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Abstract. Expansion algorithm is a popular optimization method for
labeling problems. For many common energies, each expansion step can
be optimally solved with a min-cut/max flow algorithm. While the ob-
served performance of max-flow for the expansion algorithm is fast, its
theoretical time complexity is worse than linear in the number of pixels.
Recently, Dynamic Programming (DP) was shown to be useful for 2D
labeling problems via a “tiered labeling” algorithm, although the struc-
ture of allowed (tiered) is quite restrictive. We show another use of DP
in a 2D labeling case. Namely, we use DP for an approximate expansion
step. Our expansion-like moves are more limited in the structure than the
max-flow expansion moves. In fact, our moves are more restrictive than
the tiered labeling structure, but their complexity is linear in the number
of pixels, making them extremely efficient in practice. We illustrate the
performance of our DP-expansion on the Potts energy, but our algorithm
can be used for any pairwise energies. We achieve better efficiency with
almost the same energy compared to the max-flow expansion moves.

1 Introduction

Expansion algorithm [1] has been used for a variety of pixel labeling problems
arising in vision and graphics [2–6]. In a pixel labeling problem the goal is to
assign a label to each image pixel. In general, pixel labeling problems are NP-
hard [7], but can be solved efficiently in some special cases [8–12].

Expansion algorithm is an approximate optimization method with certain
optimality guarantees [1]. It works by iteratively visiting labels α and perform-
ing an α-expansion move on that label. An expansion move finds an optimal
subset of pixels to switch to label α. Each expansion step is performed with a
min-cut/max-flow algorithm [13]. There is a max-flow algorithm [14] that was
specifically designed for vision problems and it performs very efficiently in prac-
tice for many instances. Nevertheless the best known worst-case time complexity
of max-flow is worse than linear in the number of image pixels.

Recently, a “tiered labeling” [12] algorithm, based on Dynamic Programming
(DP) was proposed for labeling of 2D scenes. This algorithm finds the exact
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global minimum, but only for scenes with a “tiered” label layout. In particular,
the scene is assumed to be divided by two simple horizontal curves into three
main tiers, top, middle, and bottom. The top and bottom tiers receive a fixed
label, “T” and “B”, respectively. The middle tier can be further subdivided into
tiers by vertical straight lines, and each sub-tier has a choice of one out of k
labels. This tiered scene layout is rather limited, but an optimal labeling can
be found in O(kn1.5) time for a square image of n pixels and the Potts energy
model. Most importantly, [12] shows that dynamic programming can be useful
for labeling 2D scenes, whereas traditionally, in computer vision, DP was applied
mostly to one-dimensional or low treewidth structures [15].

Inspired by tiered labeling, we propose an approximate expansion algorithm
based on fast DP. Just as in tiered labeling, the main idea of our DP-expansion
moves is to allow only certain structure layout inside the image to switch to
label α. This is in contrast to the classical α-expansion, that allows an arbitrary
subset of pixels to switch to α. By limiting the structure of the subsets that
can switch to α, we are modifying the problem to make it suitable for dynamic
programming. In fact, our moves are even more restrictive than the “tiered
labeling” structure, but their complexity is linear in the number of pixels, making
them extremely efficient in practice. Our moves are based on the observation that
instead of expanding on the optimal subset of pixels in a single step, it maybe
sufficient, in practice, although clearly suboptimal, to find an expansion region
where only the left (or right, or top, or bottom boundaries) are accurate. This
allows linear efficiency in the number of pixels. To recover accurate boundaries
in all directions, we apply our moves iteratively.

Like tiered labeling, due to DP, we are limited to pairwise energies with a 4
or 8 connected neighborhood structure. This is a clear limitation, but longer-
range interactions are seldomly used. In addition to speed, a clear advantage of
our DP-expansion moves over the max-flow expansion moves is that, like tiered
labeling, we can handle arbitrary pairwise terms, again, due to DP. In fact, due
to the simplicity of our moves, we can handle arbitrary terms with the same
complexity as Potts pairwise terms, i.e. O(n), where n is the number of pixels.

We illustrate the performance of our DP-expansion on the Potts energy, but
our algorithm can be used for any pairwise energies. We achieve better efficiency
with almost the same energy compared to the max-flow expansion moves.

This paper is organized as follows. We review the most related work in Sec-
tion 2. We motivate and explain our DP-expansion moves in Section 3. We
describe our efficient optimization algorithm in Section 4, present experimental
results in Section 5, and conclude with a short discussion in Section 6.

2 Related Work

There has been a lot of interest in vision community to develop efficient opti-
mization methods for pixel labeling problems, see a survey in [16]. The popular
methods evaluated in [16] include the expansion and swap algorithms [7], loopy
belief propagation (LBP) [17], and sequential tree re-weighted message passing
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(TRW-S) [18]. One of the conclusions of [16] is that the expansion algorithm
performs best in terms of speed and accuracy for Potts energies.

Since our optimization is based on making approximate expansion moves, our
work is related to the general direction of move-making algorithms. In addition to
the expansion and swap algorithms [7], a number of new move making algorithms
have been developed recently. In [19], they develop a fusion move that instead of
expanding on a fixed label α, can expand on a different but single fixed label for
each pixel in a move, thereby “fusing” the current solution and a new proposal
solution together. In [20, 21], range moves that are designed specifically for
energies tuned to truncated convex pairwise terms are developed. These moves,
unlike the previous ones, are multi-label, they allow each pixel a choice of more
than one label to switch to. In [22] they develop multi-label moves for more
general energy functions. The approach in [23] also uses multi-label moves for
fast approximate optimization of a tractable (submodular) multi-label energies
that can, in fact, be exactly optimized by such methods as [10], but the time
and space complexities of the exact method are heavy.

Another line of related methods are those optimization techniques that limit
the structure of the allowed labellings. Tiered labeling [12], which inspired our
work, uses a limited scene layout and relies on DP for optimization. Another
very related approach is [24], where they use move-making algorithm based on
tiered labeling for approximate optimization of more general energies. Their time
complexity is rather large, since using tiered labeling for a single move has cost
higher than linear in the number of pixels. We construct a simpler move than
that in [24], but our efficiency is much better. Another related method is [25].
In [25] they propose a min-cut based approach for a five-label energy function
with certain label structure layout. This layout is motivated by the application of
indoor geometric scene labeling. The approach in [25] is approximate, unlike [12],
even though for a four-connected neighborhood system tiered labeling layout is
more general than that in [25]. Recently, [26] showed how to optimize the energy
in [25] globally an optimally with DP. Another DP-based optimization method
on 2D domains is [27], although their objective function is suitable only for
object/background segmentation, not a more general scene labeling problem.

Finally, since our goal is to speed-up the expansion algorithm, there are re-
lated methods in this direction as well, which significantly improve efficiency of
expansion. In [28], they attain speed-ups by considering the dual formulation.
In [29], they exploit several techniques, such as recycling information from pre-
vious instances, clever intialization, etc. In [30], they find the order of iterations
over labels likely to lead to the fastest energy decrease. Our approach explores
a previously unexplored direction, namely we limit the allowed move structure.

3 DP-Expansion Moves

In this section, we explain and motivate our DP-expansion moves.
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3.1 Energy Function

In a pixel labeling problem we are given a set of pixels P and a set of labels L.
We need to assign a label from the label set to each image pixel p ∈ P . Let lp be
the label assigned to pixel p and l be the collection of all label assignments for
all pixels in P . The goal is to find a labeling minimizing the following energy:

E(l) =
∑

p∈P

Dp(lp) +
∑

(p,q)∈N
Vpq(lp, lq), (1)

where Dp(lp) and Vpq(lp, lq) are unary and pairwise energy terms, and N is a
neighborhood system on P . We assume N is 4-connected with ordered pairs
(p, q) such that p is directly to the left or above q. Our algorithm can be easily
extended to the 8-connected neighborhood that includes diagonal edges with
almost no increase in computational time. This is unlike max-flow expansion,
where including diagonal links noticeably increases computational time.

The unary term Dp(α) is the cost for assigning label α to pixel p. It usu-
ally depends on the value of pixel p in the observed image. The pairwise term
Vpq(α, β) specifies the cost for assigning labels α and β to pixels p and q. This
term is usually used to enforce some smoothness constraints on a low-cost label-
ing. Unlike most work on optimizing Eq. (1), we impose no constraints on unary
and pairwise terms. In particular, Vpq(α, β) does not have to be submodular [31].

3.2 Review of Tiered Labeling

We first review the tiered labeling algorithm [12] that inspired our approach.
Let T and B be the special labels allowed only for the top and bottom tiers and
M be the set of labels allowed for the middle tier. Therefore M = L\{T,B}.
Let p = (i, j) be the pixel in row i column j and li,j be its label. A labeling is
tiered if in each image column, there exists integers t and b s.t. all pixels strictly
above t are labeled as T , all pixels below b are labeled as B, and all other pixels
take one of the labels from the label set M. That is for each column j, ∃t ≤ b
s.t. ∀i < t, li,j = T , ∀i ≥ b, li,j = B, and ∀t ≤ i < b, li,j ∈ L. Notice that if
t = b, then there is no middle tier label in column j, only labels T and B. This
property is important for our DP-expansion moves. A simplified tiered structure,
where the middle tier has only one (green) label, is illustrated in Figure 1.

Fig. 1. Simplified version of tiered labeling: the middle tier is only allowed one label
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Similar to [24], we can use tiered labeling to find an approximate α-expansion
move in the following manner. Let l′ be the current labeling. The bottom and
the top tiers will correspond to the pixels that do not switch their label in the α-
expansion move. That is for each image pixel p, labels B and T correspond to the
old label of pixel p, namely l′p. We allow only the label α for the middle tier, that
is M = {α}. The optimal tiered labeling under such construction corresponds to
the optimal set of pixels with restricted structure to switch to α. Namely, we can
find the best contiguous set of pixels in each column to switch. Some columns
can choose not to switch any pixels to α. If no column makes a switch, the
optimal α-expansion is empty and all pixels retain old labels. This is important
for ensuring that the energy never goes up in a move-making algorithm.

This approach is clearly inferior to the max-flow expansion that can find an
unrestricted subset of pixels to switch to α. However, the combined result of
repeated applications of this move can find rather complex regions to switch
to α, see [24]1. The move described modifies the top and bottom boundaries of
the region to switch to α. We can improve the accuracy further by repeating
this move in the orthogonal direction, by turning the image by π/2, finding the
optimal contiguous subset of pixels in each row to switch to α.

The approach outlined above (basically following [24]) is expensive. Tiered
labeling complexity is O(n2m), where n is the number of rows and m is the
number of columns in the image. Tiered labeling works by collapsing each image
column to a single state. Each column has two possible break points t and b, so
the number of possible states is O(n2). The algorithm in [12] develops a clever
speed-up strategy that allows to reduce the DP complexity from O(n4m) to just
O(n2m). Still, the complexity is worse than linear.

3.3 DP-Expansion

To speed up, we need to reduce the number of states in each column further.
Observe that in the approach outlined in Section 3.2 a single move is capable
of “carving” out a relatively complex upper and lower boundaries of a region
to switch to α, leaving left and right boundaries relatively simpler. Being able
to carve out complex boundaries is clearly important for faithfully recovering
object boundaries. However, it may be sufficient to work on one boundary at
a time. Our main idea is to develop an even simpler move. Our move allows a
complex boundary in only one direction. The trade-off is that the state space is
reduced and we can achieve a linear time complexity DP.

This motivates the following DP-based moves. We have four different move
types, top-anchored, left-anchored, bottom-anchored, and right-anchored. For
the top-anchored move, if any pixels in column j decide to switch their labels
to α, they must form a contiguous set. Furthermore this set must contain the
topmost, row 0, pixel. That is, for each column j, only pixel subsets of form
{(i, j)|0 ≤ i < b} for some b ≤ n are allowed to switch to label α. Here n is the

1 Actually, [24] introduced more powerful moves than we just described, but we believe
these moves will also work almost as well as those in [24].
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number of rows in the image. This move is illustrated in Figure 2(a). It allows
recovering of a region with a complex boundary on the bottom.

The other moves, illustrated in Figure 2(b,c,d) are similar. They require any
switching to α start on the left, bottom, right of the image, respectively, and
they are capable of recovering a region with complex boundaries on the right,
top, and left, respectively.

(a) top-anchored (b) left-anchored (c) bottom-anchored (d) right-anchored

Fig. 2. Four DP-expansion moves. The old label is white and the new label α is green.
Top-anchored move in (a): if any pixels in a column switch to label α, they must form
a contiguous region and the top pixel must switch to α. Left-, bottom-, and right-
anchored moves require switching to α start at the left, bottom, right of the image.

We show how to implement these moves in time linear in the number of pixels
in Section 4. While very fast, these moves would not be powerful if they were
applied only to the whole image, since any switch to a new label must start at
the image top (or bottom, left, right). We found it effective to apply these moves
to image blocks of different sizes in random order.

When applying a DP-expansion move to an image block, only the unary and
pairwise terms that depend on pixels entirely within the block are involved.
However, the pairwise terms Vpq that involve one pixel in the block and one
pixel outside the block are also effected by the changes within the block, and
must be addressed to ensure the energy strictly decreases. Like previous work [1],
the fix is simple. Let l′ be the old labeling. Let Vpq have p inside the block and
q outside the block. We add Vpq(l

′
p, l

′
q) to Dp(l

′
p) and Vpq(α, l

′
q) to Dp(α).

4 Fast Optimization

We now explain how to do fast optimization for the DP-expansion moves defined
in Sec. 3.3. Even though most of our moves are performed on image blocks, it is
easier to explain how optimization works assuming it is done on the whole image,
avoiding the extra sub-indexing notation. The fix that needs to be done when
performing the moves on image blocks was explained at the end of Section 3.3.

Our fast DP derivation closely follows the tiered labeling speed-ups in [12].
However, our speed-up of DP is simpler since we have a less complex state space.
We explain optimization for the case of top-anchored moves. The other cases are
handled by appropriately rotating the image.

For most derivations in this paper, for pixel p = (i, j) it is convenient to
denote Dp as Dij , and lp as li,j. Also, if p = (i, j) and q = (i + 1, j), that is a
vertical term, then we denote Vpq as V v

i,j . If p = (i, j), and q = (i, j+1), that is a
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Fig. 3. Site j in state d. Pixels above row d (in green) are labeled as α in column j.
Pixels below and including row d (in white) in column j retain the old label.

horizontal term, we denote Vpq as V h
i,j . Let image have n rows, indexed from 0 to

n− 1, and m columns, indexed from 0 to m− 1, see Fig. 3. Let the old labeling
be l′ and we want to find the best top-anchored α expansion move. That is, in
each column, we want to find the best contiguous subset of pixels to switch to
α, provided that any switch in column j, must begin at row 0, i.e. at pixel (0, j).

4.1 Reduction to Dynamic Programming

We represent each image column j with a single site j, visually “collapsing” it
vertically. Thus there are m sites indexed by 0, 1...,m− 1. The state of site j is
denoted by sj . The number of possible states sj corresponds to the number of
possible labellings in column j. A possible state for column j can be represented
with one integer 0 ≤ d ≤ n, which is decoded as follows. If sj = d, then all pixels
above row d are labeled as α and all pixels at row d and below retain their old
label. See Figure 3 for illustration. If d = 0 than no pixels in column j get label
α. The total number of states for column j is n+ 1. Let s be the assignment of
states for all sites.

Let l be a labeling satisfying the top-anchored move constraints and s be the
corresponding assignment of states of the one-dimensional problem. The energy
function in Equation (1) can be written as:

E(s) =

m−1∑

j=0

Uj(sj) +

m−2∑

j=0

Bj(sj , sj+1), (2)

where Uj(sj) adds up all the unary terms and pairwise terms of the energy in
Equation (1) that are contained entirely in column j, and Bj(sj , sj+1) adds up
all the pairwise terms of the energy in Equation (1) that rely on exactly one pixel
from column j and one pixel from column j + 1. Let us define a labeling lj,d as
follows. Pixels in columns other than j can have any labels. Pixels in column j
and rows 0 to d − 1 have label α. Pixels in column j and rows d to n− 1 have
the same label as they have in the old labeling l′. Then
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Uj(sj) =

n−1∑

i=0

Dij(l
j,sj
i,j ) +

n−2∑

i=0

V v
i,j(l

j,sj
i,j , l

j,sj
i+1,j), (3)

and

Bj(sj , sj+1) =

n−1∑

i=0

V h
i,j(l

j,sj
i,j , l

j+1,sj+1

i,j+1 ). (4)

As in [12], any Uj and Bj can be computed in O(1) time with precomputed
cumulative sums of data terms, horizontal and vertical terms separately in each
column. This is like the well known integral image technique [32], only applied
to columns and therefore slightly simpler.

The standard DP for optimizing the energy in Equation (2) proceeds as fol-
lows. We build look-up tables, Ej , for 0 ≤ j < m. Ej(t) is the cost of the best
assignment to the first j+1 states, namely states (0, 1, ..., j) where the last state
is fixed to have value t, i.e. sj+1 = t. Ej are computed in order of increasing j
using the following recurrence, and for all t ∈ {0, 1, ..., n}:

E0(t) = U0(t), (5)

Ej(t) = Uj(t) + min
t′

[Ej−1(t
′) +Bj−1(t

′, t)] . (6)

We also compute the optimum previous state in a look-up table Pj(t). It is used
to trace back the optimal sequence of states, starting from the last state and
going backwards. That is the optimal state for the last site is computed with
s∗m−1 = argmaxt Em−1(t). After that, the previous optimal state is computed
with s∗j−1 = Pj(s

∗
j ), where s∗j is the optimal state for site j.

For a fixed j, we have to compute Ej(t) for n+1 possible values of t . For each
fixed j and t, we need to search over all previous states t′, and there are n+1 of
them. Therefore, computing Ej(t) is O(n) for a fixed j and t. Computing Ej(t)
is O(n2) for all n+1 values of t, and, finally, computing Ej(t) for all m values of
j is O(n2m), which is too expensive. We explain how to speed it up to O(nm),
i.e. linear in the number of pixels in Section 4.2.

4.2 Fast Dynamic Programming

We now explain how, for a fixed j and t, compute Ej(t) in O(1) time instead
of the straightforward O(n) time. This will result in the total time complexity
O(nm), i.e. linear in the number of pixels.

The expensive part of Ej(t) computation is the search over the previous states
t′. Let us give this part its own name Fj(t):

Fj(t) = min
t′

[Ej−1(t
′) +Bj−1(t

′, t)] . (7)

We can break optimization of Fj(t) in two cases, for t′ ≤ t and t′ > t:

Fj(t) = min {Tj(t), Lj(t)} , (8)
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where
Tj(t) = min

t′≤t
[Ej−1(t

′) +Bj−1(t
′, t)] (9)

and
Lj(t) = min

t′>t
[Ej−1(t

′) +Bj−1(t
′, t)] (10)

(a) (b)

Fig. 4. Case 1: Minimization over t′ ≤ t. (a) The state of column j is fixed to t, which
means that all pixels above row t in column j take new label α. All possible choices for
t′ in column j − 1 are illustrated. We have to find the smallest cost choice. Below the
red line, all four choices have exactly the same labels, therefore the costs are different
only for the energy terms that include pixels above the red line. (b) is the same as in
(a) but now column j is in state n. Still the costs of four possible states differs only in
the energy terms above the red line, since labels below the red line are the same.

We are going to minimize these two cases separately, and each one in O(1)
time. Consider first computation of Tj(t), i.e. minimization is over t′ ≤ t. In this
case, we are assigning α to pixels (0, j), (1, j), ...(t−1, j) and the rest of pixels in
column j retain their old label. We have to find the best possible state t′ ≤ t in
the previous column j− 1. That is the previous column we can have α in rows 0
through t′ − 1, where t′ can range from 0 to t. This is illustrated in Figure 4(a).

When considering which t′ ∈ 0, ..., t is the optimal state to go through in
column j − 1, observe that no matter which particular value we choose for t′,
both in column j − 1 and column j, in rows including and below t (below the
red line in Figure 4(a)), all the pixels have the same labels (the old labels they
had in l′). Therefore all pairwise terms V and unary terms D of the original 2D
labeling that depend only on pixels in rows below and including t are the same
for all choices of t′ ∈ 0, ..., t. This means that we can find the optimal t′ only
considering the unary and pairwise terms that involve pixels above row t.

Furthermore, consider Figure 4(b). It illustrates the case when we are com-
puting Tj(n), that is the jth column has all pixels labeled as α. Notice that out
of t′ ≤ t, the best t′ is the same for both (a) and (b). This is because again,
the best t′ is independent of the labels of pixels in rows below the red line.
And above the red line, all cases for (a) and (b) are identical. Thus t′ mini-
mizing (a) and (b) is the same, but the values at the minimum t′ are different.
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The difference between minimum values depends only on t, let us denote it by
k(t). To compute k(t), we just have to add up all the energy terms in (a) that
depend on pixels below the red line and subtract all the energy terms in (b) that
depend on pixels below the red line. Therefore we get:

Tj(t) = min
t′≤t

[Ej−1(t
′) +Bj−1(t

′, t)] = k(t) + min
t′≤t

[Ej−1(t
′) +Bj−1(t

′, n)] , (11)

where

k(t) =

n−1∑

i=t

[
V h
i,j−1(l

′
i,j−1, l

′
i,j)− V h

i,j−1(l
′
i,j−1, α)

]
.

We can compute k(t) in O(1) time using cumulative sums on the columns that
store pairwise costs V h, in the same way as Bj terms in Equation (4).

Let us now turn to the efficient computation of the second term in Equa-
tion (11). First define a table C of size n, indexed starting at 0, as:

C(i) = Ej−1(i) +Bj−1(i, n)

We compute running minimum of C as another array C′, also of size n:

C′(i) = min
i′≤i

C(i). (12)

We can compute C′ in O(n) time. Initialize C′(0) = C(0). Then update, in order
of increasing i, C′(i) = min {C(i), C′(i− 1)}. After the table C′ is computed,
the minimum in Equation (11) can be simply looked up as C′(t). Since we reuse
C′ for all t in column j, computing Tj(t) in Equation (11) takes O(n) time for
all t ∈ {0, 1, ..., n− 1}.

(a) (b)

Fig. 5. Case 2: Minimization over t′ > t. (a) When column j is fixed to state t, all
possible choices for t′ in column j−1 are illustrated. Above the red line, all four choices
have exactly the same labels, therefore the costs are different only for the energy terms
that include pixels below the red line. (b) is the same as in (a) but now column j is in
state 0. Still the costs of four possible states differs only in the energy terms below the
red line, since labels above the red line are the same.
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The computation of Lj(t), i.e. minimization is over t′ > t is handled very
similarly. The illustration is in Figure 5. Observe that in rows smaller than t,
all pixel labels are the same (and equal to α) for all different choices of t′, see
Figure 5(a). This means that we can find the optimal t′ without considering any
energy terms that depend entirely on pixels in rows smaller than or equal to t.

(a) E = 221,884, 5.2 sec. (b) E=223,314, 10.2 sec.

(c) E = 196,088, 5.5 sec. (d)E=195,869, 11.9 sec.

(e) E=350,958, 1.1 sec. (f) E = 346,085, 2.2 sec.

Fig. 6. Results on Middlebury stereo pairs. The left column shows our results, the right
one max-flow expansion results. We report the energy and the running time in seconds
for each case.

Furthermore, consider Figure 5(b). It illustrates the case when we are com-
puting Tj(0), that is the jth column retains old labels for all pixels. Notice that
the minimum state t′ is the same between (a) and (b), when only t′ > t are
considered. The difference in minimum values between (a) and (b) differ by k′(t)
that depends only on t, not t′. Therefore we get:

Li(t) = min
t′>t

[Ei−1(t
′) +Bi−1(t

′, t)] = k′(t) + min
t′≤t

[Ei−1(t
′) +Bi−1(t

′, 0)] , (13)
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where

k′(t) =
t−1∑

i=0

[
V h
i,j−1(α, α)− V h

i,j−1(α, l
′
i,j)

]
.

We compute k′(t) in O(1) time using cumulative sums, similar to that of k(t).
Let us define a table H of size n as:

H(i) = Ej−1(i) +Bj−1(i, 0).

We need to compute running minimum for array H , but now in the other direc-
tion than what we used for array C. Define running minimum H ′ as:

H ′(i) = min
i′≥i

H(i′). (14)

We can computeH ′ in O(n) time. InitializeH ′(n−1) = H(n−1). Then compute,
in order of decreasing i, H ′(i) = min {H(i), H ′(i + 1)}. After the table H ′ is
computed, the minimum in Equation (13) can be simply looked up as H ′(t).
Since we reuse H ′ for all t in column j, computing Lj(t) in Equation (11) takes
O(n) time for all t ∈ {0, 1, ..., n− 1}.

The parent table P that is used to recover the optimal state in DP is computed
very similar to the tables E, therefore we omit the description.

5 Experimental Results

In this section, we evaluate the performance of our DP-expansion algorithm
and compare it to the max-flow expansion. We do not compare our method
to previous work that improves efficiency of expansion, such as [28–30], since
our goal is to introduce a previously unexplored direction for speed-ups, rather
than compete with previous work. In addition, since our approach is orthogonal
to [28–30], we can reuse some of their ideas.

Even though we can handle arbitrary pairwise potentials, we evaluate here
only the Potts model, namely Vpq(lp, lq) = wpq ·min{|lp − lq|, 1}. As in previous
work [1], wpq depends on the strength of the gradient between pixels p and q in
the observed image. The stronger the gradient, the smaller is wpq.

We evaluate our performance on the application of stereo correspondence and
on the set of ten Middlebury stereo pairs [33, 34]. For the data term, we use a
simple truncated absolute value difference between the pixel in the left image
and the pixel in the right image shifted according to the disparity label. That
is if L is the left image and R is the right image, Dp(lp) = min{T, |L(p) −
R(p − lp)|}. We used T = 20. Since our goal is to evaluate our DP-expansion
moves as an optimization method, we did not tune parameters for the best stereo
correspondence performance. We ran the expansion algorithm for two iterations,
since it has been observed that the energy decreases most during the first two
iterations. We ran our algorithm for box sizes from 1/10 of the image to the
largest image dimension, increasing them by a factor of 2 and making them
overlap by half of their side length.
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It has been shown [1] that first two iterations decrease the energy the most
for the max-flow expansion. Thus to make comparisons more fair to max-flow
expansion, we run it for two iterations. On average, max-flow expansion finds an
energy 1.3% lower, where we measured energy difference between DP-expansion
and max-flow expansion relative to the energy computed by max-flow expansion.
The largest relative energy difference was 3%, and in some case DP-expansion
returned a slightly lower energy. This is only because max-flow expansion was
not run until convergence. The running time of our approach was, on average,
1.8 times faster. Fig. 6 illustrates some of the results.

6 Discussion

We have presented DP-expansion moves that work by finding a restricted struc-
ture subset of pixels to switch to α. The restriction allows to implement them
very efficiently, in linear time. There are many other aspects for future research.
First, there are many variants of such moves to explore. For example, it is easy
to extend our moves to the case when the “anchoring” happens not necessarily
at the same row for each column. Right now, the anchoring is done in row 0 (or
at the left, right, bottom of the picture). It is easy to see that as long as the
one of the end points is fixed, not necessarily to the same value for each column,
we can compute the move with with linear time efficiency. These moves can be
used for taking a low-quality but cheap solution, exploring the connected sets
of pixels assigned to the same label, and improving their boundaries one side at
a time, leaving the other sides fixed. It is also easy to parallelize our algorithm,
expanding on a non-overlapping set of boxes at the same time. Most of the boxes
are small to medium in size and it is easy to come up with a non-overlapping
subsets of them. Finally, just as there are several speed-ups to the basic max-flow
expansion suggested in the literature [29, 30], based on clever heuristics, there
are multiple speed-ups possible for our approach too.

References

1. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via
graph cuts. PAMI 26, 1222–1239 (2001)

2. Wills, J., Agarwal, S., Belongie, S.: What went where. In: CVPR, vol. I, pp. 37–44
(2003)

3. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B.,
Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Transactions on
Graphics 23, 294–302 (2004)

4. Kwatra, V., Schdl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image
and video synthesis using graph cuts. SIGGRAPH 2003 22, 277–286 (2003)

5. Hoiem, D., Rother, C., Winn, J.: 3d layout crf for multi-view object class recogni-
tion and segmentation. In: CVPR, pp. 1–8 (2007)

6. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy mini-
mization with label costs. IJCV 96, 1–27 (2012)

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. PAMI 23, 1222–1239 (2001)

8. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for
binary images. Journal of the Royal Statistical Society, Series B 51, 271–279 (1989)



Dynamic Programming for Approximate Expansion Algorithm 865

9. Ishikawa, H.: Exact optimization for markov random fields with convex priors.
PAMI 25, 1333–1336 (2003)

10. Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary
one. Technical Report TUD-FI06-01, Dresden University of Technology (2006)

11. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts
- a review. PAMI 29, 1274–1279 (2007)

12. Felzenszwalb, P.F., Veksler, O.: Tiered scene labeling with dynamic programming.
In: CVPR (2010)

13. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)
14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)
15. Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving vari-

ational problems in vision. PAMI 12, 855–867 (1990)
16. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,

Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. PAMI 30, 1068–1080 (2008)

17. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann (1988)

18. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. PAMI 28, 1568–1583 (2006)

19. Lempitsky, V.S., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random
field optimization. PAMI 32, 1392–1405 (2010)

20. Veksler, O.: Graph cut based optimization for mrfs with truncated convex priors.
In: CVPR, pp. 1–8 (2007)

21. Kumar, M.P., Torr, P.H.S.: Improved moves for truncated convex models. In:
Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 889–896 (2009)

22. Gould, S., Amat, F., Koller, D.: Alphabet soup: A framework for approximate
energy minimization. In: CVPR, pp. 903–910 (2009)

23. Carr, P., Hartley, R.: Solving multilabel graph cut problems with multilabel swap.
In: DICTA (2009)

24. Vineet, V., Warrell, J., Torr, P.: A tiered move-making algorithm for general pair-
wise mrfs. In: CVPR (2012)

25. Liu, X., Veksler, O., Samarabandu, J.: Order preserving moves for graph cut based
optimization. PAMI (2010)

26. Bai, J., Song, Q., Veksler, O., Wu, X.: Fast dynamic programming for labeling
problems with ordering constraints. In: CVPR (2012)

27. Asano, T., Chen, D., Katoh, N., Tokuyama, T.: Efficient algorithms for
optimization-based image segmentation. IJCGA 11, 145–166 (2001)

28. Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions
for single and dynamic mrfs. In: CVPR (2007)

29. Alahari, K., Kohli, P., Torr, P.H.S.: Reduce, reuse & recycle: Efficiently solving
multi-label mrfs. In: CVPR (2008)

30. Batra, D., Kohli, P.: Making the right moves: Guiding alpha-expansion using local
primal-dual gaps. In: CVPR, pp. 1865–1872 (2011)

31. Kolmogorov, V., Zabih, R.: What energy function can be minimized via graph
cuts? PAMI 26, 147–159 (2004)

32. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple
features. In: CVPR (1), pp. 511–518 (2001)

33. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. IJCV 47, 7–42 (2001)

34. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: CVPR, pp. 195–202 (2003)


	Lecture Notes in Computer Science
	Introduction
	Related Work
	DP-Expansion Moves
	Energy Function
	Review of Tiered Labeling
	DP-Expansion

	Fast Optimization
	Reduction to Dynamic Programming
	Fast Dynamic Programming

	Experimental Results
	Discussion


