
Fast Fusion Moves for Multi-model Estimation

Andrew Delong, Olga Veksler, and Yuri Boykov

University of Western Ontario, Canada

Abstract. We develop a fast, effective algorithm for minimizing a well-known
objective function for robust multi-model estimation. Our work introduces a com-
binatorial step belonging to a family of powerful move-making methods like
α-expansion and fusion. We also show that our subproblem can be quickly trans-
formed into a comparatively small instance of minimum-weighted vertex-cover.
In practice, these vertex-cover subproblems are almost always bipartite and can
be solved exactly by specialized network flow algorithms. Experiments indicate
that our approach achieves the robustness of methods like affinity propagation,
whilst providing the speed of fast greedy heuristics.

1 Introduction
Our work is about optimizing an objective function that is of central importance to
computer vision. This objective, herein denoted by E(·), has been used for a number of
applications such as robust motion estimation [1–4], object detection [5], and geometric
model fitting [6]. Intuitively, E balances the need to fit the data against the need for a
‘simple’ set of explanatory models. Recent work in vision has pointed out that E is
also a classical facility location problem long studied in operations research [7–9]. So,
in this work, we take it for granted that the objective is very useful, and we focus on a
novel way to minimize it. However, facility location is NP-hard and, in the most general
case, cannot be approximated to within any constant factor [10].

The key to our approach is a subproblem that balances computational power and
tractability. Our new subproblem is an optimized crossover [11], or a fusion move [12]
as more commonly known in computer vision. Though [12] proposed fusion moves for
classical MAP-MRF objectives (stereo, optical flow), our fusion moves are defined on a
very high-order objective; our work can be thought of as “fusion moves for facility loca-
tion.” To minimize E we iteratively solve our combinatorial ‘fusion’ subproblem, each
time trying to select a better subset of models. Our subproblem considers an exponential
space of solutions, so our approach is deemed a very large-scale neighborhood search
technique [13] in the family of powerful move-making methods like α-expansion [14].

We show that our fusion operation, when applied to large data, reduces to a compar-
atively small minimum-weighted vertex-cover problem. Vertex-cover is NP-complete in
general but, in model estimation scenarios, our construction is usually bipartite and can
be solved by specialized bipartite maximum-flow algorithms [15]. Furthermore, in the
non-bipartite case, there exists a fast 2-approximation algorithm for weighted vertex-
cover based on elegant reduction to the easy bipartite case [16]. However, instead of
relying on this reduction, we propose a new, specialized approach for the non-bipartite
case with properties that are desirable within our iterative fusion framework.

The remainder of the paper is structured as follows. Section 2 defines objective E in
the context of multi-model estimation, and reviews known heuristics for minimizing it.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part I, LNCS 7572, pp. 370–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fast Fusion Moves for Multi-model Estimation 371

E(l)=−141.1 E(l)=−81.75 E(l)=−88.69 E(l)=−48.41

Fig. 1. An illustration of how E(l) measures the quality of labeling l. The low-energy labeling at
left identifies the three unique lines shown in M(l), here superimposed on a probabilistic hough
transform [18] of the data. Using model penalty L(m) = 100 the leftmost solution has energy
E(l) = −441.1 + 300 = −141.1. Three worse (higher-energy) labelings are shown at right.

Section 3 formulates our new subproblem, derives the corresponding weighted vertex-
cover instance, and describes ways to solve it—including a novel construction specifi-
cally tailored to our fusion operation. Section 4 returns to multi-model estimation and
describes our iterative framework: a process we call fusion-based multi-model RANSAC

(FÜSAC) owing to the way it combines fusion with RANSAC-style random sampling [17].
Experiments indicate that our method is competitive in terms of both quality and speed.
Section 5 discusses our method as it relates to greedy and genetic algorithms, and to
high-order Conditional Random Fields (CRFs).

2 Multi-model Objective E

Let the observed data (e.g. points, correspondences) be a finite set of vectors {yi}i∈I .
We seek a labeling l = (li)i∈I that assigns a model (e.g. line, plane, homography) to
each individual yi. We assume each model is an element in a parameter space M, and
by assigning li = m we indicate a belief that yi was generated by model m ∈ M. For
example, if observations were generated by unbounded 2D lines, the standard (θ, ρ)
line representation is a good parameter space to select from, so M = [0, 2π)×R≥0.
A ‘robust’ version of this parameter space might incorporate a varying noise parameter
σ > 0 along with an explicit outlier label so that M = ([0, 2π)×R≥0×R>0)∪{outlier}.

Our objective E(l) evaluates the quality of labeling l via two kinds of terms: each
likelihood term Di(m) measures the likelihood that model m generated yi, and each
model penalty term L(m) ≥ 0 measures the amount of evidence needed to justify
introducing model m into the solution. The main objective is

E(l) =
∑

i∈I
Di(li) +

∑

m∈M(l)

L(m) (1)

where M(l) = {m ∈ M | ∃li = m } is the subset of models that l directly relies
upon. Note that [1–6] all consider objectives of this type. If we were to set L(m) = λ,
then the model penalty becomes λ|M(l)| which simply penalizes the number of unique
models in a solution. In this work we always assume an outlier label � ∈ M with
Di(�)=const and L(�)=0. Figure 1 shows how minima of (1) give good estimates.

For any geometric or otherwise generative model m ∈ M, it is natural to define
Di(m) = − ln Pr(yi |m). For example, in 2D line estimation the cost of assigning line
m = (θ, ρ, σ) to a point yi = (x, y) is naturally defined to be

Di(m) = 1
2σ2 (x cos θ + y sin θ − ρ)2 + ln(

√
2πσ).

372 A. Delong, O. Veksler, and Y. Boykov

discretized dense M randomly sampled M sampled M + refinement

Fig. 2. Three standard approaches to finding minima of energy (1). Barinova et al. [5] uniformly
discretize the parameter space. Pure random sampling-based methods like [2, 4] select from a
sparse subset of the continuum. Refinement methods like [6] use fewer samples and iteratively
descend the ‘landscape’ to solutions that cannot be reached by random sampling.

Our work does however allow arbitrary Di(·) terms in (1). Less obvious is how to
define the model penalty L(m). The model penalties can be chosen by application-
specific validation, or based on statistical information critieria such as the AIC [19]
and the geometric robust information criterion (GRIC) [2]. The GRIC is particularly
appropriate if M includes models of differing dimensions.

Related Work on Minimizing E. Objective (1) is like a continuous facility location
problem but no assumptions on Di(·). Hochbaum [7] gave an approximation algorithm
for E when Di(m) represents a Euclidean distance from point yi to location m, but
this would constrain us to fitting point centers with isotropic noise. Variants of the
general objective (1) have appeared in a number of computer vision applications, and
we summarize just the most relevant work.

Torr [1] formulated two-view motion estimation as a 0-1 integer program corre-
sponding to (1) on a finite set M. For this application, each observationyi is a matching
pair of points, and he pre-generates candidate motions M by randomly sampling sub-
sets of the matches. Minimizing (1) means selecting a small subset of rigid motions
so as to minimize (for example) the reprojection error of matched points. Torr applied
a generic branch-and-bound solver to compute a result. Li [4] used LP relaxation in
a formulation similar to Torr’s, and Schindler & Suter [3] proposed an approximation
of Torr’s 0-1 integer program and optimize it with the taboo search technique. Lazic
et al. [20] tailored the affinity propagation [21] algorithm for this kind of objective.

Barinova et al. [5] use a special case of (1) for detecting multiple pedestrians and
prominent lines in images. They work with a continuous (dense) parameter space M
that has been uniformly discretized at sufficient resolution. They then apply the classic
greedy algorithm [8] on the resulting facility location problem. Figure 2 contrasts their
approach against random sampling. We mention two interesting points from their work.

1. They show that GREEDY (see Section 3), when applied in this setting, is essentially
detecting peaks in a sequence of updated Hough maps (the three dark ‘valleys’ in
Figure 1, for example). They argue that this is a better and more principled alterna-
tive to the classical non-maximum suppression heuristic for isolating peaks.

2. They note that, for many geometric likelihoods Di(·), the dense Hough map can be
incrementally updated extremely fast by specialized implementation of GREEDY.

The first point is relevant to our work because the Hough map interpretation will help
to visualize and contrast our algorithm against GREEDY in Section 5. The second point

Fast Fusion Moves for Multi-model Estimation 373

is worth noting because the generic greedy algorithm is slow if many models must be
detected. By assuming that Di(m) < Di(outlier) for only a very small and quickly
identifiable fraction of i ∈ I, they show dramatic speed up. Their assumption holds for
most scenarios (only a small fraction of points are close to each line) so it is entirely
reasonable. Still, one must beware: the running time of GREEDY increases dramatically
when arbitrary Di must be assumed. We furthermore observe in Section 5 that the
greedy approach has a systematic bias that limits performance on ambiguous data.

Delong et al. [6] briefly consider (1) for multi-model estimation. They use random sam-
pling to generate candidates, but then they iteratively refine and re-assign the estimates in
a coordinate descent scheme analogous to the k-means algorithm. As suggested in Fig-
ure 2 (right), refinement explores the solution landscape in a way that random sampling
cannot. Several RANSAC variants also use refinement in one way or another, e.g. [22]. We
incorporate refinement into our synthetic experiments as a post-processing step.

3 Our Combinatorial Subproblem (Fusion)

Given some fixed set S ⊆ M, a standard way to study the facility location problem is
to rewrite E(l) as a set function

G(S) =
∑

i∈I
min
m∈S

Di(m) +
∑

m∈S

L(m) (2)

where G({}) is defined to be +∞. Let l(S) denote the set of all labelings that satisfy
Di(li) = minm∈S Di(m) for all i ∈ I. In other words, for l ∈ l(S), each li chooses
some best label from S. Now if S∗ is optimal for G then any l ∈ l(S∗) is optimal for
E, so minimizing (2) over S ⊆ M is equivalent to our original objective.

The GREEDY algorithm for discrete facility location is simple. Start with an empty
set S, find out which individual element m ∈ M would lead to the biggest (greediest)
improvement G(S ∪ {m}) − G(S), add m to S and repeat. The pseudo-code below
suggests a generic implementation, omitting efficiency-related details for simplicity.

GREEDY

1 S := {}
2 repeat
3 for m ∈ M \ S do
4 Δ[m] := G(S ∪ {m}) −G(S)

5 m∗ := argminm∈M\S Δ[m]
6 if Δ[m∗] ≥ 0 then break
7 else S := S ∪ {m∗}
8 until S = M
9 return S

Rather than growing S greedily, we propose a completely different approach that
relies on a combinatorial ‘fusion’ step. Section 3.1 formulates our subproblem, culmi-
nating in a reduction to minimum-weighted vertex-cover. Sections 3.2 and 3.3 describe
standard ways—and a novel way—to attack this problem and find a good subset S.
Section 4 will then use our fusion step within an iterative framework for minimizing E.

374 A. Delong, O. Veksler, and Y. Boykov

3.1 Gaining Tractability via Fusion Constraints

The greedy algorithm grows S monotonically, repeatedly evaluating G(S ∪ {m}) to
find the next element m∗ to add. Ideally we should globally minimize G(S) over all
possible subsets S ⊆ M, but this is NP-hard by reduction from the set-cover problem.
We propose a compromise that remains tractable in most scenarios while minimizing
over an exponential number of feasible solutions—two key criteria for powerful very
large-scale neighborhood search (VLNS) techniques [13] such as α-expansion [14].

Given two sets M0,M1 ⊆ M, denote a choice of ‘best’ labeling for each set by
l0 ∈ l(M0) and l1 ∈ l(M1). The family S(l0, l1) that satisfies our fusion constraints is

S(l0, l1) = {
S ⊆ M0 ∪M1 | ∃ l ∈ l(S) such that li ∈ {l0i , l1i } ∀i ∈ I }

.

In other words, S ∈ S(l0, l1) only if a best labeling for S is a binary crossover, or fusion,
of our choices for l0 and l1. Clearly if S ∈ S(l0, l1) then {l0i , l1i }∩S �= {} for all i ∈ I.
The central subproblem that we propose to solve is

minimize G(S) =
∑

i∈I
min

m∈{l0i ,l1i}∩S
Di(m) +

∑

m∈S

L(m) over all S ∈ S(l0, l1) . (3)

Problem (3) can be expressed as a large high-order pseudo-boolean function and, in
certain cases, can be solved via max-flow on a large graph construction similar to [6].
However, one of our main results is that (3) reduces to a vertex-cover problem of much
smaller size. Attacking the vertex-cover problem can be 10–100x faster than using [6].

Theorem 1. Given labelings l0 ∈ l(M0) and l1 ∈ l(M1), there exists an instance of
minimum-weighted vertex-cover (V , E , w) with V = M0 ∪M1 such that S∗ ⊆ V is an
optimal cover if and only if S∗ is an optimum of (3).

Proof. We give the construction. It is useful to express (3) as a 0-1 integer program.
Define u = 1S to be the binary indicator function of set S ⊆ M0 ∪ M1 so that
um = [m ∈ S] over m ∈ M0 ∪M1. Our problem (3) written in terms of u is simply

minimize G(u) =
∑

i∈I
min

m : um=1
m∈{l0i ,l1i}

Di(m) +
∑

m :um=1

L(m) (4)

subject to um + um′ ≥ 1 ∀{m,m′} ∈ E (5)

where E =
{{m,m′} | ∃(l0i = m, l1i = m′)

}
.

Constraints (5) ensure that at least one of l0i or l1i must be selected, thereby retaining a
one-to-one correspondence between feasible u = 1S and sets S ∈ S(l0, l1). Let us use
short-hand notation D0

i = Di(l
0
i) and D1

i = Di(l
1
i). Specifically, for each i there are

three feasible configurations (ul0i
, ul1i

) ∈ {(1, 0), (0, 1), (1, 1)} for which the objective
should pay D0

i , D1
i , or min(D0

i , D
1
i) respectively. We therefore partition the sum over

i into two cases and rewrite (4) as

=
∑

i :D0
i<D1

i

(
D1

i + (D0
i −D1

i)ul0i

)
+

∑

i :D0
i ≥D1

i

(
D0

i + (D1
i−D0

i)ul1i

)
+

∑

m∈M0∪M1

L(m)um (6)

Collecting coefficients in (6) until we have terms of the form wm·um gives

wm =
∑

i : l0i=m

min(0, D0
i−D1

i) +
∑

i : l1i=m

min(0, D1
i−D0

i) + L(m) .

Fast Fusion Moves for Multi-model Estimation 375

Now let V = M0 ∪ M1. After dropping the additive constant
∑

i∈I max(D0
i , D

1
i)

from (6), our final 0-1 integer program for ‘fusing’ labelings l0 and l1 is

(VC) minimize
∑

m∈V wmum (7)

subject to um + um′ ≥ 1 ∀{m,m′} ∈ E
um ∈ {0, 1} .

Once we remove ‘trivial’ variables, problem (7) is a standard instance of minimum-
weighted vertex-cover (V , E , w). First, if wm < 0 then an optimum must assign u∗

m =
1, so we can remove such variables. Second, if M0 and M1 are not disjoint, then for
each m ∈ M0 ∩ M1 there is the possibility that some l0i = l1i = m which causes a
self-loop (m,m) ∈ E . The constraint um + um ≥ 1 forces u∗

m = 1 in such cases, so
we remove them too. We can make the standard vertex-cover assumption that wm > 0
for all m ∈ M0 ∪M1 and that m �= m′ for all {m,m′} ∈ E . �
Notice that the size of our VC problem depends only on |V| and |E|, and not on the
number of variables |I| needed to evaluate G(S) and E(l). If we assume M0 and M1

do not contain redundant labels (i.e. m ∈ M0 ⇒ ∃l0i = m) then we know |V| ≤ 2|I|.
In any appropriate application, however, we expect |V| � 2|I| since many variables
will share a model. Furthermore, E is often sparse and bipartite (or nearly so) in practice.

In the sections that follow, we explain standard approaches, and a novel approach,
for solving (7) in the context of our ‘fusion’ operation. We make use of the following
variants of VC in our discussion:

VC-B — the tractable case when (V , E) forms a bipartite graph,
VC-H — where VC is relaxed to be half-integral with um ∈ {0, 12 , 1},
VC-L — where VC is relaxed to a linear program with um ∈ [0, 1], and
VC-A — where VC is approximated by an over-penalized instance of VC-B.

However, regardless of one’s method of solving vertex-cover, Theorem 1 suggests a fast
transformation from problem (3) into problem (7), outlined by the pseudo-code below.

FUSE(l0, l1) where we let M0 = M(l0) and M1 = M(l1).

1 wm := L(m) ∀m ∈ M0 ∪M1

2 for i ∈ I let m := l0i , m
′ := l1i and do

3 Δ := Di(m′)−Di(m)
4 if Δ > 0 then wm := wm −Δ
5 else if Δ < 0 then wm′ := wm′ +Δ
6 E := E ∪ {{m,m′}}
7 S := MIN-WEIGHT-VC(V, E , w) where V := M0 ∪M1

8 return l where li = argminm∈{l0i ,l1i }∩S Di(m)

3.2 Bipartite Minimum-Weighted Vertex-Cover

If graph (V , E) is bipartite, then the resulting minimum-weighted vertex-cover problem
(VC-B) is tractable. VC-B can be solved by reduction to s-t minimum cut on an ap-
propriately defined graph. Hochbaum [23] diagrammatically presented the reduction we
describe but for the equivalent bipartite node biclique problem. In our case the idea is to
first convert each um+um′ ≥ 1 constraint into a huge penalty η·umum′ in the objective

376 A. Delong, O. Veksler, and Y. Boykov

function (choose η = ∞). In the bipartite case we can assume M0 and M1 disjoint
(ignoring ‘trivial’ variables). Take one group of variables, say M1, and reverse their
meaning with respect to G(S) so that for m ∈ M1 we instead define um = [m /∈ S].
The resulting unconstrained objective function corresponding to (7) is

G(u) =
∑

m∈M0 wmum +
∑

m∈M1 wmum +
∑

{m,m′}∈E ηumum′ . (8)

Since the quadratic coefficients are non-negative, pseudo-boolean function (8) can be
reduced to s-t min-cut using the standard construction [24] (see [25] or §6.1 of [26]).

Once objective (8) is formulated as s-t min-cut, any number of maximum flow algo-
rithms can solve the problem in strongly polynomial time. Since our network is bipar-
tite (two ‘layers’ of nodes) many standard max-flow algorithms may run asymptotically
faster [27]. There are even specialized bipartite max-flow algorithms [15] but, in our
experiments, max-flow was not a bottleneck so we use Boykov-Kolmogorov [28].

3.3 General Minimum-Weighted Vertex-Cover

If graph (V , E) is not bipartite, we assume VC is intractable. There are two natural ways
to proceed: either find an approximate solution, or find an exact solution to a problem
that approximates VC. We first describe an interesting approximation algorithm based
on constructing an instance of VC-B (reduction to the bipartite case). We then propose
an alternative VC-B construction to approximate the VC for a fusion move.

Approximate Solution. It is easy to find a solution to VC within a factor of 2 of the
optimum, but this is conjectured to be the best possible bound and reaching a factor of
1.36 is known to be NP-hard [29]. The classic approach for 2-approximation is to relax
um ∈ {0, 1} to xm ∈ [0, 1], solve the resulting linear program (VC-L), and simply
set u∗

m = [x∗
m ≥ 1

2]. However, Nemhauser & Trotter [16] discovered a much more
interesting approach for the equivalent problem of maximum-weight vertex-packing.
They proved a number of striking results, many of which are summarized in [30] in the
context of vertex-cover. We note that their discoveries have since been subsumed into
more general quadratic pseudo-boolean optimization (QPBO) theory, first in [31] and
recently as a standard tool for more general problems in vision [32].

Theorem 2 ([16]). Let VC-H denote the half-integral relaxation of VC, where con-
straint um ∈ {0, 1} is relaxed to xm ∈ {0, 12 , 1}. Then an optimal solution to VC-H is
also an optimal solution to full relaxation VC-L.

Theorem 2 is especially important because Nemhauser & Trotter showed that VC-H
reduces to an instance of VC-B using the construction that follows.

We are given an instance of VC-H with half-integral variables x = {xm}m∈M .
Create two sets of binary variables zA = {zAm}m∈M and zB = {zBm}m∈M for the
VC-B problem. Assign the original weight wm to both zAm and zBm. For each original
edge {xm, xm′} ∈ E add two edges, {zAm, zBm′} and {zAm′ , zBm}, to the VC-B edge
set. The following theorem establishes a one-to-one correspondence between (integral)
optima of this VC-B instance and (half-integral) optima of the original VC-H instance.

Theorem 3 ([16]). If z is feasible for VC-B, then x = 1
2 (z

A + zB) is feasible for
VC-H. Furthermore x is optimal for VC-H if and only if z is optimal for VC-B.

Fast Fusion Moves for Multi-model Estimation 377

To summarize: given an instance of non-bipartite VC, relax it to VC-H, reduce that
to VC-B, solve with bipartite max-flow, construct a solution to VC-H according to
Theorem 3, and round upwards to get a 2-approximation [30]. A real implementation
could transform directly from VC to max-flow and back, but these explicit steps justify
the approach. Note that this does not give us a 2-approximation for minimizing G(S)
over all (arbitrary) subsets S ⊆ M. Again, a key advantage is that a bipartite max-flow
algorithm is much, much faster than a generic linear program solver applied to VC-L.

It is worth noting that the popular QPBO method inherits its valuable weak partial
optimality property directly from the Nemhauser-Trotter reduction.

Theorem 4 ([16]). Supposex∗ is a (half-integral) optimum of VC-H. Then there exists
a (binary) optimum u∗ of VC where u∗

m= x∗
m for all m with x∗

m ∈ {0, 1}.

In practice this means VC-H might determine optimal assignments to many variables.
In [16] they even suggest temporarily fixing each variable so that its optimal value may
(if lucky) be revealed by the resulting relaxation, similar in spirit to QPBO-P [32].

Approximated (Over-penalized) Problem. Instead of applying an approximation al-
gorithm for general VC, we propose a different strategy. We construct an instance of
VC-B that approximates (not relaxes) our original VC problem, and solve exactly. The
new VC-B problem retains the original objective value G(u) for many feasible solu-
tions, and computes a solution at least as good as each set M0 and M1 being fused.

Our construction assumes we know the original labelings l0 and l1 used to define
fusion constraints E in (5). Without loss of generality, assume M0 and M1 contain
no trivial variables. Create two sets of binary variables {z0m}m∈M0 and {z1m}m∈M1 .
Notice we only duplicate variables in M0∩M1, whereas Nemhauser-Trotter duplicates
all variables. Construct the following ‘over-penalized’ VC-B instance:

(VC-A) minimize G̃(z) =
∑

m∈M0 wmz0m +
∑

m∈M1 wmz1m (9)

subject to z0m + z1m′ ≥ 1 ∀(m,m′) ∈ Ẽ (10)

where Ẽ =
{
(m,m′) | ∃(l0i = m, l1i = m′)

}
.

Set Ẽ is based on ordered pairs (m,m′), rather than the unordered pairs {m,m′} in E
(i.e. replace line 6 in FUSE). Fusion constraints (10) are indeed bipartite with respect to
{z0m} and {z1m}.

To connect G̃(z) with G(u) from our original VC integer program, define u(z) as

u(z)m =

⎧
⎨

⎩

z0m if m ∈ M0 \M1

z1m if m ∈ M1 \M0

z0m + z1m − z0mz1m if m ∈ M0 ∩M1.

Lemma 1. If z is feasible for VC-A, then u(z) is feasible for VC.

Proof. Since {m,m′}∈E implies at least one of (m,m′) or (m′,m) is in Ẽ , it is enough
to show that u(z)m+ u(z)m′ ≥ z0m + z1m′ holds for any ordered pair (m,m′) ∈ Ẽ .
Since m ∈ M0 and m′ ∈ M1, there are four cases to consider based on membership
in M0 ∩ M1. If m,m′ /∈ M0 ∩ M1, then u(z)m+ u(z)m′ = z0m + z1m′ and the
inequality holds. If m ∈ M0 ∩ M1 and m′ /∈ M0 ∩ M1, then u(z)m+ u(z)m′ =
z0m + z1m′ + (z1m − z0mz1m) ≥ z0m + z1m′ . The other two cases hold similarly. �

378 A. Delong, O. Veksler, and Y. Boykov

Lemma 2. G(u(z)) ≤ G̃(z) for all z. Furthermore, when z satisfies z0m + z1m ≤ 1
for all m ∈ M0 ∩M1 then G(u(z)) = G̃(z).

Proof. Writing out G(u(z)) in terms of z gives

=
∑

m∈M0\M1

wmz0m +
∑

m∈M1\M0

wmz1m +
∑

m∈M0∩M1

wm(z0m+ z1m− z0mz1m)

= G̃(z) − ∑
m∈M0∩M1 wmz0mz1m . (11)

We assume non-trivial variables with wm > 0 and so G(u(z)) ≤ G̃(z). If z0m+z1m ≤ 1
for all m ∈ M0 ∩M1 then the extra terms in (11) vanish. �
Theorem 5. If z∗ is an optimal solution for VC-A, then G(u(z∗)) ≤ G(M0) and
G(u(z∗)) ≤ G(M1), and furthermore u(z∗) is feasible for VC.

Proof. We prove the inequality for G(M0). Let ẑ be assigned ẑ0m = 1, ẑ1m = 0 so
that, by design, G̃(ẑ) =

∑
m∈M0 wm = G(M0). Also, ẑ is feasible with respect to

bipartite fusion constraints (10), so G̃(z∗) ≤ G̃(ẑ). By combining this with Lemma 2
we get G(u(z∗)) ≤ G̃(z∗) ≤ G̃(ẑ) = G(M0). Finally, u(z∗) is feasible for VC by
Lemma 1. The case for G(M1) holds by symmetric argument. �
Since VC-A is bipartite (an instance of VC-B) we can express it as s-t minimum cut
and solve using a fast bipartite maximum flow algorithm, as mentioned in Section 3.2.

Theorem 5 implies a monotonicity property similar to applying QPBO-I [32]. To
motivate our over-penalized construction over classical VC approximation algorithms
like N-T, consider the following.
Observation 1. Suppose we construct an instance of VC for fusing sets M0 and M1.
Let x∗ be a (half-integral) solution to VC-H, and let �x∗� be a binary solution by
upward rounding. It is possible that G(�x∗�) > G(M0) and/or G(�x∗�) > G(M1),
i.e. the computed solution may be worse than either of the original sets being fused.

We show by example. Imagine we wish to fuse labelings l0= (0, 1, 1) and l1= (2, 2, 0).
Then M0 = {0, 1}, M1 = {0, 2} and E = {{0, 1}, {0, 2}, {1, 2}}, and let us also
suppose the VC weights are all w(·) = 1. Below we see the structure of the original
VC problem, the Nemhauser-Trotter (QPBO) reduction, and our approximation.

0

2 1

0 1 2

0 1 2

0 1

0 2

By inspection, a min-weighted vertex-cover for the N-T reduction must select either
row A or row B and so x∗ = (12 ,

1
2 ,

1
2). However, this gives G(�x∗�) = 3 and since

both G(M0) = G(M1) = 2 we have a case where relaxation gives a worse result.
Besides the convenient monotonicity implied by Theorem 5, note that VC-A tends to

have much fewer variables and constraints than N-T reduction, especially when |M0 ∩
M1| � |M0 ∪M1|.

4 Minimizing E with Fusion and Random Sampling
Now that we have algorithmic tools to implement the FUSE operation in Section 3.1,
we return to the main application under consideration: robust multi-model estimation.
We aim for a method that, simultaneously,

Fast Fusion Moves for Multi-model Estimation 379

1. is progressive (i.e. a ‘current best solution’ is always available, like RANSAC),
2. explicitly minimizes a real objective function, in this case E , like [1–6, 20],
3. achieves the speed of heuristic approaches, like greedy [5], yet
4. has the combinatorial power of full-blown VLNS [13] methods like [14, 12].

We propose combining fusion with random sampling in a process we call fusion-based
multi-model RANSAC (FÜSAC). The basic version of our algorithm is progressive in that
each candidate model m ∈ M is immediately accepted or rejected based on the result
of a fusion attempt. This ‘online’ approach stands in contrast to multi-model methods
[1–6] where a large set of candidates (elements of M) is first precomputed and then
either pruned greedily or used to build a monolithic 0-1 integer program.

FÜSAC(tmax) where tmax is time limit

1 l0 := � (start with just outlier label)
2 repeat
3 mnew := parameters determined by minimal sample subset selected from {yi}i∈I
4 l1 := l({�,mnew}) (choose a best labeling with outlier and mnew)
5 l0 := FUSE(l0, l1)

6 until time exceeds tmax

7 return l0

This “fuse one model at a time in arbitrary order” strategy is often close to the greedy
algorithm in terms of effectiveness, but poor local minima are still possible. If poor
candidates are selected in the early stages, simply because they were the best ’so far’,
a better candidate may not be enough to correct these mistakes when it is presented.
One way to fix such mistakes is by fusing two or more good candidates simultaneously.
So, to take better advantage of the combinatorial power of our fusion step, we want
labelings l0 and l1 to both contain many models so that FUSE may ‘stitch’ the best
configurations together. We suggest a simple genetic variant (FÜSAC-GA) that generates
multiple independent solutions and performs fusion, or optimized crossover [11], to find
better subsets of models from among that population.

FÜSAC-GA(npop, tmax) where npop is population size, tmax is time limit for each

1 l0 := FÜSAC(tmax)
2 for 2..npop do
3 l1 := FÜSAC(tmax) (for efficiency, just recycle permuted models sampled in line 1)
4 l0 := FUSE(l0, l1) (fuse / optimized crossover)

5 return l0

Bear in mind that the FUSE operation can in principle be applied to any two candidate
labelings, regardless of how they were generated. For example, [12] runs a diverse set
of heuristic optical flow methods, then fuses them together. All this is parallelizable.

Figure 3 shows that the greedy strategy is consistently prone to certain mistakes, even
if it can choose the best model from the entire dense parameter space. In other words,
on hard problems, GREEDY may choose a particular worse solution as we allow more
candidates. So, irrespective of speed, GREEDY may simply fail to minimize E. It is

380 A. Delong, O. Veksler, and Y. Boykov

G({�})=0 G({�,•})=−78.4 G({�,•,•})=−94.4 G({�,•,•})=−113.6

best 1st model best 2nd model greedy must stop... ... but fuse can replace close to optimal

Fig. 3. Example of how fusion is more powerful than monotonic greedy. First row shows current
solution S ⊂ M, and below (columns 1–3) shows value G(S ∪ {m}) for all m = (θ, ρ). A
contour identifies region G(S ∪{m}) < G(S), and the highlighted point shows a greedy choice
for m. Columns 4–5 show value G(FUSE(l0, l1)) where l0 ∈ l(S) and l1 ∈ l({�,m}) for all
m = (θ, ρ). In contrast to column 3, fusion considers the opportunity to replace subsets of lines.

E=−372.2 E=−312.8

en
er

gy

milliseconds
0 1 2 3

−350

−300

−250

−200

−150

−100

−50

0

milliseconds
0 1 2 3

seconds
0 0.1 0.2 0.3

GREEDY FÜSAC-GA FLOSS

E=−311.3 E=−234.7

en
er

gy

milliseconds
0 0.5 1 1.5 2

−300

−250

−200

−150

−100

−50

0

milliseconds
0 0.5 1 1.5 2

seconds
0 0.05 0.1

GREEDY FÜSAC-GA FLOSS

E=−757.3 E=−614.7

en
er

gy

milliseconds
0 5 10 15

−800

−700

−600

−500

−400

−300

−200

−100

0

milliseconds
0 5 10 15

seconds
0 0.5 1 1.5

GREEDY FÜSAC-GA FLOSS

Fig. 4. Synthetic examples (one per row). Each shows a typical low-energy and high-energy solu-
tion. Performance is shown by a probabilistic time-vs-energy plot averaged over 50 trial runs. Top
curve (red) indicates worst performance (E is below with 90% confidence), and the bottom curve
(green) indicates best performance (E is below with only 10% confidence). The vertical gray line
marks time of completion, when refinement begins. Notice on 3rd row that, even when GREEDY

has many enough candidates, it may systematically choose sub-optimal solutions, repeatedly.

long known that applying optimized crossover among ‘diverse’ solutions is an effective
attack on NP-hard problems [11, 12]. FÜSAC-GA is the first attempt to use this strategy
on E (facility location), taking advantage of the fact that FÜSAC is non-deterministic.

Fast Fusion Moves for Multi-model Estimation 381

en
er

gy

milliseconds
0 10 20 30 40 50

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32
x 10

4

milliseconds
0 10 20 30 40 50

seconds
0 0.2 0.4 0.6 0.8

GREEDY FÜSAC GREEDY-DENSE

en
er

gy
milliseconds

0 20 40 60 80

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32

x 10
4

milliseconds
0 20 40 60 80

seconds
0 0.1 0.2 0.3

GREEDY FÜSAC GREEDY-DENSE

en
er

gy

milliseconds
0 10 20 30 40 50

2.26

2.265

2.27

2.275

2.28

2.285

2.29

2.295

2.3

2.305
x 10

4

milliseconds
0 10 20 30 40 50

seconds
0 0.1 0.2 0.3 0.4

GREEDY FÜSAC GREEDY-DENSE

en
er

gy

milliseconds
0 10 20 30 40 50

2.26

2.265

2.27

2.275

2.28

2.285

2.29

2.295

2.3

2.305
x 10

4

milliseconds
0 10 20 30 40 50

seconds
0 0.1 0.2 0.3

GREEDY FÜSAC GREEDY-DENSE

Fig. 5. Detecting edge structures in real images. Each row is an example with input, typical out-
put (at left), and a probabilistic time-vs-energy plot for each method. GREEDY-DENSE [5] is most
reliable at reaching a low energy, but sampling-based methods (GREEDY, FÜSAC) are signifi-
cantly faster. GREEDY spends the majority of its time first computing Di(·) for all candidates;
all methods were given the same set of candidates, so this implies inference is not the bottle-
neck for GREEDY nor FÜSAC. Computing Di(·) could be done on a GPU. Given more time the
sampling-based methods do not improve significantly, likely because smarter sampling is needed
(e.g. sample two collinear edges). FLOSS (not shown) converges to solutions similar to FÜSAC in
1–3 seconds; FLOSS is quite robust, so this is further evidence that sampling is the limiting factor.

We now show some of our experimental results, focusing on comparison to the
greedy approach. Barinova et al. [5] found that the greedy approach outperforms sev-
eral popular alternatives such as non-maximum suppression, medoid-shift [33], and
LP-relaxation [4]. We also include results for our C++ implementation1 of facility lo-
cation affinity propagation (FLoSS) [20]. C++/MATLAB code for our own algorithm
will be made available at http://vision.csd.uwo.ca/code/.

There are also many optimizations for RANSAC to consider, but most do not directly
extend to a multi-model setting (e.g. ‘bail out’ schemes). We use ’blind’ sampling,
but the performance of our framework depends directly on how much time is wasted
evaluating bad samples; guided sampling [34] would likely improve our results, for
example the recent work of Pham et al. [35].

1 Messages were computed efficiently; 50 iterations per test, with damping factor λ = 0.75; all
decoding times were excluded, so time plots reflect time for message updates only.

h

382 A. Delong, O. Veksler, and Y. Boykov

Experiments on Synthetic Data. First, we aim to show that FÜSAC is competitive
with a generic implementation of GREEDY in terms of quality and speed. The FLOSS

algorithm is highly robust, but takes a long time to converge. Second, we show that
FÜSAC-GA (genetic algorithm variant) is more robust at escaping local minima in chal-
lenging instances. We apply these techniques to line estimation. Each candidate model
m = (θ, ρ, σ) is generated by fitting θ and ρ to two randomly sampled points, and
choosing random σ ∈ [0.01, 0.05]. Figure 4 shows typical results on non-trivial in-
stances, though on unambiguous instances all methods succeed and are comparable.

Experiments on Real Images. We validate the basic idea of FÜSAC by showing that it
is competitive at detecting edge structures in images from the York Urban dataset [36].
The idea is to detect oriented edge features yi={x, y, α} based on local gradients, and
find clusters of features that are collinear and consistently oriented. Such detections
are useful, for example, within a larger geometric image parsing framework. Barinova
et al. already showed that, for detecting edge structures, minima of objective E give
much better precision-recall curves than non-maximum suppression and medoid-shift.
Our paper is mainly about optimization, so it is sufficient to show that our method is
competitive in that respect. We used their second code release (GREEDY-DENSE) and
followed their default set up with Di(m) = coeff1·|x cos θ+y sin θ−ρ|+coeff2·|α−θ|.
For each image, we randomly select up to 5,000 edge features to be used in detection.
Each candidate model is generated by randomly sampling one edge feature, and using
its orientation α to define the line. Like [5] our code takes advantage of the fact that
Di(m) < Di(outlier) for only a sparse subset of points2. Figure 5 shows a few results.
Performance is similar to theirs across the dataset, suggesting these examples are ‘easy’
for all algorithms considered (FÜSAC-GA performs similarly to FÜSAC).

5 Conclusion

We proposed a fast combinatorial approach for minimizing a central objective function
in vision. Our strategy is much like the powerful move-making methods [14, 12] and,
to the best of our knowledge, we are the first to formulate a fusion operation for this
important objective. Furthermore, we showed how to quickly transform fusion prob-
lems of size O(I) into vertex-cover problems of size O(M0 ∪M1), and proposed an
alternate construction for the (rare) non-bipartite case. Our algorithm is quite fast, yet
seem to be competitive with state-of-the-art methods like affinity propagation.

References

1. Torr, P.H.S., Murray, D.: Stochastic Motion Clustering. In: Eklundh, J.-O. (ed.) ECCV 1994,
Part II. LNCS, vol. 801, pp. 328–337. Springer, Heidelberg (1994)

2. Torr, P.H.S.: Geometric Motion Segmentation and Model Selection. In: Philosophical Trans-
actions of the Royal Society A, pp. 1321–1340 (1998)

3. Schindler, K., Suter, D.: Two-view multibody structure-and-motion with outliers through
model selection. IEEE Trans. on Patt. Analysis and Mach. Intelligence 28, 983–995 (2006)

2 Maintaining sparse list of inliers can speed up by roughly 2–6x, and was not applied to FLOSS.

Fast Fusion Moves for Multi-model Estimation 383

4. Li, H.: Two-view Motion Segmentation from Linear Programming Relaxation. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR (2007)

5. Barinova, O., Lempitsky, V., Kohli, P.: On the Detection of Multiple Object Instances using
Hough Transforms. In: IEEE Conf. on Comp. Vision and Patt. Recognition, CVPR (2010)

6. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization
with Label Costs. International Journal of Computer Vision (IJCV) 96, 1–27 (2011)

7. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Math. Prog. 22 (1982)
8. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The Uncapacitated Facility Location Prob-

lem. Technical Report 605, Operations Research, Cornell University (1983)
9. Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location prob-

lems. In: ACM Symposium on Theory of Computing (STOC), pp. 265–274 (1998)
10. Feige, U.: A Threshold of lnn for Approximating Set Cover. Jour. of the ACM 45 (1998)
11. Aggarwal, C.C., Orlin, J.B., Tai, R.P.: Optimized Crossover for the Independent Set Problem.

Operations Research 45, 226–234 (1997)
12. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field opti-

mization. IEEE Transactions on Pattern Analysis and Machine Inference (TPAMI) 32 (2010)
13. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood

search techniques. Discrete Applied Mathematics 123, 75–202 (2002)
14. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts.

IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI) 23 (2001)
15. Ahuja, R., Orlin, J., Stein, C., Tarjan, R.: Improved algorithms for bipartite network flow.

SIAM Journal on Computing 23, 906–933 (1994)
16. Nemhauser, G., Trotter, L.: Vertex packings: Structural properties and algorithms. Mathe-

matical Programming 8, 232–248 (1975)
17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1981)
18. Stephens, R.: Probabilistic approach to the Hough transform. Image and Vis. Comp. 9 (1991)
19. Akaike, H.: A new look at statistical model identification. Trans. on Auto. Control 19 (1974)
20. Lazic, N., Givoni, I., Frey, B.J., Aarabi, P.: FLoSS: Facility Location for Subspace Segmen-

tation. In: International Conference on Computer Vision, ICCV (2009)
21. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,

972–976 (2007)
22. Chum, O., Matas, J., Kittler, J.: Locally Optimized RANSAC. Pattern Recognition (2003)
23. Hochbaum, D.: Approximating clique and biclique problems. Jour. of Algorithms 29 (1998)
24. Hammer, P.L.: Some network flow problems solved with pseudo-boolean programming. Op-

erations Research 13, 388–399 (1965)
25. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Optimized via Graph Cuts. IEEE

Transactions on Pattern Recognition and Machine Intelligence (TPAMI) 26, 147–159 (2004)
26. Boros, E., Hammer, P.L.: Pseudo-Boolean Optimization. Discrete Applied Math. 123 (2002)
27. Gusfield, D., Martel, C., Fernandez-Baca, D.: Fast algorithms for bipartite network flow.

SIAM Journal on Computing 16, 237–251 (1987)
28. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algo-

rithms for Energy Minimization in Vision. IEEE Transactions on Pattern Recognition and
Machine Intelligence (TPAMI) 29, 1124–1137 (2004)

29. Dinur, I., Safra, S.: The importance of being biased. In: ACM STOC (2002)
30. Chlebı́k, M., Chlebı́ková, J.: Crown reductions for the Minimum Weighted Vertex Cover

problem. Discrete Applied Mathematics 156, 292–312 (2008)

384 A. Delong, O. Veksler, and Y. Boykov

31. Hammer, P., Hansen, P., Simeone, B.: Roof duality, complementation and persistency in
quadratic 0-1 optimization. Mathematical Programming 28, 121–125 (1984)

32. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing Binary MRFs via
Extended Roof Duality. In: IEEE Conf. on Comp. Vis. and Patt. Recognition, CVPR (2007)

33. Sheikh, Y., Khan, E., Kanade, T.: Mode-seeking by medoidshifts. In: ICCV (2007)
34. Tordoff, B., Murray, D.W.: Guided Sampling and Consensus for Motion Estimation. In: Hey-

den, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp.
82–96. Springer, Heidelberg (2002)

35. Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The Random Cluster Model for Robust Geometric
Fitting. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)

36. Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating Manhattan
Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II.
LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008)

	Fast Fusion Moves for Multi-model Estimation
	Introduction
	Multi-model Objective E
	Our Combinatorial Subproblem (Fusion)
	Gaining Tractability via Fusion Constraints
	Bipartite Minimum-Weighted Vertex-Cover
	General Minimum-Weighted Vertex-Cover

	Minimizing E with Fusion and Random Sampling
	Conclusion

