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Abstract—Network virtualization (NV) has evolved as a key
enabling technology for offering the next generation network
services. Recently, it is being rolled out in data center networks
as a means to provide bandwidth guarantees to cloud applica-
tions. With increasing deployments of virtual networks (VNs)
in commercial-grade networks with commodity hardware, VNs
need to tackle failures in the underlying substrate network. In this
paper, we study the problem of recovering a batch of VNs affected
by a substrate node failure. The combinatorial possibilities of
alternate embeddings of the failed virtual nodes and links of the
VNs makes the task of finding the most efficient recovery both
non-trivial and intractable. Furthermore, any recovery approach
ideally should not cause any service disruption for the unaffected
parts of the VNs. We take into account these issues to design a
recovery approach for maximizing recovery and minimizing the
cost of recovery and network disruption. We provide an Integer
Linear Programming (ILP) formulation of our recovery scheme.
We also propose a fast and scalable heuristic algorithm to tackle
the computational complexity of the ILP solution. Evaluation
results demonstrate that our heuristic performs close to the
optimal solution and outperforms the state-of-the-art algorithm.

I. INTRODUCTION

Rapid proliferation of the Internet is continuously increas-
ing our dependence on networked services. Consequently,
diverse Quality of Service (QoS) guarantees are required from
the underlying network infrastructure. Network Virtualization
(NV) [1] is evolving as a key technology for allowing a
wide variety of online services with diverse reliability and
performance requirements to co-exist and seamlessly operate
on top of the same network infrastructure. An Infrastructure
Provider (InP) manages a network infrastructure also known as
the Substrate Network (SN), and leases network slices in the
form of Virtual Networks (VN) to multiple Service Providers
(SPs). An SP offers customized services on top of its VN,
and is free to deploy any technology and/or communication
protocol in the VN. By allowing heterogeneous VNs to coexist
on a shared SN, the goal of NV is to provide flexibility,
diversity, security, and manageability. Several new challenges
need to be addressed to achieve these goals.

An important challenge in NV is to efficiently allocate sub-
strate resources to VNs. This is known as the VN embedding
(VNE) problem [2] that maps virtual nodes and links of a VN
request on substrate nodes and paths (a sequence of substrate
links), respectively, while satisfying physical resource con-
straints. The VNE problem is NP-hard and has been studied
from various perspectives [2]. One particular aspect of VNE
that has received much attention recently is Survivable Virtual

Network Embedding (SVNE). SVNE approaches deal with
substrate resource (i.e., nodes or links) failures that are not
a rare event in large networks [3], [4]. Surviving failures is
even more challenging in NV, since the shared nature of VNs
exposes them to a more vulnerable state than that of a non-
virtualized network. For instance, a link failure in the SN may
cause multiple virtual links to fail, which may significantly
degrade service performance and reliability of VNs.

A number of mechanisms have been proposed to increase
VN reliability against substrate resource failures. These mech-
anisms can be broadly classified into two categories [5]:
a) proactively provision disjoint redundant resources as
backup [6], [7] and b) reactively re-embed the failed nodes
and links of a VN on the available resources after a failure
has occurred [8], [9]. Proactive approaches offer immediate
recovery from failures at the expense of backup resource reser-
vation [10]–[12]. However, preallocating backup resources for
multiple failures resulting from a substrate node failure can
be extremely expensive [11], [13]. Instead, an SP may prefer
to reactively re-embed the failed part of its VN to avoid
the huge cost of preallocated backup resources in a failure-
prone SN. The SP can adopt a load balanced VN embedding
strategy to leave higher amount of available resources during
re-embedding. Moreover, in case of permanent substrate node
failures (e.g., hardware malfunction), the nodes and links of
all the affected VNs have to be re-embedded. These scenarios
motivate us to study the problem of re-embedding a batch of
VNs affected by a substrate node failure.

While VN embedding is already intractable, the combina-
torial number of sequences of VNs in a batch re-embedding
further increases the complexity [14]. In addition, any solution
must be significantly fast (e.g., in the order of milliseconds)
to meet the stringent timing requirement usually imposed by
Service Level Agreements (SLAs). To meet such requirements,
we consider the re-embedding of only the failed nodes and
links of a batch of VNs without disrupting their unaffected
parts. While re-embedding the failed part as well as the
unaffected part of an active VN may incur lower costs of
re-embedding [8], [15], it will require additional time for
virtual node migration and virtual link re-configuration, which
may increase VN downtime. Further, the reactive approaches
in [9], [16] opt for the recovery of all the failed nodes and links
of a VN. If the SN does not have adequate resources to recover
all the failed nodes and links, those approaches re-embed the
complete VN, turning it inactive for a while. Unlike those
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approaches, our model allows partial recovery of an affected
VN while maximizing the number of recoveries across all the
affected VNs. This can be the sought-after choice of an InP
who wants to treat all the affected VNs fairly in a resource
constrained SN. Other design alternatives such as prioritizing
the affected VNs based on SLA requirements, impacts of
failure or profits can be accommodated by slightly modifying
the proposed model.

In this paper, we focus on the problem of Recovering from
a Node failure in Virtual Network Embedding (ReNoVatE). It
accepts a batch of VN failures resulting from a single substrate
node failure, and produces alternate embeddings for the failed
virtual nodes and links. The objective is to maximize the
number of recovered virtual links across all the affected VNs
while minimizing total bandwidth required for recovery. We
formulate ReNoVatE as an Integer Linear Programming (ILP)
based optimization model, namely Opt-ReNoVatE. Since Opt-
ReNoVatE cannot scale to large instances of the problem, we
devise an efficient heuristic algorithm, called Fast-ReNoVatE,
to find satisfactory solutions within prescribed time limits.
We evaluate Fast-ReNoVatE by extensive simulations and
compare it with Opt-ReNoVatE, as well as with the most
related state-of-the-art proposal in the literature [9]. Evaluation
results demonstrate that Fast-ReNoVatE performs close to
Opt-ReNoVatE and outperforms the state-of-the-art solution
in terms of i) number of recovered virtual links, ii) cost of
recovery, and iii) execution time.

The rest of the paper is organized as follows. In Section III,
we present the system model and formally introduce the
problem. Section IV presents Opt-ReNoVatE for solving the
problem optimally. The heuristic solution, Fast-ReNoVatE, is
presented in Section V. Evaluation results are presented in
Section VI. Section II presents the related literature. Finally,
we summarize our findings and conclude in Section VII.

II. RELATED WORK

Various works in the literature investigated different failure
scenarios in NV including single link [7], [17], [18], mul-
tiple link [19], single node [13], [20], and single regional
failure [21]. We discuss the related approaches for single node
failure, and contrast them with our solutions for ReNoVatE.

Most of the approaches focusing on substrate node (SNode)
failure are pro-active [10], [11], [13]. Yu et al., [13] proposed
a two-step method to recover a VN. The first step enhances
the VN with backup virtual nodes (VNodes) and virtual links
(VLinks), and the second step maps this enhanced VN on the
SN. This approach, in the worst case, has to reserve a backup
VNode for each VNode. In contrast, [10] designed the en-
hanced VN with a failure-dependent strategy to reduce backup
resources. Despite the resource efficiency of this approach,
it is not practical due to the large number of migrations of
working VNodes. Unlike these methods, [11] presented a joint
optimization strategy for allocating primary and backup re-
sources altogether. The location constrained SVNE, to address
geographically-correlated SNode failures, has been studied
in [12], [22], [23]. While [22] adopts sequential embedding

of working and backup VNodes, [12] embeds them jointly
to minimize total bandwidth. Recently, [23], [24] proposed
embedding primary and dedicated backup resources for each
VNode and VLink in a VN simultaneously.

There is a growing trend towards designing survivable
resource allocation schemes for embedding virtual data centers
(VDCs) in cloud [25], [26], [27]. For instance, [28] proposed
a scheme for provisioning VDCs with backup virtual ma-
chines and links. Bodik et al., [29] proposed an optimization
framework for improving survivability, while reducing total
bandwidth consumption. Yeow et al., [27] defines the reliabil-
ity level as a function of backup resources that are shared
between VNs through opportunistic pooling. Finally, [30]
provided a VDC embedding framework for achieving high
VDC availability by considering heterogeneous failure rates.

Reactive approaches, on the other hand, do not preallocate
any backup resources. Chang et al., [8] proposed a migration
aware VN re-embedding algorithm to recover from an SNode
failure. The algorithm allows the migration of some active
VNodes and VLinks to free up some substrate resources, thus
facilitating the re-mapping of the failed VNodes and VLinks.
Cai et al., [15] addressed the problem of optimally upgrading
the existing VN in a highly evolving SN. Their goal is to
minimize the upgrading cost, in addition to migration and
remapping costs, while satisfying QoS constraints. Both of
these approaches may need a chain of migrations to converge,
thus disrupting ongoing communication in the VN. Another
line of works [31], [32], originated in optical networks, pro-
posed a hybrid mechanism to select from a set of precomputed
detours for recovery during failure. However, in a highly
saturated SN, this mechanism may not find adequate resources
left for the recovery.

Distributed reactive approaches including, [16], [33], pro-
posed multi-agent based algorithms to dynamically adapt the
VNs in response to SN failures. When an agent detects
a failure of another agent in the same cluster, the agents
within the same cluster collaborate with each other to re-
provision the failed VNodes and VLinks. These approaches
may generate sub-optimal solutions due to the lack of global
knowledge of the SN. Finally, [9] proposed a greedy algorithm
to find alternate substrate resources for the affected part of a
VN. In case of resource inadequacy, this approach requires
remapping the entire VN resulting in prolonged service un-
availability. Nonetheless, existing reactive algorithms focus on
re-embedding only a single VN, whereas ReNoVatE, for the
first time, considers partial re-embedding of a set of affected
VNs to improve recovery performance.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We first present a mathematical representation of a substrate
network, virtual network, and types of failure (Section III-A).
Then, we formally define the problem (Section III-B).

A. System Model

1) Substrate Network (SN): We represent the SN as an
undirected graph, G = (V,E), where V and E denote the



set of SNodes and Substrate Links (SLinks), respectively.
The set of neighbors of an SNode u ∈ V is denoted by
N (u). Bandwidth capacity and residual bandwidth of an SLink
(u, v) ∈ E are represented by buv and ruv , respectively, while
the cost of allocating one unit of bandwidth in (u, v) is Cuv .
V f and Ef represent the set of failed SNodes and SLinks,
respectively. Puv represents a path between SNodes u and v

2) Virtual Network (VN): We denote the set of VNs em-
bedded on the SN G as Ḡ = {Ḡ1, Ḡ2, . . . Ḡ|Ḡ|}. Each VN
Ḡi ∈ Ḡ is represented as an undirected graph Ḡi = (V̄i, Ēi),
where V̄i and Ēi are the sets of VNodes and VLinks of Ḡi,
respectively. The set of neighbors of a VNode ū ∈ V̄i is
denoted by N (ū). Each VLink (ū, v̄) ∈ Ēi has a bandwidth
demand biūv̄ . Each VN Ḡi has a set of location constraints,
Li = {Li(ū)|Li(ū) ⊆ V,∀ū ∈ V̄i}, such that a VNode ū ∈ V̄i
can only be mapped to an SNode u ∈ Li(ū). We represent
this location constraint with a binary variable `iūu, defined as:

`iūu =

{
1 iff ū ∈ V̄i can be provisioned on u ∈ V,
0 otherwise.

3) Types of failure: Let, f(ū) and g(ūv̄) denote the SNode
and substrate path where ū and (ū, v̄) have been embedded,
respectively. An SNode failure results in a set of VNode and
VLink failures of a VN Ḡi defined as V̄ f

i = {ū ∈ V̄i|f(ū) ⊆
V f} and Ēf

i = {(ū, v̄) ∈ Ēi|(u, v) ∈ g(ūv̄) ∧ (u, v) ∈ Ef},
respectively. There are two types of VLinks in Ēf

i :
Adjacent VLinks: The set of VLinks adjacent to the

failed VNode ū ∈ V̄ f
i is represented by Ēfi =

{(ū, v̄)|ū ∈ V̄ f
i ∧ v̄ ∈ N (ū)}.

Independent VLinks: The set of VLinks that have failed due
to the failure of some SLinks on their mapped substrate paths
is denoted by Ē

f
i = {(ū, v̄)|(u, v) ∈ g(ūv̄)∧(u, v) ∈ Ef ∧ ū /∈

V̄ f
i ∧ v̄ /∈ V̄

f
i }.

Finally, V̄ f = {
⋃
V̄ f
i }, Ēf = {

⋃
Ēf

i }, and Ēf = {
⋃

Ē
f
i }

represent the set of failed VNodes, VLinks, and Independent
VLinks of all the VNs in Ḡ, respectively. Fig. 1 illustrates
the embedding of two VNs, Ḡ1 with V̄1 = {a, b, c} and
Ḡ2 with V̄2 = {d, e} on the SN G shown in the bottom.
The numbers next to a VLink and an SLink represent the
VLink demand and SLink residual bandwidth, respectively.
The VNode mapping i.e., f(.) is shown by placing a VNode
beside its mapped SNode and the VLink mapping i.e., g(.)
is depicted by dashed paths between SNodes. For instance,
f(a) = {D}, f(b) = {C}, f(c) = {G}, f(d) = {B},
f(e) = {H} and g(ab) = {DB,BC}, g(ac) = {DH,HG},
g(bc) = {CF,FG}, and g(de) = {BD,DH}. We now
show the impact of an SNode failure with V f = {D} and
Ef = {DB,DE,DH}. VN Ḡ1 experiences a VNode failure
with V̄ f

1 = {a}. Consequently, the VLinks adjacent to a
fail leading to Ēf1 = {ab, ac}. Note there is no Independent
VLink failures in Ḡ1, and so Ēf

1 = Ēf1 . On the other hand,
V̄ f

2 = φ since no VNode of Ḡ2 is mapped on D. However, the
failure of D results in an independent VLink failure yielding
Ēf

2 = Ē
f
2 = {de}. Hence, any recovery algorithm should re-

embed all the affected VNodes and VLinks from Ḡ1 and Ḡ2

leaving unaffected part such as VLink bc undisrupted.
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Fig. 1: VN embedding and impact of failure

B. Problem Statement
Given an SN G = (V,E), a failed SNode implying |Vf | =

1, and a set of affected VNs Ḡ embedded on G, re-embed the
failed VNodes in V̄ f and the failed VLinks in Ēf on G such
that the re-embedding achieves the following objectives:
• Primary objective: maximize the total number of recov-

ered VLinks across all the affected VNs.
• Secondary objective: minimize the total cost of re-

embedding in terms of SLink bandwidth consumption.
subject to the following constraints:
• a failed VNode ū ∈ V̄ f

i is re-embedded on exactly one
SNode, v ∈ Li(ū). In addition, multiple VNodes of the
same VN cannot be mapped to an SNode. However,
multiple VNodes from different VNs can share an SNode.

• a failed VLink (ū, v̄) ∈ Ēf
i is re-embedded on a substrate

path Pf(ū)f(v̄) having sufficient bandwidth to accommo-
date the demand of the VLink. The re-embedding cannot
use a substrate path containing the failed SNode.

• VNodes and VLinks not affected by the SNode failure
are not re-embedded.

IV. ILP FORMULATION: Opt-ReNoVatE
We provide an ILP formulation, Opt-ReNoVatE, based on

the Multi-commodity Flow Problem formulation of ReNoVatE.
We first present the decision variables (Section IV-A). Then,
we introduce the constraints (Section IV-B) followed by the
objective function of Opt-ReNoVatE (Section IV-C).

A. Decision Variables
The following decision variables indicate VNode and VLink

embedding of a VN Ḡi ∈ Ḡ on an SN G.

yiūu =

{
1 iff ū ∈ V̄i is mapped to u ∈ V,
0 otherwise.

xiūv̄uv =

{
1 iff (ū, v̄) ∈ Ēi is mapped to (u, v) ∈ E,
0 otherwise.

The objective of Opt-ReNoVatE is to recover as many failed
VLinks in Ēf as possible to mitigate the impact of failure. It
may be possible that not all VLinks in Ēf can be re-embedded
due to substrate resource limitation. The following decision
variable defines which VLinks are re-embedded:

ziūv̄ =

{
1 iff (ū, v̄) ∈ Ēf

i is mapped to any substrate path
0 otherwise.



B. Constraints

1) Intactness of Unaffected VNodes and VLinks: The map-
ping of VNodes and VLinks that are not affected by the sub-
strate failure remains unchanged. Constraints (1) and (2) en-
sure that unaffected VNodes and VLinks are not re-embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄i \ V̄ f
i : yiūf(ū) = 1 (1)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi \ Ēf
i ,∀(u, v) ∈ g(ūv̄) : xiūv̄uv = 1 (2)

2) Exclusion of Failed SNodes and SLinks from re-
embedding: The failed VNodes or VLinks cannot use any of
the failed SNodes or SLinks during re-embedding. Constraint
(3) ensures that the failed VNodes are not re-embedded on the
failed SNodes, and (4) ensures that the failed VLinks are not
re-embedded on substrate paths containing a failed SLink.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i ,∀u ∈ Vf : yiūu = 0 (3)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀(u, v) ∈ Ef : xiūv̄uv = 0 (4)

3) Link Mapping Constraints: Constraint (5) prevents over-
commitment of SLink bandwidth. Constraint (6) ensures that
the in-flow and out-flow of each SNode is equal except at the
SNodes where the endpoints of a failed VLink are embedded.
Finally, constraint (7) ensures that if a VLink (ū, v̄) is selected
to be re-embedded due to the failure of ū, there is some flow
from the SNode u where v̄ is embedded already.

∀(u, v) ∈ E :
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēi

xiūv̄uv × biūv̄ ≤ buv (5)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ V \ f(v̄) :∑

∀v∈N (u)

(xiūv̄uv − xiūv̄vu ) ≤ yiūu − yiv̄u (6)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ f(v̄) :∑

∀v∈N (u)

(xiūv̄uv − xiūv̄vu ) = ziūv̄ (7)

4) Node Mapping Constraints: First, constraint (8) ensures
that re-embedding of a failed VNode should be done according
to the provided location constraint set. Second, constraint (9)
makes sure that a VNode should be mapped to at most an
SNode in the SN. Third, constraint (10) enforces that an SNode
will not host more than one VNodes from the same VN.
Finally, constraint (11) ensures that if a VLink (ū, v̄) ∈ Ēfi
is selected to be re-embedded due to the failure of ū, the
VNode ū must be re-embedded on an SNode according to the
location constraint. Here, λ is a very large integer that turns
the left side of (11) into a fraction between 0 and 1 when any
of the ziūv̄ is 1. This enforces the right side of (11) to become
1, thus ensuring the failed VNode to be re-embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i ,∀u ∈ V : yiūu ≤ `iūu (8)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i , :

∑
u∈V

yiūu ≤ 1 (9)

∀Ḡi ∈ Ḡ,∀u ∈ V :
∑
ū∈V̄i

yiūu ≤ 1 (10)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i :

1

λ

∑
v̄∈N (ū)

ziūv̄ ≤
∑
∀u∈V

yiūu (11)

C. Objective Function

Following the problem statement, the objective function
(12) has two components. The first component maximizes
the number of re-embedded failed VLinks. The second one
minimizes the total cost of provisioning bandwidth for re-
embedding the failed VLinks on substrate paths. A weight
factor w is multiplied to the second component to impose the
necessary priority to the components of (12). The value of w is
chosen to be a very small fraction so that it comes into effect
only to break ties among multiple solutions that have the same
value for the primary objective. In this way, w prioritizes the
number of recovered VLinks over the cost of re-embedding.

minimize

|Ēf | −
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

ziūv̄


+w

 ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēf

i

∑
∀(u,v)∈E

xiūv̄uv × Cuv × biūv̄

 (12)

D. Hardness of the Problem

The binary nature of the decision variables and the flow
constraints of Opt-ReNoVatE prevent any VLink from being
mapped to multiple substrate paths. This restricts the re-
embedding of Independent VLinks to the NP-hard Multi-
commodity Unsplittable Flow Problem [34]. The VNode re-
embedding follows from VLink re-embedding since there are
no costs associated with VNodes. Therefore, the re-embedding
of a VNode and its adjacent VLinks of a VN becomes
the NP-hard Single-source Unsplittable Flow Problem with
unknown source [35]. When there are a batch of affected VNs,
computing the best sequence of VNs from a combinatorial
number of sequences to maximize the number of recovered
VLinks makes the problem computationally intractable.

V. HEURISTIC SOLUTION: Fast-ReNoVatE

Due to the intractability of Opt-ReNoVatE, we resort to a
heuristic algorithm, Fast-ReNoVatE, to find feasible solutions
in reasonable time. Fast-ReNoVatE re-embeds the failed VN-
odes and their Adjacent VLinks (Section V-A) and Indepen-
dent VLinks (Section V-B) of the affected VNs efficiently.

A. Recovery of VNodes and Adjacent VLinks

The inputs to the VNode Recovery algorithm (Algorithm 1)
comprise an SN G, a set of affected VNs Ḡ that are embedded
on G, and a set of failed SNodes V f and failed SLinks
Ef . The algorithm initially sorts the affected VNs in Ḡ in
increasing order of the total lost bandwidth in their Adjacent
VLinks, and Ḡ represents this sorted order. The total lost
bandwidth of a VN, Ḡi ∈ Ḡ is computed as the summation of
the bandwidth demands for all the failed VLinks in Ēfi of Ḡi.
Intuitively, the algorithm proceeds to recover the VNs in Ḡ
in the sorted order of Ḡ to increase the number of recovered
VLinks. For each VN Ḡi, the algorithm tries to re-embed the
failed VNode ū ∈ V̄ f

i and the VLinks adjacent to ū i.e., Ēfi
to an SNode present in the location constraint set of ū i.e.,
Li(ū) and to substrate paths, respectively. To accomplish this,



it iterates over all the SNodes l ∈ Li(ū) \ V f , and selects
the SNode, bestū that maximizes the cardinality of the set of
substrate paths, Pl, computed for the VLinks in Ēfi . In case of
a tie, the SNode with the lower cost of the paths in Pl, denoted
by M , is selected. Finally, the algorithm re-embeds ū and the
VLinks in Ēfi to bestū and to the paths in M , respectively.

As discussed in Section IV-D, optimally computing the
set of substrate paths Pl from an SNode l ∈ Li(ū) \ V f

for the VLinks in Ēfi of a VN is NP-hard. Majority of
the VN embedding proposals aims to minimize the cost of
embedding [2]. They would embed each VLink in Ēfi one-
by-one by adopting a minimum cost substrate path finding
approach. However, in a bandwidth constrained scenario, a
minimum cost path may contain some bottleneck SLinks.
Allocating the bandwidth of these SLinks to a VLink may
leave later VLinks unrecoverable. The objective of ReNoVatE
is to maximize the number of recovered VLinks irrespective
of the cost of recovery. Hence, our heuristic (Algorithm 2)
simultaneously computes Pl for all the VLinks in Ēfi to
maximize the cardinality of Pl. Algorithm 2 works by finding
maximum flow from a source to a sink in a graph avoiding
any bottleneck SLink. If we always send unit flow from a
source to a sink in a graph, the paths carrying the maximum
amount of flow will correspond to the maximum number of
paths between the source and the sink without exceeding the
capacity of the SLinks.

To implement this idea, Algorithm 2 first augments the
SN graph G with a pseudo sink SNode, namely S. It then
adds a pseudo SLink from each SNode that hosts a VNode,
v̄ ∈ N (ū) to S, where ū ∈ V̄ f

i . The capacity of each
augmented SLink is set to 1 to ensure the un-splittability of
the substrate paths. Further, each bidirectional SLink in E\Ef

is replaced with two unidirectional SLinks, and the capacity
of these new SLinks are discretized according to an estimation
function, ruv

max
∀{(ū,v̄)∈Ēfi }

{biūv̄}
. This stringent estimation ensures

that each selected SLink can provide the bandwidth even for
the VLink with the maximum demand among all the VLinks in
Ēfi . Other estimation functions such as min or average could
be used allowing over-subscription of bandwidth for some of
the VLinks. Fig. 2 illustrates the maximum flow realization for
the recovery of VN Ḡ1 embedded on SN G according to Fig. 1.
Upon the failure of SNode D, VNode a and VLinks ab and ac
of Ḡ1 fail. Since N (a) = {b, c}, f(b) = C, and f(c) = G, we
add SLinks CS and GS to sink S with capacity 1, as shown by
the dashed arrows in Fig. 2. This figure depicts the transformed
SN after removing the failed SNode and SLinks, replacing
each bidirectional SLink with two unidirectional SLinks, and
estimating the capacity of these SLinks using ruv

max {6,5} .
After augmenting and initializing the capacity and flow of

each SLink in G, Algorithm 2 proceeds with the steps of the
Edmonds-Karp algorithm [36] for computing the maximum
flow from each l ∈ Li(ū)\V f to S. We modify the Edmonds-
Karp algorithm to compute the set of augmenting paths P from
each l to S so that the sum of flows carried along these paths is
the maximum. Each augmenting path P ∈ P will consume one
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Fig. 2: Maxflow Realization

unit of bandwidth since we deliberately assign unit capacity
to the pseudo SLinks incident to S. In addition, a path P ∈ P
will contain an SNode from the set {f(v̄)|v̄ ∈ N (ū)}, since
S can only be reached through these SNodes. In the event
that a new path P cancels the flow on any bottleneck SLink
(u, v) of any existing path Pi ∈ P , Algorithm 2 updates both
P and Pi to exclude (u, v). Following these steps, the set
of paths P from l to S is computed. However, the VLink
re-mapping requires substrate paths from l to any SNode in
{f(v̄)|v̄ ∈ N (ū)}. Hence, the algorithm identifies the path Pi

that contains any SNode in {f(v̄)|v̄ ∈ N (ū)}, removes the
SLink (f(v̄), S) from Pi, and indexes the modified Pi with
the corresponding VLink (ū, v̄). After modifying and indexing
all the paths in Pl, the algorithm returns Pl.

To illustrate, we assume L1(a) = {B,E,H} in the example
of Fig. 2. When l = E, Algorithm 2 computes the paths
carrying the maximum flow from E to S through C and G in
the transformed SN of Fig. 2. If the augmenting path finding
step in the algorithm picks the shortest path {EB,BG,GS}
as P1, the maximum flow is restricted to 1 by the bot-
tleneck SLink BG. Hence, the algorithm computes a new
path P = {EH,HI, IG,GB,BA,AC,CS} in the residual
network as defined in the Edmonds-Karp algorithm. Since
P cancels the flow along the bottleneck SLink BG ∈ P1,
Algorithm 2 reorganizes the segments of P with P1 to yield
P = {{EB,BA,AC,CS}, {EH,HI, IG,GS}}. Finally, the
algorithm excludes CS and GS from the two paths and returns
Pl[(a, b)] = {EB,BA,AC} and Pl[(a, c)] = {EH,HI, IG}.

B. Recovery of Independent VLinks

As presented in Section IV-D, the re-embedding of Inde-
pendent VLinks in Ēf is a variant of the NP-hard Multi-
commodity Unsplittable Flow Problem. The heuristic de-
scribed in Section V-A is not applicable to this problem
since both the endpoints of a VLink in Ēf are mapped to
some SNodes, and finding maximum paths may yield invalid
paths between the wrong pair of SNodes. Hence, we propose
a greedy strategy (Algorithm 3) based on computing the
minimum cost path. Algorithm 3 first sorts the VLinks in Ēf in
increasing order of their bandwidth demand, and Ē f represents
this order. According to this order, the algorithm computes
alternate substrate path for each VLink in (x̄, ȳ) ∈ Ē f in the
subgraph induced by excluding the failed SNode and SLinks
from G. For a particular VLink (x̄, ȳ), the algorithm finds the
minimum cost path from f(x̄) to f(ȳ) using the procedure



Algorithm 1 VNodes Recovery

1: function VNODES RECOVERY(G, Ḡ, V f , Ef )
2: Ḡ ← Sort Ḡi ∈ Ḡ in increasing order of

∑
∀(ū,v̄)∈Ēfi

biūv̄

3: maxR ← 0
4: for all Ḡi ∈ Ḡ do
5: ū← failed virtual node in Ḡi, bestū ← NIL
6: for all l ∈ Li(ū) \ V f do
7: Pl ←Max− Paths(G, Ḡi, ū, l, Ēfi , V f , Ef )
8: if R(Pl) > maxR or (R(Pl) = maxR and
C(Pl) ≤ C(M)) then

9: M ← Pl, bestū ← l
10: end if
11: end for
12: if bestū 6= NIL then
13: map ū to bestū
14: ∀(ū, v̄) ∈ Efi : map (ū, v̄) to M [(ū, v̄)]
15: end if
16: end for
17: end function

Algorithm 2 Max-Paths

1: function MAX-PATHS(G, Ḡi, ū, l, Ēfi , V f , Ef )
2: V ← V \ V f ∪ {S}, E ← E \ Ef

3: ∀(ū, v̄) ∈ Ēfi : E ← E \ Ef ∪ {(f(v̄), S)}
4: max bw ← max

∀(ū,v̄)∈Ēfi
{biūv̄}

5: ∀(u, v) ∈ E s.t. u = S or v = S :
6: flowuv ← 0, cuv ← 1
7: ∀(u, v) ∈ E s.t. ruv > 0 and u 6= S and v 6= S :
8: flowuv ← flowvu ← 0
9: cuv ← cvu ← b ruv

max bw c
10: Gr ← G, P ← φ, Pl ← φ
11: while ∃ augmenting path P from l to S in Gr do
12: Cf (P )← min

∀(u,v)∈P
{cuv}

13: Augment Cf (P ) units flow in Gr along P
14: Update residual capacity in Gr along P
15: Remove links with residual capacity ≤ 0
16: for all Pi ∈ P do
17: if P cancels the flow along (u, v) ∈ Pi then
18: τ ← Sub paths in Pi \ (u, v)
19: ν ← Sub paths in P \ (v, u)
20: P ← Path formed by segments in τ and ν
21: Pi ← Path formed by segments in τ and ν
22: end if
23: end for
24: P ← P ∪ P
25: end while
26: ∀Pi ∈ P , ∀(ū, v̄) ∈ Ēfi :
27: Pi ← Path containing (f(v̄), S)
28: Pl[(ū, v̄)]← Pi \ (f(v̄), S)
29: return Pl

30: end function

Algorithm 3 VLinks-Recovery

1: function VLINKS-RECOVERY(G, Ēf , V f , Ef )
2: P ← φ
3: V ← V \ V f , E ← E \ Ef

4: Ē f ← Sort (x̄, ȳ) ∈ Ēf in increasing order of bix̄ȳ
5: for all (x̄, ȳ) ∈ Ē f do
6: P[(x̄, ȳ)]← MCP(G, f(x̄), f(ȳ), bix̄ȳ)
7: map (x̄, ȳ) to P[(x̄, ȳ)]
8: end for
9: end function

MCP , and adds it to the set P . The procedure MCP uses a
modified version of Dijkstra’s shortest path algorithm [37] to
take into account SLink residual capacity and VLink demand
while computing the minimum cost path.

To illustrate, Fig. 2 depicts the recovery of Independent
VLink de of VN Ḡ2, embedded on SN G according to Fig. 1.
Algorithm 3 should find alternate substrate paths between B
and H for VLink de. The max flow based heuristic may return
substrate path between B and G (or, between H and C),
and is thus inappropriate. Hence, Algorithm 3 recovers de
through the minimum cost path {BG,GH} that has sufficient
bandwidth to satisfy the demand of de.
C. Running Time Analysis

The most expensive step in Algorithm 1 is the computation
of the maximum paths using Algorithm 2. The core part of
Algorithm 2 follows the steps of Edmonds-Karp Algorithm. If
Edmonds-Karp Algorithm computes augmenting paths using
Breadth-first Search, it runs in O(|V ||E|2) time. Since Al-
gorithm 2 is invoked |L(ū)| times for recovering a VN, and
there are |V̄ f | number of affected VNs, total running time
yields O(|L(ū)||V̄ f ||V ||E|2). In contrast, Algorithm 3 invokes
Dijkstra’s shortest path algorithm for each VLink in Ēf . Since
Dijkstra’s shortest path algorithm runs in O(|E|+ |V | log |V |)
time, Algorithm 3 requires O(|Ēf |(|E|+ |V | log |V |)) time.

VI. EVALUATION

In this section, we present our evaluation results found
through extensive simulation.

A. Compared Algorithms
We compare Opt-ReNoVatE and Fast-ReNoVatE with an

implementation of dynamic recovery approach in [9], called
Dyn-Recovery. For fair comparison with our algorithms, we
exclude the last step of re-embedding the entire VN from
the implementation of Dyn-Recovery in the event of resource
inadequacy. Although we evaluate all three algorithms in
small size networks, we cannot evaluate Opt-ReNoVatE for
large networks because of the inherent complexity of ILP-
solvers. Alternatively, we present Fast-ReNoVatE’s baseline
performance assuming the SLinks of an SN have infinite
bandwidth, and refer to it as Fast-ReNoVatE-INF.

B. Performance Metrics
1) Recovery Efficiency: The fraction of successfully recov-

ered VLinks over all failed VLinks expressed in percentage.



Scenario Figure SNodes SLinks VNodes/VN VLinks/VN VNs SN Utilization VLink BW Total Failed VLinks

Small Scale
Fig. 3, Fig. 4(a) 50 90 5 8 10-32 ∼20% - ∼75% ∼10% of SLink 250 - 866

Fig. 4(b) 20-65 37-118 5 8 8-19 ∼53% ∼15% of SLink 178 - 519
Large Scale Fig. 5 1000 1798 3-15 2-30 93-563 ∼20% - ∼80% ∼10% of SLink 4712 - 13546

TABLE I: Summary of Simulation Parameters

2) Recovery Cost: The average cost of provisioning band-
width along a substrate path times the cost of allocating one
unit bandwidth for re-embedding each failed VLink.

3) Execution Time: The time required for an algorithm to
find the solution for all the VNs affected by an SNode failure.

C. Simulation Setup

We implement Opt-ReNoVatE using IBM ILOG CPLEX
C++ library; and Fast-ReNoVatE and Dyn-Recovery [9] using
C++. We evaluate the algorithms on both small and large
scale networks as summarized in Table I. For each problem
instance in this table, we generate 5 random SNs by taking
the number of SNodes and link-to-node ratio as inputs, and
randomly creating SLinks between SNodes. Then, we generate
a number of VNs for each SN, and embed the VNs on the SN
following the procedure described in Section VI-D. We select
a random SNode and its one hop neighbor SNodes as the
location constraint set of a VNode. Afterwards, we simulate
an SNode failure by removing each SNode in the SN one-by-
one and execute the recovery algorithms being evaluated on the
affected VNs. Finally, we measure the performance metrics of
the compared algorithms by taking averages across all SNode
failures for all 5 similar problem instances. The simulations
are performed on a server with 2 Intel Xeon E5-2650 (8 cores
@ 2.0GHz, each) processors and 256GB of RAM.

D. VN Embedding Method

VN generation and embedding are done simultaneously
to overcome the issue of creating VNs that do not have
feasible embeddings. The embedding of VNs on an SN is
done in a random but load-balanced manner to achieve uniform
distribution of VNs across the SN. Achieving higher utilization
(beyond 70%) of SN requires a denser embedding which is
done by relaxing the load-balancing criteria. The embedding
of a VN starts by randomly selecting a source SNode that has
free capacity for a VNode. This forms the first VNode (source
VNode) of the VN currently being embedded. For each ran-
domly assigned neighbor of this VNode, a random destination
SNode within several hop distances from the source SNode is
selected as a candidate for embedding the subsequent VNode
(destination VNode). The source and destination VNodes are
joined using a VLink embedded on the shortest path between
source and destination SNodes. If the path is not found, the
destination VNode is moved to a different destination SNode.
These steps are repeated until all VNodes are embedded,
generating both the VN and its embedding on the SN.

E. Small Scale Evaluations

In small scale settings, we first evaluate Opt-ReNoVatE,
Fast-ReNoVatE, and Dyn-Recovery by varying number of em-
bedded VNs to achieve different SLink utilizations. Fig. 3(a)
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Fig. 3: Performance of small scale testcases
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Fig. 4: Scalability Analysis

shows that the recovery efficiencies of all three approaches de-
crease with the increase in SLink utilization. As the utilization
increases, more VNs are affected by the SNode failure, and
less bandwidth is left for recovery resulting in the gradual
decrease in the number of recovered VLinks. Further, the
impact of utilization is more profound in the higher utilization
cases due to the lack of load balanced embedding. In the higher
utilized cases, the recovery efficiencies of Fast-ReNoVatE is
∼ 6% better than those of Dyn-Recovery and ∼ 3% worse
than those of Opt-ReNoVatE.

We show the recovery cost in Fig. 3(b) against different
SLink utilizations. In higher utilization cases, more SLinks
become saturated in terms of bandwidth, and all the algorithms
have to select longer substrate paths to recover resulting in
increased costs. Further, the costs of Opt-ReNoVatE are the
least among the three, since it selects the most suitable paths
through exhaustive search. In contrast, Fast-ReNoVatE iterates
over all the affected VNs and the independent VLinks in
a greedy manner, sometimes preferring less suitable paths
resulting in more costs than Opt-ReNoVatE. Finally, Dyn-
Recovery does not consider the cost of a path while recovering
a VLink. It may select a longer path than that selected by Fast-
ReNoVatE leading to a much larger cost than Fast-ReNoVatE.
On average, Fast-ReNoVatE incurs ∼ 7% more cost than Opt-
ReNoVatE and ∼ 20% less cost than Dyn-Recovery.

F. Scalability Analysis

To demonstrate the scalability of the compared algorithms,
Fig. 4 shows their execution times on the same problem
instances. Fig. 4(a) presents the execution times by varying
utilization on a fixed SN, whereas Fig. 4(b) presents the
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Fig. 5: Performance of large scale testcases

execution times in SNs with varying sizes while keeping
the utilization fixed at ∼ 53%. According to Table I, both
problem size and the total number of failed VLinks increase
with the increase in utilization and SN size. Consequently,
the execution times grow for all the approaches, however, the
increase is exponential for Opt-ReNoVatE. As it turns out,
Fast-ReNoVatE and Dyn-Recovery take less than 3ms and
2ms, respectively, in the highest utilized SN, whereas Opt-
ReNoVatE takes ∼ 6s on the same problem instance. The
slightly higher execution times of Fast-ReNoVatE compared to
Dyn-Recovery are due to the extra iterations of Fast-ReNoVatE
to avoid bottleneck SLinks to achieve higher recovery efficien-
cies. Despite that, Fast-ReNoVatE is 400x−2000x faster than
Opt-ReNoVatE depending on problem instance. Finally, Opt-
ReNoVatE could not scale to more than 65 SNode SNs.

G. Large Scale Evaluations

Fig. 5 shows the performance of the compared algorithms
at large scale by varying SLink utilization. Fig. 5(a) shows
that the recovery efficiencies of Fast-ReNoVatE are ∼ 6%
better than those of Dyn-Recovery and ∼ 2.5% worse than
those of Fast-ReNoVatE-INF. Similar to the small scale results,
recovery efficiencies of Fast-ReNoVatE and Dyn-Recovery de-
crease with the increase in SLink utilization whereas recovery
efficiencies remain almost the same for Fast-ReNoVatE-INF.
The near constant recovery efficiencies of Fast-ReNoVatE-
INF confirms that the reason of failing to recover is the
insufficiency of bandwidth in SLinks. In other words, if
there were adequate bandwidth in the SLinks, Fast-ReNoVatE
could recover ∼ 99% of the failed VLinks. The very small
percentage of un-recovered VLinks of Fast-ReNoVatE-INF is
due to the partitioning in the SN caused by the SNode failure.
In these cases, it is not possible to recover a failed VLink even
if there is sufficient bandwidth.

Fig. 5(b) shows the recovery cost in large networks. For the
same reasons discussed in the case of small scale networks,
Dyn-Recovery incurs the largest amount of cost, and the costs
of Fast-ReNoVatE and Dyn-Recovery rise with the increase
in SLink utilization. In contrast, there is no effect of residual
bandwidth in finding an alternate path in Fast-ReNoVatE-INF,
and it can select the minimum cost path resulting in the least
costs. This is true for Fast-ReNoVatE in very low utilized SNs.
Further, the two end nodes of the failed VLink are embedded
closely to each other in a highly utilized SN. Hence, Fast-

ReNoVatE-INF recovers the VLink with shorter path leading to
the decrease of costs with the increase in SLink utilization. The
counterintuitive behavior of Fig. 5(b) from SLink utilization
of 70 to 80 is due to relaxing the load-balancing criteria as
explained in Section VI-D. The denser embedding to achieve
higher utilization maps the VNodes of a VN closer to one
another, thus requiring lower recovery cost than a sparser one.
Finally, Fig. 5(c) shows that Fast-ReNoVatE has similar timing
performance to Dyn-Recovery, and both are able to find a
solution in less than 30ms even in the highest utilized SN.

VII. CONCLUSION

In this paper, we have addressed the problem of reactive
recovery of a batch of affected VNs, resulting from a single
substrate node failure. We have formulated the problem as an
ILP model, Opt-ReNoVatE and presented an efficient heuristic
algorithm, Fast-ReNoVatE, to tackle the computational com-
plexity. We have evaluated Fast-ReNoVatE, Opt-ReNoVatE,
and a state-of-the-art solution, Dyn-Recovery in both small
and large scale networks. Evaluation results demonstrate that
Fast-ReNoVatE can recover ∼ 6% more VLinks than Dyn-
Recovery and ∼ 3% less VLinks than Opt-ReNoVatE in high
utilization scenarios. In terms of scalability, Fast-ReNoVatE
is several orders of magnitude faster than Opt-ReNoVatE,
and has comparable performance with Dyn-Recovery. In large
scale networks, we have compared Fast-ReNoVatE with Dyn-
Recovery and a baseline case of infinite bandwidth SN. These
results demonstrate that Fast-ReNoVatE is able to recover
∼ 99% of the failed VNs if the SN has adequate residual
capacity, and has similar timing performance to Dyn-Recovery.

In the future, we plan to extend this work to accommodate
recovery with over-subscribed bandwidth allocation for the
failed VLinks. Another possible research direction is to prior-
itize the affected VNs based on SLA requirements, impacts of
failure or profits, and adhere to that priority during recovery.
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