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Abstract

In recent years, interactive methods for segmentation are increasing in popularity due to their success in different domains such as
medical image processing, photo editing, etc. We present an interactive segmentation algorithm that can segment an object of interest
from its background with minimum guidance from the user, who just has to select a single seed pixel inside the object of interest.
Due to minimal requirements from the user, we call our algorithm semiautomatic. To obtain a reliable and robust segmentation with
such low user guidance, we have to make several assumptions. Our main assumption is that the object to be segmented is of compact
shape, or can be approximated by several connected roughly collinear compact pieces. We base our work on the powerful graph cut
segmentation algorithm of Boykov and Jolly, which allows straightforward incorporation of the compact shape constraint. In order
to make the graph cut approach suitable for our semiautomatic framework, we address several well-known issues of graph cut segmen-
tation technique. In particular, we counteract the bias towards shorter segmentation boundaries and develop a method for automatic
selection of parameters. We demonstrate the effectiveness of our approach on the challenging industrial application of transistor gate

segmentation in images of integrated chips. Our approach produces highly accurate results in real-time.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation is generally defined as the problem of par-
titioning an image into two or more constituent compo-
nents, where each component has a short summary
representation. This definition is rather vague, because gen-
eral purpose segmentation is not well defined. Segmenta-
tion becomes a much better defined problem when it is
developed for a particular application, since then one fre-
quently has a clearer idea of the properties a segmentation
should have.
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There are mainly three approaches to segmentation:
automatic, manual and interactive. Manual segmentation
is labor extensive and extremely time consuming. Purely
automatic segmentation is very challenging, due to ambi-
guities in the presence of multiple objects, image noise,
weak edges, etc. Ambiguity problems can be eased with
user guidance, which is the idea of interactive segmentation
methods. Hence, their popularity is increasing in applica-
tions in different domains [18,24,5,3,23,1,4].

The motivation behind our work is to reduce interaction
to the minimum, asking the user to just choose the object of
interest by clicking inside it. We call our approach semiau-
tomatic segmentation, to distinguish it from general inter-
active segmentation, where the user is allowed to provide
a potentially unlimited amount of guidance. The name
semiautomatic is used to emphasize that our algorithm is
only a step away from the automatic segmentation, since
only one seed point is required from the user. General
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interactive segmentation can be quite far from automatic
segmentation if lots of input is required from the user in
order to achieve satisfactory results.

To produce an accurate and robust segmentation, we
have to develop our algorithm with some application in
mind, since, as we have already mentioned, general purpose
segmentation is an ill-defined problem. We chose to design
our algorithm in the context of an interesting industrial
application, which requires transistor gates to be seg-
mented from the images of integrated chips.

Over the years, researchers have developed different
techniques for segmentation. Some of the primitive meth-
ods that have been popular because of their simplicity are
region growing, split-and-merge, edge detection and thres-
holding, sece, for example, Gonzalez and Woods [15].
Although these methods and their variants are still widely
used, they are not robust as they are based on local deci-
sions. For example, the major problem with region grow-
ing is the “leaking” through weak points in the
boundary, which is inevitable in most images. Likewise,
thresholding fails when the object of interest is not homo-
geneous. In particular, objects with smoothly varying
intensities are split into several segments.

To overcome problems due to local decision strategies,
global properties have to be included in the segmentation.
Graph theoretic approach to segmentation allows us to do
so. Various graph based algorithms have been proposed
over the years [33,27,30,5,17,12,32,4,16]. They differ in
the way the segmentation is interpreted and in the tech-
niques employed to solve the problem. However, all these
methods typically involve two main steps — formulating
an objective function and optimizing it.

In some approaches, such as live wire [11,24], a global
objective function is implicit. Live wire is a paradigm for
segmentation that requires the user to mark a seed on the
object boundary. As the user moves the cursor (the free
point) close to the object boundary, a curve (livewire)
clings to the object boundary and segments the object.
The curve position is optimized by finding the shortest path
on a certain graph. In this approach considerable amount
of interaction may be required in order to find the appro-
priate segmentation.

Level sets sets [25], normalized cut [27], active contour
(snake) evolution [18,7,2], and graph cut [5] formulate the
energy function explicitly based on various global proper-
ties that the segmentation is expected to have. Unfortu-
nately, for many energy functions that one may wish to
formulate, finding their global minimum is computation-
ally prohibitive. Normalized cut computes only an approx-
imation to the global minimum, and in most cases, active
contours and level sets compute only a local minimum (a
few notable special case exceptions are Cohen and Kimmel
[8,21]).

The advantage of the graph cut compared to the above
listed methods is that it guarantees a globally optimal solu-
tion for a family of energy functions. An additional benefit
is that one can easily incorporate both regional and bound-

ary properties of segmentation. Also, unlike most active
contour/level set methods, graph cut is not sensitive to
the initialization [4]. Furthermore, level sets/snakes would
be unsuitable for our semiautomatic approach since they
require the user to initialize a contour, not just one point.
These advantages make the graph cut method much more
attractive than others in achieving our goal.

As segmentation is a subjective problem, we start with
the already mentioned application of transistor gate seg-
mentation in the images of integrated chips. We make sev-
eral assumptions based on the prior knowledge of our data
and fit them into the framework of the algorithm in Boy-
kov and Jolly [5]. The most important assumption that
we make is that an object to be segmented is compact' in
shape. While this assumption allows us to produce very
robust segmentations, it is also our most restrictive
assumption, making our algorithm not suitable for seg-
mentation of objects of general shapes. However, apart
from the transistor gates there are important applications
(industrial and medical) where the objects of interest are
approximately compact. Furthermore, we can also handle
objects with somewhat more general shapes, specifically
the objects that can be divided either vertically or horizon-
tally into several approximately collinear pieces, where
each piece is compact in shape.

There are several related methods that incorporate
shape priors into graph cut segmentation. In Slabaugh
and Unal [28] the authors incorporate an elliptical prior
in an iterative refinement process. The disadvantages of
this approach is that it is iterative and the elliptic shape
assumption is overly restrictive for many applications. In
Freedman and Zhang [14], the shape prior can be arbitrary,
but their method requires a very accurate registration of
the assumed shape with the actual location of the object
of interest in the image, which is a difficult task in itself.
In Kumar et al. [20], they also require fitting of a model
of a certain shape to an image, and their method, which
uses sampling for estimation of model’s parameters, is very
computationally intensive.

The use of shape priors for segmentation has been inves-
tigated before. Recently there has been a lot of work on
using shape priors in level set segmentation, some examples
are Leventon et al. [22], Tsai et al. [29], Rousson and Para-
gios [26], Cremers et al. [10], Cremers et al. [9]. However,
level set segmentation is not numerically stable and the
solution is prone to getting stuck in a local minimum.

Another issue that we address is the parameter selection.
In the framework of Boykov and Jolly [5], the values of
parameters have a direct impact on the result produced
by the algorithm. Unfortunate choice of parameters can
produce unacceptable segmentation results that have to
be detected by the user and corrected by possibly a consid-
erable amount of interaction. This is not acceptable for our

! We use the word compact informally, we will explain what we mean by
it later.
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semiautomatic approach, since our goal is to reduce user
interaction to a single click. If the segmentation algorithm
is used for a collection of images that do not exhibit large
variability, then it is possible to select the parameters that
work well for that type of images beforehand. However,
we found that for our application, the images do exhibit
considerable variability and selecting fixed parameters that
work well for most instances is not possible. For each
image, there is an optimal setting of parameters that works
well, but estimating that range is difficult. Our solution is to
run the segmentation algorithm for a range of parameters
and choose the highest quality segmentation. This, of
course, requires some way of judging the quality of seg-
mentation. We devise a simple but intuitive test to check
the quality of the segment automatically. This “quality
check” is application dependent. If the current segment
does not pass the quality check, the parameters are read-
justed and the graph cut step is redone with the new param-
eters. We iterate this process using a search over parameter
space until the resulting segment passes the quality check.
Thus in our work, we estimate all the important parameters
of the algorithm automatically.

If we could directly incorporate our”’quality check” into
the energy function, then we would not have to search over
a range of parameters but could compute the best quality
segment in one step. Unfortunately we cannot incorporate
our quality check into the energy function in such a way
that it still can be minimized with a graph cut.

When the user provides many seed points, or when an
accurate color model of the object of interest is known,
the regional properties of the object can be relied on, and
are included in the graph cut segmentation with a large
weight. Our goal is to have a very low input from the user,
who just marks one object seed point. Thus we do not have
enough samples from the user to construct a reliable model
for the color distribution of the object. In this case we have
to allow the object to deviate from the unreliable color
model, and therefore the regional terms are given a smaller
weight (the smaller the weight of the regional terms, the
more is the object allowed to deviate from the color
model). When regional terms have smaller weight, bound-
ary terms become relatively more important. It makes sense
intuitively, since if there is no reliable color model, we must
rely more on the fact that we expect the object boundary to
aligns with intensity edges in the image. A serious difficulty
in graph cut segmentation in the case when regional terms
have a small weight is that there is a bias towards produc-
ing segments with shorter boundaries. In our framework,
we can easily counteract this bias. It turns out that due
to incorporating compact shape prior in the graph cut
framework, we can introduce a new parameter bias, which
biases the algorithm towards a larger object segment.? The
bias is exactly the parameter for which we search over a

2 Without the compact shape prior, incorporating the bias parameter
results in an energy function which is not submodular, and thus cannot be
minimized exactly with a graph cut, see Section 3.4

range of values to find the segmentation that passes the
quality check mentioned above.

Thus our main contributions to the graph cut segmenta-
tion framework of Boykov and Jolly [5] are as follows. We
introduce the idea of an application dependent ‘“‘quality
check” which can be effectively used for automatic param-
eter selection. We introduce the compact shape prior,
which lets us deal with the objects of compact shape very
robustly. Lastly, due to the shape prior, we are able to
introduce a bias parameter which allows us to counteract
the shrinking bias of the graph cut segmentation.

We evaluate our approach on a transistor segmentation
application for Semiconductor Insights, which is an engi-
neering consultancy company specializing in intellectual
property protection and competitive intelligence in the inte-
grated circuit domain. Our segmentation algorithm pro-
duces highly accurate results in real-time,®> and was used
to upgrade their manual system to a semiautomatic one.

This paper is organized as follows. In Section 2, we
review the graph cut segmentation framework of Boykov
and Jolly [5], in Section 3 we describe our work, in Section
4, we present our experimental results and we finally con-
clude with a discussion in Section 5.

2. Graph cut segmentation

In this section we briefly review the graph cut segmenta-
tion algorithm in Boykov and Jolly [5].

2.1. Graph cut

Let G = (V,E) be a graph consisting of a set of vertices
V and a set of edges E connecting the vertices. Each edge
e € E in G is assigned a non-negative cost w,. There are
two special vertices called terminals identified as the source,
s and the sink, t. A cut Cis a subset of edges C C E, which
when removed from G partitions V into two disjoint sets .S
and T =V — S such that s € S and ¢ € T. The cost of the
cut C is just the sum its edge weights:

1= we.
ecC

The minimum cut is the cut with the smallest cost. The
max-flow/mincut algorithm of Ford and Fulkerson [13]
can be used to obtain the minimum cut. We use the max-
flow algorithm developed by Boykov and Kolmogorov
[6], which was designed specifically for computer vision
applications and has the best performance in practice.

2.2. Segmentation algorithm

In Boykov and Jolly [5], the problem of segmenting an
object from its background is interpreted as a binary label-

® The system is real time in the sense that the user does not have to wait
more than a couple of seconds after he/she places a seed in the image of
the transistor gate to be segmented.
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ing problem, which can be solved in energy minimization
framework. The labeling corresponding to the minimum
energy is chosen as the solution. Let P be the set of all pix-
els in the image, and let N be the standard 4-connected
neighborhood system on P, that is NV is a set of pixel pairs
{p, q} where p is either immediately to the right, or left, or
top, or bottom of g¢.

Each pixel in the image has to be assigned a label from the
label set L = {0, 1}, where 0 and 1 represent the background
and the object, respectively. Let S = {S\,...,S,,...,Sp} be
a binary set that defines a segmentation, where each S, € Lis
the label assigned to pixel p. Thus the set P is partitioned
into two subsets, where pixels in one subset are labeled 0
and the ones in the other subset are labeled 1.

The energy function has the following form:

E(S) = aR(S) + B(S). (1)

In Eq. (1), R(S) is called the regional term because it incor-
porates the regional constraints into the segmentation. Spe-
cifically, R(S) measures how well pixels fit into the object or
background models under labeling S. It has the following
form:

R(S) = ZRP(SP)7 (2)

VpeP

where R,(S,) is the penalty of assigning the label S, to pixel
p. If label S, is likely for a pixel p, then R,(S,) should be
small. If label S, is unlikely for a pixel p, then R,(S,) should
be large.

The term B(S) in Eq. (1) is called the boundary term
because it incorporates the boundary constraints. A seg-
mentation boundary occurs whenever two neighboring pix-
els are assigned different labels. Thus B(S) is defined as a
sum over neighboring pixel pairs:

D Bu(Sp:S,), (3)
{p.a}eN
p<q

B(S) =

where N is the set of all neighboring pixels, and B,,(S,, S,)
describes the penalty for assigning labels S, and S, to two
neighboring pixels. The term B, is used to incorporate the
prior knowledge that most nearby pixels tend to have the
same label. Thus there is no penalty if neighboring pixels
have the same label and a penalty otherwise. Typically,
By (S,,S,) = wy, - T(S, # S,) where T(-) is an identity func-
tion of a boolean argument defined as:

1 ifS, #S,,
0 otherwise.

ris, %50 = {

To align the segmentation boundary with intensity
edges, w,, is typically chosen to be a non-increasing func-
tion of |1, — I,|, where I, and I, are the intensities of pixels
p and ¢, respectively.

Note that the term o > 0 in (1) decides the relative
importance of the regional and boundary terms. The larger
the value of o is, the more importance the regional con-
straints R(S) have compared with the boundary constraints

B(S). Larger values of « result in a segmentation which
obeys the regional model more. Smaller values of o result
in a segmentation with smaller boundary cost, which usu-
ally means shorter boundary length. Therefore, this param-
eter is one of the most important parameters in the graph
cut framework, and the hardest parameter to pick before-
hand. Typically different images have different optimal val-
ues for parameter o.

In Boykov and Jolly [5], it is shown how to construct the
graph such that the labeling corresponding to the minimum
cut on that graph is the labeling optimizing the energy in

(1).
3. Our work

The goal of our semiautomatic segmentation is accurate
and robust segmentation with user interaction restricted to
a single click inside the object of interest. The graph cut
algorithm [5] has several issues which make its direct use
unsuitable for semiautomatic segmentation. We address
these issues in our work.

In Boykov and Jolly [5], the user has to initially select a
few object and background seeds. After running the algo-
rithm the user has to inspect the quality of the segmenta-
tion. If required, he/she has to repeatedly add new seeds
and rerun the algorithm until an acceptable segmentation
is obtained.* Moreover, the results of the algorithm depend
heavily on the choice of parameter o for the energy func-
tion in Eq. (1). If the choice of « is far from optimal, the
user might have to perform a significant amount of
interaction.

Application specific semiautomatic segmentation is a
more tractable problem than general purpose semiauto-
matic segmentation. One of our main ideas is that for a
specific application, it may not be too hard to come up with
a goal-dependent measure of segment quality. We develop
a relatively simple “quality check” which lets us decide
whether segmentation under current parameters in Eq.
(1) is satisfactory. With this quality check at hand, we
can then search over a range of parameters to quickly
and automatically find the parameter value corresponding
to a suitable segmentation. Our particular segment “quality
check” was designed for a specific application, but it may
be possible to design suitable quality checks for other
applications. For example, when it is known that an object
has a specific shape, a quality check can be based on the
shape of the object segment.

In our particular application, the objects are of compact
shape (or close to compact shape), we explain what we
mean by compact in Section 3.1. Thus, we introduce a com-
pact shape as a hard constraint in our segmentation. Many

4 Rerunning the algorithm after the addition of new seeds usually takes
much less time than the first run of the algorithm because the flow from
the previous iteration can be reused and the max flow program does not
start from scratch. However, the time required from the user to enter the
new seeds can still be considerable.
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objects can be approximated by a compact shape, so simi-
lar construction can be used in other applications. A major
benefit of including the compact shape prior is that the
objects of this shape are segmented more robustly and reli-
ably. Weak boundaries, background clutter, image noise
are easier to overcome with the use of a shape prior. An
additional and very important benefit of using the compact
shape prior is that we can include a new parameter in our
energy function which incorporates a bias to larger objects,
as explained in Section 3.4. This helps to solve another gen-
eral issue in graph cut segmentation, namely its bias to pro-
duce segments of smaller size.

This section is organized as follows. In Section 3.1, we
explain the compact shape prior, in Section 3.2, we discuss
the assumptions made by our algorithm, in Section 3.3, we
give the regional term that we use for the energy in (1), in
Section 3.4, we explain our boundary term and show that
our energy function can be minimized exactly with a graph
cut, in Section 3.6, we discuss shapes more general than
compact that our algorithm can handle, and in Section
3.7, we give an overview of our algorithm.

3.1. Compact shape

In this section, we define the compact shape precisely.
As we have already mentioned, incorporating a shape prior
helps to achieve a more robust segmentation, because all
shapes inconsistent with the assumed shape are ignored.
This results in an increased robustness to weak boundaries,
noise, and clutter. However, incorporating a shape prior
within graph cut framework is a difficult task, we are aware
of only three previous approaches: Slabaugh and Unal [28],
Freedman and Zhang [14], Kumar et al. [20], their disad-
vantages have been discussed in Section 1.

We develop a shape prior which can be incorporated in
the graph cut framework directly, without the need for iter-
ative optimization or registration. We call our shape prior
compact, borrowing the idea from Veksler [31]. The word
compact is used informally. In Veksler [31], they chose
the word compact to reflect the fact that for compact
shapes, the perimeter to area ratio tends to be small. Intu-
itively, this shape prior encourages objects with boundaries
that are relatively simple. Our shape prior is especially
appropriate for industrial parts, and includes rectangles
and ellipses as a special case.

We now formally define our shape prior. Consider
Fig. 1. In this figure, the squares represent the image pixels,
and the dark gray square represents the seed point that the
user has selected. We divide the image into four slightly
overlapping quadrants with respect to the seed, as shown
in the figure. Let us name these quadrants Py, P,, P3, and
P,4. Quadrant P; consists of all pixels above and to the right
of the seed, including the seed. Quadrant P, consists of all
the pixels above and to the left of the seed, including the
seed. Notice that quadrants P; and P, have in common
all pixels exactly above the seed, including the seed. Simi-
larly, P; consists of all the pixels below and to the left of

| T T
First Quadrant P1

4\-—:" —1>
| v

| | I
Second Quadrant| P2

1\ I
< <Y

Thirld Ql.lladrﬂll'l‘l Plﬂ

F:rurthl Quail:lranlt P4

Fig. 1. This figure shows how the object segment is restricted in different
quadrants drawn with respect to the object seed (marked in dark gray).
The quadrants intersect along the pixels through which the bold lines pass.
The segment in light gray color shows an example of a compact shape.

the seed, and, finally, P4 consists of all the pixels to the
right and below the seed. We say that an object is compact
if its boundary can be fully traced using only the edges in
each quadrant shown in Fig. 1. Intuitively, in each quad-
rant, the boundary of the object is allowed to follow along
only two out of four possible direction. This implies that
the boundary in each quadrant is relatively simple and
short.

In graph cut framework, in order for the object segment
to be compact, we must prohibit a certain set of label
assignments to neighboring pixels. For example, for any
neighboring pixels p and ¢ in the first quadrant, we must
prohibit assigning 0 to p and 1 to ¢ if p is either to the left
or below ¢.> We will use notation p<,q to denote that pixel
p is to the left of ¢. Similarly, notation p<,q means that
pixel p is above pixel ¢. If I,/ are labels, we will denote
the assignment of / to pixel p and /' to pixel ¢ by
(p— I,q — I'). Now, we can define the set of prohibited
assignments:

{(p+0,qg < 1)|p,q € Py U Py, p<iq}V
_{lp= 0,9 — 1)|p,q € PUP3,q<;p}VU
~ {(p—0,qg = 1lp,q € PrUPy,q<,p}U

{(p 0,9 — 1)|p,q € P3 U P4, p<.q}

We say that an object segment is of compact shape if no
prohibited assignments are made in its segmentation.

Our definition of a compact shape might sound similar
to that of a convex shape, but these two types of shapes
are actually quite different. The classes of compact and
convex shapes overlap but neither class contains the other.
There are convex shapes which are compact, for example

A*

5 Recall that we use a 4-connected neighborhood system.
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the rectangular object in Fig. 2(a). The shape of the object
in Fig. 2(b) on the other hand is not convex but it is com-
pact. The object in Fig. 2(c) is an example of an object
which is neither compact nor convex. The object in
Fig. 2(d) is convex but not compact.

A weakness of the compact shape prior is that it is not
rotationally invariant, since the definition relies on the ver-
tical and horizontal axes. Suppose an object is compact
with respect to the vertical and horizontal axes rotated
through an angle 6. If we can compute 6 (for example, if
the object is rectangular but rotated by angle ), then we
can use our algorithm by defining the compactness of the
object with respect to the calculated axis.

Another weakness of the compact shape prior is that it is
defined with respect to the seed location. Depending on
where the user clicks, the object may or may not be com-
pact. We have noticed that users tend to click in the center
of the object (or can be specifically instructed to click in the
center of the object), therefore we make an implicit
assumption here that the shape of interest is compact with
respect to its center. Notice that some common shapes,
such as rectangles and ellipses, are compact with respect
to any seed location.

3.2. Our assumptions

In this paper, we make the following assumptions: (a)
the average magnitude of the gradient along the boundary
of the object of interest is larger than the average magni-
tude of gradient among pixels inside the object. In other
words, on average, the intensity difference between pairs
of pixels both of which lie inside the object is smaller than
the intensity difference between pairs of pixels of which one
is inside the object and the other is outside the object; (b)

-
4

Fig. 2. (a and b) Are examples of objects which are compact in shape with respect to the seeds shown with white checked box. (c and d) Are examples of

objects which are not compact in shape.

the minimum and maximum object sizes are known; (c)
the objects to be segmented are compact in shape or can
be divided either vertically or horizontally into approxi-
mately collinear compact parts. The first assumption is
often satisfied in practice, since an object of interest fre-
quently has a boundary corresponding to a strong intensity
edge. The minimum/maximum size of the object can fre-
quently be determined for a specific application. The last
assumption is the most restrictive, but can still be satisfied
by certain applications, for example by the application we
test our segmentation algorithm on.

3.3. Regional term

In this section, we discuss the regional term that we use
in Eq. (1). In the segmentation algorithm of Boykov and
Jolly [5], initially the user has to provide a few object and
background seeds. We only have one object seed provided
by the user, therefore we find the background seeds auto-
matically using the maximum object size information.
For the foreground seed pixel p, we set R,(0) = MaxInt
and R,(1) =0, where MaxInt is the maximum integer
allowed by the programming environment. This insures
that the foreground seed pixel will always be assigned to
the foreground in the optimal labeling. Similarly, if p is
the automatically detected background seed pixel, we set
R,(1) = MaxInt and R,(0) = 0.

Since the background is unknown in our application, we
use a uniform distribution as the background intensity
model, that is the probability of each intensity is 1/256,
given that there are 256 intensity levels in the images. For
the object, we do have one but only one pixel marked as
the object seed. We use the knowledge of the minimum
object size to collect more data around the seed point to

-
o~
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build the intensity histogram. Our assumption here is that
the user clicks roughly in the center of the object. The user
can be instructed to click close to the center, but we have
noticed that in many cases users will intuitively prefer to
click close to the center. In case the click was not close to
the center, the object histogram maybe inaccurate if the
object size is actually the minimum size. However, this case
is not very frequent, and as we will see below, we do not
overly rely on the object histogram, so the object can still
be segmented accurately in most cases.

Even after we collect more data around the object seed,
we do not have a sufficient amount of data to faithfully
model intensity distribution of the object. Therefore we
use a weighted mixture of a uniform distribution and the
smoothed normalized histogram. The actual costs R,(S,)
are taken as negative logarithms of these likelihood mod-
els. Therefore for pixel p,

R,(1)=—In <"/Phisr(1p) +(1=7) 2;6>’ @
and
R,(0) = —In(1/256), "

where we assume that there are 256 gray levels possible in
an image, and Py, (1,) is the likelihood of the object pixel
to have intensity /, according to the distribution modeled
by the smoothed histogram. We smooth the histogram
with a Gaussian with ¢ =2 to avoid the problems due
to sparse sampling. Notice that adding the uniform model
to the histogram-based model in Eq. (4) makes the regio-
nal terms more robust. We know that our histogram
based model is not very accurate. By adding to it a uni-
form model, we make sure that the penalty for an inten-
sity that is not present in the histogram is not so large as
to prohibit a pixel with this intensity to be a part of the
foreground.

3.4. Boundary term

In this section, we discuss the boundary term that we
use in Eq. (1). Like the framework of Boykov and Jolly
[5], the boundary term serves to insure that most nearby
pixels are assigned the same label (and thereby the object
and the foreground regions form coherent blobs) and also
that the boundary between the object and the background
lies on the intensity edges. In addition to the two purposes
above, we use the boundary term to make sure the object
segment follows the compact shape described in Section
3.1 and also to incorporate a bias to a larger object
segment.

Our boundary terms have the following form:

0 ifS, =8,
By(SpsSy) = Wg if(pSy,q—S,) ¢ A", (6)
K if(p—S,q—S,)ed

where 4™ was defined in Section 3.1, the constant K is large
enough so that any assignment in 4* is prohibitively expen-
sive,® and

7(/‘044)2

Wy =€ 22— bias. (7)

The parameter ¢ in Eq. (6) affects the segmentation by
controlling when intensity difference |7, —1,| is large
enough to be a good place for a segmentation boundary.
When |1, —1,|> o, the weight w,, is typically small
enough to allow a boundary. Thus, we compute ¢ as the
average difference of the intensities of two adjacent pixels
in a region around the user marked object seed. The size
of this region is same as the smallest possible object size
which is known to us beforehand.

Parameter bias in Eq. (7) implements a bias to a larger
segmentation boundary, and it is chosen automatically.
When the bias increases the boundary cost decreases,
though the gradient of the function remains the same.
We devise a simple intuitive test that automatically detects
the quality of the segment. The first part of our quality
check requires the average intensity difference between
pairs of neighboring pixels such that one pixel is in the
object segment and the other pixel is in the background
segment to be greater than the average absolute intensity
difference between pairs of neighboring pixels such that
both pixels in the pair are inside the object. This test comes
directly from our first assumption in Section 3.2, that is we
simply check to see if the segmentation satisfies our first
assumption. The second part of our quality check simply
makes sure that the object size is within bounds specified
by the minimum and maximum object sizes, and this part
follows from our second assumption in Section 3.2. For a
too small value of bias the object segment is very small
due to the bias of the graph cut to a small segmentation
boundary. In this case, most likely our first assumption will
not be satisfied, since the segment consists of a small area
around the seed which usually does not have strong inten-
sity edges on its boundary. For a too large value of bias, the
object segment is too large, larger than specified maximum
object size. We search over a range to find an appropriate
value of bias that results in a segmentation passing this
quality check.

Our search algorithm is a very simple iterative search.
We search for bias in the range [0, 0.8] using a step size
of 0.1. We are looking for the smallest value of bias in that
range such that the object passes the quality check
described above. That is we start with bias = 0 and incre-
ment it in steps of 0.1 until the object segment passes the
quality check. Occasionally, there is no bias value in the
allowed range so that the object passes the quality check.
In this rare case, we perform segmentation with the small-
est value of bias which results in an object segment at least

® It is enough to make K equal to the cost of E(S") where S’ is any
segmentation not containing prohibited assignments.
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passing part of our quality check, namely the object size
should be within the minimum-maximum allowed bounds.

Observe that when changing the value of bias we are
changing the values of the boundary terms. This leads to
altering the relative importance between the regional and
the boundary terms in the energy function (1). Recall that
the parameter o in Eq. (1) also weights the importance
between the regional and the boundary terms. We found
that it is enough to search over the bias parameter while
keeping o fixed. We chose a fixed value of o which works
well for all the images.

3.5. Regularity of the energy function

In this section, we prove that our energy function can be
minimized globally and exactly with a graph cut. We
rewrite the energy function in Eq. (1) with the boundary
and the regional term defined in the Eq. (3) and Eq. (2),
respectively:

E(S) = ZRP(SP) + Z Bpg(Sp;S,);
p {p.a}eN
pP<q
where E(S) is a function of | P | binary variables, which is a
sum of functions of up to 2 binary variables. This energy
function can be minimized using a graph cut if it is sub-
modular, that is if the following property is satisfied [19]:

B,;,(0,0) + B,,(1,1) < B, (1,0) + B,,(0,1). (8)

According to the definition of B, (S,,S,), the left hand-
side of Eq. (8) is always 0, and the right hand-side is always
non-negative, even when w,, is negative, since K is chosen
to be very large. Thus E(S) is submodular.

3.6. More general shapes

We started with the assumption that the object to be seg-
mented has to be of compact shape. However, we can
somewhat relax this assumption, making it possible to seg-
ment objects of shapes more general than compact. Sup-

pose the object can be divided either vertically or
horizontally into several approximately collinear adjacent
pieces, where each piece is of compact shape. If we apply
our algorithm above to such an object, we obtain an initial
segment of compact shape around the user entered seed,
but either vertical or horizontal boundaries of this initial
segment do not align with the object boundaries and there-
fore do not lie on strong intensity edges. We check if all the
edges of the current segment satisfy the criteria for being a
“strong edge”. In our application, we require 85% of the
pixels lying on that edge to have intensity difference greater
than the standard deviation inside the object. For this test,
we use the pixels of the boundary which lie inside the object
(as opposed to those lying on the outside of the object
boundary). Other criteria can be also used, of course. If
an edge does not pass the “strong edge” test, a new seed
point is chosen which lies inside the current segment, at
the center of the weak edge but slightly inside the current
segment (to be precise, two pixels inside). The last part
emphasizes our assumption that the object can be divided
into approximately collinear compact pieces. Then the
graph-cut is run again in the same way as already described
in this section, except we reuse the value for the bias param-
eter estimated at the previous step, we found that there is
no need to re-estimate it. Experiments show that the value
of bias parameter, if re-estimated for each extension piece,
is so close to the value of bias inside the first piece, that
almost no difference in segmentation results is observed.
Thus by repeatedly finding the new seed and running the
graph-cut algorithm, it is possible to segment the whole
object accurately. Fig. 3 illustrates the above process. The
white circles show the original seed selected by the user,
and the white squares show the automatically selected
extension seeds.

This approach is especially helpful for our semiauto-
matic segmentation, since information about the exact size
of the object is not provided. We can segment the objects in
smaller pieces, saving the computational time. In addition,
we can segment thin and long objects which would be

Fig. 3. On the left we show the original image and on the right we illustrates the extension to more general shapes. The white circles mark is the seed
selected by the user, and the white squares show the automatically selected seeds for extension.
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otherwise impossible using the basic graph cut segmenta-
tion algorithm of Boykov and Jolly [5] due to its bias
towards shorter boundary.

The basic step of our algorithm is to segment a piece of
the object which is compact with relation to the user pro-
vided or automatically detected seed. The exact seed place-
ment determines the size of the first piece. If the seed is
placed close to the object boundary, then the compact piece
segmented may be of smaller size compared to the compact
segment produced if the seed was placed closer to the
center.

3.7. Our algorithm

We now summarize our algorithm as follows. We
assume that the objects are compact in shape or can be
divided either vertically or horizontally in compact,
roughly collinear parts. We build a graph of size greater
than the maximum possible size of the object around the
seed. Once the initial segment is obtained, it is likely to con-
tain only a portion of the object that agrees with the com-
pact shape. Then the boundary of the segment is checked
to find weak edges, if any. The initial segment is extended
in smaller pieces along the direction of the weak edges
detected as described above. Thus by iteratively running
the graph-cut we can segment the whole object regardless
of its length.

Notice that our piecewise segmentation approach may
seem similar to the region growing methods. However this
similarity is superficial. In region growing, neighboring
regions are repeatedly merged, based on some criterion of
region similarity. In our approach, the best new region to
add to the current segmentation is found by optimization,
namely we choose the best region to add out of combinato-
rially many possible regions.

4. Results
We explored the challenging industrial problem of tran-

sistor gate segmentation in the images of integrated chips.
It is an important preliminary step for performing intellec-

tual property protection and competitive intelligence anal-
ysis in integrated circuitry domain. To obtain the images,
the integrated circuit is de-layered and SEM micro-photo-
graphed. The images of the upper layers of the chip, that
contain the metal wiring, are typically of high quality and
can be segmented by automated means. The lower levels
contain the dopant, the silicon implementation of the tran-
sistors. The images of these layers are typically of low qual-
ity and could have substantial variation in brightness and
contrast. They occasionally contain artifacts due to the
remains of the upper layer left during delayering. Two of
the most important parameters in integrated chip circuitry
are the length and the width of the transistor gates. They
determine the circuitry power characteristics and are cru-
cial for proper modeling and understanding of its function-
ality, which is essential for determining if the functionality
is replicating a patented design. In order to obtain these
measurements, accurate segmentation of the transistor
gates is essential. Prior to the development of the applica-
tion described in this paper, the measurements were taken
manually by a human operator. It was done by selecting
the gate in the image using a computer application, which
also involved time consuming operations like zooming and
panning across the image. The attempts to use off the shelf
segmentation algorithms, such as magic wand or local
thresholding, were unsuccessful.

Fig. 4 shows some of the images of integrated chips pro-
vided by Semiconductor Insight Inc., which are representa-
tive of the images used regularly. The images are in gray
scale with 256 intensity values, where 0 represents black
and 255 represents white. The transistor gates appear
roughly rectangular in shape, and therefore can be well
approximated with a compact shape. Notice the large var-
iation in the noise level across the images. Hence accurate
estimation of the parameter ¢ in the boundary term of the
energy function is a crucial part in our work in order to
accommodate the variation. From Fig. 4, it is also evident
that the other challenges are the large variation in contrast
and intensity range of the transistor gates. Another chal-
lenge is the wide variability in the transistor gate sizes,
which range in length from 10 to a few thousands of pixels.

Fig. 4. Sample of the images provided by Semiconductor Insight Inc., showing the variation in image contrast, noise characteristics and the size of the
object. Different scales are used for displaying. In each of these images, the transistor gate has horizontal orientation and is at the center of the image.

Fig. 6 clearly delineates the gates for each of these images in gray.
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For all the experiments in this section, the parameters
were set to the following values: o = 0.007, y = 0.4. The
minimum size for the object was set to be 3 by 3 pixels,
and the largest size for the object was set to be 130 by
130. Parameter bias is chosen automatically, as discussed
in Section 3.4. As discussed in Section 3.4, the parameter
o is computed as the average of the intensity difference
between two adjacent pixels using the data collected
around the seed and the knowledge of the minimum possi-
ble size of the object.

We first compare our results with the results of the algo-
rithm in Boykov and Jolly [5]. Fig. 5(a) shows the result of

a

algorithm Boykov and Jolly [5] using only the boundary
term. Only a small part of the transistor gate is segmented,
due to the bias to small segments if the regional term is
small or completely absent. On including the intensity
model for describing the regional property of the segment,
the algorithm Boykov and Jolly [5] produces multiple seg-
ments with very complex boundaries, most of them being
false alarms, shown in Fig. 5(b). This happens because of
considerable overlap of the background and object inten-
sity distributions. After we estimate an appropriate value
for bias, that is a value which results in an initial segment
passing our “quality check”, we get the part of the transis-

d

S user seed

Fig. 5. In(a and b), we show segmentation results obtained using the algorithm of Boykov and Jolly [5]: (a) with the boundary term only; (b) with intensity
model as regional term along with the boundary term. In (c and d), we show segmentation results obtained with our algorithm: (c) initial segment obtained
with an automatically determined value of bias > 0; (d) final segmentation obtained by extending the initial segment obtained in (d). The seeds are marked
with white squares, and the initial user entered seed is labeled. The large dotted square shows the maximum allowed segment size. The gray color shows the
segmented object. Please note that in (b), the gray color which indicates the object is perceived to be much darker than the gray color in (a, ¢, and d).

*TeeBES

Fig. 6. Shows the segmentation results obtained using our algorithm on the images in Fig. 4. The segmented transistor gate is shown in gray.
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tor gate shown in Fig. 5(c). The results in Fig. 5(c) corre-
spond to an acceptable initial segment, which is then
extended iteratively to the whole object as shown in
Fig. 5(d). Every time a segment is extended, a new seed
point, marked with a white square in Fig. 5(d), is located.

Fig. 6 shows the segmentation results obtained using our
algorithm on the images in Fig. 4. The user provided seed
pixel is marked with a white circle and the automatically
detected extension seeds are marked with white squares.
Despite large variation in size, intensity distribution, noise
type, shape and contrast, each transistor gate is accurately
segmented.

To evaluate the performance of our system, we consid-
ered 10 images, each containing dozens of transistor gates
and segmented 100 transistor gates chosen at random. In
91 cases the transistor gates are segmented accurately, giv-
ing the overall accuracy of 91%. In 6 cases the initial seg-
ments were segmented accurately but the extension failed.
In 3 cases the segmentation boundaries aligned with the
wrong but stronger intensity edges. Figs. 7 and 8 show
some failure cases.

Fig. 9 shows more results which illustrate the challenges
our system can deal with. In the first two rows, the transis-
tor gate is very narrow, and in addition, in the first row its
shape is far from compact. In the third row, the transistor
gate includes large white circular spots and the seed is
placed far from the center. In the last row, the transistor
gate has a noticeable artifact (on the left) which is inconsis-
tent with the overall intensity histogram and creates strong
intensity edges inside the gate. In all these cases, our seg-
mentation system gave an accurate segmentation.

Fig. 10 shows the results of segmentation of a long thin
transistor gate which has nearly horizontal orientation but
is rotated several degrees, and therefore is not compact.
Our system has no problem extracting it in several compact
pieces. In (b) and (c), we show the results under very differ-
ent seed placements. Results are essentially identical, which
shows the insensitivity of our system to the exact seed
placement.

The application is implemented using C++ on a P4
2.8 GHz computer. The time varies with the size of the
object. For small gates, it only takes a fraction of a second.
Larger gates, such as of size 120 x 3000 pixels, are

Fig. 8. (a) Original image of the transistor along with the user marked
object seed. (b)The true boundary of the transistor is too weak, so the
segmentation boundary sticks to the stronger but wrong boundary.

segmented in less than 2s. It is currently being used by
Semiconductor Insight Inc., to upgrade their existing man-
ual segmentation system to a semiautomatic one.

We also applied our algorithm to segment objects in
other types of images. Note that we chose to segment
objects which are well approximated with several nearly
collinear pieces of compact shape. The results are in shown
in Fig. 11. The tool in the Fig. 11(a) is very far from a com-
pact shape, but we were able to extract it by extending it in
compact pieces. The roof in Fig. 11(b) is also not compact
and was extracted in several pieces from a complex
background.

We also applied our algorithm to segment the eye sock-
ets in a 2D slice of MR brain image, which is required as a
first step in the process of cortex segmentation. The eye
sockets are elliptical in shape and follow the convex shape
assumption. Fig. 12(a) shows the eye socket segmented
with our semiautomatic algorithm. Fig. 12(b) shows the
result obtained with the basic graph cut algorithm, which
requires more interaction, yet unable to segment the whole
sockets.

Fig. 7. (a) Original image of the transistor. (b) The transistor gate is segmented and is 4 pixels wide. The extension fails when the segmentation boundary

stops at the wrong edge in the image.
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Fig. 9. The left column shows the original images, the right column shows the segmentation results. We used black color in the first three rows and white
color in the last row to outline the segment boundary. White dot outlined in black is used to show the seed provided by the user.

Fig. 10. (a) Shows the original image; (b and c¢) show the result of segmentation with different seed placement. The results of segmentation are outlined in

black.

5. Discussion

In this paper, we presented a semiautomatic segmenta-
tion algorithm developed by modifying the basic graph
cut segmentation algorithm of Boykov and Jolly [5]. We
showed how problem specific assumptions and constraints
can be well utilized to reduce the user interaction and also
the complexity of the problem. The main contribution of
our work is the introduction of the compact shape prior

into the graph cut segmentation, which adds robustness
to the algorithm. An additional benefit of using the com-
pact shape prior is that we are able to introduce a param-
eter bias into the framework. This parameter biases the
graph cut algorithm to segment objects with longer
boundaries. We also showed how an application specific
“quality check” for segmentation can be used to automat-
ically select the appropriate parameters in graph cut
segmentation.
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Fig. 11. (a) The tool has been segmented well in spite of the variation of width and shading within the object. (b) The roof part of the building has been
segmented as several pieces of compact shape.

Fig. 12. (a) Segmentation of the eye socket using our algorithm. The seeds are marked as the white pixels inside the eye socket. Note that one eye socket is
segmented at a time. (b) Segmentation of eye socket using basic graph cut algorithm. The object seeds are shown as white boxes, each 5 x 5 pixels, the
background pixels are shown as gray boxes outlined with white, each 7 x 7 pixels big.
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