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ReNoVatE Overview

• Recovery from a Node Failure in Virtual 
Network Embedding

– Single node failure in the substrate network 

– Recovers a set of virtual networks

– Treats affected virtual networks fairly

• Goals

– Maximize the number of recoveries

– No disruption to the unaffected parts

– Meet SLA timing requirements
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ReNoVatE Overview

• Opt-ReNoVatE

– Integer linear program (ILP) formulation

– Limited to small scale networks

• Fast-ReNoVatE

– Reformulates as a maximum flow problem

– Scalable to large scale networks

– Finds a solution even in a saturated network
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System Model

• A virtual network is embedded 
on a substrate network

– Node mapping
– A virtual node is hosted on a substrate node

– Multiple virtual nodes can coexist

– Satisfies location constraints

– Link mapping
– A virtual link mapped to a substrate path

– Substrate link capacities are not exceeded

– No multi-path embedding
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Problem Statement

• Given

– Embedding of a set of virtual networks

– Single node failure in the substrate network

– Results in the failure of incident substrate links

• Compute

– Recovery of the affected virtual networks

– Migrate failed virtual nodes to other substrate nodes  

– Reroute failed virtual links to alternate substrate paths
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ReNoVatE - Example
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     Node Mappings
– p ->  D
– q ->  C
– r ->  G
– m ->  B
– n->  H

     Link Mappings
– (p, q) ->  D-B-C 
– (p, r) ->  D-H-G
– (q, r) ->  C-F-G
– (m, n) ->  B-D-H
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ReNoVatE - Single Node Failure
Adjacent virtual link failure Independent 

virtual link 
failure
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     Node Mappings

– p ->  D
– q ->  C
– r ->  G
– m ->  B
– n ->  H

     Link Mappings
– (p, q) ->  D-B-C 
– (p, r) ->  D-H-G
– (q, r) ->  C-F-G
– (m, n) ->  B-D-H
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Opt-ReNoVatE
• Which virtual links (or networks) are 

recovered?
– Some virtual links (or networks) may not be 

recovered due to resource inadequacy  

• Primary maximization objective 
– Number of recovered virtual links
– May lead to partial recovery of virtual networks

• Secondary minimization objective

– Cost of bandwidth consumption for recovery

– Breaks tie among solutions having same primary objective
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Opt-ReNoVatE - Constraints
• Link Mapping Constraints

– Un-splittable path constraints

– Substrate link capacities are not violated

• Node Mapping Constraints

– Adheres to provided location constraints

– Virtual link mapping implies adjacent node mapping 

• Intactness of unaffected parts

– Unaffected mappings are not changed

– Excludes failed substrate node and links
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Fast-ReNoVatE - Node Recovery

• Virtual networks are recovered in increasing 
order of lost bandwidth
– Increases probability of recovery
– Re-embeds the failed virtual node based on its 

location constraint
– Iterate over all candidate substrate nodes in the location 

constraint set

– Select the substrate node yielding the maximum number of 
recovered paths

– Tie-break through lower cost of bandwidth for link mapping
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• Sequentially find shortest path for each failed 

virtual link

– Suffer from bottleneck links

• Let, E is candidate node for p

• Shortest path for virtual link pr

– {EB, BG}

• Bottleneck substrate link, BG 

– No other virtual links can be recovered!
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Finding Maxpaths - A Better Approach

• Compute maximum flow from a 
source to a sink

– Avoid bottleneck links

• Send unit flow from the source 
to the sink

– Paths carrying the maximum flow 
yield maximum number of paths

• May result in longer paths
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Maxflow Realization - Step 1
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• Augment the SN with a pseudo sink node, S 

• Add pseudo links from substrate nodes that 
host other ends of the failed virtual links to S
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Maxflow Realization - Step 2

19

• Replace each substrate link with two unidirectional links

• Discretize each link’s capacity using an estimation
– 1/maximum demand of all the failed virtual links in the virtual network

• Other functions such as minimum and average demand 
could result in oversubscription of bandwidth
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• Use Edmond-Karp algorithm to compute augmenting paths 
from each candidate node in L1(p) to S 

• If a new path cancels the flow of a link assigned by a earlier 
path, re-arrange both paths to exclude the link

• Select the node yielding the maximum number of paths
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Fast-ReNoVatE - Independent Links 

• Previous approach doesn’t apply as it may lead to invalid 
paths

• Re-embed virtual links in increasing order of bandwidth 
demand
– Find alternate substrate path using a minimum cost path approach

– Use modified version of Dijkstra’s shortest path algorithm

– Respecting constraints imposed by residual bandwidth
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Evaluation Results - Settings
• Compared approaches

– Opt-ReNoVatE : ILP implementation using IBM’s ILOG CPLEX

– Fast-ReNoVatE : C++ implementation of the heuristic algorithm

– Dyn-Recovery : C++ implementation of the state-of-the-art1
– Doesn’t allow partial recovery of a virtual network 

• Simulation parameters
– Small scale : 50 substrate nodes and up to 30 VNs embedded on SN

– Large scale : 1000 substrate  nodes and up to 500 VNs embedded

– Bandwidth demand is ~10-15% of substrate link capacity
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1. B. LU et. al., “Dynamic Recovery for Survivable Virtual Network Embedding,” The Journal of China 
Universities of Posts and Telecommunications, vol. 21, pp. 77–84, Jun 2014.



Evaluation Results - Small Scale
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Evaluation Results - Small Scale
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Evaluation Results - Small Scale
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Evaluation Results - Large Scale
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Evaluation Results - Large Scale
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Conclusion

• Recovery from a substrate node failure

– Re-embeds  failed virtual nodes and virtual links

– Maximizes number of recoveries

– Minimizes cost of re-embedding as secondary goal

• An optimal approach based on ILP formulation for 
small scale networks

• A fast heuristic approach more scalable than ILP and 
outperforming a state-of-the-art solution
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Future Work

• Evaluate using real testbed experiments

• Prioritize the affected VNs based on the 
following and adhere to that priority

– SLA requirements priorities

– Impacts of failure

– Profits



Thank you
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ReNoVatE Overview

• Validation through extensive simulations

– Fast-ReNoVatE performs close to Opt-ReNoVatE

– Outperform a state-of-the-art approach

• Treats affected virtual networks fairly

• Can be extended to consider

– Service level agreement requirements priorities

– Profit of individual virtual network

– Impact of failures
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Challenges of ReNoVatE

• Recovery of adjacent virtual links of a VN

– NP-Hard Single-source unsplittable flow problem 

• Recovery of independent virtual links 

– NP-Hard Multi-commodity unsplittable flow problem 

• When a batch of VNs to recover

– Exponential number of sequences of VNs

• Resource contention due to the failure

–  Create bottleneck nodes and links
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State-of-the-art
Proactive approaches
• Guaranteed recovery for certain failure scenarios e.g., single node 

failure

• May require a very high level of resource redundancy
– Expensive and not scalable to large VN topologies

Reactive approaches
• Some approaches try to re-embed the failed links on minimum cost 

paths
– Bottleneck links may cause some failed links not recoverable

• In the event of resource insufficiency, they re-embed the whole/part of 
the VN
– VN goes offline for unstipulated time causing service disruption

• None of the approaches deal with a batch of VN failures
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Opt-ReNoVatE: Primary Objective

• Primary maximization objective 

– Number of recovered virtual links

– May lead to partial recovery of VNs

– Assuming that all virtual links may not be recovered 
due to resource inadequacy in SN

– Number of recovered virtual nodes

– Prefers complete recovery of VNs 
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Opt-ReNoVatE: Secondary Objective

• Secondary minimization objective 

– Physical network cost 

– Cost of bandwidth consumption

– Agitation in the network 

– Embedding failed virtual links in completely new 
paths require new flow rules to be installed 
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Fast-ReNoVatE: In Action
• Let E be the candidate node for p

• First augmenting path

– {EB, BG, GS}

• Update residual capacities along the augmenting path
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Fast-ReNoVatE: In Action
• Second augmenting path

– {EH, HI, IG, GB, BA, AC, CS}

• It cancels previous flow between B and G in the previous path 

• Re-arrange the paths

– {EB, BA, AC, CS}

– {EH, HI, IG, GS}
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Fast-ReNoVatE: In Action
• Repeat the same steps for other candidates, B and H

• Select the node yielding the maximum number of paths to recover adjacent 
virtual links

– Use cost of the path in case of a tie

• If E is selected, computed paths after removing the links to S

– {EB, BA, AC}

– {EH, HI, IG}
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