
Elastic Virtual Network Function Placement
Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada
{eghaznav | a273khan | nshahria | kaalsubhi | r5ahmed | rboutaba}@uwaterloo.ca

Abstract— Nowadays, many cloud providers offer Virtual
Network Function (VNF) services that are dynamically scaled
according to the workload. Enterprises enjoy these services
by only paying for the actual consumed resources. From a
cloud provider’s standpoint, the cost of these services must be
kept as low as possible, while QoS is maintained and service
downtime is minimized. In this paper, we introduce Elastic
Virtual Network Function Placement (EVNFP) problem and
present a model for minimizing operational costs in providing
VNF services. In this model, the elasticity overhead and the
trade-off between bandwidth and host resource consumption
are considered together, while the previous works ignored this
perspective of the problem. We propose a solution called Simple
Lazy Facility Location (SLFL) that optimizes the placement
of VNF instances in response to on-demand workload. Our
experiments suggest that SLFL can accept two times more
workload while incurring similar operational cost compared to
first-fit and random placements.

I. INTRODUCTION

Nowadays, many Cloud Providers (CPs) such as Amazon
AWS, Microsoft Azure and IBM Bluemix offer VNF as a
service (VNFaaS). An Enterprise Client (EC) can deploy all
or part of its Network Functions (NFs) to cloud and enjoy
the pay-per-use pricing model. Thus, an EC can eliminate the
cost of provisioning NFs for peak-load on its own premises
and only pay for the actually used resources in cloud. This can
greatly reduce an EC’s capital and operational expenditures.

From a CP standpoint, a core management problem to offer
VNFaaS is placing VNF instances in the cloud infrastructure,
and allocate resources to these instances elastically according
to VNF service requests and workloads. The gaol is to utilize
available bandwidth and host resources optimally without vio-
lating Service Level Agreements (SLAs). However, elastically
allocating and releasing resources incur costs [21]. A VNF
placement algorithm should consider these costs, as well as
the overall consumption of bandwidth and host resources.

Existing works in the VM placement are not suitable for
the placement of VNFs for the reasons described by Bouet et
al. [6]. Moreover, most of these works consider only a part of
the problem by optimizing either host or bandwidth resource
[4], [10]. Additionally, the elastic VNF placement area has
not been explored sufficiently, and the few recent works [6],
[8], [17] do not address the challenges that may arise due to
conflicting objectives and elasticity, as discussed below:

Conflicting Objectives: An optimal VNF placement algo-
rithm should minimize bandwidth and host resource consump-
tion. Host resource consumption can be minimized by serving
the VNF request using minimum number of VNF instances,
which may be many hops away from the source or target
of the request resulting into high bandwidth consumption.
Bandwidth consumption, on the other hand, can be minimized
by placing dedicated VNF instance at the source or target of

each request, but in this case host resource consumption will
be high. Therefore, the challenge is to find a trade-off between
host and bandwidth resources consumption.

Elasticity: Horizontal and vertical scaling are the promi-
nent mechanisms for achieving elasticity. Horizontal scaling
is installation/removal of VNF instances, whereas vertical
scaling is allocation/release of host and bandwidth resources
to/from a VNF instance. Further, live migration of VNF
instances [7] and reassignment of partial workload to another
VNF instance [13] can be employed to scale bandwidth and
host resources. The challenge is to determine which of these
elasticity mechanisms is the most appropriate for a given
workload.

To address the above challenges, we introduce Elastic
Virtual Network Function Placement (EVNFP) problem and
propose an efficient solution called Simple Lazy Facility Lo-
cation (SLFL). Our major contributions are as follows:

1) We formulate EVNFP considering the challenges of
conflicting objectives and elasticity.

2) We propose SLFL as a solution approach that optimizes
placement of VNF instances in response to new service
requests, and workload variation.

3) The effectiveness of our solution is examined through
realistic experiments. The results suggest that SLFL can
accept two times more workload with 5–8% less opera-
tional cost compared to first-fit and random placements.

The rest of this paper is organized as follows. In Section II,
related works are studied. EVNFP model and our solution are
presented in Sections III and IV, respectively. The proposed
solution is evaluated in Section V. Finally, the paper is
concluded in Section VI.

II. RELATED WORKS

Many mechanisms [11] have been proposed to support
elasticity through horizontal scaling, vertical scaling, and
migration techniques.

Horizontal Scaling: Amazon Auto Scaling Group [9] offers
tenant controlled horizontal scaling based on tenant-defined
thresholds. Microsoft Azure [1] adapts the number of instances
based on time, history, or size of workload. Clayman et al.
[8] focus on dynamic VNF placement to satisfy increasing
demand by installing new virtual routers; however, no mecha-
nism to release resources is supported. Another related area is
elasticity in VNF service-chain embedding. Stratos [12] uses
a simple packing technique to elastically scale resources.

Vertical Scaling: CloudScale [22] and PRESS [15] scale by
releasing or allocating CPU resources while ignoring network
resources. Vertical mechanisms are limited to individual physi-
cal machines [20]. Furthermore, changing compute or memory
resources on-the-fly is not supported in most cases. Moreover,

Table I: Comparison of EVNFP to the Most Related Works

Paper Host Bandwidth Elasticity
EVNFP X X X
Elasticity in cloud [15], [21], [22] X 7 X
Dynamic VM Placement [21], [23] X 7 X
Network-Aware VM Placement [5], [18], [19] X X 7
vDPI Placement [6] X X 7

it requires rebooting the system causing SLA violations.
Therefore, CPs do not encourage vertical scaling mechanisms.

Migration: Migration is a popular technique to achieve
elastic VM placement and better server and network con-
solidation. pMapper [23] considers VM migration cost in
its greedy heuristics to solve the optimal VM placement
problem. Entropy [16] models the optimal VM placement as a
variant of the vector bin-packing. However, both pMapper and
Entropy ignore network requirement and locality in placement
decisions. Kingfisher [21] employs both vertical and horizon-
tal elasticity mechanisms by allocating more host resources,
installing and migrating VM instances. It optimizes host
resources from tenants standpoint while considering delay of
these mechanisms. Although, bandwidth resources are ignored.

MCRVMP [5] addresses the static VM placement problem
to satisfy the time-varying traffic demands of the VMs in
addition to CPU and memory requirements. TVMPP [19]
strives to reduce the aggregate traffic. However, it can lead
congested links by ignoring link capacity constraints. The
authors of NAVP [18] focus on consolidating as much traffic
demands as possible over the same set of network links in
order to reduce the total energy consumption.

Recently, Bouet et al. [6] studied the placement of virtual
DPI engines to optimize both the number of installed engines
and their network footprint. However, the formulated problem
is static and cannot handle elastic VNF placement.

Table I briefly compares the most related works mentioned
above. It is evident from the table that none of the existing
works consider all three aspects considered by EVNFP.

III. ELASTIC VIRTUAL NETWORK FUNCTION PLACEMENT

From a cloud provider perspective, a VNF request can be
modeled as follows: traffic (stream of packets) originating
from a source is routed to a VNF instance, where the packets
are processed and forwarded to a target. If the source or target
is outside the datacenter, we can assume a border router as the
source or target of the traffic. VNF instances reside at hosts
within datacenter.

We are interested in an optimal cost-aware elastic placement
of VNF instances involving (i) selecting an optimal set of hosts
on which VNF instances are placed (ii) optimally allocating
bandwidth resources to route service traffic, and (iii) applying
the most cost-effective elasticity mechanism.

When to elastically scale? Resources must be scaled in
response to two events: i) Demand arrival: when workload
increases or a new service request is received; and ii) Demand
departure: when one unit of service traffic drops. In addition,
for the sake of simplicity, we assume that each demand
consists of one unit of traffic transmitted from its source to a
VNF instance and delivered to its target, and requires a unit
of VNF resource to be served.

How to elastically scale? Due to the inflexibility in vertical
scaling, we opt for horizontal scaling. We also assume one
VNF instance-type. A small instance-type is lightweight, can
be easily distributed over the network and instantiated on-
demand. Moreover, having multiple instance-types unneces-
sary complicates management tasks. In summary, we consider
following elasticity mechanisms: Installing a new VNF in-
stance, Removing an existing VNF instance, Migrating a VNF
instance, and Reassigning a demand to another VNF instance.

Fig. 1 depicts the above elasticity mechanisms. Initially in
Fig. 1a, traffic from 3 requests is served by a single VNF
instance v. After sometime the traffic of the first request
increases. To accommodate this new workload, a new VNF
v∗ is instantiated and the first request is reassigned to v∗

(Fig. 1b). Then, traffic of the second request terminates, and
allocated resources for this request are released. Because, v
is still serving the third request, it is migrated to a more
optimal location to reduce bandwidth usage (Fig. 1c). Next,
third request terminates, and VNF instance v is removed to
save host resources (Fig. 1d).

A. Notation

1) Data Center Network: The data center network is de-
noted as a graph G = (N,A), where N is a set of switches
and hosts, while A is a set of links (arcs). We identify host
nodes by NH . Capacity of host n ∈ NH is denoted by the
maximum number of VNF instances that can be installed on
n. Let cn(t) denote the available capacity of n ∈ NH at time
t. Let wmn and cmn(t) represent weight and capacity at time
t of arc (m,n) ∈ A, respectively.

2) Demand: D(t) is the set of demands at time t. A demand
d ∈ D(t) is identified by its two endpoints, source md ∈ N
and target nd ∈ N . Let demand nodes refer to sources and
targets. A demand needs a unit of traffic b and a unit VNF
resource to be served.

3) VNF Instance: V (t) is the set of installed VNF instances
at time t. cv(t) denotes the number of demands that VNF
instance v can serve at time t. As we use one instance-type, we
assume the maximum capacity is C. To show assignments of
demands to VNF instances, we use two maps at time t: Dv(t)
denoting a set of demands assigned to v and vd(t) representing
the VNF instance to which demand d is assigned.

B. Simplified Model

We refine the above model from two aspects in order to
simplify our formulation. First, host and VNF instance con-
straints are transformed to arc bandwidth capacity constraints;
second, demands are simplified:

1) Constraints Transformation: For each host n ∈ NH ,
cn(0) nodes are added, and we assume that VNF instances
are installed on these nodes. These nodes are called VNF
nodes. Imagine a VNF instance v is installed on n at time
t, and n still has capacity of cn(t) = 2. As shown in Fig.
2a, three nodes are added. Fn(t) denotes these nodes, and
F (t) =

⋃
n∈NH

(Fn(t)). Each m ∈ Fn(t) is connected to n
via arc (m,n). The capacity of arcs initially are set to 2×b×C,

!

"#$%

&#'%

VNF instance

Source of service traffic (

Target of service traffic (

Service traffic increase

Service traffic decrease

!

"#$%

"#$&

"#$'

(#)%

(#)&

(#)'

(a) Initial Placement

!

"#$%

"#$&

"#$'

(#)%

(#)&

(#)'

!*

(b) v∗ Install. & Reassign.

!

"#$%

"#$&

'#(%

'#(&

!)

!

(c) Migration of v

!"#$ %"&$'(

(d) Removing v

Figure 1: Elasticity Mechanisms

!

"#

$#

%#

VNF Node with a VNF Instance

Source of &

Target of &

Qanat of &

' Free VNF Node

!

"

"

"! "

#$%&'

Host (Host (

(a) VNF Nodes

!

"#

$#

!

"#

$#

(b) Traffic Flow Direction

!

"#

$#

!

"#

$#

%#

(c) Simplifying Demands

Figure 2: Simplified Model
as at most, traffic of C number of demands enters and leaves
m. These arcs force that no traffic can enter a VNF instance
node; however, this does not change the problem, because
we can assume that the demand traffic is sent to a demand
source from the VNF instance node, instead of the opposite
direction (Fig. 2b). Let AF

n (t) represent the arcs connecting
VNF nodes to the node n, and AF (t) =

⋃
n∈NH

(AF
n (t)).

Finally, let nv(t) ∈ F (t) be the VNF instance node hosting
VNF instance v at time t, and NV (t) =

⋃
v∈V (t){nv(t)}.

2) Simplifying Demands: By previous transformation, we
assume that VNF instances send the traffic to demand nodes.
We add a node qd called Qanat to the graph for each demand
d ∈ D(t). Traffic is now received in qd instead of md and nd
(Fig. 2c). Let Q(t) =

⋃
d∈D(t){qd} denotes all Qanat nodes

at time t. A qd is connected to md and nd via arcs (md, qd)
and (nd, qd). The capacity of these arcs initially are set to b,
and their weights are set to 0. These two arcs ensure that if
traffic reaches qd, it has met md and nd earlier.

C. Mathematical Model

A discrete-time system is considered to model the problem
in which time is divided into equal slots 0 ≤ t ≤ T .

1) Decision Variables: xdmn(t) ∈ R is the amount of traffic
for demand d on arc (m,n) ∈ A at time t. We derive
two variables ydn(t) and zn(t) from xdmn(t). y

d
n(t) denotes

if demand d gets traffic from VNF instance node n. zn(t)
represents if a VNF instance is installed in node n. They are
defined as follows.

∀(n,m) ∈ AF (t) : y
d
n(t) =

{
1 if xdnm(t) > 0

0 otherwise

∀n ∈ F (t) : zn(t) =

{
1 if

∑
d∈D(t) y

d
n(t) > 0

0 otherwise

2) Capacity Constraint: Eq. 1 ensures that arcs capacities
are not violated.

0 ≤
∑

d∈D(t)

xdmn(t) ≤ cmn(t) for ∀(m,n) ∈ A (1)

3) Flow Conservation Constraint: For each node n ∈ N ,
Eq. 2 guarantees that the amount of traffic entering and leaving
n are equal, where n is not a VNF node or a Qanat.

∑
(m,n)∈A

xdmn(t)−
∑

(n,m)∈A

xdnm(t) =

−2bydn(t) if n ∈ F (t)
2b if n ∈ Q(t)

0 otherwise
(2)

4) Pair Connectivity Constraint: Eq. 3 ensures that a Qanat
receives traffic from a VNF instance, so both source and target
of a demand are connected to the same VNF instance.

∀d ∈ D(t) :
∑

n∈F (t)

ydn(t) = 1 (3)

5) Installations Cost (Cins(t)): The cost of installed VNF
instances at time t is defined by Eq. 4. f is the cost of host
resources consumed by a VNF instance for each time slot.

Cins(t) = f
∑

n∈F (t)

zn(t) (4)

6) Transportation Cost (Ctr(t)): The cost of delivering
demands traffic at time t is denoted by Eq. 5. g is the cost of
a unit of bandwidth usage for each time slot.

Ctr(t) = g
∑

d∈D(t)

∑
(m,n)∈A

xdmn(t)wmn (5)

7) Reassignment Cost (Cre(t)): Eq. 6 is the cost of reas-
signing a set of demands at time t. In this equation, hd(t) is
the penalty of reassigning demand d. Here, |ydn(t−1) 6= ydn(t)|
is 1 if ydn(t− 1) 6= ydn(t) otherwise is 0.

Cre(t) =
∑

n∈F (t)∩F (t−1)

∑
d∈D(t)∩D(t−1)

(
hd(t)

|ydn(t− 1) 6= ydn(t)|
) (6)

8) Migration Cost (Cmig(t)): This is the cost of migrating
a set of VNF instances at time t. In Eq. 7, kv(t) is the penalty
of migrating VNF instance v. Here, |zn(t − 1) 6= zn(t)| is 1
if zn(t− 1) 6= zn(t), otherwise is 0.

Cmig(t) =
∑

n∈F (t)∩F (t−1)

(
kv(t)|zn(t− 1) 6= zn(t)|

)
(7)

9) Objective Function: The objective is to minimize Eq. 8.

lim
T→∞

1

T

T∑
t=0

(
Cins(t) + Ctr(t) + Cre(t) + Cmig(t)

)
(8)

The static version of EVNFP generalizes to the NP-Hard
location routing problem (LRP) [3]. An optimal solution needs
solving a dynamic version of LRP for each time slot. Due to
its intractability, it is not possible to solve the problem for
large datacenters. Thus, we break down the problem and solve
it independently for each demand arrival or departure. Let T̂
be a time system, and at each t ∈ T̂ , an arrival or departure
occurs. We rewrite the objective function as Eq. 9. Here, λt is
a weight factor to balance the transportation and installation
costs with the migration and reassignment costs.

min
(∑

t∈T̂

(Cins(t) + Ctr(t)) +
∑
t∈T̂

λt(Cre(t) + Cmig(t))
)

(9)

Although, this problem is easier than the original one, the static
version still generalizes to LRP. Hence, we propose a heuristic
algorithm for solving this problem in the next section.

IV. SIMPLE LAZY FACILITY LOCATION

In this section, we describe our solution, Simple Lazy
Facility Location (SLFL), including two novel heuristics to
handle arrival and departure events. For simplicity, we omit
time variable t. Also, we assume function flow(n,D∗, R∗)
that finds the optimal routing of traffic between node n and
demands D∗, and stores the routes in R∗. This function finds
R∗ in polynomial time by solving the single-commodity min-
cost flow problem [14].

A. Demand Arrival

Upon new demand d arrival, a combination of installation,
migrations and reassignments can be applied to optimize the
placement. Since in most cases the arrival affects its locality,
SLFL locally optimizes the placement. Three possible actions
are considered: (i) assignment to an existing VNF instance, (ii)
migration and (iii) installing a new VNF instance followed
by a set of reassignments. The first action assigns d to an
existing VNF instance with the minimum transportation cost.
For the two other actions, migration potential and installation
potential metrics are defined as follows:

Migration potential is the difference between current trans-
portation cost of Dv and transportation cost of Dv ∪{d} after
possible migration of v to node n. Function potmig , defined
in algorithm 1, finds this potential and stores routes in R∗.

Installation potential is the difference between the opera-
tional cost before and after installing a VNF instance in node

Algorithm 1 Migration Potential
1: function potmig(v, n,R∗)
2: C ← Transportation cost of Dv;
3: C∗ ← g × flow(n,Dv ∪ {d}, R∗) + λ× kv;
4: return (C − C∗) if (C∗ is not ∞), otherwise −∞;
5: end function

n. We consider a set of reassignments during installation.
Function potins, as defined in Algorithm 2, computes the
installation potential for a node n, finds candidate demands
D∗ for reassignment, and stores routes in R∗.

Algorithm 2 Installation Potential
1: function potins(n,R∗)
2: e∗ ← −g × flow(n, {d}, R∗); D∗ ← ∅;
3: for j = 1 to C − 1 do
4: d∗ ← Find best next demand to reassign;
5: e← C − (g × flow(n,D∗ ∪ {d, d∗},R) + λ× hd∗);
6: break if (e ≤ 0 or e ≤ e∗);
7: e∗ ← e; D∗ ← D∗ ∪ {d∗}; R∗ ←R;
8: end for
9: return (e∗ − f , D∗);

10: end function

Alg. 3 shows how SLFL handles a demand arrival. The
cost of the best assignment is found (lines 3-4). The best
migration and installation potential are computed (lines 4-8). If
the best installation potential is greater than the best migration
potential, a new VNF v is instantiated and demands Dre are
reassigned to v (lines 9-14). Otherwise, VNF instance vmig is
migrated to nmig (lines 14-17). Finally, in the lack of potential
to change, d is assigned to VNF instance vasn.

Algorithm 3 SLFL-Demand Arrival
1: function DEMANDARRIVAL(d)
2: D ← D ∪ {d};
3: vasn ← argminv∈V {flow(nv, {d}, ∅)}
4: pasn ← g × flow(nvasg , {d}, R∗asg);
5: (vmig, nmig)← argmaxv∈V :n∈F {potmig(v, n, ∅)};
6: emig ← potmig(vmig, R

∗
mig);

7: nins ← argmaxn∈F/NV
{potins(n, ∅)};

8: (eins, Dre)← potins(nins, R
∗
ins);

9: if (eins > −pasn) and (eins ≥ emig) then
10: u← install a facility at nins;
11: Reassign ∀d ∈ Dre and assign d to u;
12: Route related traffic based on R∗ins;
13: V ← V ∪ {u};
14: else if emig > −pasn then
15: Migrate vmig to node nmig;
16: Assign d to vmig;
17: Route traffic based on R∗mig;
18: else
19: Assign d to vasn;
20: Route traffic based on R∗asg;
21: end if
22: end function

B. Demand Departure

Similar to an arrival event, SLFL locally optimizes the
placement of VNF instances upon departure of demand d.
Assume that d was assigned to VNF instance v. Two actions

are considered: (i) migration of v, and (ii) removal of v. We
define emigration potential and removal potential metrics for
migration and removal of v as follows:

Emigration potential defined in Alg. 4 is the difference in
transportation cost of Dv before and after migration of v to
node n.

Algorithm 4 Emigration Potential
1: function potemg(v, n,R∗)
2: C ← Transportation cost of Dv;
3: C∗ ← g × flow(n,Dv, R

∗) + λ× kv;
4: return (C − C∗) if C∗ is not ∞, otherwise −∞;
5: end function

Removal potential is the difference in operational-cost be-
fore and after the removal of v. Similar to installation potential,
a set of reassignments are considered. Function potrmv , de-
fined in Alg. 5, computes the removal potential of v, finds
candidate VNF instances Vre for reassignment of Dv , and
stores routes in R∗.

Algorithm 5 Removing Potential
1: function potrmv(v,R∗)
2: {Dre, Vre} ← {∅, ∅}; e∗ ← f ;
3: C ← Transportation cost of Dv;
4: C∗ ← 0; U ← V/{v};
5: for all dv ∈ Dv do
6: vre ← best VNF instance for reassignment of dv;
7: C∗ ← C∗ + g × flow(nvre , {i}, R∗re) + λ× hdv ;
8: if C∗ is ∞ then
9: e∗ ← 0; {Dre, Vre} ← {∅, ∅};

10: break;
11: end if
12: {Vre, Dre} ← {Vre ∪ vre, Dre ∪ d};
13: R∗ ← R∗ ∪R∗re;
14: end for
15: return

(
e∗ + (C − C∗), {Dre, Vre}

)
;

16: end function

Finally, algorithm 6 defines how SLFL handles a demand
departure. First, v’s resources assigned to d are released (line
2). Then, the best node to migrate and emigration potential
are computed (lines 3-4). The removal potential and possible
reassignments are determined (line 5). If removal potential is
positive and greater than emigration potential, v is removed
and its demands are reassigned to other VNF instances (lines
6-12). Otherwise, if emigration potential is positive, v is
migrated to a more optimal node (lines 13-16).

V. EVALUATION

A. Experimental Setup

We have implemented SLFL1 and evaluated its performance
by simulations on a data center topology with 99 nodes (45
switches and 54 hosts). We used a 6-ary Fat-tree topology
[2] providing full bisection bandwidth. Each host has 8 CPU
cores, 8GB of memory, and contains a 1Gbps network adapter.
A host CPU consumes 140W of power at electricity cost of

1https://github.com/miladghaznavi/Elastic-VNF-Placement

Algorithm 6 SLFL-Demand Departure
1: function DEMANDDEPARTURE(d, v)
2: Release v’s resources assigned to d;
3: nemg ← argmaxn∈F/NV

{potemg(v, n, ∅)};
4: eemg ← potemg(v, nemg, R

∗
emg);

5: (ermv, {Dre, Vre})← potrmv(v,R
∗
rmv);

6: if (ermv > 0) and (ermv > eemg) then
7: V ← V/{v};
8: Remove facility v;
9: for all {dre, vre} ∈ {Dre, Vre} do

10: Reassign dre to vre;
11: end for
12: Route traffic based to R∗rmv;
13: else if eemg > 0 then
14: Migrate v to the node nemg;
15: Route traffic based to R∗emg;
16: end if
17: end function

¢11 per kWh2. We select Bro IDS 3 as a representative VNF
providing a capacity of 80 Mbps. We assume that Bro can
be installed on a VM which requires 1 vCPU and, 1GB of
memory. In regards to bandwidth, we set the cost of using a
unit of bandwidth for a link to 20% of the power consumption
cost. Regrading the migration penalty kv(t), the full memory
(1GB) of VNF instance v is transported from original VNF
node nv(t − 1) to new VNF node nv(t). The reassignment
penalty hd(t) involves transporting a fraction of memory of
VNF instance vd(t − 1) to new VNF instance vd(t). This
fraction is relative to the VNF instance’s maximum capacity.

We model demand arrival using Poisson distribution with
an average rate of 1 demand per second. The lifetime of a
demand follows an exponential distribution with an average
of 1800 seconds. Demand nodes are uniformly distributed in
the data-center network. We set b = 20Mbps and λ = 1.

We compare SLFL with Random and First-Fit placements.
Upon a demand arrival, Random placement randomly selects
a VNF instance with the sufficient residual capacity and
bandwidth. Otherwise, a VNF instance is installed in a random
not-saturated host with enough bandwidth. First-Fit selects
the first not-saturated VNF instance with adequate residual
bandwidth. If not, a VNF instance is installed in the first
not-saturated host with adequate available bandwidth. Upon
demand departure, both algorithms remove a VNF instance if
this instance has no assigned demand.

B. Acceptance and Utilization

Fig. 3 depicts workload acceptance and resources utiliza-
tion. As shown in Fig. 3a, SLFL accepts 97% of work-
load whereas Random and First-Fit accept 48% and 45% of
workload, respectively. Bandwidth, host, and VNF resource
utilization are depicted in Fig. 3b, Fig. 3c and Fig. 3d,
respectively. Random and First-Fit quickly exhaust bandwidth
resources (utilization of 94% and 92%, respectively) causing
low host resource utilization (45% and 44%, respectively).

2Electric Power Monthly, www.eia.gov/electricity/monthly/pdf/epm.pdf.
3The Bro Network Security Monitor, www.bro.org

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100
Random
SLFL
FirstFit

(a) Workload Acceptance

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100
Random
SLFL
FirstFit

(b) Bandwidth Res. Utilization

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100
Random
SLFL
FirstFit

(c) Host Res. Utilization

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100
Random
SLFL
FirstFit

(d) VNF Res. Utilization

Figure 3: Workload Acceptance and Resource Utilization

0
50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0
40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
os

t
(¢p

er
20

0
se

c.
) Random

SLFL
FirstFit

(a) Total Operational Cost

0
50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0
40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
os

t
(¢p

er
20

0
se

c.
) Random

SLFL
FirstFit

(b) Transportation Cost

0
50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0
40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
os

t
(¢p

er
20

0
se

c.
) Random

SLFL
FirstFit

(c) Installation Cost

0
50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0
40
00
0

10−5

10−4

10−3

10−2

10−1

100

101

¢p
er

20
0

se
c.

Reassignment
Migration

(d) Overhead

Figure 4: Operational Costs

Moreover, these placements utilize 88% and 87% of VNF
resources, respectively. SLFL achieves bandwidth, host and
VNF resource utilization of 82%, 91% and 98%, respectively.

C. Operational Cost

Operational costs are reported in Fig. 4. Compared to Ran-
dom and First-Fit, SLFL incurs 9% and 4% less operational
cost (Fig. 4a), and pays 22% and 19% less bandwidth cost
(Fig. 4b), respectively. However, SLFL incurs two times more
installation cost (Fig. 4c) compared to the Random and First-
Fit. The reason is that SLFL accepts two times more workload
than the other approaches. Finally, Fig. 4d shows the overhead
of SLFL. SLFL does reassignments more frequently than
migrations. The reason is that a reassignment requires moving
of a part of VNF instance state, whereas a migration requires
moving of the entire memory of the VNF instance.

VI. CONCLUSION

We introduced Elastic Virtual Network Function Placement
(EVNFP) problem presenting a model to minimize operational
costs in providing VNF as a service. This model considered the
elasticity overhead and the trade-off between bandwidth and
host resource consumption. We developed and evaluated an
algorithm, named SLFL, to solve this problem in polynomial
time. Our experiments suggest that by taking both bandwidth
and host resources into consideration, and by carefully select-
ing the right elasticity mechanism, SLFL accepts ∼ 2× more
workload in comparison to first-fit and random placements.
Additionally, SLFL incurs 5–8% less operational cost.

VII. ACKNOWLEDGEMENT

This work was supported by the Natural Science and
Engineering Council of Canada (NSERC) under the Smart
Applications on Virtual Infrastructure (SAVI) Research Net-
work.

REFERENCES

[1] Microsoft azure. http://www.microsoft.com/azure/default.mspx.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data

Center Network Architecture. In ACM SIGCOMM 2008.
[3] M. Albareda-Sambola, J. A. Dıaz, and E. Fernández. A compact model

and tight bounds for a combined location-routing problem. Computers
& Operations Research, 32(3):407–428, 2005.

[4] A. Beloglazov et al. A taxonomy and survey of energy-efficient data
centers and cloud computing systems. Academic Press, 2011.

[5] O. Biran et al. A stable network-aware vm placement for cloud systems.
In CCGRID, pages 498–506, 2012.

[6] M. Bouet, J. Leguay, and V. Conan. Cost-based placement of vdpi
functions in nfv infrastructures. In NetSoft, 2015.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[8] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The
dynamic placement of virtual network functions. In IEEE NOMS, 2014.

[9] Amazon EC2. http://aws.amazon.com/ec2/.
[10] W Ahmad et. al. A survey on virtual machine migration and server

consolidation frameworks for cloud data centers. Journal of Network
and Computer Applications, 52(0):11 – 25, 2015.

[11] Guilherme Galante et al. A survey on cloud computing elasticity. UCC
2012, pages 263–270. IEEE Computer Society, 2012.

[12] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos:
Virtual middleboxes as first-class entities. UW-Madison TR1771, 2012.

[13] A. Gember-Jacobson et al. Opennf: Enabling innovation in network
function control. In ACM SIGCOMM, 2014.

[14] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations
by canceling negative cycles. JACM, 36(4):873–886, 1989.

[15] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling
for cloud systems. In IEEE CNSM, 2010.

[16] F. Hermenier, X. Lorca, J. M. Menaud, G. Muller, and J. Lawall. En-
tropy: A consolidation manager for clusters. In ACM SIGPLAN/SIGOPS.

[17] M. A. Lopez and O. Duarte. Providing elasticity to intrusion detection
systems in virtualized software defined networks.

[18] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman. Vmflow: Leverag-
ing vm mobility to reduce network power costs in data centers. In IFIP
NETWORKING, 2011.

[19] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In IEEE
INFOCOM, 2010.

[20] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A virtual
machine re-packing approach to the horizontal vs. vertical elasticity
trade-off for cloud autoscaling. In ACM CAC, 2013.

[21] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In IEEE ICDCS 2011.

[22] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In ACM SoCC, 2011.

[23] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migra-
tion cost aware application placement in virtualized systems. In
ACM/IFIP/USENIX Middleware, 2008.

http://www.microsoft.com/azure/default.mspx

