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Abstract

We presenta new image segmentationalgorithm based
on graphcuts. Our main tool is separation of each pixel �
from a specialpoint outsidethe image by a cut of a mini-
mumcost. Such a cut createsa groupof pixels ��� around
each pixel. We showthat thesegroups ��� are either dis-
joint or nestedin each other, and so they give a natural
segmentationof the image. In addition this property al-
lows an efficient implementationof the algorithm because
for mostpixels � the computationof ��� is not performed
on thewholegraph. We inspectall ��� ’s anddiscard those
which are not interesting, for exampleif they are too small.
Thisprocedure automaticallygroupssmallcomponentsto-
gether or merges theminto nearbylarge clusters. Effec-
tively our segmentationis performedby extracting signifi-
cantnon-intersectingclosedcontours. We presentinterest-
ing segmentationresultson realandartificial images.

1 Intr oduction

A popularframework for imagesegmentation(or data
clustering)is graph partitioning. A weightedundirected
graph����� 	�
 �� is constructed,where	 is thesetof im-
agepixelsandedges� connectneighboringpixelsaccord-
ing to someprescribedneighborhoodsystem.The weight� on an edge����� � 
 � � measuresthe similarity between
pixels � and � . Usually � in anincreasingfunctionof sim-
ilarity. The goal of graphpartitioningis to break 	 into a
few disjoint sets	�� 
 � � � 
 	�� s.t. thesimilarity acrosspixels
in 	������	 � is small.

A lot of prior work performspartitioningbasedonpurely
local properties([5]). While methodsbasedonly on local
propertiesarein generalveryefficient,they oftenfail tocap-
turetheimportantglobalpropertiesof ascene(see[8] for a
discussion).In recentyears,graphcutshave emergedasa
powerful optimizationtechniquewhichallowsextractionof
globalinformation([10], [8], [3], [7], [4], [1]). We propose
a new segmentationmethodbasedon graphcuts.We begin

by reviewing graphcutsandsegmentationmethodsbased
on graphcuts.

1.1 Graph Cuts

Suppose� and � aresubsetsof 	 s.t. 	 �!�#"�� and�%$&�'�)( . Then the � �
 �� -cut is the subsetof edges
whichconnect� and � . If � is the � �
 �*� -cut thenits cost
is just thesumof its edgeweights:+ � �,���.-� / 021 3 / 4 � � � 
 � � �
A minimum cut is a cut of the minimum cost. It can be
foundefficiently, for examplesee[2]. In general,theremay
beseveralminimumcuts.

In a rootedvariantof theminimumcut problemwe are
given two distinct nodes5 and 6 which we call terminals.
Here we want to find the minimum � �
 �*� -cut underthe
restrictionthat 578� and 697�� . We usenotation � 5 
 6 � -cut
to denotea cut underthis restriction. If � is an � 5 
 6 � -cut
thenit splitsverticesinto two setswhich we denoteby ��:
and ��; with 57��9: and 697���; .
1.2 Segmentationby cuts

Z. Wu andR. Leahy[10] proposedan algorithmwhich
optimallypartitionsthegraphinto < subgraphssuchthatthe
maximuminter-subgraphcut is minimized. This solution
minimizes the similarity acrossdifferent subgraphs.The
algorithmworks recursively by splitting a segmentin two
partsby aminimumcut,until thewholegraphis partitioned
into < parts. To avoid cutting out a singlepixel which is
well connectedto its neighborstheedgeweightsshouldde-
creasefast.Thatis severingjusta few edgesbetweenpixels
with similar intensitiesshouldbemoreexpensive thansev-
eringmany edgesbetweenpixelswith differentintensities.
Howeverevenwith suchweightassignments,thisapproach
preferscuttingout small isolatedclustersof the graphand
alsothechoiceof theright < is difficult.



Figure 1.

(a)Original image (b) Best contour normal-
izedby length

Figure 2.

To avoid theproblemof smallclusters,J.ShiandJ.Ma-
lik [8] proposeto normalizethe cost of an = >? @*A -cut as
follows:B8C = D,A�E C = D,AFHG I J2K L I MN = O2? P A,Q C = DAFHG I RSK L I MN = O2? P A�T (1)

In additionto minimizing thesimilarity between> and @ ,
the normalizedcut maximizesthe normalizedassociation,
i.e. thesimilarity within eachgroup. Theproblemof min-
imizing thenormalizedcut is NP-hard,andin [8] they find
an approximatesolution basedon the generalizedeigen-
valueproblem(for an interestingdiscussionof segmenta-
tion algorithmsbasedon eigenvectorssee[9]).

Normalizedcut algorithmhasbeenvery successfuland
has been applied to many types of grouping problems.
However thereare caseswhen it hasdifficulties. Perona
andFreeman[6] provide an example. They considerseg-
mentationof a structuredforegroundfrom anunstructured
background,seefigure 4(a) for an illustration. The fore-
groundpixels have large similarity to eachother, but the
backgroundpixels are dissimilar. Bipartitioning into the
foregroundandthebackgroundfailseitherdueto a badap-
proximationor thefactthatnormalizedcutseeksto partition
the imageinto two groupswherepixelswithin eachgroup
aresimilar.

While removing thebiasto small segments,normalized
cut is biasedtowardssplitting the imageinto two partsof
equalweight.An extremeexampleis in figure1. Theback-
groundis 50 by 100 with intensity 120. The foreground
consistsof a 10 by 10 squarewith intensity150. On the
left sideof thesquarethereis a narrow rampbetweenfore-

groundandthebackground,s.t. thereis a gap5 pixel wide
in the edgebetweenthe squareand the background.As-
sumethateachpixel is connectedto its 4 nearestneighbors.
The normalizedcostof the cut which separatesthe square
from thebackgroundhascostat least U VW X Y Z X Y Z X V E Y[ Z whereN

is the costof anedgebetweenpixelsof the sameinten-
sity (herewe just consideredthecostof thehighestof two
termsin equation(1)). However the normalizedcostof a
cut which splits the imagevertically in two equalpiecesis
approximately U Z VW X U Z X U Z X V Q U Z VW X U Z X U Z X V E YY Z Z . Thusregardless
of the weights,the cut which seversonly high costedges
hascostsmallerthanthe costof a cut which seversjust 5
highcostedges.

Onecanthink aboutotherwaysto normalizethecut, for
exampleby thetotalnumberof edgesin thecut. Intuitively
this correspondsto finding thehighestcontrastedge.First
of all this approachstill createsmany small clusters.Sec-
ond considerfigure 2(a). This figure has3 rectanglesof
differentsizestackedon top of eachotherThebottomand
thetop rectanglesareshaded.Dueto theshading,theinner
andoutercontoursaroundthemiddlerectangledecreasein
contrastfrom left to right. For many weight choices,the
optimalcutnormalizedby numberof edgesis shown in fig-
ure 2(b). It consistsof the brightestpartsof the contours
aroundthemiddle rectangleandcutsthroughthe insideof
the middle rectangle. The cost of including a few heavy
edgesis averagedout,andasaresultthebestcontourfound
is acombinationof thetwo distinctcontoursperceivedby a
humanobserver.

An interestingapproachnot basedon bipartitioning is
by Y. Gdalyahu,D. WeinshallandM. Werman[3]. They
proposeastochasticsegmentationalgorithmwhich is based
on \ -waycuts,which is ageneralizationof thetwo waycut
definedbefore.

1.3 Our approach

Weproposeanew algorithmbasedonrootedgraphcuts.
Out of thethreemethodsdiscussedabove,our algorithmis
mostsimilar to the onein [10]. However insteadof parti-
tioning thegraphoptimally into \ subgraphs,we usegraph
cutsto directly searchfor a closedcontourof a small cost
aroundeachpixel.

We introducea new graphnode] andconnectthepixels
on the boundaryof the imageto ] with edgesof appropri-
atelychosensmallweight. This new additionto the graph
structureservestwo purposes.First it assignssomelow cost
to thecontourconsistingof theimageboundary(thecostof
this contouris thesumof theweightsof edgesincidenton] ). Secondlynode] intuitively representsthesceneoutside
the imagewhich is not similar to any of the pixel nodes.
Thus to find a low cost contouraround O we separateO
from the external node ] by a minimum = O2? ] A -cut. This



cut createsa group of pixels ^�_ containing̀ . We show
that we canfind minimum cutss.t. ^�_ ’s areeithernested
in eachother or disjoint. Thus ^�_ ’s give a naturalparti-
tioning of thegraph. In additionthis propertyallows us to
implementthe algorithmefficiently. We excludefrom the
segmentationall ^�_ ’s which areuninteresting,for example
all ^�_ ’s which aresmallerthansomeprescribedsize. This
procedureautomaticallygroupssmallcomponentstogether
or mergestheminto larger clusters. Effectively our algo-
rithm performssegmentationby finding significantclosed
contourswhich cantouchbut cannotintersect.We thenre-
cursivelyapplyouralgorithmtoeachsegmentuntil acertain
stoppingcriterionis reached.This criterionimpliesthatno
moreinterestingcontourscanbefound.

This paperis organizedasfollows. In section2 we ex-
plainouralgorithm,in section3 weshow how to implement
it efficiently, andin section4 we presentthe experimental
results.

2 NestedCuts

2.1 Graph Structur e

Webegin by describingthestructureof ourgraph.Let a
bethesetof all imagepixelsandlet bdc'e e `2f g h*i `2f g*jk h be a prescribedneighborhoodsystem. A common
choicefor b is the setof all pixel pairswithin somedis-
tancefrom eachother. The setof verticesin our graphisl c k�m e n h . Thesetof edgesiso c&b m e e `2f n h*i ` is on theimageborderh p
Thespecialnoden alwaysservesasoneof theterminals.It
is intuitively interpretedasanodeoutsidetheimagedissim-
ilar to everypixel node.Theweightof edgese `2f g hjqb is
proportionalto the similarity betweenpixels ` and g . The
weightof edgese n f `�h will bediscussedlater, but in general
wewill keepit low.

2.1.1 Main Theorems

Givenapixel ` , let ^ beaminimum r `2f n s -cut. Wehavethe
following results:

Theorem1 If gj�^�_ thenthereis a minimumr g f n s -cut ^,t
s.t. ^,tuwv ^�_ .
Theorem2 If gyxj�^�_ thenthereis a minimumr g f n s -cut ^,t
s.t. either ^ tuSz ^�_cH{ or ^�_ v ^ tu .

We will give intuition about the theoremsin a simple
situationwhencutsform paths.We give the generalproofs
in theappendix.

Supposetheorem1 is false. Let ^,t be any minimumr g f n s -cut. This caseis illustrated in figure 3(a). Here

q

p

q

p

(a)Theorem1 (b) Theorem2

Figure 3.

thick solidanddashededgesshow cut ^ andthin solid and
dashededgesshow cut ^ t . Cut ^ t consistsof the dashed
thin pathandthesolid thin path.It preferscuttingalongthe
thin solidpathinsteadof thethick dashedpath.Thatmeans
thatthethin solidpathis cheaperthanthethick dashedpath.
But thencut ^ shouldalsoprefercuttingalongthethinsolid
pathinsteadof the thick dashedpath,andwe geta contra-
diction.

Now supposetheorem2 is false.Let ^t beany minimumr g f n s cut. Considerfigure1(b). Againcut ^t preferscutting
alongthe thin solid path insteadof the thick dashedpath.
But thatmeansthatcut ^ shouldalsoprefercuttingthethin
solidedge,which is againa contradiction.

2.2 Weightson edgese `2f n h
We assignthe sameedgeweight |�} for all edgesine e `2f n h*i ` is on theimageborderh . Thechoiceof |9} plays

an importantrole in the algorithm. In generalwe want to
assign |�} a low weight, since eachpixel ` is not simi-
lar to n . Another way of looking at it is that the contour
consistingof the borderof the imageshouldhave a low
cost. However, if |�} is too small, then for all ` the opti-
mal r `2f n s -cut is s.t. ^�_�c k . Thereforewe choosea dis-
creterange~�c�e |9�9� ��f |w��� � h andwe usebinarysearch
to find the smallest|9}�j%~ s.t. � ^�_ with n � � � � ��� � �H�i ^�_ i ��i k i ��n � � � � ��� � � . Here i �wi denotesthesetsizeandn � � � � ��� � � is the smallestsegmentsizewe allow. If there
is no such |�} the segmentationis stopped.Otherwisethe
imageis segmentedby ^�_ ’s andweapplythealgorithmre-
cursively to eachresultingsegment.

Thus |9} controlsthemaximumcostof cutswe arewill-
ing to includein thesegmentation.Wedonot includein the
segmentationany cut of cost more than |�} multiplied by
the boundarylength. So our choiceof |9�9� � and |9�9� � is
asfollows: |w��� � is just thesmallestpossibleedgeweight;|9�9� � is the largestpossibleedgeweight s.t. the contour
consistingof edgeswith weights |9�9� � would bestill con-
sidereda goodcontourto includein thesegmentation.No-
tice now that in many casesthe boundarylength is longer
than the lengthof contoursinside the image(If we expect
an imageto containcontourslongerthantheboundarywe



(a)Original image (b) Our results

Figure 4.

cancreatemoreedgesto � from theboundarypixels). The
segmentationis stoppedwhenthereis no cut cheaperthan�w��� � timesthe boundarylengthwhich is a gooddecision
becausethenmostlikely thereareno goodcontoursleft. If�9�8��� with the desiredpropertyis found and it is not
equal to �w��� � , then after we are donesegmentingthere
maybestill goodcontourswhich arenot found (i.e. con-
toursconsistingof edgeswith weightsin � but largerthan
current�9� ). But thenthealgorithmproceedsrecursively to
find thosecontours.

2.3 NestedCuts algorithm

0. Create a new graph
1. Use binary search to find smallest�9����� s.t. there is a ��� with� � � � � ���   ¡y¢!£ ��� £ ¢!£ ¤q£ ¥8� � � � � ���   ¡
2. If ��� at step 1 is not found, exit
3. For each ¦ find ��� .

Discard ��� if £ ��� £ §#� � � � � ���   ¡ or£ ��� £ ¨%£ ¤q£ ¥8� � � � � ���   ¡
4. Recursively apply the algorithm to

all segments.

At thedeeperlevelsof recursionthecostsof cutsgetlarger.
Thuswe getahierarchyof segmentationswherethedeeper
levelsof thehierarchyin generalcontainweakercontours.

In thecurrentimplementationthedecisiononwhetheror
not include ��� in thefinal segmentationis basedonits size.
Howeverany othercriterioncanbeusedinstead.

3 Efficient Implementation

As stated,thealgorithmin theprevioussectionwouldbe
very inefficient. In this sectionwe discussthreestepswe
take to implementit efficiently.

3.1 Sampling

Recallthat in step1 of our algorithmfor a given �9� we
needto test if thereis a ��� s.t. � � � � � ���   ¡©¢ª£ ��� £�¢

£ ¤�£8¥«� � � � � ���   ¡ . To implementthis testefficiently we
sample� pixels at random. If after � trials no satisfactory��� is found,weassumethatnosuch��� exists.

Supposethereare ¬ pixels,and � of themsatisfythede-
siredproperty. Thentheprobabilitythatwemake � random
trials without replacementanddo not find any of these �
pixels is 2® ¯ °± ®±³² In practicewe choose� so that if at least´ µ ¶

of pixelshave the desiredproperty, theprobability to
missall of themis lessthan

´ µ ¶
.

3.2 Graph Reduction

Theorems1 and2 allow usto reducethegraphsize.Sup-
posewewantto computean · � ¸ � ¹ -cutand � � ��� for some¦ . Thenall ¦ �'º��� canbecontractedinto onenode» . Fur-
thermoreif thereis ¼ s.t. �9½,¾H��� thenall nodesin ��½ can
alsobecontractedinto onenode.

Therequiredstorageis linearin thesizeof thegraph.We
keepa separategraphfor each��� which containsonly the
nodesof ��� . As soonasa new ��½�¾³��� is found,a new
graphfor �9½ is createdandall nodesof ��½ arecontracted
to onenodein thegraphfor ��� .
3.3 Further speedups

We can further reduce the computationsrequired in
step3 of our algorithm. Supposefor a pixel ¦ we have al-
readycomputedthe minimum · ¦2¸ � ¹ -cut � and ¼ � ��� . It
is easyto observethatif thecostof theminimum · ¼ ¸ ¦�¹ -cut
is larger thanor equalto ¿ · �,¹ thentheminimum · ¼ ¸ � ¹ -cut
and · ¦2¸ � ¹ -cut areequal.We canexploit this fact.

The cost of the minimum · ¼ ¸ ¦�¹ -cut is equal to the
amountof flow we can pushfrom ¼ to ¦ , see[2]. Thus
if wecanpushflow of cost ¿ · �¹ from ¼ to ¦ then �9½wÀ���� .
If neighboringpixels ¦ and ¼ have similar color, thenwe
canpushflow of cost ¿ · �¹ usingjust a few edgesfrom the
graph. Indeedwe found that in many caseswe can push
enoughflow just througha singleedgefrom ¼ to ¦ .

Thealgorithmproceedsasfollows. In thebeginningall
pixels are marked unprocessed.While thereis an unpro-
cessedpixel ¦ we computethe minimum · ¦2¸ � ¹ -cut � and
mark ¦ to beprocessed.For all neighbors¼ of ¦ which are
closein color to ¦ andarestill unprocessed,we cut a small
pieceof thegraph(usuallyof 40nodes)aroundpixels¦ and¼ andcheckif wecanpushflow of size ¿ · �,¹ from ¼ to ¦ . If
yeswe mark ¼ asprocessedandcontinuethis processnow
lookingat theneighborsof ¼ . If noweleave ¼ unprocessed.Á

To contractnodesin someset Â we replaceall nodesin Â by a new
node Ã , remove all edgeswith bothendpointsin Â , andreplacemultiple
edgesbetweenÃ andÄÅÆ Â by asingleedgewith weightequalto thesum
of themultipleedgeweights.



(a)Original image (b) Topof thehierarchy (c)Bottomof thehierarchy

Figure 5. Baseball image. Size 221 by 147. Running time 10 minutes. 5 levels in the hierarchy.

4 Experimental Results

In thissectionwepresentsomeexperimentsonsegment-
ing intensityimages.Themostimportantparametersof the
algorithmare the edgeweights. Usually segmentationre-
sultsarerathersensitivetheseweights.Theimportantfactor
in choosingtheedgeweightsis to make surethey decrease
rapidly enoughwith thedecreasein similarity. A common
choice(usedin [10],[8], [3]) is

ÇÈ É2Ê Ë Ì�Í�Î ÏwÐ Ñ Ò Ó Ñ Ô Õ Ö× ÑÙØ Î Ó Ú Ð Ò Û Ô Õ Ö× Ú Ê
where Ü Ý is the intensityof pixel É , Þ È É2Ê Ë Ì is the distance
betweenpixels É and Ë and ß à and ß á arethe control pa-
rameters.We chosedifferentweightswhich have a similar
functionalform:

ÇÈ É2Ê Ë Ì�Í#â8ã ä8å�æ ç ÏSè à Ò Ï à Ô èæ á é Ý ê ë ì Ê í î&ï
For all theexperiments,we set ð Í æ ñ , ò ó ô Î õ ó�ö ÷ Þ Í ñ ø ,Çwù�ú û�Í æ ü ý , Ç9ù9þ ÿ&Í í . For the imagein section4.1 we
used4 nearestneighbors,andfor all otherimageswe used
8 nearestneighbors.Theresultsaredisplayedby assigning
eachsegmentauniqueintensity.

4.1 Structur ed foreground and unstructur ed
background

Figure4 showsanexamplesimilar to theonein [6]. The
intensitiesaredistributeduniformly between0 and255for
the background,between50 and 55 for the larger square
andbetween80 and85 for the smallersquare.Our algo-
rithm achievesgoodsegmentation,foregroundsquaresare
segmentedout andtheunstructuredbackgroundis grouped
together. A few spuriouspixels which have similar inten-
sitiesto the intensitiesof the squaresget groupedtogether
with thesquares.

4.2 Baseballimage

Figure 5(a) shows a baseballimage from [8]. Fig-
ures5(b) and (c) show our resultsat the top and the bot-
tom level of thehierarchy. On thetop level, thesignificant
piecesof both playersaresegmentedout. On the bottom
level, the backgroundand the playersare split into more
parts.Interestinglytheshoeof thetop playeris segmented
out, even thoughthe pixels insideshoehave visibly large
intensityvariation. This is becausethecontouraroundthe
shoeis strong,andeventhoughthecontoursinsidetheshoe
arealsostrongthey donotsurroundany segmentof signifi-
cantsize.

Notice that in spitethefact thatwe forbid
� Ý ’s of small

size, there are segmentsof small size, especiallyon the
higherlevelsof hierarchyaroundthe intensityedges.Sup-
pose

� ë�� � Ý and
� ë passesoursizerequirements.Never-

theless
� ë and

� Ý canoverlapin suchaway that
� ë breaks� Ý in smallpieces,especiallyaroundtheboundary. In prin-

ciple this canbeeasilydetectedandcorrected,but we have
not implementedthis yet.

4.3 Peppersimage

Figure6(a)showsanimagewith pepperstakenfrom the
machinevision textbook. Figures6(b) and(c) show there-
sultsat thefirst andthe last levelsof thehierarchy. On the
bottom of the hierarchythe thin long pepperin the fore-
groundis segmentedout from a similar pepperon thebot-
tom of the imageandfrom a smallpieceof similar pepper
ontheleft. Howevertheotherbig pepperontheforeground
is split into severalparts.
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(a)Original image (b) Top of thehierarchy (c) Bottomof thehierarchy

Figure 6. Peppers image. Size 128 by 128. Running time 2.5 minutes. 5 levels in the hierarchy.

Appendix

PROOF: (Theorem1)
Supposethe theoremis false. Let ��� be any minimum� � � 	 


-cut. Defineedgesset �� ��� � , which containsall edges
betweenpixelsin � ��� ���� and � ���

�� �� .
�� ��� ����� ��� � � � ��� ��������� and � � � ���

�� ������� �
Similarly we define ���� ��� � , � � �

�
�� � ,� �� �

�
�� � , ����

�
� � , and � �� ��� �� asfol-

lows:
� �� ��� � ��� ��� � � � ��� � �� ���� and � �

�� ���
�� �� ���� �

� � ���� � ��� ��� � �
�� ��� ��������� and � � � ���

�� ������� �
� �� ���� � ��� ��� � �

�� ��� ���� ���� and � �
�� ���

�� �� ���� �
���� �� � ��� ��� � � � ��� ���� ���� and � �

�� ��� ���� ���� �� �� ��� �� ��� ��� � � � ���
�� �� ���� and � �

�� ���
�� �� ���� �

Usingthesetsdefinedabovewecansplit � and ��� :
� � ���� �� ��� ���� �

�
� ��� � ��

�
� �� � � �� �

�
� ����� � �� ��� � � ���� �

�
� � � � � �

�
�� � � � �� �

�
�� �  

Wecandefinetwo new cuts,a
� � � 	 


-cut ��� � anda
� !"� 	 


-cut
��� � � :

��� � � ���� �� � � �� �
�
� � � ���� �

�
� ���� � � � � �� ��� �� � ���� �

�
� � � � �� �

�
�� �  

Observe that ��� �� � � ��� � � and ��� � �� � � � � � � . Now# � ��� � 
�$ # � ��� 
 , or otherwise��� � is theminimum
� � � 	 


cut
requiredby thetheorem.Sinceall �&% '( ) ’saredisjoint,weget
that # � � �� �� �


�$ # � � � ���� �

"* # � � �� ���� �


  
Using this fact andwriting out the costsof � and ��� � � in
termsof the � ’s we derive that # � � 
�$ # � ��� � � 
 � which is a
contradiction.

The proof of theorem2 is very similar to the proof of
theorem1.
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