(3):302–324, 2009.

[12] V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions
with graph cuts - a review. PAMI, 29(7):1274–1279, 2007.

[13] M. Leventon, W. Grimson, and O. Faugeras. Stat. shape influence in
geodesic active contours. In CVPR, 2000.

[14] S. Li. Markov Random Field Modeling in Computer Vision. Springer-
Verlag, 1995.

[15] X. Liu, O. Veksler, and J. Samarabandu. Order preserving moves for
graph cut based optimization. PAMI, to appear.

[16] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital tapestry.
In CVPR, 2005.

[17] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV, 47(1-3):7–42,
2002.

[18] D. Schlesinger and B. Flach. Transforming an arbitrary minsum
problem into a binary one. Technical Report TUD-FI06-01, Dres-
den University of Technology, April 2006.

[19] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. F. Tappen, and C. Rother. A comparative study
of energy minimization methods for markov random fields with
smoothness-based priors. PAMI, 30(6):1068–1080, 2008.

[20] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Sup-
port vector machine learning for interdependent and structured out-
put spaces. In ICML, 2004.

[21] O. Veksler. Star shape prior for graph-cut image segmentation. In
ECCV, 2008.

[22] J. Winn and J. Shotton. The layout consistent random field for rec-
ognizing and segmenting partially occluded objects. In CVPR, 2006.

[23] C.-N. Yu and T. Joachims. Learning structural svms with latent vari-
ables. In ICML, 2009.

