ReNoVatE :
Recovery from Node Failure in
Virtual Network Embedding

, Reaz Ahmed, Aimal Khan,
Shihabur R. Chowdhury, Raouf Boutaba, Jeebak
Mitra

578 UNIVERSITY OF WATERLOO ‘
/A FACULTY OF MATHEMATICS § 'é HUAWEI
David R. Cheriton School

of Computer Science

ReNoVatE Overview

* Recovery from a Node Failure in Virtual
Network Embedding

— Single node failure in the substrate network
— Recovers a set of virtual networks

— Treats affected virtual networks fairly
* Goals

— Maximize the number of recoveries

— No disruption to the unaffected parts

— Meet SLA timing requirements

ReNoVatE Overview

* Opt-ReNoVatE

— Integer linear program (ILP) formulation

— Limited to small scale networks
* Fast-ReNoVatE

— Reformulates as a maximum flow problem
— Scalable to large scale networks

— Finds a solution even In a saturated network

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatkE
Evaluation results
Conclusion

System Model

Virtual Network

* A virtual network iIs embedded
on a substrate network

— Node mapping

— Avirtual node is hosted on a substrate node
— Multiple virtual nodes can coexist Substrate

Network

— Satisfies location constraints
— Link mapping
— Avirtual link mapped to a substrate path

— Substrate link capacities are not exceeded

— No multi-path embedding

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatE
Evaluation results

Conclusion

Problem Statement

* Given
— Embedding of a set of virtual networks

— Single node failure in the substrate network

— Results in the failure of incident substrate links

* Compute

— Recovery of the affected virtual networks

— Migrate failed virtual nodes to other substrate nodes

— Reroute failed virtual links to alternate substrate paths

ReNoVatE - Example

RO

Node Mappings

- p->D

— q -> C
-r->G

- m->B

- n>H

Link Mappings

- (p,q)-> D-B-C
— (p, r) -> D-H-G
- (q,n > C-F-G
— (m, n) -> B-D-H

ReNoVatE - Single Node Failure

Adjacent virtual link failure

Independent

virtual link
failure

Node Mappings
—p->D
—qg->C
- 1r-> G
- m-> B
- n->H

Link Mappings

— (p, q) -> D-B-C
— (p, r) > D-H-G
- (q,r) > C-F-G
— (m, n) -> B-D-H

ReNoVatE - Single Node Failure

Adjacent virtual link failure Independent

virtual link
@ failure
% 6 > |
Node Mappings

¢4

q>C
-r->G
- m->B
- n-> H

Link Mappings

— (p,q)-> D-B-C
— (p, r) > D-H-G
- (q,rn > C-F-G
— (m, n) -> B-D-H

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatE
Evaluation results

Conclusion

Opt-ReNoVatE

* Which virtual links (or networks) are
recovered?

— Some virtual links (or networks) may not be
recovered due to resource inadequacy

* Primary maximization objective

— Number of recovered virtual links
— May lead to partial recovery of virtual networks

* Secondary minimization objective

— Cost of bandwidth consumption for recovery

— Breaks tie among solutions having same primary objective

Opt-ReNoVatE - Constraints
* Link Mapping Constraints

— Un-splittable path constraints

— Substrate link capacities are not violated
* Node Mapping Constraints

— Adheres to provided location constraints

— Virtual link mapping implies adjacent node mapping
* Intactness of unaffected parts

— Unaffected mappings are not changed

— Excludes failed substrate node and links

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatE
Evaluation results

Conclusion

Fast-ReNoVatE - Node Recovery

* Virtual networks are recovered in increasing
order of lost bandwidth

— Increases probability of recovery

— Re-embeds the failed virtual node based on its
ocation constraint

— Iterate over all candidate substrate nodes in the location
constraint set

— Select the substrate node yielding the maximum number of
recovered paths

— Tie-break through lower cost of bandwidth for link mapping

Finding Maxpaths - A Naive Approach

Sequentially find shortest path for each failed
virtual link

— Suffer from bottleneck links @

Let, E is candidate node for p % %
Shortest path for virtual link pr <9\/ S
—{EB, BG}

Bottleneck substrate link, BG

— No other virtual links can be recovered!

Finding Maxpaths - A Better Approach

* Compute maximum flow from a
source to a sink

— Avoid bottleneck links /
* Send unit flow from the source <9\/ 6 5
10
r

to the sink

— Paths carrying the maximum flow
yield maximum number of paths

* May result in longer paths

Maxflow Realization - Step 1
* Augment the SN with a pseudo sink node, S

* Add pseudo links from substrate nodes that
host other ends of the failed virtual links to S

Maxflow Realization - Step 2

* Replace each substrate link with two unidirectional links

* Discretize each link’s capacity using an estimation

— 1/maximum demand of all the failed virtual links in the virtual network

* Other functions such as minimum and average demand
could result in oversubscription of bandwidth

Fast-ReNoVatE - Adjacent Links

Use Edmond-Karp algorithm to compute augmenting paths
from each candidate node in L1(p) to S

If a new path cancels the flow of a link assigned by a earlier
path, re-arrange both paths to exclude the link

Select the node yielding the maximum numtﬁfps)f paths

Fast-ReNoVatE - Independent Links

* Previous approach doesn’t apply as it may lead to invalid
paths
* Re-embed virtual links in increasing order of bandwidth
demand
— Find alternate substrate path using a minimum cost path approach
— Use modified version of Dijkstra’s shortest path algorithm
— Respecting constrali esidual bandwidth

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatkE
Evaluation results

Conclusion

Evaluation Results - Settings

* Compared approaches
— Opt-ReNoVatE : ILP implementation using IBM’s ILOG CPLEX
— Fast-ReNoVatE : C++ implementation of the heuristic algorithm

— Dyn-Recovery : C++ implementation of the state-of-the-artl
— Doesn’t allow partial recovery of a virtual network

* Simulation parameters
— Small scale : 50 substrate nodes and up to 30 VNs embedded on SN
— Large scale : 1000 substrate nodes and up to 500 VNs embedded
— Bandwidth demand is ~10-15% of substrate link capacity

1. B. LU et. al., “Dynamic Recovery for Survivable Virtual Network Embedding,” The Journal of China
Universities of Posts and Telecommunications, vol. 21, pp. 77-84, Jun 2014.

Recovery Efficiency

Evaluation Results - Small Scale

Opt ReNoValE -
85 Fast-ReNoVatkE

®

Dyn-Recovery - | | |
20 30 40 50 o0 70 80
SLink Utilization

N
-

:

—

—

Recovery Cost (x1073)
N E » 00

Evaluation Results - Small Scale

Opt-ReNoVatE
Fast-ReNoVatE ®
Dyn-Recovery

_________ —1 L . s =d 0

20 30 40 50 60 70 80
SLink Utilization

91~

Evaluation Results - Small Scale

310000 - B
o 999 oolReNovate E
g 100 - -
— N Fast-ReNoVatE o =
_S 10 ; éDyn-R(Eecoveryé é ;
2 S R R R
W 015030 40 50 60

SN Size

'R

Recovery Efficiency

Evaluation Results - Large Scale

100 = - o - I
98 ' * _______ _______ ’ _______ - _______ _______________
06 ________________ T e

94 — T N T BN _________________
Fast ReNoVatE ®
92 |

Dyn-Recovery

90 Fast-ReNoVatE-INF ——— *
20 30 40 50 60 70 80

SLink Utilization

IRNZEN|

27

Evaluation Results - Large Scale

/-'/ Fast-ReNoVatE =
S / Dyn-Recovery <
0

,,./ | FastTReNo\VatE-INF |
20 30 40 50 60 /0 80
SLink Utilization

Execution Tim

—

2Q

Outline

System model
Problem statement
Opt-ReNoVatE
Fast-ReNoVatkE
Evaluation results

Conclusion

Conclusion

* Recovery from a substrate node failure
— Re-embeds failed virtual nodes and virtual links
— Maximizes number of recoveries

— Minimizes cost of re-embedding as secondary goal

* An optimal approach based on ILP formulation for
small scale networks

* A fast heuristic approach more scalable than ILP and
outperforming a state-of-the-art solution

30

Future Work

* Evaluate using real testbed experiments

* Prioritize the affected VNs based on the
following and adhere to that priority

— SLA requirements priorities
— Impacts of failure

— Profits

31

Thank you

ReNoVatE Overview

 Validation through extensive simulations
— Fast-ReNoVatE performs close to Opt-ReNoVatE
— Outperform a state-of-the-art approach

* Treats affected virtual networks fairly
* Can be extended to consider

— Service level agreement requirements priorities
— Profit of individual virtual network

— Impact of failures

Challenges of ReNoVatE

Recovery of adjacent virtual links of a VN

— NP-Hard Single-source unsplittable flow problem
Recovery of independent virtual links

— NP-Hard Multi-commodity unsplittable flow problem
When a batch of VNs to recover

— Exponential number of sequences of VNs

Resource contention due to the failure

— Create bottleneck nodes and links

State-of-the-art

Proactive approaches

* Guaranteed recovery for certain failure scenarios e.g., single node
failure

* May require a very high level of resource redundancy
— Expensive and not scalable to large VN topologies

Reactive approaches

* Some approaches try to re-embed the failed links on minimum cost
paths

— Bottleneck links may cause some failed links not recoverable

* In the event of resource insufficiency, they re-embed the whole/part of
the VN

— VN goes offline for unstipulated time causing service disruption
* None of the approaches deal with a batch of VN failures

Opt-ReNoVatE: Primary Objective
* Primary maximization objective
— Number of recovered virtual Iinv
— May lead to partial recovery of VNs
— Assuming that all virtual links may not be recovered
due to resource inadequacy in SN

— Number of recovered virtual nodes

— Prefers complete recoverylof VNs

Opt-ReNoVatE: Secondary Objective

* Secondary minimization objective

— Physical network cost
— Cost of bandwidth consumption
— Agitation in the network

— Embedding failed virtual links in completely new
paths require new flow rules to be installed

Fast-ReNoVatE: In Action

* Let E be the candidate node for p

* First augmenting path

— {EB, BG, GS}

* Update residual capacities along the augmenting path

Fast-ReNoVatE: In Action

* Second augmenting path

— {EH, HI, IG, GB, BA, AC, CS}

* It cancels previous flow between B and G in the previous path

* Re-arrange the paths

— {EB, BA, AC, CS}

— {EH, HI, IG, GS}

L]

Fast-ReNoVatE: In Action

* Repeat the same steps for other candidates, B and H

* Select the node yielding the maximum number of paths to recover adjacent
virtual links

— Use cost of the path in case of a tie

* If E is selected, computed paths after removing the links to S
— {EB, BA, AC}
— {EH, HI, IG}

