
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017 261

Generalized Recovery From Node Failure
in Virtual Network Embedding

Nashid Shahriar, Reaz Ahmed, Shihabur Rahman Chowdhury, Student Member, IEEE, Aimal Khan,
Raouf Boutaba, Fellow, IEEE, and Jeebak Mitra

Abstract—Network virtualization has evolved as a key enabling
technology for offering the next generation network services.
Recently, it is being rolled out in data center networks as a means
to provide bandwidth guarantees to cloud applications. With
increasing deployments of virtual networks (VNs) in commercial-
grade networks with commodity hardware, VNs need to tackle
failures in the underlying substrate network. In this paper, we
study the problem of recovering a batch of VNs affected by a
substrate node failure. The combinatorial possibilities of alter-
nate embeddings of the failed virtual nodes and links of the
VNs make the task of finding the most efficient recovery both
non-trivial and intractable. Furthermore, any recovery approach
ideally should not cause any service disruption for the unaf-
fected parts of the VNs. We take into account these issues to
design a generalized recovery approach that can achieve cus-
tomized objectives such as fair treatment on the failed VNs,
partial treatment based on priority, and so on. We provide integer
linear programming (ILP) formulations for two variants of our
recovery scheme, namely, fair recovery model and priority-based
recovery model. We also propose a fast and scalable heuristic
algorithm to tackle the computational complexity of the ILP solu-
tion. Evaluation results demonstrate that our heuristic performs
close to the optimal solution and outperforms the state-of-the-art
algorithm.

Index Terms—Network survivability and resilience, network
virtualization, node failure, optimization techniques, proactive
and reactive management, recovery approach, virtual network
embedding.

I. INTRODUCTION

RAPID proliferation of the Internet is continuously
increasing our dependence on networked services.

Consequently, diverse Quality of Service (QoS) guarantees are
required from the underlying network infrastructure. Network
Virtualization (NV) [1] is evolving as a key technology
for allowing a wide variety of online services with diverse

Manuscript received January 3, 2017; revised April 2, 2017; accepted
April 3, 2017. Date of publication April 13, 2017; date of current version
June 9, 2017. This work was supported in part by Huawei Technologies
and in part by an NSERC Collaborative Research and Development Grant.
Additionally, this work benefited from the use of the CrySP RIPPLE Facility
at the University of Waterloo. The associate editor coordinating the review of
this paper and approving it for publication was H. Lutfiyya. (Corresponding
author: Nashid Shahriar.)

N. Shahriar, R. Ahmed, S. R. Chowdhury, A. Khan, and R. Boutaba
are with the School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: nshahria@uwaterloo.ca;
r5ahmed@uwaterloo.ca; sr2chowdhury@uwaterloo.ca;
a273khan@uwaterloo.ca; rboutaba@uwaterloo.ca).

J. Mitra is with Huawei Technologies Canada Research Center, Ottawa, ON
K2K 3J1, Canada (e-mail: jeebak.mitra@huawei.com).

Digital Object Identifier 10.1109/TNSM.2017.2693404

reliability and performance requirements to co-exist and seam-
lessly operate on top of the same network infrastructure. An
Infrastructure Provider (InP) manages a network infrastructure
also known as the Substrate Network (SN), and leases network
slices in the form of Virtual Networks (VN) to multiple Service
Providers (SPs). An SP offers customized services on top of
its VN, and is free to deploy any technology and/or communi-
cation protocol in the VN. By allowing heterogeneous VNs to
coexist on a shared SN, the goal of NV is to provide flexibility,
diversity, security, and manageability. Several new challenges
need to be addressed to achieve these goals.

An important challenge in NV is to efficiently allocate sub-
strate resources to VNs. This is known as the VN embedding
(VNE) problem [2] that maps virtual nodes and links of a
VN request on substrate nodes and paths (a sequence of sub-
strate links), respectively, while satisfying physical resource
constraints. The VNE problem is NP -hard and has been stud-
ied from various perspectives [2]. One particular aspect of
VNE that has received much attention recently is Survivable
Virtual Network Embedding (SVNE). SVNE approaches deal
with substrate resource (i.e., nodes or links) failures that are
not a rare event in large networks [3], [4]. Surviving fail-
ures is even more challenging in NV, since the shared nature
of VNs exposes them to a more vulnerable state than that
of a non-virtualized network. For instance, a link failure
in the SN may cause multiple virtual links to fail, which
may significantly degrade service performance and reliability
of VNs.

A number of mechanisms have been proposed to increase
VN reliability against substrate resource failures. These mech-
anisms can be broadly classified into two categories [5]:
a) proactively provision disjoint redundant resources as
backup [6], [7] and b) reactively re-embed the failed nodes
and links of a VN on the available resources after a failure
has occurred [8], [9]. Proactive approaches offer immediate
recovery from failures at the expense of backup resource reser-
vation [10]–[12]. However, preallocating backup resources for
multiple failures resulting from a substrate node failure can
be extremely expensive [11], [13]. Instead, an SP may pre-
fer to reactively re-embed the failed part of its VN to avoid
the huge cost of preallocated backup resources in a failure-
prone SN. The SP can adopt a load balanced VN embedding
strategy to leave higher amount of available resources during
re-embedding. Moreover, in case of permanent substrate node
failures (e.g., hardware malfunction), the nodes and links of
all the affected VNs have to be re-embedded. These scenarios

1932-4537 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

262 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

motivate us to study the problem of re-embedding a batch of
VNs affected by a substrate node failure.

While VN embedding is already intractable, the combina-
torial number of sequences of VNs in a batch re-embedding
further increases the complexity [14]. In addition, any solution
must be significantly fast (e.g., in the order of milliseconds)
to meet the stringent timing requirement usually imposed by
Service Level Agreements (SLAs). To meet such require-
ments, we consider the re-embedding of only the failed nodes
and links of a batch of VNs without disrupting their unaf-
fected parts. While re-embedding the failed part as well as
the unaffected part of an active VN may incur lower costs
of re-embedding [8], [15], it will require additional time for
virtual node migration and virtual link re-configuration, which
may increase VN downtime. Further, the reactive approaches
in [9] and [16] opt for the recovery of all the failed nodes and
links of a VN. If the SN does not have adequate resources
to recover all the failed nodes and links, those approaches re-
embed the complete VN, turning it inactive for a while and
causing service disruptions.

Unlike existing approaches, we adopt a generalized recov-
ery approach that allows partial recovery of an affected VN,
while adhering to any SLA requirement. To demonstrate
the versatility of our approach, we investigate two differ-
ent recovery models. The first one is a fair recovery model
(FRM) that maximizes the number of recoveries across all
the affected VNs. This can be the sought-after choice of
an InP who wants to treat all the affected VNs fairly in a
resource constrained SN. Then, we explore a priority-based
recovery model (PRM) that takes into account an InP’s pref-
erence during recovery. PRM allows an InP to prioritize the
recovery of affected VNs based on SLA strictness, impacts
of failure, profits, and so on to achieve its goal. It is worth
discussing here that a partial recovery scheme may lead to
skewness in the utilization of SN resources. To eliminate such
skewness, VN reconfiguration mechanisms such as [17]–[20]
should be performed periodically during an off-peak
period.

In this paper, we focus on the problem of Recovering from
a Node failure in Virtual Network Embedding (ReNoVatE).
It accepts a batch of VN failures resulting from a single sub-
strate node failure, and produces alternate embeddings for the
failed virtual nodes and links. The objective of FRM is to
maximize the number of recovered virtual links across all the
affected VNs, while minimizing total bandwidth required for
recovery. On the other hand, PRM seeks to prioritize the recov-
ery of affected VNs based on some predefined requirements
and minimize total bandwidth for recovery. We formulate
ReNoVatE as an Integer Linear Programming (ILP) based opti-
mization model, namely Opt-ReNoVatE. Since Opt-ReNoVatE
cannot scale to large instances of the problem, we devise
an efficient heuristic algorithm, called Fast-ReNoVatE, to find
satisfactory solutions within prescribed time limits. We eval-
uate Fast-ReNoVatE by extensive simulations and compare it
with Opt-ReNoVatE, as well as with the most related state-
of-the-art proposal in [9]. Evaluation results demonstrate that
Fast-ReNoVatE performs close to Opt-ReNoVatE and outper-
forms the state-of-the-art solution in terms of i) number of

recovered virtual links, ii) cost of recovery, and iii) execution
time.

This paper extends our initial work presented in [21] in sev-
eral aspects. First, we modify our previous recovery approach
to accommodate a variety of design alternatives such as priori-
tizing the affected VNs based on SLA requirements or impacts
of failure or profits. Based on this modification, we propose
two different recovery models, namely, fair recovery model
and priority-based recovery model. Since these models are
orthogonal to our proposed solutions, we incorporate the mod-
els in each of our solutions and evaluate them through rigorous
simulations. Second, we perform more simulations and present
additional results on the scalability aspects of our solutions to
ReNoVatE and the state-of-the-art solution. Finally, we update
related work section to include an in-depth discussion on the
subtle differences between ReNoVatE and the state-of-the-art
literature on SVNE.

The rest of the paper is organized as follows. Section II
presents the related literature. In Section III, we present the
system model and formally introduce the problem. Section IV
presents two variants of Opt-ReNoVatE for solving the
problem optimally. The heuristic solution, Fast-ReNoVatE, is
presented in Section V. Evaluation results are presented in
Section VI. Finally, we summarize our findings and conclude
in Section VII.

II. RELATED WORK

Survivability of VNs during substrate failures was first
addressed by Rahman et al. [22]. They formulated the problem
of ensuring survivability in VNs under single SLink failure
as a Mixed Integer Linear Program and proposed heuristics
to obtain solutions in a reasonable time. A large body of
research literature has been developed since to address dif-
ferent aspects of SVNE such as considering single SLink
failure [23], [24], multiple SLink failures [25], single SNode
failure [13], [26], regional failures [27]–[29], and ensuring
certain levels of availability [30]–[32] among others. The
approaches for ensuring survivability of VNs during substrate
failures can be broadly classified into two categories, namely,
proactive and reactive approaches. Proactive approaches pro-
vision redundant backup resources when a VN is embedded
in the first place, whereas, reactive approaches take mitigation
actions after a failure has occurred. In the following we dis-
cuss the proactive (Section II-A) and reactive (Section II-B)
approaches from SVNE literature and contrast them with our
solution for ReNoVatE.

A. Pro-Active Approaches

Pro-active approaches for SVNE preallocates backup
resources to ensure Quality of Service for the VNs during one
or more substrate failures. Most of the approaches focusing on
substrate node (SNode) failure are pro-active [10], [11], [13].
Yu et al. [13] proposed a two-step method to recover a VN.
The first step enhances the VN with backup virtual nodes
(VNodes) and virtual links (VLinks), and the second step
maps this enhanced VN on the SN. This approach, in the
worst case, has to reserve a backup VNode for each VNode.

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 263

In contrast, [10] designed the enhanced VN with a failure-
dependent strategy to reduce backup resources. Despite the
resource efficiency of this approach, it is not practical due to
the large number of migrations of working VNodes. Unlike
these methods, [11] presented a joint optimization strategy for
allocating primary and backup resources altogether. The loca-
tion constrained SVNE, to address geographically-correlated
SNode failures, has been studied in [12], [27], and [33].
While [33] adopts sequential embedding of working and
backup VNodes, [12], [27] embeds them jointly to minimize
total bandwidth. Recently, [34] and [35] proposed embed-
ding primary and dedicated backup resources for each VNode
and VLink in a VN simultaneously. There is a growing trend
towards designing survivable resource allocation schemes for
embedding virtual data centers (VDCs) in cloud [36]–[38]. For
instance, [39] proposed a scheme for provisioning VDCs with
backup virtual machines and links. Bodík et al. [40] proposed
an optimization framework for improving survivability, while
reducing total bandwidth consumption. Yeow et al. [38]
defines the reliability level as a function of backup resources
that are shared between VNs through opportunistic pool-
ing. Finally, [31] provided a VDC embedding framework for
achieving high VDC availability by considering heterogeneous
failure rates.

Preallocated backup resources remain unused during normal
operations and hence reduce resource utilization. In contrast,
ReNoVatE takes a reactive approach and allocates resources
only when a failure has occurred, thus improving on the
resource utilization.

B. Reactive Approaches

Reactive approaches, on the other hand, do not preallocate
any backup resources. Chang et al. [8] proposed a migra-
tion aware VN re-embedding algorithm to recover from an
SNode failure. The algorithm allows the migration of some
active VNodes and VLinks to free up some substrate resources,
thus facilitating the re-mapping of the failed VNodes and
VLinks. Cai et al. [15] addressed the problem of optimally
upgrading the existing VN in a highly evolving SN. Their
goal is to minimize the upgrading cost, in addition to migra-
tion and remapping costs, while satisfying QoS constraints.
Both of these approaches may need a chain of migrations
to converge, thus disrupting ongoing communication in the
VN. Reactive approaches to recover from geographically cor-
related failures has been proposed in [28] and [29]. However,
unlike ReNoVatE, [28], [29] allow the VNs to operate at
a degraded Quality of Service. Recently, reactive recovery
approaches have been proposed for multi-cast VNs. Unlike
traditional VNs, multi-cast VNs take the Quality of Service
requirements of multi-cast services (e.g., bounded delay for
multi-cast completion) into account. Ayoubi et al. [41] has
shown that restoring multi-cast trees with delay constraints
during a single substrate node failure is NP-hard for gen-
eral graphs. Polynomial time heuristic algorithms for restoring
multi-cast trees in VNs during single substrate node, single
substrate link and multiple substrate node and link failures
have been proposed in [42]–[44], respectively. In contrast to

the reactive approaches for restoring multi-cast VNs, our pro-
posal does not make any assumption about the structure of
SN and communication pattern in the VN. Another line of
works [22], [45], originated in optical networks, proposed a
hybrid mechanism to select from a set of precomputed detours
for recovery during failure. However, in a highly saturated SN,
this mechanism may not find adequate resources left for the
recovery.

Distributed reactive approaches including, [16] and [46],
proposed multi-agent based algorithms to dynamically adapt
the VNs in response to SN failures. When an agent detects
a failure of another agent in the same cluster, the agents
within the same cluster collaborate with each other to re-
provision the failed VNodes and VLinks. These approaches
may generate sub-optimal solutions due to the lack of global
knowledge of the SN. Finally, [9] proposed a greedy algo-
rithm to find alternate substrate resources for the affected
part of a VN. In case of resource inadequacy, this approach
requires remapping the entire VN resulting in prolonged ser-
vice unavailability. Nonetheless, existing reactive algorithms
focus on re-embedding only a single VN, whereas ReNoVatE,
for the first time, considers partial re-embedding of a set of
affected VNs to improve recovery performance.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We first present a mathematical representation of a substrate
network, virtual network, and types of failure (Section III-A).
Then, we formally define the problem (Section III-B).
A glossary of key notations used in the paper is provided in
Table I.

A. System Model

1) Substrate Network (SN): We represent the SN as an
undirected graph, G = (V, E), where V and E denote the set of
SNodes and Substrate Links (SLinks), respectively. The set of
neighbors of an SNode u ∈ V is denoted by N (u). Bandwidth
capacity and residual bandwidth of an SLink (u, v) ∈ E are
represented by buv and ruv, respectively, while the cost of
allocating one unit of bandwidth in (u, v) is Cuv. Vf and Ef

represent the set of failed SNodes and SLinks, respectively.
Puv represents a path between SNodes u and v

2) Virtual Network (VN): We denote the set of VNs embed-
ded on the SN G as Ḡ = {Ḡ1, Ḡ2, . . . Ḡ|Ḡ|}. Each VN Ḡi ∈ Ḡ
is represented as an undirected graph Ḡi = (V̄i, Ēi), where
V̄i and Ēi are the sets of VNodes and VLinks of Ḡi, respec-
tively. The set of neighbors of a VNode ū ∈ V̄i is denoted
by N (ū). Each VLink (ū, v̄) ∈ Ēi has a bandwidth demand
biūv̄. We associate a penalty πiūv̄ to each VLink (ū, v̄) ∈ Ēi,
where πiūv̄ represents the penalty due to resource unavailabil-
ity of (ū, v̄). Each VN Ḡi has a set of location constraints,
Li = {Li(ū)|Li(ū) ⊆ V,∀ū ∈ V̄i}, such that a VNode ū ∈ V̄i

can only be mapped to an SNode u ∈ Li(ū). We represent this
location constraint with a binary variable �iūu, defined as:

�iūu =
{

1 iff ū ∈ V̄i can be provisioned on u ∈ V,

0 otherwise.

264 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Fig. 1. VN embedding and impact of failure.

3) Types of Failure: Let, f (ū) and g(ūv̄) denote the SNode
and substrate path where ū and (ū, v̄) have been embedded,
respectively. An SNode failure results in a set of VNode and
VLink failures of a VN Ḡi defined as V̄f

i = {ū ∈ V̄i|f (ū) ⊆
Vf } and Ēf

i = {(ū, v̄) ∈ Ēi|(u, v) ∈ g(ūv̄) ∧ (u, v) ∈ Ef },
respectively. There are two types of VLinks in Ēf

i .
Adjacent VLinks: The set of VLinks adjacent to the

failed VNode ū ∈ V̄f
i is represented by Ē f

i =
{(ū, v̄)|ū ∈ V̄f

i ∧ v̄ ∈ N (ū)}.
Independent VLinks: The set of VLinks that have failed due

to the failure of some SLinks on their mapped substrate paths
is denoted by Ēf

i = {(ū, v̄)|(u, v) ∈ g(ūv̄) ∧ (u, v) ∈ Ef ∧ ū /∈
V̄f

i ∧ v̄ /∈ V̄f
i }.

Finally, V̄f = {∪V̄f
i }, Ēf = {∪Ēf

i }, and Ēf = {∪Ēf
i } rep-

resent the set of failed VNodes, VLinks, and Independent
VLinks of all the VNs in Ḡ, respectively. Fig. 1 illustrates the
embedding of two VNs, Ḡ1 with V̄1 = {a, b, c} and Ḡ2 with
V̄2 = {d, e} on the SN G shown in the bottom. The numbers
next to a VLink and an SLink represent the VLink demand
and SLink residual bandwidth, respectively. The VNode map-
ping, i.e., f (.) is shown by placing a VNode beside its mapped
SNode and the VLink mapping, i.e., g(.) is depicted by
dashed paths between SNodes. For instance, f (a) = {D},
f (b) = {C}, f (c) = {G}, f (d) = {B}, f (e) = {H} and
g(ab) = {DB, BC}, g(ac) = {DH, HG}, g(bc) = {CF, FG},
and g(de) = {BD, DH}. We now show the impact of an SNode
failure with Vf = {D} and Ef = {DB, DE, DH}. VN Ḡ1 expe-
riences a VNode failure with V̄f

1 = {a}. Consequently, the
VLinks adjacent to a fail leading to Ē f

1 = {ab, ac}. Note there
is no Independent VLink failures in Ḡ1, and so Ēf

1 = Ē f
1. On

the other hand, V̄f
2 = φ since no VNode of Ḡ2 is mapped on

D. However, the failure of D results in an independent VLink
failure yielding Ēf

2 = Ēf
2 = {de}. Hence, any recovery algo-

rithm should re-embed all the affected VNodes and VLinks
from Ḡ1 and Ḡ2 leaving unaffected part such as VLink bc
undisrupted.

TABLE I
SUMMARY OF KEY NOTATIONS

B. Problem Statement

Given an SN G = (V, E), a failed SNode implying |Vf | = 1,
and a set of affected VNs Ḡ embedded on G, re-embed the
failed VNodes in V̄f and the failed VLinks in Ēf on G such
that the re-embedding achieves the following objectives:
• Primary objective differs based on the recovery model

being chosen. For FRM, primary objective is to maxi-
mize the total number of recovered VLinks across all the
affected VNs. In PRM, primary objective is to minimize
the total penalty for all the failed VLinks that remain
unrecovered.

• Secondary objective is to minimize the total cost of re-
embedding in terms of SLink bandwidth consumption.

Subject to the following constraints:
• a failed VNode ū ∈ V̄f

i is re-embedded on exactly one
SNode, v ∈ Li(ū). In addition, multiple VNodes of the
same VN cannot be mapped to an SNode. However,
multiple VNodes from different VNs can share an SNode.

• a failed VLink (ū, v̄) ∈ Ēf
i is re-embedded on a substrate

path Pf (ū)f (v̄) having sufficient bandwidth to accommodate
the demand of the VLink. The re-embedding cannot use
a substrate path containing the failed SNode.

• VNodes and VLinks not affected by the SNode failure
are not re-embedded.

IV. ILP FORMULATION: Opt-ReNoVatE

We provide an ILP formulation, Opt-ReNoVatE, based on
the Multi-commodity Flow Problem formulation of ReNoVatE.
We first present the decision variables (Section IV-A). Then,
we introduce the constraints (Section IV-B) followed by the
objective functions of the two variants of Opt-ReNoVatE
(Section IV-C and Section IV-D). Finally, we describe the
complexity of the problem in Section IV-E.

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 265

A. Decision Variables

The following decision variables indicate VNode and VLink
embedding of a VN Ḡi ∈ Ḡ on an SN G.

yiūu =
{

1 iff ū ∈ V̄i is mapped to u ∈ V,

0 otherwise.

xiūv̄
uv =

{
1 iff (ū, v̄) ∈ Ēi is mapped to (u, v) ∈ E,

0 otherwise.

The objective of Opt-ReNoVatE is to recover as many failed
VLinks in Ēf as possible to mitigate the impact of failure. It
may be possible that not all VLinks in Ēf can be re-embedded
due to substrate resource limitation. The following decision
variable defines which VLinks are re-embedded:

ziūv̄ =
{

1 iff (ū, v̄) ∈ Ēf
i is mapped to any substrate path

0 otherwise.

B. Constraints

1) Intactness of Unaffected VNodes and VLinks: The map-
ping of VNodes and VLinks that are not affected by the
substrate failure remains unchanged. Constraints (1) and
(2) ensure that unaffected VNodes and VLinks are not re-
embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄i \ V̄f
i : yiūf (ū) = 1 (1)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi \ Ēf
i ,∀(u, v) ∈ g(ūv̄) : xiūv̄

uv = 1. (2)

2) Exclusion of Failed SNodes and SLinks From Re-
Embedding: The failed VNodes or VLinks cannot use any of
the failed SNodes or SLinks during re-embedding. Constraint
(3) ensures that the failed VNodes are not re-embedded on the
failed SNodes, and (4) ensures that the failed VLinks are not
re-embedded on substrate paths containing a failed SLink.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄f
i ,∀u ∈ Vf : yiūu = 0 (3)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀(u, v) ∈ Ef : xiūv̄

uv = 0. (4)

3) Link Mapping Constraints: Constraint (5) prevents
overcommitment of SLink bandwidth. Constraint (6) ensures
that the in-flow and out-flow of each SNode is equal except at
the SNodes where the endpoints of a failed VLink are embed-
ded. Finally, constraint (7) ensures that if a VLink (ū, v̄) is
selected to be re-embedded due to the failure of ū, there is
some flow from the SNode u where v̄ is embedded already.

∀(u, v) ∈ E :
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēi

xiūv̄
uv × biūv̄ ≤ buv (5)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ V \ f (v̄) :∑
∀v∈N (u)

(
xiūv̄

uv − xiūv̄
vu

)
≤ yiūu − yiv̄u (6)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ f (v̄) :∑
∀v∈N (u)

(
xiūv̄

uv − xiūv̄
vu

)
= ziūv̄. (7)

4) Node Mapping Constraints: First, constraint (8) ensures
that re-embedding of a failed VNode should be done accord-
ing to the provided location constraint set. Second, constraint
(9) makes sure that a VNode should be mapped to at most
an SNode in the SN. Third, constraint (10) enforces that an
SNode will not host more than one VNodes from the same VN.
Finally, constraint (11) ensures that if a VLink (ū, v̄) ∈ Ē f

i is
selected to be re-embedded due to the failure of ū, the VNode
ū must be re-embedded on an SNode according to the location
constraint. Here, λ is a very large integer that turns the left
side of (11) into a fraction between 0 and 1 when any of the
ziūv̄ is 1. This enforces the right side of (11) to become 1,
thus ensuring the failed VNode to be re-embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄f
i ,∀u ∈ V : yiūu ≤ �iūu (8)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄f
i , :

∑
u∈V

yiūu ≤ 1 (9)

∀Ḡi ∈ Ḡ,∀u ∈ V :
∑
ū∈V̄i

yiūu ≤ 1 (10)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄f
i :

1

λ

∑
v̄∈N (ū)

ziūv̄ ≤
∑
∀u∈V

yiūu. (11)

C. Fair Recovery Model

The fair recovery model (FRM) treats all the failed VLinks
equally while recovering them. Hence, the objective of this
model is to recover as many failed VLinks as possible.
Following the problem statement, the objective function (12)
of FRM has two components. The first and primary component
maximizes the number of re-embedded failed VLinks. In other
words, it minimizes the total number of un-recovered VLinks
as shown in (12). It is obvious to observe that the minimum
value of the primary component is zero. However, there can
be multiple solutions that achieve the minimum value. Hence,
we need a secondary component in the objective function to
break ties among multiple solutions having the same value
for the primary objective. Therefore, the secondary compo-
nent minimizes the total cost of provisioning bandwidth for
re-embedding the failed VLinks on substrate paths. A weight
factor w is multiplied to the second component to impose the
relative weight to the components of (12). The value of w is
chosen to be a very small fraction so that it comes into effect
only to break ties among multiple solutions that have the same
value for the primary objective. In this way, w prefers the
number of recovered VLinks over the cost of re-embedding.

minimize

⎛
⎜⎝|Ēf | −

∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

ziūv̄

⎞
⎟⎠

+ w

⎛
⎜⎝ ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

∑
∀(u,v)∈E

xiūv̄
uv × Cuv × biūv̄

⎞
⎟⎠. (12)

D. Priority-Based Recovery Model

The priority-based recovery model (PRM) prioritizes some
failed VLinks over others to satisfy the SLA requirements
or to minimize the impact of failure or to maximize profits.

266 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

To impose such priorities, we utilize the penalty parameter πiūv̄

associated to each VLink (ū, v̄) ∈ Ēf
i . Each πiūv̄ can be given

as an input based on SLA requirement violation penalty or
can be computed based on the impact of failure. For instance,
a VLink with strict SLA requirement may have a higher value
of the penalty than that of a VLink with less-stringent SLA
requirement. The objective of PRM is to minimize the total
penalty across all the failed VLinks. Similar to the FRM case,
the objective function (13) has two components. The primary
component minimizes the total penalty incurred by the VLinks
that are not recovered. The second one minimizes the total
cost of provisioning bandwidth for re-embedding the failed
VLinks on substrate paths. A weight factor w is multiplied
to the second component to impose the relative weight to the
components of (13). The value of w is chosen to be a very
small fraction so that it comes into effect only to break ties
among multiple solutions that have the same value for the
primary objective. In this way, w prioritizes minimizing total
penalty over the cost of re-embedding.

minimize

⎛
⎜⎝ ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

(1− ziūv̄)× πiūv̄

⎞
⎟⎠

+ w

⎛
⎜⎝ ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

∑
∀(u,v)∈E

xiūv̄
uv × Cuv × biūv̄

⎞
⎟⎠ (13)

Note that, if we assume πiūv̄ = 1, ∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi, 13
reduces to 12. Therefore, objective function of PRM, i.e., 13
encompasses objective functions of both FRM and PRM, and
can be considered as the generalized recovery model.

E. Complexity of the Problem

The binary nature of the decision variables and the
flow constraints of Opt-ReNoVatE prevent any VLink from
being mapped to multiple substrate paths. This restricts the
re-embedding of Independent VLinks to the NP -hard Multi-
commodity Unsplittable Flow Problem [47]. The VNode re-
embedding follows from VLink re-embedding since there are
no costs associated with VNodes. Therefore, the re-embedding
of a VNode and its adjacent VLinks of a VN becomes
the NP -hard Single-source Unsplittable Flow Problem with
unknown source [48]. When there are a batch of affected VNs,
computing the best sequence of VNs from a combinatorial
number of sequences to maximize the number of recovered
VLinks makes the problem computationally intractable.

V. HEURISTIC SOLUTION: Fast-ReNoVatE

Due to the intractability of Opt-ReNoVatE, we resort
to a heuristic algorithm, Fast-ReNoVatE, to find feasible
solutions in reasonable time. Fast-ReNoVatE re-embeds the
failed VNodes and their Adjacent VLinks (Section V-A)
and Independent VLinks (Section V-B) of the affected VNs
efficiently.

Algorithm 1 VNodes Recovery

1: function VNODES RECOVERY(G, Ḡ, Vf , Ef , recovery −
model)

2: if recovery− model = FRM then
3: Ḡ ← Sort Ḡi ∈ Ḡ in increasing order of∑
∀(ū,v̄)∈Ē f

i

biūv̄

4: else if recovery− model = PRM then
5: Ḡ ← Sort Ḡi ∈ Ḡ in decreasing order of∑
∀(ū,v̄)∈Ē f

i

πiūv̄

6: end if
7: maxR ← 0
8: for all Ḡi ∈ Ḡ do
9: ū← failed virtual node in Ḡi, bestū ← NIL

10: for all l ∈ Li(ū) \ Vf do
11: Pl ← Max− Paths(G, Ḡi, ū, l, Ē f

i , Vf , Ef)

12: if R (Pl) > maxR or (R (Pl) = maxR and
C (Pl) ≤ C (M)) then

13: M← Pl, bestū ← l
14: end if
15: end for
16: if bestū
= NIL then
17: map ū to bestū
18: ∀(ū, v̄) ∈ Ē f

i : map (ū, v̄) to M[(ū, v̄)]
19: end if
20: end for
21: end function

A. Recovery of VNodes and Adjacent VLinks

The inputs to the VNode Recovery algorithm (Algorithm 1)
comprise an SN G, a set of affected VNs Ḡ that are embed-
ded on G, the recovery model to be applied, and a set of
failed SNodes Vf and failed SLinks Ef . The purpose of the
recovery model is to select the proper model between the two
possibilities, i.e., FRM and PRM. Algorithm 1 initially sorts
the affected VNs in Ḡ and Ḡ represents this sorted order. The
sorting function depends on the recovery model being adopted.
In FRM, the function sorts the affected VNs in Ḡ in increas-
ing order of the total lost bandwidth in their Adjacent VLinks.
The total lost bandwidth of a VN, Ḡi ∈ Ḡ is computed as the
summation of the bandwidth demands for all the failed VLinks
in Ē f

i of Ḡi. On the other hand, PRM sorts the affected VNs
in Ḡ in decreasing order of the total penalty in their Adjacent
VLinks. The total penalty of a VN, Ḡi ∈ Ḡ is computed as
the summation of the penalty πiūv̄ of all the failed VLinks in
Ē f

i of Ḡi. Intuitively, the algorithm proceeds to recover the
VNs in Ḡ in the sorted order of Ḡ to increase the number
of recovered VLinks in FRM or to decrease the cumulative
penalty in PRM. For each VN Ḡi, the algorithm tries to re-
embed the failed VNode ū ∈ V̄f

i and the VLinks adjacent to ū,
i.e., Ē f

i to an SNode present in the location constraint set of ū,
i.e., Li(ū) and to substrate paths, respectively. To accomplish
this, it iterates over all the SNodes l ∈ Li(ū) \ Vf , and selects
the SNode, bestū that maximizes the cardinality of the set of

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 267

substrate paths, Pl, computed for the VLinks in Ē f
i . In case of

a tie, the SNode with the lower cost of the paths in Pl, denoted
by M, is selected. Finally, the algorithm re-embeds ū and the
VLinks in Ē f

i to bestū and to the paths in M, respectively.
As discussed in Section IV-E, optimally computing the set

of substrate paths Pl from an SNode l ∈ Li(ū) \ Vf for the
VLinks in Ē f

i of a VN is NP -hard. Majority of the VN
embedding proposals aims to minimize the cost of embed-
ding [2]. They would embed each VLink in Ē f

i one-by-one
by adopting a minimum cost substrate path finding approach.
However, in a bandwidth constrained scenario, a minimum
cost path may contain some bottleneck SLinks. Allocating
the bandwidth of these SLinks to a VLink may leave later
VLinks unrecoverable. The objective of ReNoVatE is to maxi-
mize the number of recovered VLinks irrespective of the cost
of recovery. Hence, our heuristic (Algorithm 2) simultaneously
computes Pl for all the VLinks in Ē f

i to maximize the cardi-
nality of Pl. Algorithm 2 works by finding maximum flow
from a source to a sink in a graph avoiding any bottleneck
SLink. If we always send unit flow from a source to a sink
in a graph, the paths carrying the maximum amount of flow
will correspond to the maximum number of paths between
the source and the sink without exceeding the capacity of the
SLinks.

To implement this idea, Algorithm 2 first augments the
SN graph G with a pseudo sink SNode, namely S. It then
adds a pseudo SLink from each SNode that hosts a VNode,
v̄ ∈ N (ū) to S, where ū ∈ V̄f

i . The capacity of each aug-
mented SLink is set to 1 to ensure the un-splittability of the
substrate paths. Further, each bidirectional SLink in E \ Ef is
replaced with two unidirectional SLinks, and the capacity of
these new SLinks are discretized according to an estimation
function, ruv

max∀{(ū,v̄)∈Ē f
i }
{biūv̄} . This stringent estimation ensures

that each selected SLink can provide the bandwidth even for
the VLink with the maximum demand among all the VLinks
in Ē f

i . Other estimation functions such as min or average could
be used allowing over-subscription of bandwidth for some of
the VLinks. Fig. 2 illustrates the maximum flow realization
for the recovery of VN Ḡ1 embedded on SN G according to
Fig. 1. Upon the failure of SNode D, VNode a and VLinks
ab and ac of Ḡ1 fail. Since N (a) = {b, c}, f (b) = C, and
f (c) = G, we add SLinks CS and GS to sink S with capac-
ity 1, as shown by the dashed arrows in Fig. 2. This figure
depicts the transformed SN after removing the failed SNode
and SLinks, replacing each bidirectional SLink with two unidi-
rectional SLinks, and estimating the capacity of these SLinks
using ruv

max {6,5} .
After augmenting and initializing the capacity and flow of

each SLink in G, Algorithm 2 proceeds with the steps of the
Edmonds-Karp algorithm [49] for computing the maximum
flow from each l ∈ Li(ū) \ Vf to S. We modify the Edmonds-
Karp algorithm to compute the set of augmenting paths P from
each l to S so that the sum of flows carried along these paths is
the maximum. Each augmenting path P ∈ P will consume one
unit of bandwidth since we deliberately assign unit capacity
to the pseudo SLinks incident to S. In addition, a path P ∈ P
will contain an SNode from the set {f (v̄)|v̄ ∈ N (ū)}, since S

Fig. 2. Maxflow Realization.

can only be reached through these SNodes. In the event that
a new path P cancels the flow on any bottleneck SLink (u, v)
of any existing path Pi ∈ P , Algorithm 2 updates both P and
Pi to exclude (u, v). Following these steps, the set of paths
P from l to S is computed. However, the VLink re-mapping
requires substrate paths from l to any SNode in {f (v̄)|v̄ ∈
N (ū)}. Hence, the algorithm identifies the path Pi that contains
any SNode in {f (v̄)|v̄ ∈ N (ū)}, removes the SLink (f (v̄), S)

from Pi, and indexes the modified Pi with the corresponding
VLink (ū, v̄). After modifying and indexing all the paths in
Pl, the algorithm returns Pl.

To illustrate, we assume L1(a) = {B, E, H} in the exam-
ple of Fig. 2. When l = E, Algorithm 2 computes the
paths carrying the maximum flow from E to S through C
and G in the transformed SN of Fig. 2. If the augmenting
path finding step in the algorithm picks the shortest path
{EB, BG, GS} as P1, the maximum flow is restricted to 1 by
the bottleneck SLink BG. Hence, the algorithm computes a
new path P = {EH, HI, IG, GB, BA, AC, CS} in the residual
network as defined in the Edmonds-Karp algorithm. Since
P cancels the flow along the bottleneck SLink BG ∈ P1,
Algorithm 2 reorganizes the segments of P with P1 to yield
P = {{EB, BA, AC, CS}, {EH, HI, IG, GS}}. Finally, the algo-
rithm excludes CS and GS from the two paths and returns
Pl[(a, b)] = {EB, BA, AC} and Pl[(a, c)] = {EH, HI, IG}.

B. Recovery of Independent VLinks

As presented in Section IV-E, the re-embedding of
Independent VLinks in Ēf is a variant of the NP -hard
Multi-commodity Unsplittable Flow Problem. The heuristic
described in Section V-A is not applicable to this problem
since both the endpoints of a VLink in Ēf are mapped to
some SNodes, and finding maximum paths may yield invalid
paths between the wrong pair of SNodes. Hence, we propose
a greedy strategy (Algorithm 3) based on computing the min-
imum cost path. Similar to the recovery of adjacent VLinks,

268 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Algorithm 2 Max-Paths

1: function MAX-PATHS(G, Ḡi, ū, l, Ē f
i , Vf , Ef)

2: V ← V \ Vf ∪ {S}, E← E \ Ef

3: ∀(ū, v̄) ∈ Ē f
i : E← E \ Ef ∪ {(f (v̄), S)}

4: max_bw← max
∀(ū,v̄)∈Ē f

i

{biūv̄}
5: ∀(u, v) ∈ E s.t. u = S or v = S :
6: flowuv ← 0, cuv ← 1
7: ∀(u, v) ∈ E s.t. ruv > 0 and u
= S and v
= S :
8: flowuv ← flowvu ← 0
9: cuv ← cvu ← � ruv

max_bw�
10: Gr ← G, P ← φ, Pl ← φ

11: while ∃ augmenting path P from l to S in Gr do
12: Cf (P)← min∀(u,v)∈P

{cuv}
13: Augment Cf (P) units flow in Gr along P
14: Update residual capacity in Gr along P
15: Remove links with residual capacity ≤ 0
16: for all Pi ∈ P do
17: if P cancels the flow along (u, v) ∈ Pi then
18: τ ← Sub paths in Pi \ (u, v)
19: ν ← Sub paths in P \ (v, u)

20: P← Path formed by segments in τ and ν

21: Pi ← Path formed by segments in τ and ν

22: end if
23: end for
24: P ← P ∪ P
25: end while
26: ∀Pi ∈ P , ∀(ū, v̄) ∈ Ē f

i :
27: Pi ← Path containing (f (v̄), S)

28: Pl[(ū, v̄)]← Pi \ (f (v̄), S)

29: return Pl

30: end function

Algorithm 3 VLinks-Recovery

1: function VLINKS-RECOVERY(G, Ēf , Vf , Ef , recovery −
model)

2: P ← φ

3: V ← V \ Vf , E← E \ Ef

4: if recovery− model = FRM then
5: Ē f ← Sort (x̄, ȳ) ∈ Ēf in increasing order of bix̄ȳ

6: else if recovery− model = PRM then
7: Ē f ← Sort (x̄, ȳ) ∈ Ēf in decreasing order of πix̄ȳ

8: end if
9: for all (x̄, ȳ) ∈ Ē f do

10: P [(x̄, ȳ)]← MCP(G, f (x̄), f (ȳ), bix̄ȳ)
11: map (x̄, ȳ) to P [(x̄, ȳ)]
12: end for
13: end function

Algorithm 3 first sorts the VLinks in Ēf based on the recovery
model, and Ē f represents this order. FRM sorts the VLinks in
increasing order of their bandwidth demands, whereas PRM
sorts them in decreasing order of their penalties. Such sorting
orders help FRM (or, PRM) maximize (or, minimize) the num-
ber of recoveries (or, the total incurred penalties). According
to this order, the algorithm computes alternate substrate path

for each VLink in (x̄, ȳ) ∈ Ē f in the subgraph induced by
excluding the failed SNode and SLinks from G. For a partic-
ular VLink (x̄, ȳ), the algorithm finds the minimum cost path
from f (x̄) to f (ȳ) using the procedure MCP, and adds it to
the set P . The procedure MCP uses a modified version of
Dijkstra’s shortest path algorithm [50] to take into account
SLink residual capacity and VLink demand while computing
the minimum cost path.

To illustrate, Fig. 2 depicts the recovery of Independent
VLink de of VN Ḡ2, embedded on SN G according to Fig. 1.
Algorithm 3 should find alternate substrate paths between B
and H for VLink de. The max flow based heuristic may return
substrate path between B and G (or, between H and C), and
is thus inappropriate. Hence, Algorithm 3 recovers de through
the minimum cost path {BG, GH} that has sufficient bandwidth
to satisfy the demand of de.

C. Running Time Analysis

The most expensive step in Algorithm 1 is the compu-
tation of the maximum paths using Algorithm 2. The core
part of Algorithm 2 follows the steps of Edmonds-Karp
Algorithm. If Edmonds-Karp Algorithm computes augment-
ing paths using Breadth-first Search, it runs in O(|V||E|2) time.
Since Algorithm 2 is invoked |L(ū)| times for recovering a VN,
and there are |V̄f | number of affected VNs, total running time
yields O(|L(ū)||V̄f ||V||E|2). In contrast, Algorithm 3 invokes
Dijkstra’s shortest path algorithm for each VLink in Ēf . Since
Dijkstra’s shortest path algorithm runs in O(|E| + |V| log |V|)
time, Algorithm 3 requires O(|Ēf |(|E| + |V| log |V|)) time.

VI. EVALUATION

In this section, we first present the compared approaches in
Section VI-A followed by a description of the evaluation met-
rics in Section VI-B. Then, we describe the simulation setup
in Section VI-C and VN embedding data generation method in
Section VI-D. Finally, we present our evaluation results found
through extensive simulation in Section VI-E.

A. Compared Algorithms

We first demonstrate the performance of FRM-based recov-
ery by comparing Opt-ReNoVatE and Fast-ReNoVatE with an
implementation of dynamic recovery [9], called Dyn-Recovery.
For a fair comparison, we selected a related work that takes
a similar approach as we did, i.e., a reactive recovery scheme
that is executed centrally with a global knowledge about
what are embedded on the substrate network. In addition,
we exclude the last step of re-embedding the entire VN from
the implementation of Dyn-Recovery in the event of resource
inadequacy. Although we evaluate all three algorithms in
small size networks, we cannot evaluate Opt-ReNoVatE for
large networks because of the inherent complexity of ILP-
solvers. Alternatively, we present Fast-ReNoVatE’s baseline
performance assuming the SLinks of an SN have infinite
bandwidth, and refer to it as Fast-ReNoVatE-INF. We com-
pare Fast-ReNoVatE with Fast-ReNoVatE-INF to demonstrate
the impact of residual bandwidth and the possible partition-
ing in a substrate network on the recovery from an SNode

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 269

TABLE II
SUMMARY OF SIMULATION PARAMETERS

failure. Finally, we analyze the impact of priority-based recov-
ery through a rigorous comparison between the two proposed
recovery models, i.e., FRM and PRM. Since these mod-
els are orthogonal to our solutions, i.e., Opt-ReNoVatE and
Fast-ReNoVatE, we compare the two models on each of our
solutions. We differentiate between the two variants of Opt-
ReNoVatE as Opt-ReNoVatE-FRM and Opt-ReNoVatE-PRM.
Similarly, Fast-ReNoVatE-FRM and Fast-ReNoVatE-PRM rep-
resent the variants of Fast-ReNoVatE for FRM and PRM,
respectively.

B. Performance Metrics

1) Recovery Efficiency: The fraction of successfully recov-
ered VLinks over all failed VLinks expressed in percentage.

2) Recovery Cost: The average cost of provisioning band-
width along a substrate path times the cost of allocating one
unit bandwidth for re-embedding each failed VLink.

3) Execution Time: The time required for an algorithm to
find the solution for all the VNs affected by an SNode failure.

4) Normalized Penalty: Total incurred penalty normalized
with the total number of VLinks that remain unrecovered.

C. Simulation Setup

We implement Opt-ReNoVatE using IBM ILOG CPLEX
C++ library; and Fast-ReNoVatE and Dyn-Recovery [9] using
C++. We evaluate the algorithms on both small and large
scale networks as summarized in Table II. For each problem
instance in this table, we generate 5 random SNs by taking the
number of SNodes and link-to-node ratio as inputs, and ran-
domly creating SLinks between SNodes. Then, we generate a
number of VNs for each SN, and embed the VNs on the SN
following the procedure described in Section VI-D. We select a
random SNode and its one hop neighbor SNodes as the loca-
tion constraint set of a VNode. Afterwards, we simulate an
SNode failure by removing each SNode in the SN one-by-one
and execute the recovery algorithms being evaluated on the
affected VNs. Finally, we measure the performance metrics of
the compared algorithms by taking averages across all SNode
failures for all 5 similar problem instances. The simulations
are performed on a server with 2 Intel Xeon E5-2650 (8 cores
@ 2.0GHz, each) processors and 256GB of RAM.

D. VN Embedding Method

VN generation and embedding are done simultaneously to
overcome the issue of creating VNs that do not have feasi-
ble embeddings. The embedding of VNs on an SN is done
in a random but load-balanced manner to achieve uniform
distribution of VNs across the SN. Load balancing has been
considered as one of the key criteria for VN embedding in
previous work [2]. Achieving higher utilization (beyond 70%)

of SN requires a denser embedding which is done by relaxing
the load-balancing criteria. The embedding of a VN starts by
randomly selecting a source SNode that has free capacity for
a VNode. This forms the first VNode (source VNode) of the
VN currently being embedded. For each randomly assigned
neighbor of this VNode, a random destination SNode within
several hop distances from the source SNode is selected as
a candidate for embedding the subsequent VNode (destina-
tion VNode). The source and destination VNodes are joined
using a VLink embedded on the shortest path between source
and destination SNodes. If the path is not found, the destina-
tion VNode is moved to a different destination SNode. If the
embedding is successful, the bandwidth demand of the VLink
is generated and subtracted from the SLink residual capac-
ity along the embedding path. To evaluate PRM, the penalty
associated with the VLink is generated using a unform random
distribution between 1 and the total number of failed VLinks.
In the case of FRM, the penalty of each VLink is set to 1
to enforce impartial recovery. These steps are repeated until
all VNodes are embedded, generating both the VN and its
embedding on the SN, simultaneously.

E. Results

1) Small Scale Evaluations: In small scale settings, we
evaluate Opt-ReNoVatE, Fast-ReNoVatE, and Dyn-Recovery
focusing on the following aspects: (i) by varying number of
embedded VNs to achieve different SLink utilizations in the
same SN (Fig. 3) (ii) by varying SN sizes while keeping the
VN size and SLink utilization fixed (Fig. 4). We now present
the impact of these aspects on our performance metrics.

a) Recovery efficiency: Fig. 3(a) shows that the recov-
ery efficiencies of Opt-ReNoVatE, Fast-ReNoVatE, and Dyn-
Recovery decrease with the increase in SLink utilization. As
the utilization increases, more VNs are affected by the SNode
failure, and less bandwidth is left for recovery resulting in the
gradual decrease in the number of recovered VLinks. Further,
the impact of utilization is more profound in the higher uti-
lization cases due to the lack of load balanced embedding.
In the higher utilized cases, the recovery efficiencies of Fast-
ReNoVatE is ∼ 6% better than those of Dyn-Recovery and
∼ 3% worse than those of Opt-ReNoVatE. The reason behind
Fast-ReNoVatE’s worse performance is that Fast-ReNoVatE
recovers adjacent VLinks and independent VLinks in one par-
ticular order. In contrast, Opt-ReNoVatE recovers all the failed
VLinks at once by exploring all possible sequences result-
ing in the optimal solution. Fig. 4(a) compares the recovery
efficiencies of the three approaches for different SN sizes.
As observed in the figure, recovery efficiencies of all three
approaches increase slightly with the increase in SN size. This
is due to the higher path diversity augmented by the higher

270 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Fig. 3. Small scale performance by varying SLink utilization.

number of SLinks in the larger SN. All the three approaches
utilize the path diversity in the SN to recover more failed
VLinks resulting in the increased recovery efficiencies.

b) Recovery cost: We show the recovery cost in Fig. 3(b)
against different SLink utilizations. In higher utilization cases,
more SLinks become saturated in terms of bandwidth, and
all the algorithms have to select longer substrate paths to
recover resulting in increased costs. Further, the costs of Opt-
ReNoVatE are the least among the three, since it selects the
most suitable paths through exhaustive search. In contrast,
Fast-ReNoVatE iterates over all the affected VNs and the inde-
pendent VLinks in a greedy manner, sometimes preferring less
suitable paths resulting in more costs than Opt-ReNoVatE.
Finally, Dyn-Recovery does not consider the cost of a path
while recovering a VLink. It may select a longer path than
that selected by Fast-ReNoVatE leading to a much larger cost
than Fast-ReNoVatE. On average, Fast-ReNoVatE incurs ∼ 7%
more cost than Opt-ReNoVatE and ∼ 20% less cost than Dyn-
Recovery. Fig. 4(b) presents the recovery cost against different
SN sizes. This figure shows that the recovery costs of all three

Fig. 4. Small scale performance by varying SN size.

approaches gradually increase with the increase in SN size.
This is due to the fact that the two end SNodes of a failed
VLink are embedded far apart from one another in a larger
SN. Therefore, all the approaches recover the failed VLinks
using longer substrate paths leading to higher recovery costs.
However, the differences of recovery costs among the three
approaches follow the same pattern as in the SLink utilization
cases.

c) Execution time: To demonstrate the scalability of the
compared algorithms, we report their execution times on dif-
ferent problem instances. Fig. 3(c) presents the execution times
by varying utilization on a fixed SN, whereas Fig. 4(c) presents
the execution times in SNs with varying sizes while keeping
the utilization fixed at ∼ 53%. According to Table II, both
problem size and the total number of failed VLinks increase
with the increase in utilization and SN size. Consequently,
the execution times grow for all the approaches, however,
the increase is exponential for Opt-ReNoVatE. As it turns
out, Fast-ReNoVatE and Dyn-Recovery take less than 3ms and
2ms, respectively, in the largest problem instances, whereas

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 271

Fig. 5. Performance of large scale testcases.

Opt-ReNoVatE takes ∼ 6s on the same problem instances. The
slightly higher execution times of Fast-ReNoVatE compared to
Dyn-Recovery are due to the extra iterations of Fast-ReNoVatE
to avoid bottleneck SLinks to achieve higher recovery efficien-
cies. Despite that, Fast-ReNoVatE is 400x−2000x faster than
Opt-ReNoVatE depending on problem instance. Finally, Opt-
ReNoVatE could not scale to more than 65 SNode SNs as
shown in Fig. 4(c).

2) Large Scale Evaluations: In large scale settings, we eval-
uate Fast-ReNoVatE, Dyn-Recovery, and Fast-ReNoVatE-INF
by varying SLink utilizations in the same SN(Fig. 5).

a) Recovery efficiency: Fig. 5(a) shows that the recov-
ery efficiencies of Fast-ReNoVatE are ∼ 6% better than
those of Dyn-Recovery and ∼ 2.5% worse than those of
Fast-ReNoVatE-INF. Similar to the small scale results, recov-
ery efficiencies of Fast-ReNoVatE and Dyn-Recovery decrease
with the increase in SLink utilization whereas recovery effi-
ciencies remain almost the same for Fast-ReNoVatE-INF. The
near constant recovery efficiencies of Fast-ReNoVatE-INF con-
firms that the reason of failing to recover is the insufficiency
of bandwidth in SLinks. In other words, if there were ade-
quate bandwidth in the SLinks, Fast-ReNoVatE could recover

Fig. 6. Impact of adding priority on Opt-ReNoVatE.

∼ 99% of the failed VLinks. The very small percentage of
un-recovered VLinks of Fast-ReNoVatE-INF is due to the par-
titioning in the SN caused by the SNode failure. In these cases,
it is not possible to recover a failed VLink even if there is
sufficient bandwidth.

b) Recovery cost: Fig. 5(b) shows the recovery cost in
large networks. For the same reasons discussed in the case of
small scale networks, Dyn-Recovery incurs the largest amount
of cost, and the costs of Fast-ReNoVatE and Dyn-Recovery
rise with the increase in SLink utilization. In contrast, there is
no effect of residual bandwidth in finding an alternate path in
Fast-ReNoVatE-INF, and it can select the minimum cost path
resulting in the least costs. This is true for Fast-ReNoVatE
in very low utilized SNs. Further, the two end nodes of the
failed VLink are embedded closely to each other in a highly
utilized SN. Hence, Fast-ReNoVatE-INF recovers the VLink
with shorter path leading to the decrease of costs with the
increase in SLink utilization. The counterintuitive behavior of
Fig. 5(b) from SLink utilization of 70 to 80 is due to relax-
ing the load-balancing criteria as explained in Section VI-D.
The denser embedding to achieve higher utilization maps the
VNodes of a VN closer to one another, thus requiring lower
recovery cost than a sparser one.

c) Execution time: Fig. 5(c) shows that Fast-ReNoVatE
has similar timing performance to Dyn-Recovery, and both are

272 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Fig. 7. Impact of adding priority on Fast-ReNoVatE.

able to find a solution in less than 30ms even in the highest
utilized SN.

3) Comparison Between FRM and PRM: In this section, we
compare FRM and PRM to demonstrate the impact of priority
based recovery on Opt-ReNoVatE and Fast-ReNoVatE, respec-
tively. Additionally, evaluations on Opt-ReNoVatE are done
for small scale problem instances, whereas, Fast-ReNoVatE is
evaluated on large scale topologies.

a) Impact on Opt-ReNoVatE: Fig. 6 presents nor-
malized penalties for the two variants of Opt-ReNoVatE,

i.e., Opt-ReNoVatE-FRM and Opt-ReNoVatE-PRM. Although
Opt-ReNoVatE-FRM and Opt-ReNoVatE-PRM employ two
separate objective functions as presented in Section IV, their
performances in terms of recovery efficiency are found sim-
ilar. Hence, we do not report those results. However, they
recover different VLinks in the face of resource inadequacy.
This difference can be clearly observed in their corresponding
normalized penalties and recovery costs shown in Fig. 6(a)
and Fig. 6(b), respectively. As seen in Fig. 6(a), the nor-
malized penalties incurred by Opt-ReNoVatE-FRM remain
always higher than those incurred by Opt-ReNoVatE-PRM.
Even though both of them recover the same number of
VLinks, Opt-ReNoVatE-PRM prioritizes the failed VLinks
having higher penalties in order to minimize the total penalty.
On the other hand, Opt-ReNoVatE-FRM remains indifferent to
the failed VLinks while recovery leading to the higher normal-
ized penalty. Furthermore, the normalized penalties increase
with the increase in SN utilizations for both models. This is
due to the higher number of VLinks being affected by an
SNode failure and the lower residual capacities left for recov-
ery in a higher utilized SN. However, Opt-ReNoVatE-FRM
suffers more than Opt-ReNoVatE-PRM due to Opt-ReNoVatE-
FRM’s impartial treatment on the failed VLinks. In contrast,
Opt-ReNoVatE-PRM prioritizes the failed VLinks with higher
penalties even though they incur higher recovery cost. This
accounts for the slightly higher recovery costs incurred by
Opt-ReNoVatE-PRM as seen in Fig. 6(b).

b) Impact on Fast-ReNoVatE: Fig. 7 demonstrates the
performances of the two variants of Fast-ReNoVatE, i.e., Fast-
ReNoVatE-FRM and Fast-ReNoVatE-PRM in terms of our
evaluation metrics. Fig. 7(a) shows the normalized penalties
incurred by the two models by varying SN utilizations in large
scale topologies. The graph of Fig. 7(a) follows similar trend
as we observe in the case of Opt-ReNoVatE in Fig. 6 and
reinforces the argument presented in the previous paragraph.
However, the deviations between Fast-ReNoVatE-FRM and
Fast-ReNoVatE-PRM are less profound than those of the mod-
els of Opt-ReNoVatE. The reason behind such difference is that
Fast-ReNoVatE-PRM employs priority on the VN level rather
than on the VLink level as employed by Opt-ReNoVatE-PRM.
Unlike the models of Opt-ReNoVatE, Fast-ReNoVatE-FRM
and Fast-ReNoVatE-PRM show slight differences in terms
of recovery efficiency and cost. Therefore, we present those
results in Fig. 7(b) and Fig. 7(c). According to these figures,
the recovery efficiencies (or, costs) of Fast-ReNoVatE-PRM are
slightly lower (or, higher) than those of Fast-ReNoVatE-FRM.
This stems from the fact that Fast-ReNoVatE-PRM prioritizes
the VLinks with higher penalties despite being recovered in
longer substrate paths. Such recovery increases the recovery
cost and reduces the residual capacity of the SLinks leaving
less room for re-embedding some VLinks. This accounts for
the higher recovery costs and lower recovery efficiencies of
Fast-ReNoVatE-PRM than those of Fast-ReNoVatE-FRM.

c) Impact on execution time: Since FRM and PRM
are orthogonal to our solutions Opt-ReNoVatE and Fast-
ReNoVatE, incorporating the models to our solutions does
not bring any significant change. Hence, the complexity of
Opt-ReNoVatE presented in Section IV-E and the running

SHAHRIAR et al.: GENERALIZED RECOVERY FROM NODE FAILURE IN VNE 273

time analysis of Fast-ReNoVatE presented in Section V-C
remain the same irrespective of the model being chosen. In
our simulations, the execution times of Opt-ReNoVatE-PRM
and Fast-ReNoVatE-PRM are found similar to their FRM
counterparts. Hence, we refrain from reporting them in this
paper.

VII. CONCLUSION

In this paper, we have addressed the problem of gener-
alized recovery of a batch of affected VNs, resulting from
a single substrate node failure. We have formulated the
problem as an Integer Linear Programming (ILP) model,
Opt-ReNoVatE and presented an efficient heuristic algorithm,
Fast-ReNoVatE, to tackle the computational complexity. We
have evaluated Fast-ReNoVatE, Opt-ReNoVatE, and a state-of-
the-art solution, Dyn-Recovery in both small and large scale
networks. Evaluation results demonstrate that Fast-ReNoVatE
can recover ∼ 6% more VLinks than Dyn-Recovery and ∼ 3%
less VLinks than Opt-ReNoVatE in high utilization scenar-
ios. In terms of scalability, Fast-ReNoVatE is several orders
of magnitude faster than Opt-ReNoVatE, and has compara-
ble performance with Dyn-Recovery. In large scale networks,
we have compared Fast-ReNoVatE with Dyn-Recovery and a
baseline case of infinite bandwidth SN. These results demon-
strate that Fast-ReNoVatE is able to recover ∼ 99% of the
failed VNs if the SN has adequate residual capacity, and has
similar timing performance to Dyn-Recovery. Furthermore, we
have investigated two variants of our recovery scheme, namely,
fair recovery model (FRM) and priority-based recovery model
(PRM). Our evaluation results suggest that FRM-based solu-
tions fail to take into account variety of recovery requirements.
In contrast, PRM-based solutions can prioritize the affected
VNs based on SLA requirements, impacts of failure or profits,
and adhere to that priority during recovery.

In the future, we plan to extend this work to accommodate
recovery with over-subscribed bandwidth allocation for the
failed VLinks. In addition, we intend to study the problem in
a real testbed environment and evaluate our solutions through
a prototype implementation.

ACKNOWLEDGMENT

The authors would like to thank our shepherd Luciano
Paschoal Gaspary and the anonymous CNSM 2016 review-
ers for their valuable feedback and Nicole Keshav for writing
suggestions that helped improve the quality of this paper.

REFERENCES

[1] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, no. 5, pp. 862–876, Apr. 2010.

[2] A. Fischer, J. F. Botero, M. T. Beck, H. D. Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[3] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in Proc. ACM
SIGCOMM, vol. 41. Toronto, ON, Canada, Aug. 2011, pp. 350–361.

[4] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in Proc.
INFOCOM, vol. 4. Mar. 2004, pp. 123–133.

[5] S. Herker, A. Khan, and X. An, “Survey on survivable virtual network
embedding problem and solutions,” in Proc. ICNS, 2013, pp. 99–104.

[6] T. Guo, N. Wang, K. Moessner, and R. Tafazolli, “Shared backup
network provision for virtual network embedding,” in Proc. IEEE ICC,
Kyoto, Japan, Jun. 2011, pp. 1–5.

[7] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network
embedding algorithms for network virtualization,” IEEE Trans. Netw.
Service Manag., vol. 10, no. 2, pp. 105–118, Jun. 2013.

[8] X. Chang, J. K. Muppala, B. Wang, J. Liu, and L. Sun, “Migration cost
aware virtual network re-embedding in presence of resource failures,” in
Proc. 18th IEEE Int. Conf. Netw. (ICON), Singapore, 2012, pp. 24–29.

[9] L. Bo, H. Tao, S. Xiao-Chuan, C. Jian-Ya, and L. Yun-Jie, “Dynamic
recovery for survivable virtual network embedding,” J. China Univ. Posts
Telecommun., vol. 21, no. 3, pp. 77–84, Jun. 2014.

[10] B. Guo et al., “Survivable virtual network design and embedding to
survive a facility node failure,” J. Lightw. Technol., vol. 32, no. 3,
pp. 483–493, Feb. 1, 2014.

[11] Q. Hu, Y. Wang, and X. Cao, “Survivable network virtualization for
single facility node failure: A network flow perspective,” Opt. Switching
Netw., vol. 10, no. 4, pp. 406–415, 2013.

[12] H. Jiang, L. Gong, and Z. W. Zuqing, “Efficient joint approaches for
location-constrained survivable virtual network embedding,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA, 2014,
pp. 1810–1815.

[13] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of sur-
vivable virtual infrastructure to recover from facility node failures,” in
Proc. IEEE Int. Conf. Commun. (ICC), Kyoto, Japan, 2011, pp. 1–6.

[14] O. Soualah, I. Fajjari, N. Aitsaadi, and A. Mellouk, “A batch approach
for a survivable virtual network embedding based on Monte–Carlo tree
search,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM),
Ottawa, ON, Canada, 2015, pp. 36–43.

[15] Z. Cai, F. Liu, N. Xiao, Q. Liu, and Z. Wang, “Virtual network
embedding for evolving networks,” in Proc. IEEE Global Telecommun.
Conf. (GLOBECOM), Miami, FL, USA, 2010, pp. 1–5.

[16] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” in Proc. 2nd ACM SIGCOMM
Workshop Virtualized Infrastruct. Syst. Archit., New Delhi, India, 2010,
pp. 41–48.

[17] S. R. Chowdhury et al., “Revine: Reallocation of virtual network embed-
ding to eliminate substrate bottlenecks,” in Proc. IEEE/IFIP Integr. Netw.
Manag. Symp. (IM), 2017.

[18] S. B. Masti and S. V. Raghavan, “Simulated annealing algorithm for
virtual network reconfiguration,” in Proc. 8th EURO-NGI Conf. Next
Gener. Internet (NGI), Karlskrona, Sweden, 2012, pp. 95–102.

[19] P. N. Tran and A. Timm-Giel, “Reconfiguration of virtual network
mapping considering service disruption,” in Proc. IEEE Int. Conf.
Commun. (ICC), Budapest, Hungary, 2013, pp. 3487–3492.

[20] P. N. Tran, L. Casucci, and A. Timm-Giel, “Optimal mapping of virtual
networks considering reactive reconfiguration,” in Proc. IEEE 1st Int.
Conf. Cloud Netw. (CLOUDNET), Paris, France, 2012, pp. 35–40.

[21] N. Shahriar et al., “ReNoVatE: Recovery from node failure in vir-
tual network embedding,” in Proc. IEEE/ACM/IFIP Conf. Netw. Service
Manag. (CNSM), Montreal, QC, Canada, 2016, pp. 19–27.

[22] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable virtual network
embedding,” in Networking. Heidelberg, Germany: Springer, 2010,
pp. 40–52.

[23] T. Guo, N. Wang, K. Moessner, and R. Tafazolli, “Shared backup
network provision for virtual network embedding,” in Proc. IEEE Int.
Conf. Commun. (ICC), Kyoto, Japan, 2011, pp. 1–5.

[24] M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “Multi-path
link embedding for survivability in virtual networks,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 2, pp. 253–266, Jun. 2016.

[25] N. Shahriar et al., “Connectivity-aware virtual network embedding,” in
Proc. 15th IFIP Netw. Conf. (NETWORKING), Vienna, Austria, 2016,
pp. 46–54.

[26] Y. Chen, J. Li, T. Wo, C. Hu, and W. Liu, “Resilient virtual network
service provision in network virtualization environments,” in Proc. IEEE
16th Int. Conf. Parallel Distrib. Syst. (ICPADS), 2010, pp. 51–58.

[27] H. Yu et al., “Survivable virtual infrastructure mapping in a feder-
ated computing and networking system under single regional failures,”
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Miami, FL,
USA, 2010, pp. 1–6.

[28] X. Liu, Y. Wang, A. Xiao, X. Qiu, and W. Li, “Disaster-prediction based
virtual network mapping against multiple regional failures,” in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ottawa, ON, Canada,
2015, pp. 371–378.

[29] M. Pourvali et al., “Progressive recovery for network virtualization
after large-scale disasters,” in Proc. IEEE Int. Conf. Comput. Netw.
Commun. (ICNC), 2016, pp. 1–5.

274 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

[30] M. G. Rabbani, M. F. Zhani, and R. Boutaba, “On achieving high sur-
vivability in virtualized data centers,” IEICE Trans. Commun., vol. 97,
no. 1, pp. 10–18, 2014.

[31] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
virtual data center embedding in clouds,” in Proc. IEEE INFOCOM,
Toronto, ON, Canada, Apr. 2014, pp. 289–297.

[32] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding in optical datacenter networks,” IEEE/OSA
J. Opt. Commun. Netw., vol. 7, no. 12, pp. 1160–1171, Dec. 2015.

[33] Q. Hu, Y. Wang, and X. Cao, “Location-constrained survivable network
virtualization,” in Proc. 35th IEEE Sarnoff Symp. (SARNOFF), Newark,
NJ, USA, 2012, pp. 1–5.

[34] S. R. Chowdhury et al., “Protecting virtual networks with drone,” in
Proc. IEEE/IFIP Netw. Oper. Manag. Symp., Istanbul, Turkey, Apr. 2016,
pp. 78–86.

[35] S. R. Chowdhury et al., “Dedicated protection for survivable virtual
network embedding,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4,
pp. 913–926, Dec. 2016.

[36] S. Agarwal et al., “Volley: Automated data placement for geo-distributed
cloud services,” in Proc. NSDI, San Jose, CA, USA, 2010, pp. 17–32.

[37] N. Bansal et al., “Towards optimal resource allocation in partial-fault
tolerant applications,” in Proc. IEEE INFOCOM, 2008, pp. 1319–1327.

[38] W.-L. Yeow, C. Westphal, and U. C. Kozat, “Designing and embedding
reliable virtual infrastructures,” ACM SIGCOMM Comput. Commun.
Rev., vol. 41, no. 2, pp. 57–64, 2011.

[39] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable vir-
tual infrastructure mapping in virtualized data centers,” in Proc. IEEE
CLOUD, Honolulu, HI, USA, 2012, pp. 196–203.

[40] P. Bodík et al., “Surviving failures in bandwidth-constrained datacen-
ters,” in Proc. ACM SIGCOMM, Helsinki, Finland, 2012, pp. 431–442.

[41] S. Ayoubi, C. Assi, L. Narayanan, and K. Shaban, “Optimal polynomial
time algorithm for restoring multicast cloud services,” IEEE Commun.
Lett., vol. 20, no. 8, pp. 1543–1546, Aug. 2016.

[42] S. Ayoubi, C. Assi, Y. Chen, T. Khalifa, and K. B. Shaban, “Restoration
methods for cloud multicast virtual networks,” J. Netw. Comput. Appl.,
vol. 78, pp. 180–190, Jan. 2016.

[43] A. M. Ghaleb, T. Khalifa, S. Ayoubi, and K. B. Shaban, “Surviving
link failures in multicast VN embedded applications,” in Proc.
IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), Istanbul, Turkey, 2016,
pp. 645–651.

[44] A. M. Ghaleb, T. Khalifa, S. Ayoubi, K. B. Shaban, and C. Assi,
“Surviving multiple failures in multicast virtual networks with virtual
machines migration,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4,
pp. 899–912, Dec. 2016.

[45] R. R. Oliveira et al., “No more backups: Toward efficient embedding of
survivable virtual networks,” in Proc. IEEE Int. Conf. Commun. (ICC),
2013, pp. 2128–2132.

[46] M. Soares and E. Madeira, “A multi-agent architecture for autonomic
management of virtual networks,” in Proc. IEEE Netw. Oper. Manag.
Symp. (NOMS), Budapest, Hungary, Apr. 2012, pp. 1183–1186.

[47] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Proc. 16th Annu. Symp. Found.
Comput. Sci., 1975, pp. 184–193.

[48] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source
unsplittable flow problem,” Combinatorica, vol. 19, no. 1, pp. 17–41,
1999.

[49] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol. 19, no. 2, pp. 248–264, Apr. 1972. [Online]. Available:
http://doi.acm.org/10.1145/321694.321699

[50] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

Nashid Shahriar received the B.Sc. and M.Sc.
degrees in computer science and engineering from
the Bangladesh University of Engineering and
Technology in 2009 and 2011, respectively. He is
currently pursuing the Ph.D. degree with the School
of Computer Science, University of Waterloo. His
research interest includes network virtualization and
network function virtualization. He is a recipient
of David R. Cheriton Graduate Scholarship at the
University of Waterloo.

Reaz Ahmed received the B.Sc. and M.Sc. degrees
in computer science from the Bangladesh University
of Engineering and Technology in 2000 and 2002,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Waterloo, in 2007. His
research interests include future Internet architec-
tures, information-centric networks, network virtu-
alization, and content sharing peer-to-peer networks
with focus on search flexibility, efficiency, and
robustness. He was a recipient of the IEEE
Fred W. Ellersick Award in 2008.

Shihabur Rahman Chowdhury received the B.Sc.
degree in computer science and engineering from
the Bangladesh University of Engineering and
Technology. He is currently pursuing the Ph.D.
degree with the School of Computer Science,
University of Waterloo. His research interests
include virtualization and softwarization of com-
puter networks. He was a recipient of the Graduate
Excellence Scholarship, the Ontario Graduate
Scholarship, the Presidents Graduate Scholarship,
and the GoBell Scholarship at the University of
Waterloo.

Aimal Khan received the B.Sc. degree in computer
science and engineering from Pakistan. He is cur-
rently pursuing the master’s degree in mathematics
with the School of Computer Science, University
of Waterloo. His research interest include network
virtualization and Internet of Things.

Raouf Boutaba (F’12) received the M.Sc. and Ph.D.
degrees in computer science from the University
Pierre & Marie Curie, Paris, in 1990 and 1994,
respectively. He is currently a Professor of Computer
Science with the University of Waterloo, Canada.
His research interests include resource and service
management in networks and distributed systems.
He was a recipient of several best paper awards and
recognitions including the Technical Achievement
Award of the IEEE Communications Society
Technical Committee on Information Infrastructure

and Networking, the Donald W. McLellan Meritorious Service Award of the
IEEE Communications Society, the Premiers Research Excellence Award, the
IEEE ComSoc Hal Sobol, Fred W. Ellersick, Joe LociCero, Dan Stokesbury,
Salah Aidarous Awards, and the IEEE Canada McNaughton Gold Medal. He
is the founding Editor-in-Chief of the IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT from 2007 to 2010 and on the editorial boards
of other journals. He is a fellow of the Engineering Institute of Canada and
the Canadian Academy of Engineering.

Jeebak Mitra received the M.A.Sc. and Ph.D.
degrees in electrical engineering from the University
of British Columbia, Canada, in 2005 and 2010,
respectively. From 2010 to 2011, he was a Senior
DSP Engineer with Wimatek Systems leading the
system level design for an LTE baseband. From 2011
to 2012, he was a Team Leader for the Wireless
DSP Team, BLINQ Networks, Ottawa, working on
backhaul products for small cells. He has been a
Staff Engineer with Huawei Technologies Canada
Research Center, Ottawa, in the areas of algorithm

design and implementation of high-speed ASICs for optical transceivers and
flexible optical network design, since 2013. His research interests lie broadly
in the areas of physical layer design aspects for fiber-optic and wireless
networks with an emphasis on high-performance communication systems.
He was a recipient of the Best Student Paper Award at the IEEE Canadian
Conference in Electrical and Computer Engineering in 2009. He regularly
serves as a Reviewer for several conferences and journals in related areas.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

