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Abstract

Modeling of software-intensive systems using formal declarative modeling languages
offers a means of managing software complexity through the use of abstraction and early
identification of correctness issues by formal analysis. Alloy is one such language used for
modeling systems early in the development process. Nevertheless, little work has been
done to study the styles and techniques commonly used in Alloy models.

We present the first static analysis study of Alloy models. We investigate research
questions that examine a large corpus of 2,138 Alloy models. To evaluate these research
questions, we create a methodology that leverages the power of ANTLR pattern matching
and the query language XPath. We investigate the parse tree generated from each Alloy
model and identify instances of formulated queries that are of interest to our research
questions. We present the results and discuss the findings from examining these research
questions.

Our research questions are split into three categories depending on their purpose and
implementation complexity. Characteristics of Models include “surface-level” research
questions that aim to identify what language constructs are used commonly. We also
correlate certain model features using linear regression to determine the best predictors for
model length and field count. Patterns of Use questions are considerably more complex
and attempt to identify how modelers are using Alloy’s constructs. Analysis Complexity
questions explore the use of Alloy model features and constructs that may impact solving
time.

We draw conclusions from the results of our research questions and present findings for
language and tool designers, educators and optimization developers. Findings aimed at lan-
guage and tool designers present ways to improve the Alloy language by adding constructs
or removing unused ones based on trends identified in our corpus of models. Findings for
educators are intended to highlight underutilized language constructs and features, and
help student modelers avoid discouraged practices. Lastly, we present a number of findings
for optimization developers that provide suggestions for back-end improvements.
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Chapter 1

Introduction

Software modeling is becoming an important part of the software development process
in order to manage complexity and reduce development effort. Models are abstractions
used to represent and evaluate the core elements of a system, devoid of superfluous design
details. Software modeling helps developers identify and address bugs and design flaws
early in the design phase before they make it to the implementation phase [31]. Models are
often developed using specific techniques, tools and languages that can vary significantly
in their breadth and formality. The Unified Modeling Language (UML) is one of the
most successful and widespread modeling techniques that uses diagrams to model software
entities and the relationships and constraints that bind them. As an object-oriented model,
a UML diagram describes how the solution is obtained. While UML diagrams provide an
intuitive abstract representation of a system, they are often not formal enough to permit
the interactive property checking needed for the complex systems of today.

Unlike object-oriented modeling, declarative modeling describes what the solution should
do. Declarative modeling allows developers to express the ideas, constructs and constraints
of a software system succinctly at a high level of abstraction. The distinguishing feature of
declarative modeling is that the system is described using constraints on abstract data usu-
ally expressed in first-order logic (FOL) and/or set theory. The models are not necessarily
executable, but because they are formal, solvers can bring the models to life by finding
instances and proving properties of the model. The sizes (scopes) of the sets are not fixed
in the model but rather chosen for analysis. Many declarative languages have impressive
texts and literature to learn the language (e.g., [37, 57, 42, 18, 19, 50, 40]) and there
are conferences dedicated to the paradigm (e.g., the ABZ conference series [1]). There
are also compilations of case studies or comparisons of modeling practices using these and
related languages (e.g., [23, 27, 51, 52]) and university courses that teach some of these
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languages (e.g., [44, 46]). Ball and Zorn [21] advocate for the importance of teaching
software engineering students to model at this level of description. But little has been
done to study empirically the state-of-the-practice in modeling using these languages.

Formal declarative modeling languages, such as Alloy [37, 38], TLA+ [42], B [18],
Event-B [19], Z [50], VDM [40], and Abstract State Machines [22], are suitable for captur-
ing structural and behavioral descriptions formally and abstractly in terms of sets, rela-
tions, and logical formulas that constrain the relationships. Because the model is formal,
automated search and proof-based techniques provide the modeler with feedback regarding
the correctness of the model early in the development process. Examples of the use of this
level of modeling are: Zave’s work using Alloy to discover problems in the CHORD pro-
tocol [59]; Newcombe et al.’s work with TLA+ at Amazon [45]; and Huynh et al.’s work
with B on describing a healthcare access control model [35].

Our work aims to understand how people write Alloy models. We explore the char-
acteristics of Alloy models as well as the patterns of use of the language. As declarative
modeling becomes more popular and useful, it is important to examine how modelers use
these languages in order to promote good practices (and acknowledge bad modeling prac-
tices), create teaching materials, and also offer suggestions for where analysis optimizations
would be valuable because of common modeling practices. Our work also helps the design-
ers of the language plan out future versions of the language that cater to the modelers’
needs. Just learning a language is rarely enough to be able to use it well – we need to
research the characteristics and patterns of models written in this paradigm.

We provide the first deep analysis of a corpus of Alloy models (2,138 models). We choose
to investigate the use of the Alloy language because of its simplicity, wide-spread use, and
openly accessible toolset called the Alloy Analyzer [4]. We present a variety of research
questions to investigate common practices in these models. We determined these research
questions from 1) existing literature on measures in programming and modeling, e.g., set
hierarchies and inheritance graphs, depth of quantifiers in formulas (e.g., [25, 58]); 2) Alloy
teaching material and discussions (e.g., Jackson’s Alloy book [37], Alloy Discourse [7],
Stack Overflow [5]), and 3) interactions with others in our research group investigating
Alloy modeling and tools (e.g., [30, 20, 41]).

We divide our research questions into three categories: 1) Characteristics of Models;
2) Patterns of Use within Models; and 3) Analysis Complexity. Characteristics of Models
cover “surface-level” research questions that aim to identify what language constructs are
used frequently. We also correlate certain Alloy model features using linear regression
to produce tangible results that determine the best predictors for model length and field
count. Patterns of Use questions attempt to identify how the language constructs are used
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and consequently are significantly more involved than the questions in Characteristics of
Models. Lastly, the research questions in Analysis Complexity explore the use of model
features and constructs that impact solving time. For each research question, we provide
motivation, our approach to answering the question, the results and a series of findings
aimed at language and tool designers, educators and optimization developers.

1.1 Contributions

The main contributions of our work are:

1. Motivation for research questions relevant to Alloy modeling.

2. A methodology for answering these research questions on Alloy models using static
analysis.

3. Evaluation of these research questions on a large corpus of Alloy models.

4. A series of findings aimed at language and tool designers to help them evolve the
Alloy language and its tool support based on modelers’ use patterns.

5. A series of findings aimed at educators that highlight underutilized constructs and
language features in addition to bad modeling practices that student modelers should
avoid.

6. A series of findings aimed at optimization developers that suggest future optimization
techniques for analysis of models in the Alloy language.

1.2 Thesis Outline

We start by providing a brief background about the Alloy language in Chapter 2. In
Chapter 3, we introduce our methodology for static analysis of Alloy models. Chapter 4
discusses the research questions that fall under the Characteristics of Models category.
We describe the research questions (RQ), approach, results and findings for evaluating
these research questions on the corpus of Alloy models. Similarly, Chapter 5 contains
the Patterns of Use research questions. In Chapter 6, we investigate the Alloy language
features that may affect analysis complexity and solving time. We also discuss future
optimizations that can be added to the different Alloy solvers. Chapter 7 presents related
work and Chapter 8 provides a summary of the work presented and concluding remarks.
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Chapter 2

Background

In this chapter, we provide a brief introduction to the Alloy language along with an overview
of the Alloy Analyzer, a tool used to create and analyze Alloy models. We also discuss the
constructs of the language used to express the structure and behavior of the model.

2.1 The Alloy Analyzer

The Alloy Analyzer is used to build, edit and analyze Alloy models via its Kodkod en-
gine [53] and SAT solvers. Typically, Alloy models contain command queries that are
questions about the model asked by the user. The Analyzer checks the command queries
of the model for finite sizes of the sets. If a query is unsatisfiable, the Alloy Analyzer pro-
duces a message informing the modeler that no satisfying interpretation could be found.
When a model is satisfiable, the Alloy Analyzer produces instances i.e., interpretations that
satisfy all the constraints expressed in the model. The Alloy Analyzer is a GUI application
with three main components:

� An editing interface for modifying system specifications.

� A solutions display to showcase potential instances that the Analyzer discovered.

� A section containing statistics about the internal data structures employed during
the analysis.

The two main commands for searching using the Alloy Analyzer are run and check ,
each of which can be associated with a set of constraints called a specification. The
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run command tells the Analyzer to find an example that satisfies all of the constraints
of the given specification and the model, basically providing a satisfying instance of the
specification. When the check command is given by the user, the Analyzer searches
for a counterexample, i.e., an instance that satisfies the model’s constraints but not the
specification, which would refute the specification’s correctness. The Alloy Analyzer can
also display solutions in a graphical format that uses nodes to represent atoms and lines
and arrows to represent the relationships between them.

2.2 Alloy

Alloy [38] is a modeling language that can express the fundamental structure and behavior
of a system in addition to the constraints and operations that dictate how the system
may change. The Alloy language combines relational calculus and first-order logic with
the transitive closure and set cardinality operators and limited support for arithmetic.
Statements in Alloy are expressed using ASCII text characters. The language was originally
developed by Daniel Jackson at MIT’s Software design group [36]. Jackson coined Alloy
to address the shortcoming of the Z notation [24] such as excessive notation and the lack
of more recent constructs used in object models. The Alloy language contains a relatively
small number of constructs making it an easy language to learn and analyze. The Alloy
language is composed of a variety of packaging constructs:

1. Signatures: introduce a new set of atoms. Signatures may be declared with a
multiplicity. Multiplicity keywords like one, some and lone specify the size of a
signature. Signatures declared with multiplicity one have exactly one element in
them. Signatures declared with multiplicity some have at least one element in them.
Lastly, signatures declared with multiplicity lone have zero or one element in them.

Signature declarations may contain fields. Fields are written in the body of sig-
natures and dictate how signatures are connected to each other. For instance, the
following signature declaration sig A {f1: B} introduces a new field f1 whose
domain is A and whose range is B. The declared set is always the first argument of a
field e.g., sig C {f2: A -> B} creates a field between C, A and B. We use the
term signature to refer to the unary set introduced by a signature declaration (e.g.,
the signature A).

There are constructs to declare a set to be a subset or extension of another set,
creating a set hierarchy in the model. Subsignature extensions are mutually dis-
joint subsets of a parent signature introduced using the keyword extends . Subset
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signatures are inclusive subsets of a parent signature declared using the keyword
in.

Signatures may include formulas associated with the declared set. The block con-
taining formulas in a signature declaration is known as a signature fact block.

2. Formulas: denote constraints on sets and fields expressed in Alloy’s logic, thus
limiting the possible values of the sets and fields of the model. Formulas can be
grouped within a fact block (including signature fact blocks), an assertion block, a
predicate, a function or a macro.

3. Predicates: are constraint containers that can be used elsewhere in the model.
Predicates may be parameterized i.e., they can include zero or more arguments with
explicitly set types. Predicates allow the model to be modular as they can be included
in the analysis only when needed and can be reused in different contexts.

4. Functions: are named expressions that return a value. Functions may be parame-
terized. Function parameters need to have explicit types. Functions can be called in
formulas.

5. Macros: are defined using the let keyword at the top level of a file. Unlike pred-
icates and functions, macros are untyped i.e., parameters do not need to be given
types.

6. Assertions: are a set of formulas. Assertions should follow from the facts of the
model and and can be checked in a command. Unlike predicates and functions,
assertions do not take parameters. Assertions are remnants of an older version of
Alloy and can be essentially thought of as unparameterized predicates [9].

7. Commands (also called queries or command queries): denote questions that a
user asks about the model. run commands check whether there is an instance of the
model that satisfies all the constraints and are used with predicates and functions.
check commands search for a counterexample to a constraint. Commands can be
supplemented with scopes that limit the size of the signature sets in instances or
counterexamples that will be considered.

Throughout this work, we use the term signature declaration to refer to the entire
packaging construct that contains the signature declaration along with the fields and any
formulas. Models in Alloy are composed of statements created using a combination of these
constructs. The order of statements does not affect the model since Alloy is a declarative
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language. An Alloy model may be partitioned into multiple files. The subfiles of a model
are usually called modules and can be imported into a model using an open statement.
We will explain the constructs of the Alloy language in more detail with examples as needed
in the chapters that follow.

2.3 Types and Type Checking

The type system in Alloy has two main functions. First, a rudimentary type checking
mechanism allows the Alloy Analyzer to catch errors before analysis is performed. Ill-
typed expressions in Alloy are expressions that can be shown to be redundant using types
alone. Second, the type system in Alloy is used to resolve overloading e.g., if two signatures
have fields with the same names, the type of an expression enables the Alloy Analyzer to
determine which signature and field are referenced. Alloy has two kinds of types:

� Basic Types: these types are implicitly associated with signatures. Each top-level
signature in a model is assigned a unique type. Subsignature extensions are also given
unique types. However, subset signatures are not given their own type but acquire
the parent signature’s type instead. Two types overlap if one type is a subtype of
the other i.e., the subtype is associated with a subsignature extension of another
signature with a different type.

� Relational Types: every expression in an Alloy model is assigned a relational type
consisting of a union of products. Each product term in the union must have as
many basic types as the arity of the relation.

1 sig A {f1: B}

2 sig B {}

3 pred some_f_union_B {some f1 + B}

4

5 sig C {}

6 sig D {f2: set C}

7 sig E extends B {f3: C}

Figure 2.1: Sample Alloy Model

The Alloy Analyzer can identify two kinds of type errors. The arity of a field is com-
puted by counting the sets in the type expression of a field declaration plus one for the
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signature under which the field is declared (e.g., f in sig A { f : x -> y } has an
arity of 3). The first kind of type error arises when the modeler attempts to form expres-
sion of mixed arity. We will use the signatures and predicates in Figure 2.1 to provide
example of type errors. For example, the expression f1 + B in the body of the predicate
some_f_union_B is an illegal expression, since f1 has arity two and B has arity one.
The second kind of type error occurs when an expression is equivalent to or contains the
empty set. For instance, E.f2 is a redundant expression since f2 maps elements of basic
type D and no element in E is also in D so the expression always results in the empty set.
Similarly, (D + E).f2 is also an erroneous expression because elements of basic type
E cannot be mapped by f2 and thus this expression contains the empty set and can be
written equivalently as D.f2.
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Chapter 3

Methodology

In this chapter, we discuss the corpus of models used in this study and provide an overview
of our static analysis methodology. We explore the tools used to extract elements and
patterns from Alloy models as well as the statistics generated to answer our research
questions. Lastly, we provide an overview of the linear regression methodology used to
correlate model features in subsequent chapters.

3.1 Corpus of Models

Our goal is to survey a diverse set of Alloy models to answer our research questions.
To build our corpus of Alloy models, we use Catalyst, a tool developed by our research
group [14] for scraping Alloy models from github repositories. The tool uses standard
techniques to gather publicly available Alloy models, including the ones available with the
Alloy Analyzer [4], ones scraped from public github repositories and other sources (e.g.,
the Platinum evaluation models [60] and the 56 models provided in Jackson’s book on
Alloy [37]). We ensure there are no files that are exact duplicates of each other in this
corpus which includes replicas of the models in Jackson’s book on Alloy that could have
been created by student modelers attempting to learn the language. We also remove any
library models that are part of the Alloy language/Analyzer. We exclude files that do
not parse correctly with the Alloy Analyzer, which ensures that all models conform to the
Alloy well-formedness constraints.

Next, we filter this corpus to ensure diversity of models because multiple versions of the
same model may appear in a repository. For repositories that contain iterative versions of
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the same model, we choose the “highest” version of models to represent the most advanced
model when possible. In total, our corpus contains 2,138 Alloy files which includes models
drawn from 503 different github repositories. Within these, there are 31 models created
by our research group prior to this work.

In our corpus, we assume that these models are in a mostly complete state. We do
not know how many distinct modelers are the authors of these models. We also do not
know the purpose of these models i.e., we do not know if they are used in industry or
for educational purposes. Our corpus may contain automatically generated models which
means that one person’s modeling style and preferences could be affecting many models.

3.2 Static Analysis

To answer our research questions, we statically analyze textual Alloy files. For each research
question, we create one or more queries, search for instances of the query(-ies) in the file,
and then collate the results across the file and/or multiple files. Figure 3.1 is an outline of
our methodology.

Figure 3.1: Methodology
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First, we create and test an ANTLR [47] grammar for Alloy as shown in Step 1 of
Figure 3.1. The complete Alloy grammar is presented in Appendix A. Our ANTLR parser
accepts models that are written in the input languages for the Alloy Analyzer versions 3 -
5. The differences between these languages are very small. There are no syntactic changes
in the language between versions 4 and 5 [13]. We opt to create our own ANTLR parser for
Alloy as opposed to using the existing Alloy grammar written in CUP [2] because ANTLR
offers built-in pattern matching tools and support for the query language XPath [55]. We
create a complete Alloy grammar using a combination of lexer (terminal) rules and parser
(non-terminal) rules. Terminal symbols are the elementary symbols of the grammar that
cannot be decomposed using the rules of the grammar. Terminal rules in ANTLR are fixed
strings or can be defined using regular expressions. Non-terminals are the symbols in
the grammar that are composed of a combination of terminals and non-terminal symbols1.
Consider the example in Figure 3.2 that shows an excerpt of the Alloy grammar. In the
signature declaration grammar rule, priv, abs, multiplicity , names, sigExtention ,
decls and block_opt are examples of non-terminals, whereas ’sig’ and ’{’ ’}’ are
terminal symbols defined using fixed strings. ALPHA, DIGIT and ID are terminal rules
defined using regular expressions. Our ANTLR parser generates a parse tree from any
syntactically well-formed Alloy model.

1 paragraph : factDecl | assertDecl | funDecl | cmdDecl |

enumDecl | sigDecl | predDecl;

2

3 sigDecl : priv abs_multiplicity ’sig’ names sigExtension ’{’

decls ’}’ block_opt;

4 name : (’this/’)? (ID ’/’)* ID;

5 names: name (’,’ name)*;

6

7 ALPHA: [a-zA -Z_"]+ ;

8 DIGIT : [0-9] ;

9 ID : ALPHA ( ALPHA | DIGIT )* ;

Figure 3.2: Excerpt of Alloy Grammar

ANTLR parsers can generate parse trees or abstract syntax trees from an input. We
examine the parse tree of the model (rather than the abstract syntax tree) because it
contains all the information from the file including the whole string associated with each

1Definitions of terminals and non-terminals vary in the literature.
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non-terminal and terminal, and it allows for seamless extraction of subtrees and nodes.
Abstract syntax trees nodes only contain the type information of each node i.e., each node
is labeled with the terminal or non-terminal rule it pertains to and does not contain the
string literal value associated with it. Abstract syntax trees also require user-generated
visitors to traverse whereas parse trees allow for easy retrieval of the literal string values
associated with each node via external libraries and ANTLR’s built-in tools which we will
discuss shortly. Our methodology identifies and collects exact matches from the models.
Consequently, working with parse trees allows us to generate powerful yet concise scripts
that extract all the required information needed for our exhaustive profiling of Alloy models.

Our research questions vary greatly in complexity and require a wide range of ex-
tracted information from the model. We use the query language XPath (and its libraries)
in addition to ANTLR’s built-in parse tree matching to create queries and extract infor-
mation from the Alloy models as shown in Step 2 of Figure 3.1. We first describe the
use of the XPath query language and then we discuss ANTLR’s built parse tree matching
mechanism.

To search for instances of a subtree in an Alloy file, we use the query language XPath.
Originally, XPath was a query language for selecting nodes in XML documents. Support
for XPath was added to the parser-generator ANTLR with its version 4.

Separator Description

nodename Nodes with the token or rule name “nodename”
/ All direct descendants that match the next element in the path. Selection

starts at the root node if used at the start of the hierarchy path
// All descendants in the tree that match the next element in the path. Se-

lection occurs anywhere in the tree if used at the start of the hierarchy
path

! Any node except the next element in the path
* Any node in the path

Table 3.1: XPath Separators

An XPath hierarchy path is a sequence of expressions describing a hierarchy in the
parse tree. Each expression is a non-terminal or terminal node in the grammar or a
combination of expressions and separators. Table 3.1 provides a list of all the XPath
separators along with their definitions. Separators describe quantification over the nodes
to match. When an XPath hierarchy path begins with a “/” operator, the selection occurs
at the root node. The “//” operator at the start of an XPath hierarchy path indicates that
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the selection can begin anywhere in the parse tree. The any (“*”) and not (“!”) separators
are combined with the “//” or “/” separators to indicate if they apply to all descendants
of the previous expression or just the direct descendants respectively. The “not” operator
is a negative operator, meaning it chooses nodes that do not match the specified node
type in the string path. XPath can extract subtrees from the model parse tree. Subtrees
can consist of any number of nodes. A subtree containing only one node corresponds to a
terminal rule in the grammar. A subtree with two or more nodes always has a root node
that corresponds to a non-terminal rule in the grammar. Consider the sample parse tree
shown in Figure 3.3. The XPath hierarchy path "/A/B" extracts the subtree consisting
only of the B node at level 1 since it is a direct descendant of A. "/A//B" extracts the
two B nodes (at levels 1 and 2) from the tree since they are descendants (not necessarily
direct) of A. The following hierarchy path "/A/*" extracts any direct descendant of A
(i.e., the B node and the C subtree at level 1). "/A/!B" extracts all direct descendants
of A that are not of B nodes (i.e., just the C subtree at level 1).

Figure 3.3: Sample Parse Tree

An XPath hierarchy path is sufficient when the research question requires extracting
one kind of subtree from the parse tree. For instance, we can identify all signature names
using the following XPath hierarchy path

"// sigDecl/names/name"

that extracts all name subtrees located in signature declarations. The hierarchy path is
passed to the XPath findAll method along with the model parse tree and the parser:
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Collection <ParseTree > sigNames = XPath.findAll(tree ,

"// sigDecl/names/name", parser);

The method call returns a Collection of name subtrees.

When a research question requires extracting a subset of node kind or a subtree that
conforms to a particular pattern that cannot be expressed in an XPath hierarchy path, we
use ANTLR’s built-in parse tree matching (along with XPath to narrow the search space).
A parse tree pattern is a string that describes what we want to match in the file. It
can contain terminals, non-terminals and strings from the grammar. Strings from the
grammar correspond to the literal value of certain terminal rules. For instance, “State”
is a possible literal value of the terminal identifier rule (ID). Parse tree matching allows us
to define a pattern containing the literal value “State” that is converted to a parse tree
and then matched against the entire model’s parse tree or a portion of it.

We use XPath hierarchy paths to select a subset of the parse tree to narrow the search
space for the pattern. When combined with parse tree matching, XPath is not used extract
subtrees, instead we use it to extract a subset of the model parse tree and then we use
parse tree matching to identify a subset of trees that conform to a pattern. For instance,
we must use a parse tree pattern to extract signature declarations with multiplicity one

given that an XPath hierarchy path is only capable of extracting all signature declarations
regardless of multiplicity. The following parse tree pattern

"<priv > one sig <names > <sigExtension > { <decls > } <block_opt >"

represents an Alloy signature declaration with multiplicity one. The parse tree pattern
can be created as follows:
ParseTreePattern p = parser.compileParseTreePattern("<priv >

one sig <names > <sigExtension > { <decls > } <block_opt >",

ALLOYParser.RULE_sigDecl);

The parse tree pattern is then passed to ANTLR’s built-in findAll method along with
the model parse tree and the XPath hierarchy path "// paragraph /*" that limits the
search space to the direct descendants of paragraph trees:

List <ParseTreeMatch > matches = p.findAll(tree ,

"// paragraph /*");

The method call returns a list of ParseTreeMatches that can be decomposed further
or converted to parse trees.

Once the query (i.e., XPath string and/or parse tree pattern) for a research question
has been formulated, we detect and extract instances of the query from the model as shown
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in Step 3 of Figure 3.1. After instances of the pattern have been extracted, some queries
require a post-processing step to refine the data, such as handling multiple elements within
one string and any calculations per file. In some cases, the constructs relevant to a research
question can include related forms, which require the use of multiple parse tree patterns and
occasionally multiple XPath hierarchy paths. Negative patterns are also used to identify
instances that do not conform to a certain construct. Sometimes, the parse tree must
be traversed multiple times to determine correctly the answer to the query (e.g., integer
variables have to be identified before we can determine how they are used). For some
research questions, the count of a particular construct in a model is scaled according to the
number of calls made to predicates and functions containing instances of this construct.
We discuss scaling construct counts in more depth as needed in the next chapters. By
leveraging the flexibility of XPath and the profuseness of parse tree data, we create a
versatile methodology for identifying various patterns in Alloy models.

The data resulting from multiple Alloy model files is combined using an R script [6]
as shown in Step 4 Figure 3.1. For each research question, we find some or all of the
following data summary criteria to be of interest:

� Predominant Use (PU): The mode per file identifies the most recurrent value
in the set of collected values and thus identifies the most frequent form/use of each
pattern.

� Typical Use (TU): The median per file provides the middle value in the sorted list
of data points. We opted for the median as a measure of central tendency as opposed
to the mean because our generated data is often heavily skewed and contains several
outliers. The typical use criterion provides an aggregated value that summarizes the
data set without running the risk of being skewed by outliers.

� Distribution (D): The percentage distribution as measured across all files (or
occurrences) is used when the goal of the research question is to identify the partition
of a data set into a number of categories.

� Percentile Distribution: A percentile is a value below which a percentage of values
in the data set fall. We provide a percentile distribution that includes the 12.5th, 25th,
50th, 75th and 87.5th percentiles.

� Common Range (CR): We define the common range as the range that encompasses
75% of values in the data set i.e., the values that fall between the 12.5th percentile
and the 87.5th percentile.
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In our results, values with an asterisk (*) indicate a non-zero criterion i.e., zeros were
eliminated from the data before computing the value.

3.3 Linear Regression

Linear regression is a statistical tool used for predictive analysis. Linear regression models
the relationship between two variables by attempting to find the best linear model (i.e.,
line) that fits the data. The methodology we use to perform linear regression is the same
one employed by Lopes and Ossher in [43]. We use linear regression to correlate certain
model characteristics in Chapter 4. Linear regression is often conducted and plotted in the
linear scale. However, certain transformations can be applied to the data to address issues
such as skewness and outliers. One such transformation is the logarithmic transformation
used to address skewness in the data. The logarithmic transformation is applied by taking
the natural logarithm of both variables. Data produced from examining software artifacts
is often heavily skewed and the data generated from our corpus of Alloy models is no
different. Thus, we opted to use the logarithmic transformation for all variables in our
linear regression analysis. Figure 3.4 and Figure 3.5 show the signature count in Alloy
models plotted in linear and logarithmic scale respectively. Figure 3.4 clearly shows that
the data is heavily skewed given that most data points have small values for the length.
After applying the logarithmic transformation, we can see an almost perfect log-normal
distribution as shown in Figure 3.5. The logarithmic transformation can only be applied to
data sets that do not contain zeros. Therefore, for our research questions we take several
measures to ensure that the produced data sets do not contain zeroes. We discuss these
measures in detail as needed in Chapter 4.

Figure 3.4: Histogram of Model Length
Plotted in Linear Scale

Figure 3.5: Histogram of Model Length
Plotted in Logarithmic Scale
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In both linear and log scales, the best fit line is given as y values = α + βx values.
However, in a log scale plot, the best fit line represents log(y) = α + βlog(x). When
we transform this equation back into the linear scale, we get the following equation that
describes the exponential relationship between the two variables:

y = eαxβ (3.1)

The exponential relationship between the two variables X and Y is dictated by the
value of β as follows:

� If β = 1, the relation between the variables X and Y reverts to linear.

� If β 6= 1, then there exists an exponential relation between X and Y .

� If β > 1, then the relationship between X and Y is superlinear i.e., Y grows expo-
nentially faster as X grows.

� If β < 1, then the relationship between X and Y is sublinear i.e., Y grows exponen-
tially slower as X grows.

The correlation coefficient r measures the strength and the direction of a linear
relationship between two variables on a scatter plot. The value of r is such that −1 ≤
r ≤ +1. The polarity of r indicates the kind of correlation that exists between the two
variables as follows:

� Positive Correlation: as the values of X increase, the values of Y increase as
well. If X and Y have a strong positive correlation, then r will be positive such that
r > +0.8. An r value of exactly +1 indicates a perfect positive fit.

� Negative Correlation: as the values of X increase, the values of Y decrease. If X
and Y have a strong negative correlation, then r will be negative such that r > −0.8.
An r value of exactly -1 indicates a perfect negative fit.

� No Correlation: if no correlation exists between the two variables X and Y, then
the value of r will be zero or very close to zero.

Table 3.2 shows the interpretation guidelines2 for the correlation coefficient r proposed
by Hinkle et al. in [33].

2These guidelines differ in the literature depending on the data characteristics and the purpose of the
study
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Correlation Strength Positive Negative

Negligible 0.0 to 0.3 -0.0 to -0.3
Low 0.3 to 0.5 -0.3 to -0.5

Moderate 0.5 to 0.7 -0.5 to -0.7
High 0.7 to 0.9 -0.7 to -0.9

Very High 0.9 to 1.0 -0.9 to -1.0

Table 3.2: Guidelines for Interpretation of Correlation Coefficient r

3.3.1 Goodness of Fit

The correlation coefficient r reflects the relationship between two variables but it does not
reflect the percentage of values that exhibit this correlation. Examining the goodness of
fit is a critical part of linear regression. R2 , also known as the coefficient of determi-
nation, is statistic measure used to determine the proportion of variance in the dependent
variable that can be explained by the independent variable i.e., R2 shows how well the
data fits the regression model. For instance, if R2 = 0.95, then 95% of the variation in
the data can be explained by the best fit line. The coefficient of determination R2 is the
square of the correlation coefficient r .

While R2 is often sufficient to determine the goodness of fit, its predictive value can be
limited in some cases where the data exhibits certain characteristics. Therefore, it is always
important to examine the residuals of the regression model. A residual is the vertical
distance between any one data point and its estimated value. We typically consider four
plots involving residuals: Residuals vs. Fitted, Normal Q-Q, Scale-Location and Residuals
vs. Leverage. If the data fits the regression model, these plots will feature the following
characteristics:

� Residuals vs. Fitted: is a scatter plot of residuals on the y axis and fitted (i.e.,
estimated) values on the x axis. If the regression model is a good fit, then the
Residuals vs. Fitted plot should show randomly distributed data around a horizontal
line at the origin which indicates that what is left from the fit is unbiased noise.
The line at the origin may not necessarily be a perfectly horizontal line. The fit
is acceptable as long the line does not show a clearly discernible pattern (e.g., a
parabola).

� Normal Q-Q: is a scatter plot created by plotting two sets of quantiles (also known
as percentiles) against one another. If the points form an approximately straight
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line, then the residuals fit a normal distribution which is the ideal case. However,
in practice some deviation is to be expected in the Q-Q plot especially towards the
ends. Thus, light-tailed Q-Q plots are acceptable when performing linear regression.

� Scale-Location: also known as Spread-Location, this plot is very similar to the
Residuals vs. Fitted plot. However, it takes the square root of the absolute value
of standardized residuals instead of plotting the residuals themselves. The Scale-
Location plots shows if residuals are spread equally along the ranges of predictors.
It is used to check the assumption of equal variance (homoscedasticity). Ideally, we
would like to have a horizontal line with equally spread points on both sides. Never-
theless, horizontal lines that are lightly-tailed towards the ends are still acceptable.

� Residuals vs. Leverage: this plot shows the leverage or influence that data points
have on the fit. It is used to identify influential outliers in the data, if any. Unlike
the previous plots, we do not look for trends in the graph, instead we look for cases
that fall outside Crook’s distance lines (plotted as dashed lines). If there are cases
outside Crook’s distance lines, then these data points have an undue influence on the
regression model which will be altered when they are excluded.

3.4 Summary

In this chapter, we discuss the origin of the models used in our corpus study, the method-
ology employed to profile the models and the statistical tools used to formulate results.
Our corpus contains 2,138 Alloy models, most of which where scraped from public github
repositories. We apply different filters to the corpus to ensure that the models are diverse.
We perform our static analysis of Alloy models using ANTLR’s built-in parse tree matching
mechanism and the query language XPath. We use XPath to extract from the parse tree
subtrees of the same kind whereas parse tree matching is used for more intricate patterns
that cannot be expressed using an XPath hierarchy path. For each research question, we
generate one or more of the following data summary criteria: predominant use (mode),
typical use (median), percentage distribution, percentile distribution and common range.
We use linear regression to correlate certain Alloy model features. We apply the loga-
rithmic transformation to our data sets which are often heavily skewed. The correlation
coefficient r determines the strength and polarity of the correlation between the variables.
The coefficient of determination R2 is a measure of the goodness of fit of the model and
reflects the percentage of data points that can be explained by the correlation equation.
We also examine the residual plots to ensure that the regression model is a good fit.
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Chapter 4

Characteristics of Models

In this chapter, we investigate research questions that investigate which language constructs
modelers are using in their Alloy models. The research questions in this chapter are
“surface-level” questions that explore the superficial characteristics of Alloy models through
the use of relatively simple patterns that require a single pass through the parse tree.
The post-processing in these questions, if any, is fairly minimal and does not make use
of external data structures. By learning about the constructs most commonly used in
Alloy models, language and tool designers can concentrate their efforts on improving these
constructs. Educators can focus their attention on teaching these constructs.

4.1 Model Length

Alloy models often seem considerably shorter than programs. In this section, we explore
the length of Alloy models by measuring the number of lines.

RQ# 1: How long is the average Alloy model?

Motivation: The simplest characteristic of any model is its length. By measuring the length
of Alloy models, we can get a better understanding of how they compare to programs in
terms of length.

Approach: We count lines in each Alloy model (not including blank lines and comments)
and report the predominant and typical use criteria, which represent the most frequent
model length and the central tendency of the model length respectively.

Results: We find that the predominant value (i.e., mode) for model length is 52 lines,
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whereas the typical value (i.e., median) is 62.

Findings: We find that:

� Alloy models are fairly short especially when compared to programs.

In Section 4.5, we correlate model length with set and formula counts to get a better
understanding of the model characteristics that have the most significant effect on length.

4.2 Signatures

In this section, we discuss research questions related to signature use in Alloy models. We
attempt to quantify the frequency of signature use in Alloy models and identify the kinds
of signatures that are most prevalent. We also explore the use of signatures as scalars.

1 sig A {

2 f1 : B1 // relation f1: A -> B1

3 f2 : A // relation f2: A -> A

4 }

5 abstract sig B {}

6 one sig B1 in B {

7 f3 , f4 : C1 // relations f3: B1 -> C1 , f4: B1 -> C1

8 }

9 sig A1 , A2 extends A {}

10 enum C {C1 , C2}

Figure 4.1: Alloy Signature Declarations Example

RQ# 2: How often do modelers use signatures in Alloy models?

Motivation: Signatures are a fundamental component of any Alloy model since Alloy
does not have scalars. Signatures are used to introduce new sets (including subsets and
extensions). Figure 4.1 shows a small example of Alloy signature declarations. Five sets
are introduced using signature declarations in this example (A,A1,A2,B,B1). The enum

declaration on line 10 introduces three additional sets (C, C1, C2). By examining signature
and enum declarations we can determine the profuseness of sets in Alloy models.

Approach: We extract all signature declarations as well as sets introduced in enum decla-
rations from a model and perform post-processing on the collected matches to account for
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multiple signatures aggregated in one declaration. For instance, the signature declaration
on line 9 introduces two sets A1 and A2. We choose to compute the predominant use and
typical use criteria as they offer a comprehensive answer to the question. The predominant
use criterion computes the most recurrent number of signatures per file across all the Alloy
models. The typical use criterion aggregates the results by computing the central signature
count value.

Construct Predominant Use (Mode) Typical Use (Median)

Signatures 2 8

Table 4.1: Use of Signatures

Construct 12.5th 25th 50th 75th 87.5th

Signatures 2 3 8 20 32

Common Range: [2, 32]

Table 4.2: Percentile Distribution of Signature Count

Results: The results of this research question are shown in Table 4.1 and Table 4.2. The
typical use value of eight indicates that a typical Alloy model contains eight signatures,
although the predominant use value is two. The data generated for this query is heavily
skewed which shows that signature count in Alloy models exhibits a great deal of variation.
The skeweness of the generated data is evident when examining the percentile distribution
in Table 4.2 which shows a significant level of disparity between successive percentiles.
The common range spans a cross a wide range ([2, 32]) which means that 75% of signature
counts fall between one and twenty.

Findings: Based on our results, we conclude that:

� The signature count in Alloy models varies significantly between one model and
another.

RQ# 3: How often are modelers using top-level signatures, subset signatures
and subsignature extensions?

Motivation: The Alloy language contains different kinds of signatures. Top-level sig-
natures create parent sets that are not subsets of another set (e.g., lines 1 and 5 of
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Figure 4.1). Top-level signatures are mutually disjoint. Subset signatures are declared
as subsets of another signature using the keyword in (e.g., set B1 is a subset of B on
line 6 of Figure 4.1). Subset signatures are not necessarily mutually disjoint unless they
are explicitly constrained to be in a formula. Subsignature extensions create mutually
disjoint subsets of a set and are declared using the keyword extends (e.g., sets A1, A2 on
line 9 of Figure 4.1 extend set A). Signature extensions can also be introduced using enum

(e.g., C1 and C2 are extensions of the top-level signature C). By examining the kinds of
signatures used in Alloy models, we can get a better understanding of the set hierarchies
used by modelers, which can help us determine if a more advanced type checking system
should be added to the Alloy language.

Approach: We extract and tally up the number of top-level signatures, subset signatures
and subsignature extensions in each model. We account for subsignature extensions intro-
duced using enum when tallying up the number of extension signatures.

Signature PU TU D

Top-level 3* 3 16.5%
 = 100%Subset 1* 0 1.2%

Extension 2* 4 82.3%

Table 4.3: Signatures by Level

Results: We find that top-level signatures account for 16.5% of all signatures. Subsignature
extensions are the most prominent kind of signatures coming in at 82.3%. Subset signatures
are quite sparse in Alloy models (1.2% of all signatures). The typical Alloy model contains
three top-level signatures and four subsignature extensions but no subset signatures.

Findings: We find that:

� Given the prominence of subsignature extensions, we conclude that the most common
use of set hierarchy is partitioning the universe.

� Types are commonly used in other languages to partition a universe of atoms. Types
also allow for type checking. We suggest that type checking mechanisms be explored
for the Alloy language to provide faster feedback to users.

RQ# 4: How often do modelers use abstract signatures?

Motivation: An abstract signature has no elements except those belonging to its exten-
sions or subsets (e.g., set B on line 5 of Figure 4.1). The number of abstract signatures
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in a model gives us an insight into its use of inheritance since most abstract signa-
tures exist for the sole purpose of creating extensions from them. Beyond inheritance,
abstract signatures offer many advantages such as enabling modelers to take advantage
of Alloy’s scope inference mechanism and allowing modelers to create more concise models
that are easier to evolve in the future. We discuss the advantages of abstract signatures
in greater detail in Chapter 5.

Approach: We extract signature declarations containing the keyword abstract . The
predominant use criterion represents the most frequent number of abstract signatures
per model, whereas the typical use criterion provides the median number of abstract

signatures over all the collected files. We also present the percentage distribution of
abstract signatures out of the total number of signatures.

Results: We find that abstract signatures are fairly uncommon in Alloy model. The
predominant use criterion is zero (non-zero PU is one) whereas the typical use criterion is
one. Thus, the typical Alloy model contains only one abstract signature. We also find
that abstract signatures account for 8.1% of the total number of signatures across all
models.

Findings: The findings of this research are as follows:

� abstract signatures are used sparsely even in models that have them.

� Educators are encouraged to highlight the value of abstract signatures and how
they can be used to take advantage of inheritance and scope inference in addition to
making the model more concise and easier to modify in the future.

RQ# 5: How often are scalars used in Alloy?

Motivation: Alloy has no construct for scalars. Sets of size one are used to represent
scalars to simplify the language so that only operators over sets are needed. But this can
be confusing to novice modelers because most other languages provide scalars. Syntactic
sugar could be provided to allow modelers to include scalars directly in their model and
have these converted to sets underneath or an analysis method could be optimized if many
sets are scalars.

Approach: Alloy allows modelers to declare sets of size one using signatures that have
multiplicity one (e.g., set B1 is a subset of B with size one on line 6 in Figure 4.1) or
using enums. Signatures with multiplicity one have exactly one atom in them. Enums
allow the instantiation of multiple signatures with multiplicity one concisely. Signatures
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introduced using enum will have an ordering imposed on them. Creating multiple ordered
signatures with multiplicity one is a multi-line procedure that can be greatly simplified
using enum . We count signatures declared with the keyword one. In the post-processing
stage, we ensure that declarations containing multiple signature are counted correctly and
report the total number of signatures with multiplicity one. Enums are special signature
declarations, where each listed element is equivalent to a signature with multiplicity one.

Construct PU TU D

one sig 1* 1 40.9%
}

of sigs
enums 2* 0 1.5%

Table 4.4: Use of Scalars

Results: Table 4.4 shows that signatures with multiplicity one account for 40.9% of all
signatures declared across all the models. The typical Alloy model contains one signature
declared with multiplicity one . We find that enums account for 1.5% of all signatures.
The typical use criterion for enums is zero, which means that the typical Alloy model does
not contain an enum declaration. Scalars declared using signatures with multiplicity one

far outnumber the ones declared using enums.

Findings: We find that:

� Given that enums are an underutilized construct in Alloy, educators are encouraged
to highlight the use of enums to concisely instantiate multiple ordered signatures
with multiplicity one.

� The abundant use of scalars in Alloy models is evident and may warrant attention
from language and tool designers who should consider adding syntactic sugar that
allows modelers to create scalars directly.

RQ# 6: What is the number of fields per signature in an Alloy model?

Motivation: The body of signatures in Alloy can contain fields. Alloy is often considered
to have an object-oriented flavor because of the way that fields that take a particular set
as their first argument are grouped with the signature of that set (similar to a method
of an object). By examining the number of fields per signature, we aim to get a better
understanding of the distribution of fields over signatures (i.e., if modelers are grouping
all fields under one signature or if they are dividing them among several signatures).

Approach: We extract and tally up the number of fields declared in the body of each
signature across all models. We account for multiple fields in one declaration (e.g., relations
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f3 and f4 on line 7 in Figure 4.1). We present the percentage of signatures with and
without fields. We also report the predominant and typical use criteria in addition to the
percentile distribution and common range.

Construct Distribution

Signatures with Fields 12.9%
Signatures without Fields 87.1%

Table 4.5: Distribution of Signatures with and without Fields

Construct Predominant Use (Mode) Typical Use (Median)

Fields 1 2

Table 4.6: Fields in Alloy Models

Construct 12.5th 25th 50th 75th 87.5th

Fields 1 1 2 3 4

Common Range: [1, 4]

Table 4.7: Percentile Distribution of Field Count

Results: Table 4.5 shows that the vast majority of signatures do not have fields (87.1%)
while only 12.9% of signatures have fields associated with them. Table 4.6 shows the
predominant and typical use values for the number of fields per signature. Table 4.7 shows
the percentile distribution and the common range. We find that in a typical Alloy model,
signatures with field declarations typically have two fields. We also find that the common
range for the number of fields is [1, 4]. We conclude that signatures commonly have between
one and four fields.

Findings: We conclude that:

� Modelers are not aggregating fields under one signature but spreading them over
multiple signatures.
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4.3 Constraints

This section explores the use of formulas in Alloy models. We attempt to quantify formula
use in Alloy models by counting the number of top-level formulas in a model. We also
discuss research questions related to Alloy constructs that contain constraints. We explore
the use of predicates, functions and assertions as well as fact blocks and attempt to identify
trends among modelers. We also examine queries to determine how modelers are executing
parameterized constraint containers (i.e., predicates, functions and assertions).

RQ# 7: How many formulas does an Alloy model contain?

Motivation: Predicate, functions, assertions and facts can contain multiple formulas. For-
mulas express constraints and can be used in the body of predicates, functions, assertions
and macros. In this research question, we count the number of top-level formulas in each
model in our corpus. Top-level formulas are defined as formulas that are not part of another
larger formula. We compute the top-level formula count of Alloy models to determine how
they compare to programs in terms of the number of statements. We hypothesize that
models with a higher top-level formula count may be more advanced.

Approach: For each model in our corpus, we extract top-level formulas and report the
formula count by tallying up the number of top-level formulas. We account for predicate
and function calls in the model i.e., the number of formulas in a predicate or function is
scaled according to the number of calls made to that predicate or function. We report
the typical use criterion as well as the percentile distribution and common for the formula
count.

Construct 12.5th 25th 50th 75th 87.5th

Formulas 2 7 21 58 92

Common Range: [2, 92]

Table 4.8: Percentile Distribution of Formula Count

Results: We find that the typical use criterion for the formula count is 21 i.e., a typical
Alloy model contains 21 top-level formulas. Table 4.8 shows the percentile distribution of
the formula count. Akin to the signature count, formula use in Alloy differs significantly
from one model to another. The common range for the formula count is [2, 92].

Findings: The results of this research question suggest that:
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� Formulas are used abundantly in Alloy models.

� The number of top-level formulas exhibits a great deal of variation among models.
Thus, Alloy models can vary significantly in terms of scale.

In Section 4.5, we regress model length against formula count to find out if there exists a
correlation between these two model characteristics.

RQ# 8: How are modelers using facts?

1 sig A, B {} {

2 A !in B

3 }

4 sig C {

5 f: A -> lone B

6 }

7

8 sig D { from , to: A}

9 {from != to}

10

11 pred map(c, c’:C, a:A, b:B) {

12 c’.f = c.f + a -> b

13 }

14

15 fun lookup(c: C, a: A): set B {

16 a.(c.f)

17 }

18

19 fact at_least_one {

20 some C

21 }

22

23 assert unique_mapping {

24 all c:C, a:A, b, b’:B |

25

26 a -> b in c.f and a -> b’ in c.f implies b = b’

27 }

28

29 run map for 3

30 run lookup

31 check unique_mapping

Figure 4.2: Alloy Constraint Holders Example (adapted from [3])
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Motivation: Facts are a packaging construct that contains constraints that hold in all
instances of the model. Alloy models can contain any number of facts that are grouped in
separate blocks. Fact blocks can be declared using the keyword fact as shown on Line 19
in Figure 4.2 or coupled with a signature by placing immediately following a signature
declaration (e.g., the signature fact on line 9). Signature facts are constraints that apply to
all elements of a signature’s set i.e., they are implicitly quantified over the signatures. Field
references made in signature facts are implicitly dereferenced. Signature facts are similar
to class invariants in an object-oriented language. Jackson’s book on Alloy [37] states that
the use of signature facts should be limited since the implicit quantification can lead to
unexpected consequences. Figure 4.3 shows two equivalent instantiations of the signature
B. The declaration on line 2 uses a signature fact on line 4 to formulate the constraint
f1 != f2 whereas the declaration on line 6 uses a fact block on line 7 to formulate the
same constraint. Note that the constraint on line 7 has an explicit quantification over
all elements of the signature B. The constraint in the signature fact on line 4 has the
same quantification but it is implicit. The implicit quantification may not be evident to
the modeler and thus the constraints in the body of a signature fact will apply to all the
elements of the signatures even though that may not be the intention of the modeler.
By examining the use frequency of facts, we can help educators evaluate how much to
emphasize the proper use of this construct.

1 sig A {}

2 sig B {

3 f1 , f2: A -> B

4 } {f1 != f2}

5

6 sig B {f1 , f2: A -> B}

7 fact {all x: B | x.f1 != x.f2}

Figure 4.3: Signature Facts

Approach: We extract and tally up the number and kinds of fact blocks in a model. We
also extract from the model all signature declarations that contain a non-empty fact block.
Empty signature fact blocks are ignored since they do not contain any implicitly-quantified
expressions that can have unwanted results.

Results: The results of this research question are summarized in Table 4.9. We find that
the typical Alloy model contains two fact blocks and one signature declaration with facts.
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Fact Type PU (mode) TU (median) D

Signature Facts 1 1
47.6% of sigs
42.9% of facts

Facts 1* 2 -

Table 4.9: Facts Query Results

We find that 47.6% of signatures have a fact block associated with them and 42.9% of all
fact blocks are signature fact blocks. The percentage distribution shows that the use of
signature facts is common among Alloy modelers.

Findings: We come to the following conclusion:

� Educators are encouraged to ensure that student modelers are using signature facts
correctly to avoid erroneous results. Alternatively, educators may want to discourage
the use of signature facts.

RQ# 9: How often do modelers declare and call predicates and functions?

Motivation: A predicate is a named constraint with zero or more arguments creating a
set of formulas. Line 11 in Figure 4.2 shows an example of a predicate declaration. A
function is a named expression with zero or more arguments that returns a value. Line 15
in Figure 4.2 shows an example of a function declaration. Predicates allow modelers to
analyze models with constraints excluded or included. Lines 29 and 30 show an example of
using a command query to run a predicate and a function respectively for model verification.
Function and predicate calls may also occur in other constraint containers and are used
for model description in this case. Daniel Jackson [8] states that when a function is used
with a run command, Alloy finds an instance that makes the constraint true. In this case,
the instance consists of a collection of arguments for the function, the values of signatures
and fields, and the function result. Predicates and functions used with command queries
are utilized for model verification whereas the ones called in formulas are used for model
description. We examine the use of predicates and functions to determine their frequency
in Alloy models as well as any trends that modelers adhere to when adding constraints.

Approach: We extract and tally up the number of predicate and function declarations
in each model. We then extract the names of these predicates and functions from the
declarations. We cross-reference these names with the ones used in command queries and
formulas to identify and tally up the number of predicate and function calls in the model.
We report the predominant and typical use criteria as well as the percentage distribution
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of declarations and calls (in commands and formulas). We also report the percentage of
models that contain predicates and functions. These values may be skewed given that
modelers tend to comment out command queries frequently.

Construct PU TU D

Predicate Declarations 1 2 80.1%
}

= 100%
Function Declarations 1* 0 19.9%

Predicate Calls (Commands) 1* 1 11.2%
}

= 100%
Predicate Calls (Formulas) 2* 1 88.8%

Function Calls (Commands) 1* 0 0.1%
}

= 100%
Function Calls (Formulas) 2* 0 99.9%

Table 4.10: Use of Predicates and Functions

Results: We find that 81.7% of all models in our corpus contain predicate declarations
compared to 26.9% of models that contain function declarations. Table 4.10 shows the
predominant and typical use criteria as well as the percentage distribution. The predom-
inant and typical use values show a greater use of predicates than functions among Alloy
modelers. We find that modelers declare and call predicates significantly more often than
functions. A typical Alloy model contains two predicate declarations and two predicate
calls but no function declarations or calls. This trend of predicate prevalence is also re-
flected in the percentage distribution where 80.1% of these parameterized declarations are
predicates while the remaining 19.9% are functions. Similarly, predicate calls account for
77.4% of the total parameterized expression calls, with function calls accounting for the
remaining 22.6%. We find that predicate use in formulas (88.8%) greatly outnumbers
predicate use in commands (11.2%). Functions are almost exclusively used in formulas.

Findings: We conclude that:

� Modelers are using a small number of predicates and functions in their models.

� Predicates and functions are used more frequently for model description as opposed
to model verification given that the majority of predicate and function calls occur in
formulas and not in commands.

� Using functions with a run command is an underutilized functionality of the Alloy
language. Educators are encouraged to highlight this functionality and explain to
student modelers how it can be used to obtain a collection of arguments for the
function, the values of signatures and fields, and the function result.
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� Alternatively, language designers may want to remove the ability to run functions
from the Alloy language given the scarcity of its use.

RQ# 10: How often are assertions used in Alloy models?

Motivation: Assertions are constraints that ensue from facts and ensure that the model
cannot reach invalid states. Assertions are declared using the assert keyword and con-
tain formulas that express constraints. Line 31 in Figure 4.2 shows an example of a check

command used to find a counterexample to a constraint defined using an assertion. Asser-
tions are a remnant of an older version of Alloy when predicates could not be used with
check commands [9]. As of Alloy v4, assertions can be replaced with unparameterized
predicates. We explore the frequency of assertions in Alloy models and identify user trends
to help educators determine how much to emphasize the use of this redundant construct.
Language and tool designers may want to remove assertions from the Alloy language if
they are not being used frequently.

Approach: We extract and tally up the number of assertions in each model. We then
extract the names of these assertions from the declarations. Next, we cross-reference these
names with the ones used in check command queries to identify and tally up the number
of assertion uses in the model. We report the predominant and typical use criteria as well
as the percentage of models that have assertion declarations in them.

Construct Predominant Use (Mode) Typical Use (Median)

Assertion Declarations 1* 2*

Assertion Uses 1* 2*

Table 4.11: Assertion Declarations and Uses

Results: We find that 31% of Alloy model in our corpus contain assertion declarations.
Table 4.11 shows the results of this research question. We present the non-zero predominant
and typical use values given that the all-inclusive values were all zero. Alloy models that
make use of the assertion construct typically contain two assertion declarations and two
assertion uses.

Findings: We conclude that:

� Assertions are still used in Alloy models even though they are a remnant of an older
version of the language.
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� Educators should encourage student modelers to use unparameterized predicates in-
stead of assertions to simplify the language.

� Language designer may want to consider removing assertions from future versions of
Alloy since they are a redundant construct that is not used frequently.

RQ# 11: How often are run and check commands used?

Motivation: Alloy blurs the line between model and properties to check since they are both
in the same language. Alloy provides modelers with two command queries to check the
behavior of the model and its properties. A run command looks for satisfying instances
and is applied to predicates whereas a check command provides a counterexample if there
is an instance that does not satisfy a predicate or an assertion. One type of command can
be turned into the other through negation of relevant formulas. Depending on how the
model is arranged into facts and predicates, and the purpose of the model (verification vs.
synthesis) one or the other type of query may be more useful. In this analysis, we also
investigate the number of queries in a model overall. In answering this question, we can
see whether the two ways of querying Alloy models are valuable to users.

Approach: We count the occurrences of run and check commands per file and over all
models. We compute various statistics related to the number of run and check commands
as well as the total number of commands in a model. Our parser ignores comments, which
might contain some run or check commands.

Command Predominant Use Typical Use Distribution

run 1 1 48.1%
check 1* 0 51.9%

run + check 1 1 -

Table 4.12: Use of Run and Check Queries

Results: Table 4.12 shows that modelers are using run and check commands equally as
often. The typical use criterion per model for check commands is 1 and its run counter-
part is zero. A typical Alloy models contains one run command but no check commands
which indicates that run commands have a higher use frequency then check commands.
The percentage distribution is near-equal between run and check with 48.1% of queries
being run commands while the remaining 51.9% of queries are check commands.

Findings: We conclude that:
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� Both command forms are used frequently and are generally useful for modelers even
though they are interchangeable.

RQ# 12: How are run and check commands used in Alloy?

Motivation: run commands are used to find instances that satisfy a predicate or a series of
constraints declared in the command itself. check commands are used to find counterex-
amples to a previously declared predicate or assertion, or they are used with a, possibly
named, constraint block declared in the check command. run and check commands
can take one of the three following forms:

� run name or check name : The command explicitly mentions the name of a pre-
viously declared predicate or assertion.

� run {constraints} or check name : The command is followed by a block
containing the unnamed constraints.

� run name {constraints} or check name {constraints}: This form con-
tains a named constraint block that follows the run or check keyword. While the
constraint block in this form is technically named (possibly for documentation), it
cannot be referenced by another command query or formula.

By exploring the different forms of run and check commands, we can identify trends
and preferences among Alloy modelers. The results of this research question can help
educators focus on teaching the command form that is most widely used by the Alloy
community. Language designers can consider dropping support for command forms that
are not commonly used.

Approach: We create three patterns that denote each one of the command forms and
extract matching instances from the models. We report the percentage distribution over
the three command forms.

Form Percentage Distribution

run name 70.6%
= 100%run {constraints} 14.0%

run name {constraints} 15.4%

Table 4.13: Use of run Command Forms
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Form Percentage Distribution

check name 81.8%
= 100%check {constraints} 9.9%

check name {constraints} 8.3%

Table 4.14: Use of check Command Forms

Results: Table 4.13 shows the percentage distribution of run commands over the three
different forms. Alloy modelers use the run command most commonly with a named
predicate (70.6%). We also find that naming the constraint block in a run command is
the second most popular form coming in 15.3% of all run commands. Placing a constraint
block with the run command is the least popular form coming in at 14%. Table 4.14 shows
the percentage distribution check commands over the three forms. The vast majority of
check commands are used with previously declared assertions (81.8%). The two other
forms are quite sparse in Alloy models with the unnamed blocks coming in at 9.9% and
unnamed blocks coming in at 8.3%.

Findings: The findings of this research are listed below:

� Language designers may want to consider removing the ability to name constraint
blocks in run and check commands since it is not widely used and it does not offer
any advantages in terms of reusing the constraints.

4.4 Corner Cases

Similar to every language, the Alloy language has some features that are generally consid-
ered either more complicated to use, less likely to be useful, or problematic, based on the
literature. In the following three research questions, we explore whether these corner cases
are actually rarely used or not. We explore the use of five corner-case features of the Alloy
language: subsets of a union of signatures, bit shifting operators, set constants, integer use
and macros.

RQ# 13: How often are modelers creating subsets of union of signatures?

Motivation: Signatures in Alloy can be declared as a subset of a union of signatures
meaning the elements belong to any one of the sets referenced in the union. The ambiguity
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surrounding the parent of the declared signature can lead to unexpected results. Union
supersets are considered uncommon in Alloy, so we set out to count the occurrences of this
corner case.

Approach: We identify signature declarations where the superset is the union of signatures
and report the total number of these signatures.

Results: There are only 23 instances of union supersets across all models, which aligns
with our initial assumption concerning the uncommonness of this practice.

Findings: We find that:

� Optimizations developers can safely omit support for union supersets when develop-
ing their optimizations because they are used scarcely in Alloy models.

RQ# 14: How common is the use of bit shifting operators in Alloy models?

Motivation: Alloy includes three bit shifting operators: the left-shift <<, the sign-
extended right-shift >> and the zero-extended right-shift >>>. Given Alloy’s ab-
stract nature, bit operations are quite uncommon. By examining the use of bit shifting
operators we help language designers and educators determine how much to focus on the
development and teaching of these constructs.

Approach: We count the use of bit shifting operators by extracting any application of these
operators.

Results: We only identified nine occurrences of the bit shifting operators in our repository
of models, which confirms the scarceness of bit operations in Alloy. These occurrences were
found in three Alloy models only.

Findings: Based on the results of this research question, we recommend that:

� Language designers should consider dropping support for bit shifting operators in
future versions Alloy so that solving engines do not have to support these operations.

RQ# 15: How common is the use of set constants in Alloy models?

Motivation: Alloy provides modelers with three constants: none , univ , and iden . The
unary sets none and univ are the sets containing no elements and every element respec-
tively. The binary identity relation iden contains a tuple relating every element (in the
universe) to itself. To ensure the generality of some predicate declarations, the empty set
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can be passed as an argument. For instance, consider the following predicate declaration
pred p(a: A, b: B) where p takes one argument of the kind A and another one of
kind B. The following call to p using the empty set p(a, none) is a valid predicate call
in Alloy. The identity relation is required for some constraints expressed in the relational
calculus style (e.g., no ^r & iden indicates that the relation r is acyclic). Jackson’s
book on Alloy [37] states that these constants are rarely used aside from the aforementioned
cases.

Approach: We extract all references to set constants and tally the occurrences of each
constant separately. We also count the number of models that use constants.

Constant PU TU D

none 1* 4* 7.3%
of all modelsuniv 2* 3* 4.5%

iden 1* 1* 4.9%

Table 4.15: Use of Constants by Model

Constant Percentage Distribution

none 40.0%
= 100%univ 52.3%

iden 7.7%

Table 4.16: Constant Use

Results: Table 4.15 shows the data summary criteria computed for this research question.
We note that the non-zero typical use criteria for none and univ (i.e., only for models
that have these constants) are fairly high, which leads us to believe that while constants
are generally uncommon, they are used profusely in models that require them. Table 4.16
shows that univ is the most-used constant with 52.3% of the uses of constants being univ

followed by none and iden .

Findings: Based on the results of this research question, we recommend that:

� The frequency of set constant use aligns with our initial expectations. Set constant
are used sparsely overall as presumed in Daniel Jackson’s book on Alloy [37].

RQ# 16: How common is the use of macros in Alloy models?
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Motivation: Macros (also known as untyped macros or let statements) in the Alloy
language are similar to predicates and functions. However, macros are expanded before
runtime and can be used as part of signature fields. Parameters in macros are not required
to have a type. Consequently, macro parameterization is more flexible and allows the use
of arbitrary signatures, boolean constraints, sets, relations and even calls to predicates,
functions and other macros. Macros are defined using the let keyword at the top level of
a model. Macro declarations can take one of three forms that differ in their use of = and
{ }. Figure 4.4 shows all three forms of macro declarations. Line 11 shows the macro m2

being used to create a field f.

1 sig A {}

2

3 sig B {}

4

5 let m1[x] = { x one -> A }

6

7 let m2[x] = x -> A

8

9 let m3 [a,b,c] { a[b,c] }

10

11 sig C {f: m2[B] }

Figure 4.4: Macros in Alloy

Approach: We extract and tally up the number of macro blocks in each model. We also
count and report the number of models that make use of macros.

Results: We find 166 macro declarations across our entire repository of models. We also
find that 2.4% of all models contain macro declarations (52 models).

Findings: We conclude that:

� It is evident that macros are not as prevalent as predicates and functions in Alloy
models.

� Given their untyped nature, macros are significantly more flexible than predicates and
functions and can be used in ways that other constraint holders cannot. Educators
are encouraged to highlight macros and promote their use when teaching student
modelers.
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RQ# 17: Are modelers creating fields declared using set union and set differ-
ence?

Motivation: Alloy allows modelers to declare fields using set union (e.g., f: A + B) and
set difference (e.g., f: A - B). These uncommon practices arise from the simplicity of
the Alloy language. Fields declared using set union and set difference can be problematic for
external tools and engines that implement optimizations because they are special cases. By
examining the frequency of these fields, we can provide developers working on optimizations
with useful insight that can help them determine whether or not to address these cases.

Approach: Fields declared using set union and set difference are extracted from the body
of signature declarations. We tally up the number of these fields and report the percentage
distribution over all fields and models.

Results: We find that fields declared using set union and set difference constitute 1.96%
of all fields with set union being the overwhelming majority of these fields (1.9%) and set
difference accounting for 0.06% of all fields only. We identify a similar trend in the model
distribution. Models that contain fields declared using set union and set difference account
for 1.4% of all models (models with fields declared using set union constitute 1.2% of these
models with the remaining 0.3% being models with fields declared using set difference).

Findings: We come to the conclusion that:

� Fields declared with set union and set difference are quite rare in Alloy.

� Developers can safely omit support for fields declared using set union and set differ-
ence in their optimizations without significantly compromising the usefulness of the
tools.

� Given the scarcity of fields declared using set union and set difference, language
designers may want to remove support for these expressions in fields to simplify the
language.

4.5 Correlating Model Characteristics

In this section, we explore the correlations that exist between various model characteristics
discussed in previous research questions. The main statistical tool used to perform this
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analysis is the linear regression model discussed in Section 3.3 of Chapter 3. We present a
series of research questions that correlate certain Alloy model characteristics using linear
regression. We examine the correlations that exist between model length, the number of
formulas and the number of sets to determine if longer Alloy models have more sets or more
formulas. We also correlate the number of fields with the number of top-level signatures
and the number of subsignature extensions to determine which signature kind count gives
us a better insight into the size of the state space.

RQ# 18: Is model length correlated with the number of sets or the number of
formulas?

Motivation: We have previously established that Alloy models tend be relatively short.
Nevertheless, there is some variation in the length of Alloy models. In this research ques-
tion, we attempt to identify if model length is affected by the number of sets or the number
of formulas. Our findings can help language and tool designers get a better understanding
of the structure of longer models.

Approach: For each model in our corpus, we compute and record the length (excluding
blank lines and comments), the set count and the top-level formula count. The set count
includes all signatures and fields declared in the model. The top-level formula count is
limited to top-level formulas in the model i.e., formulas that are not part of any other
larger formula. The number of top-level formulas in the body of predicates and functions
is scaled according to the number of calls made to the constraint holder. We limit these
measurements to models that have non-zero set and top-level formula counts to ensure
that the logarithmic transformation can be applied. This procedure limits our corpus size
to 1,935 models out of 2,138 models. We perform linear regression to produce the best fit
line for Model Length vs. Number of Sets and Model Length vs. Number of Formulas. We
also produce all four residual plots for each linear regression model.

Results: Figure 4.5 shows the Model Length vs. the Number of Sets in the model. The
r value of 0.8 suggests a high positive correlation between the set count and the model
length. However, with a conservative goodness of fit (R2 = 0.63), this correlation only
explains 63% of the variation in the data set. Figure 4.6 shows the residual plots of the
Model Length vs. Number of Sets linear regression model. These plots suggest that the
linear model is a good fit given that the Residual vs. Fitted and the Scale-Location plots
show an almost horizontal line with data points distributed on both sides. The Normal
Q-Q plot is also indicative of a good fit since the point form an approximately straight
line with minor deviations on both ends. We also find that no data points fall outside of
Crook’s distance line in the Residuals vs. Leverage graph (the lines themselves are not
visible on the graph due to the large distance between them and the data points). The
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Figure 4.5: Model Length vs. Number of Sets in log scale

residual plots indicate that the fit cannot be significantly improved beyond R2 = 0.63.
Since the coefficient of determination R2 is relatively conservative, we conclude that the
high correlation between set count and model length is not applicable to a large portion
(37%) of the subset of models used in this research question. Therefore, set count is not
good predictor for model length. Nevertheless, for the 63% of data points to which this
correlation is applicable, the length of a model can be approximated using the following
equation derived from equation 3.1:

Length = e2.036Sets0.8094 (4.1)

Given that β = 0.8094 < 1, we find that as the number of sets grows, the model length
grows at an exponentially slower pace. This can be demonstrated by plugging values into
equation 4.1. For example, if a model has 2 sets, then equation 4.1 predicts that it will be
approximately 13 lines in length (excluding blank lines and comments). A model with 4
sets will have 24 lines and a model with 8 sets will have 41 lines. As the number of sets
grows by a factor of 2, the number of lines grows as well but by a smaller factor.

Figure 4.7 shows the Model Length vs. the Number of formulas in the model. We
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Figure 4.6: Residuals of Model Length ∼ Number of Sets

find that r = 0.92 which indicates a strong positive correlation between formula count
and model length. Similar to Figure 4.6, all the residual plots conform to the previously
established characteristics of a good linear regression model fit. With 84% linear fitness
(in log space) and β = 0.7126 < 1, it appears that as the number of formulas grows, the
model length also grows but at exponentially slower pace. Specifically, using equation 3.1,
we find that:

Length = e2.056Formulas0.7126 (4.2)

For instance, if a model has 10 top-level formulas, then we can predict it will be approxi-
mately 40 lines in length (excluding blank lines and comments). A model with 100 top-level
formulas has 208 lines whereas a model with 1000 top-level formulas has 1073 lines. Notice
that when the formula count grows by a factor of 10, the length grows by a factor signifi-
cantly smaller than 10 (as a result of β < 1). Figure 4.8 shows the residual plots of Model
Length vs. Number of Formulas.
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Figure 4.7: Model Length vs. Number of Formulas in log scale

Findings: Based on the produced linear regression models, we conclude that:

� The number of sets is not necessarily a good predictor for the length of an Alloy
model.

� There exists a strong positive correlation between Alloy model length and the top-
level formula count that applies to the vast majority of models in our corpus.

� Longer Alloy models will probably have more formulas but not necessarily more sets.
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Figure 4.8: Residuals of Model Length ∼ Number of Formulas

RQ# 19: Which signature kind is the most strongly correlated with the num-
ber of fields?

Motivation: In prior research questions, we examined signature distribution by level (top-
level, extensions and subsets) as well as the number of fields per signature. We found that
top-level signatures and subsignature extensions are the two most frequently used signature
kinds in Alloy models (top-level signature account for 16.5% of all signatures whereas
subsignature extensions constitute 82.3% of all signatures). In this research question, we
attempt to find which signature level between these two is most strongly correlated with
the field count. The size of the state space of an Alloy models increases as more fields are
declared under signatures. Thus, the signature kind with the higher correlation with the
field count is a better indicator of the size of the state space.

Approach: From each model in our corpus, extract and tally up top-level signatures and
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Figure 4.9: Number of Top-level Signatures vs. Number of Fields in log scale

subsignature extensions. We also report the total number of fields in each model. We only
consider models where both the number of top-level signatures or subsignature extensions
and the number of fields are not zero to ensure that the logarithmic transformation can
be applied. Thus, we are limited to 1,553 files for the Number of Top-level Signatures
vs. Number of Fields regression model and 1,113 models for the Number of Subsignature
Extensions vs. Number of Field regression model. We produce and plot the best fit lines
for both models in addition to the residual plots.

Results: Figure 4.9 shows the field count in a model plotted against the number of top-level
signatures. The computed value of the coefficient of correlation r is 0.78 and thus indicates
a high positive correlation between the field count and the number of top-level signatures.
Nevertheless, the fit is only applicable to 61% of the data points given that value of R2 is
0.61. The residual plots shown in Figure 4.10 adhere to the characteristics of a good linear
regression model fit. The Residuals vs. Fitted plot and the Scale-Location plot show near-
horizontal lines with data points on both sides. The Normal-QQ plot is a quasi-straight
line with some deviations on both ends. We also note that no data points in the Residuals
vs. Leverage plot exist outside of Crook’s distance lines. The following equation can be
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Figure 4.10: Residuals of Number of Top-level Signatures ∼ Number of Fields

used to derived the number of fields given the number of top-level signatures in a model:

Fields = e0.3007 Top-level Signatures1.063 (4.3)

For instance, a model with 2 top-level signatures has approximately 3 fields according to
equation 4.3. A model with 4 top-level signatures has 6 fields. Since β = 1.063 ≈ 1,
the function is almost linear. The number of fields grows approximately by a factor of
e0.3007 ≈ 1.3508 as the number of top-level signatures grows.

Figure 4.11 shows the best fit line that results from regressing the number of subsig-
nature extensions against the number of fields. The r value of 0.42 indicates a very low
correlation between the field count and the number of subsignature extensions. The coef-
ficient of determination R2 is also very low at 0.18 which implies that this low correlation
is only applicable to 18% of the data points. It is evident that there does not exist a
statistically significant correlation between the number of fields and the number of subsig-
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nature extensions. The fit cannot be significantly improved given that the residual plots
in Figure 4.11 adhere to the characteristics of a good regression model fit.

Figure 4.11: Number of Subsignature Extensions vs. Number of Fields in log scale

Findings: Based on the linear regression models presented in this research question, we
conclude that:

� Top-level signatures are more strongly correlated with the field count of an Alloy
model compared to subsignature extensions.

� The number of top-level signatures is an adequate predictor of the number of fields
in a model.

� Most fields in Alloy models are declared under top-level signatures which suggests
that the number of top-level signatures is a good measure of the state space.
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Figure 4.12: Residuals of Number of Subsignature Extensions ∼ Number of Fields

4.6 Summary

In this chapter, we explore the characteristics of Alloy models through “surface-level” re-
search questions that examine the use of the language’s constructs. Section 4.1 explores
the size of Alloy models in terms of number of lines. In Section 4.2, we investigate the
frequency and kinds of signatures in Alloy models. Section 4.3 discusses formulas as well as
the different constraint containers used in Alloy. Section 4.4 examines uncommon or dis-
couraged practices in Alloy known as the corner cases of the language. Lastly, Section 4.5
correlates certain model characteristics using linear regression. Our linear regression anal-
ysis indicates that the length of an Alloy model is significantly more impacted by the
number of formulas than by the number of sets (i.e., signatures and fields). We also
found that the number of top-level signatures is a good indicator of the number of fields
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in a model. We present a summary of our findings split across three categories: Findings
for Language Designers, Findings for Educators and Findings for Optimization Developers.

Findings for Language Designers:

� Types are commonly used in other languages to partition a universe of atoms. Types
also allow for type checking. Language designers are encourage to explore type check-
ing mechanisms for the Alloy language to provide faster feedback to users.

� The abundant use of scalars in Alloy models is evident and may warrant attention
from language and tool designers who should consider adding syntactic sugar that
allows modelers to create scalars directly.

� Language designers may want to remove the ability to run functions from the Alloy
language given the scarcity of its use.

� Language designer may want to consider removing assertions from future versions of
Alloy since they are a redundant construct that is not used frequently.

� Language designers may want to consider removing the ability to name constraint
blocks in run and check commands since it is not widely used and it does not offer
any advantages in terms of reusing the constraints.

� Language designers should consider dropping support for bit shifting operators in
future versions Alloy so that solving engines do not have to support these operations.

� Given the scarcity of fields declared using set union and set difference, language
designers may want to remove support for these operations in field declarations to
simplify the language.

Findings for Educators:

� Educators are encouraged to highlight the value of abstract signatures and how
they can be used to take advantage of inheritance and scope inference in addition to
creating models that are more concise and easier to evolve.

� Given that enums are an underutilized construct in Alloy, educators are encouraged
to highlight the use of enums to concisely instantiate multiple ordered signatures
with multiplicity one.
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� Educators are encouraged to ensure that student modelers are using signature facts
correctly to avoid erroneous results. Alternatively, educators may want to discourage
the use of signature facts.

� Using functions with a run command is an underutilized functionality of the Alloy
language. Educators are encouraged to highlight this functionality and explain to
student modelers how it can be used to obtain a collection of arguments for the
function, the values of signatures and fields, and the function result.

� Educators should encourage student modelers to use unparameterized predicates in-
stead of assertions to simplify the language.

� Given their untyped nature, macros are significantly more flexible than predicates and
functions and can be used in ways that other constraint holders cannot. Educators
are encouraged to highlight macros and promote their use when teaching student
modelers.

Findings for Optimization Developers:

� Optimizations developers can safely omit support for union supersets when develop-
ing their optimizations.

� Developers can safely omit support for fields declared using set union and set differ-
ence in their optimizations without significantly compromising the usefulness of the
tools.
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Chapter 5

Patterns of Use within Models

In this chapter, we investigate research questions that have to do with how modelers use the
language’s constructs and how they express descriptions in Alloy. As a flexible language,
there are often multiple ways to describe the same concept in the Alloy language. These
research questions are far more intricate and require multiple complex patterns and several
traversals through the parse tree. These “deeper-level” questions require considerable post-
processing and utilize several external data structures. The post-processing step in these
questions aims to refine the data, store values in intermediary data structures and perform
calculations per file. By learning about the styles and practices most commonly used
in Alloy models, language and tool designers can improve and adapt Alloy based on the
modelers’ needs and preferences. Educators can ensure students are using the appropriate
constructs for each task and encourage them to use these constructs and libraries to their
full extent. Furthermore, we can learn if Alloy modelers are “purists” in consistently using
one style throughout a model.

5.1 Modules

In this section, we explore the use of Alloy library modules and user-created modules. We
identify the frequency of use of each library module and attempt to determine if Alloy
modelers are creating models that span multiple files.

RQ# 20: How commonplace is the use of modules in Alloy?

Motivation: Alloy models can be split over multiple files. Prior to Alloy version 4, a file that
is to be included in another file contained a module header but starting with Alloy version
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4, any model can be imported by another model even if it does not contain a module

header. We explore the use of open statements to include user-created modules and library
modules to get a better understanding of the file structure of Alloy models. The Alloy
Analyzer provides modelers with eleven library (util) modules for common operations. It
is possible to describe the needed sets/relations/formulas from the library modules directly
in a custom manner in one’s model. However, reusable components are generally considered
a good practice. Does the Alloy community buy into reusability?

Approach: We count the uses of open commands in a model. If a library is paramaterized,
each instance of the use of a library is counted. Implicit imports of the ordering module
via the use of enum declarations are also counted. We begin by extracting all the open

commands in the model and classifying modules as user-created (i.e., they do not contain
the string util) and standard library modules (i.e., they contain the string util). We
then tally up the occurrences of user-created modules and each one of the eleven utility
modules. Integers in Alloy (i.e., the Int set or numeric constants) can be used without
explicitly importing the integer module. For instance, field declarations whose range is Int

count as integer uses in Alloy. Similarly, numeric constants (both positive and negative)
are counted as uses of the integer module. Using the arithmetic functions of the integer
module is the main reason modelers import the integer module. Therefore, we separate the
use of integers into uses by importing the library and uses without importing the library.

Library module
Distribution over
open Statements

Distribution over
Models

user-created 41.8% 28.3%

ordering 35.1% 23.1%

integer 12.2% 11.3%

integer w/o import - 32.9%

boolean 6.9% 6.3%

relation 2.2% 2.1%

graph 0.6% 0.5%

ternary 0.5% 0.4%

seq 0.3% 0.2%

naturals 0.2% 0.2%

time 0.2% 0.1%

seqrel 0.0% 0.0%

sequence 0.0% 0.0%

Table 5.1: Usage of User-Created and Library Modules
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Results: Table 5.1 shows the distribution of user-created and library modules over open

statements and over files. User-created modules account for 41.8% of all open statements.
We also find that 29.3% of all models in our corpus contain open statements that import
user-created modules. The ordering module, which constrains a set to be a linear order,
is the most frequently opened library by a large margin being used in 35.1% of open
statements and 23.1% of all models. The integer and boolean modules come in second and
third place respectively. We found no uses of the seqrel and sequence modules in our
corpus of models. Integers are used abundantly in ways that do not involve importing the
integer module. In total, 44.2% of all models use integers but only 11.3% of these models
import the integer library module explicitly, whereas the remaining 32.9% do not.

Findings: The results of this research question suggest that:

� Given the prevalence of open statements used to include user-created modules, Alloy
language and tool designers may want to consider developing model management
IDEs.

� Some library modules are rarely used and hence language designers may want to drop
them in future versions of Alloy. Alternatively, educators can better highlight the
value of these library modules.

� Developers are encouraged to create optimizations for the ordering module and for
integers in Alloy because they are used frequently.

� Modelers are making use of integers frequently but are not taking advantage of the
arithmetic operations (addition, subtraction, multiplication, division, and remainder)
offered by the integer module. We further explore the use of integers in Section 5.2.

5.2 Integers

Integer use is often discouraged in Alloy. According to Jackson’s book on Alloy [37], most
problems with integer values do not require integers to be modeled and would benefit
from more abstract descriptions and constraints. In this section, we examine the use of
integers in Alloy to help educators determine how much to emphasize alternative modeling
techniques that can replace integers.

RQ# 21: How are integers used in Alloy models?
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Motivation: Integers in Alloy fall into two categories: integer constants and integers used
in fields. Integer constants are often used to express constraints (e.g., set cardinality
constraints, division of sets into subgroups based on number of elements, etc.). Integers can
appear in field declarations. Alloy provides rudimentary support for arithmetic operations
through the integer module.

Approach: We extract integer constants used in expressions as well as uses of the integer
set (Int) in field declarations. We tally up and report the number of uses that fall under
each category.

Use PU TU D

Constants 1* 5* 97.9%

Fields 1* 2* 2.1%

Table 5.2: Use of Integers

Results: Table 5.2 shows the data summary criteria for integer use in Alloy. We find that
constants account for the overwhelming majority of integer uses (97.9%), whereas integers
in field declarations constitute only 2.1% of integer uses.

Findings: We recommend that:

� Integers in Alloy take more time in analysis. Language designers should add built-
in identifiers that model numeric constants (e.g., One, Two, etc. ) to satisfy the
majority of integer uses without actually using integers for analysis.

RQ# 22: How often are integers used only as a linear order?

Motivation: Modelers often turn to integers as a way of modeling a linear order. The use
of integers in Alloy generally takes more time in analysis because they are represented as
bit vectors with bit vector operations. With this question, we are determining whether the
models really need integers or whether a linear order (via the ordering module) is sufficient.
It is standard advice in the Alloy community to try to avoid using integers.

Approach: Integer fields used exclusively with relational operators (meaning no arithmetic
operations) can be turned into an ordering. However, this substitution is not possible for
integer fields used with an arithmetic operator from the integer module. Starting with
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Alloy version 4, unambiguous applications of the addition (add) and subtraction (sub)
functions can be replaced with their corresponding mathematical operator. For instance, a
.add[b] and a.sub[b] can be substituted for a+b and a-b respectively. Nevertheless,
both forms are considered applications of an arithmetic operator from the integer module.
We identify all integer values as well as all expressions containing relational and arithmetic
operators. We then partition the set of integer values depending on the operator they are
coupled with.

Results: We find that 55.3% of all integers used in fields do not need to be integers and could
be a set with a linear ordering. This optimization is not possible for 22.2% of all integer
fields. The remaining 22.5% of integer fields were not used in the model post declaration.
We conclude that Alloy modelers are often not taking advantage of the ordering module.

Findings: The findings of this research question are as follows:

� Educators are encouraged to promote the use of the ordering module.

� Language designers could modify the Alloy Analyzer to allow it to warn users about
integer constants that are only used as a linear order.

� Developers of Alloy optimizations are encouraged to convert these integer uses to an
application of the ordering module before analysis.

RQ# 23: Are constant integers used to specify the size of sets in Alloy?

Motivation: The set cardinality operator (#) in Alloy allows modelers to specify the size
of a set e.g., #A = 2 constrains the size of the signature A to be two. The set cardinality
operator can also be applied to fields and expressions that denote sets. Uses of the set car-
dinality operator that serve to specify the size of a signature can be replaced by command
query scopes or multiplicity keywords in the signature declarations. Setting set sizes using
the cardinality operator often results in slower solving times [34]. Jackson’s book on Alloy
also discourages the use of the set cardinality operator with integers to designate the size
of a signature set [37]. We explore the use of set cardinality with integers to help educators
determine how much to emphasize the importance of avoiding this practice. Language
designers can also use our findings to determine if a warning should be added to the Alloy
Analyzer when a modeler attempts to set the size of a signature using the set cardinality
operator.

Approach: We extract from the model all expressions where the set cardinality operator is
used with a relational binary operator and an integer constant. We split these expressions
into two categories:
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� Expressions that can be turned into scope limitations

� Expressions that can be turned into formulas

Expressions that can be turned into scopes consist of the set cardinality operator applied
to a signature set with the equality operator (=) or the less than or equal operators (=<
or <=) (i.e., # <sig > = <num >, # <sig > =< <num > or # <sig > <= <num >).

Expressions that can be turned into formulas consist of the set cardinality operator
applied to a signature set with the operators </>/>= or a formula with any relational
operator (i.e., # <sig > </>/>= <num > or # <formula > </>/>=/ =/<=/=> <num >).
For instance, if set_member is a predicate used to denote set membership, then the
expression # set_member = 2 can be replaced by the following formula:

some x: A | some y: A | set_member[x] and set_member[y] and x

!= y and all z: A | set_member[z] implies z = x or z = y

as shown in [41].

Next, we classify these applications accordingly and extract the integer constants to
produce a percentile distribution and a common range for these numeric values. We present
the percentage of set cardinality uses pertaining to each category.

Expression Percentage Distribution

Set Cardinality without Relational Operators 72.5%

# <sig > =/=</<= <num > 12.9%
= 27.5%# <sig > </>/>= <num > 3.6%

# <formula > </>/>=/=/<=/=> <num > 11.0%

Table 5.3: Uses of Set Cardinality

Construct 12.5th 25th 50th 75th 87.5th

Integers 1 1 2 2 4

Common Range: [1, 4]

Table 5.4: Percentile Distribution of Integer Constants in Set Cardinality Uses

Results: The results of this research question are presented in Tables 5.3 and 5.4. 72.5% of
all set cardinality operators are either used with numeric operators or with a combination
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of numeric and relational operators and thus cannot be converted to scope limitations
or formulas. We find that set cardinality uses that specify the size of a set using integers
account for 27.5% of all set cardinality uses. Almost half of these expressions can be turned
into command queries with scopes (12.9% of all set cardinality applications). Expressions
that can be turned into formulas account for 14.6% of all set cardinality applications.
Table 5.4 shows the percentile distribution of the integer constant values in set cardinality
uses. We find that 75% of all integer constants fall in the range [1, 4] which shows that the
integer values used with the set cardinality operator are quite low. Our results suggest that
the use of set cardinality to specify the size of a signature set instead of using multiplicity
keywords or command queries is considerable, but not abundant.

Findings: Based on the results of this research question, we find that:

� Language designers may want to include a warning that discourages using integers
to set the size of sets.

� We encourage educators to highlight the proper use of multiplicity keywords and
setting scopes in command queries.

� Developers of Alloy optimizations may want to internally transform these uses of set
cardinality into signature declarations with a multiplicity keyword or into command
queries.

The three research questions in Section 5.2 examined the use of integers in Alloy models
and found that most integer uses can be replaced with alternative constructs that conform
to the guidelines provided in the language’s literature. Hence, educators are encouraged
to help student modelers explore alternative ways of modeling problems with numerical
components that do not require integer constants.

5.3 Sets

Signatures and fields are all sets in Alloy. These sets can be connected together through
constraints and hierarchy structures. This section explores the use of sets in Alloy as well
as the hierarchies that ensue from the relationships between them. We devise metrics that
aim to quantify set bindings and hierarchies.

RQ# 24: How deep/wide are the set hierarchy graphs in Alloy models?
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Motivation: Subsignature extensions in Alloy allow modelers to introduce new subsets of
the parent signature declared using the keyword extends . The parent-children relation-
ships between subsignature extensions create a set hierarchy that can be modeled as a
graph. For instance, Figure 5.2 shows the set hierarchy graph corresponding to the sig-
nature declarations shown in Figure 5.1. Signatures A, B and C are top-level signatures.
A1 and A2 are subsignature extensions of A declared on line 4. A3 extends A1 as shown
on line 3. Signature B and its extensions B1 and B2 are declared using enum on line 4.
By building and exploring the characteristics of set extension hierarchy graphs (depth and
width), we can get a better understanding of how modelers create sets and extend them.
Set hierarchy graphs also give us an insight into the intricacy of Alloy models. Deep
extension hierarchy graphs may indicate complex models.

1 abstract sig A {}

2 sig A1 , A2 extends A {}

3 sig A3 extends A1 {}

4 enum B {B1 , B2}

5 sig C {}

Figure 5.1: Signature Declarations

Figure 5.2: Extension Hierarchy Graph
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Additionally, subset signatures in Alloy allow modelers to introduce inclusive subsets
i.e., an element belonging to the parent signature may or may not also belong to the subset
signature. The superset of a subset signature can be a union of signatures. In this case,
elements in the subset signature may belong to either one of the parent signatures in the
union. Figure 5.3 introduces two additional subset signatures declared using the keyword
in compared to Figure 5.1. D1 declared on line 7 is a subset signature of the union A2

+ B1 and D2 declared on line 8 is a subset of D1. Figure 5.4 expands the hierarchy
graph in Figure 5.2 by introducing two subset nodes D1 and D2. We use dotted edges
to denote a subset relation between two signature nodes. Note that the node D1 appears
under A2 and B1 since its elements belong to either one of the parent signatures in the
union. Subset signatures cannot have subsignature extensions and consequently any child
node of a subset signature must also be a subset signature itself.

1 abstract sig A {}

2 sig A1 , A2 extends A {}

3 sig A3 extends A1 {}

4 enum B {B1 , B2}

5 sig C {}

6

7 sig D1 in A2 + B1 {}

8 sig D2 in D1 {}

Figure 5.3: Signature Declarations with Subset Signatures

Approach: We build the extension hierarchy graph iteratively over multiple steps. We
start by extracting all signature extension declarations from the model. We then iterate
over the list of signature extension declarations and extract the name of the top-level parent
signature as well as the names of the extensions from each declaration. We build the
hierarchy graph by adding nodes corresponding to each parent signature and its extensions
and creating edges between them. We repeat this process for enum declarations. Finally,
we add any remaining top-level signatures that are not already in the hierarchy graph.
These remaining top-level signatures correspond to signatures that are not extended after
being declared (e.g., signature C in Figure 5.1). Once the hierarchy graph is built, we
compute its depth and width. The depth of an extension hierarchy graph corresponds to
the number of edges on the longest downward path between a top-level parent node and a
leaf node. The depth of the hierarchy graph shown in Figure 5.2 is 2 (the longest downward
path is the one between A and A3). The width of an extension hierarchy graph corresponds
to the number of extension leaf nodes (i.e., excluding leaf nodes that correspond to top-
level signatures). For instance, the width of the hierarchy graph shown in Figure 5.2 is 4
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Figure 5.4: Subset Hierarchy Graph

(we do not count the C leaf node since it is a top-level signature).

The subset hierarchy graph is an augmentation of the extension hierarchy graph
obtained by adding subset nodes to the existing graph. We extract subset signature dec-
larations from the model and add nodes to the graph corresponding to the subsets and
connect them with an edge. Alloy does not allow the creation of subsignature extensions
that extend a subset. Hence, we do not need to account for any additional extension nodes.
Once the subset hierarchy graph is built, we compute its depth defined as the longest down-
ward path between a superset and a subset leaf node. The depth of the subset hierarchy
graph shown in Figure 5.4 is 2 (the longest downward path is the one between B1 and D2).
We do not compute the width of the subset hierarchy graph because subsets can overlap.
For instance, in Figure 5.4 D1 is a subset node of A1 and B1 because it is declared as a
subset of the union A1 + B1 and thus there is an overlap of the subsets of A1 and B1.

We report the predominant and typical use criteria for the depth and width of the
extension hierarchy graph as well as the depth of the subset hierarchy graph for all models
in our corpus. We also present the percentile distribution for the collected depth and width
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values.

Measure Predominant Use (Mode) Typical Use (Median)

Depth 1 1
Width 2* 4

Table 5.5: Depth and Width of Extension Hierarchy Graphs

Measure 12.5th 25th 50th 75th 87.5th Common Range

Depth 0 0 1 1 1 [0, 1]
Width 0 1 4 12 30 [0, 30]

Table 5.6: Percentile Distribution of Extension Hierarchy Graph Depth and Width

Results: Tables 5.5 and 5.6 show the predominant and typical use values and percentile
distribution of the extension graph depth and width respectively. We find that the pre-
dominant and typical value for the extension hierarchy graph are both one. Hence, in a
typical Alloy model, signatures are not extended beyond a single level. The common range
of extension hierarchy graph depth is [0, 1] which means that 75% of depth values are
either zero or one. Overall, extension hierarchy graphs in Alloy models are fairly shallow.
The non-zero predominant use value for the width of the extension hierarchy graphs is two
whereas the typical use value is four. The percentile distribution of the width exhibits a
significant amount of variability with the common range being [0, 30]. We conclude that
75% of all width values fall between zero and thirty.

Measure Predominant Use (Mode) Typical Use (Median)

Depth 1* 1*

Table 5.7: Depth of Subset Hierarchy Graphs

Measure 12.5th 25th 50th 75th 87.5th Common Range

Depth (non-zero) 1 1 1 1 1 [1, 1]

Table 5.8: Percentile Distribution of Subset Hierarchy Graph Depth

Tables 5.7 and 5.8 show the predominant and typical use values and percentile distri-
bution of the subset hierarchy graph depth respectively. We present the non-zero criteria
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and percentile distribution given that the all-inclusive values were zeros due to the scarcity
of subset signatures in Alloy models. The non-zero predominant and typical values for the
depth of subset hierarchy graphs are both one, which indicates that typical Alloy models
rarely use subset signature hierarchies that span over more than one level. The non-zero
common range for the depth of subset hierarchy graphs is [1, 1] which indicates that 75%
of all non-zero depth values are one.

Findings: We conclude that:

� Developers of Alloy optimizations do not need to ensure that their optimizations scale
favorably for deep extension hierarchies since deep hierarchies are a rare occurrence
in Alloy models.

� Creating subsets of a subset is a rare practice in Alloy and thus optimizations for the
language do not necessarily need to account for this particular case of set hierarchy.

� The shallow set hierarchies in Alloy models are another argument in favor of a type
system in the Alloy language.

RQ# 25: How connected are the sets in Alloy models?

Motivation: Signatures in Alloy can be connected through signature declarations, fields,
relations and formulas. The object-oriented community coined the term cohesion to
measure the degree of connectedness between the components of a program [32]. Highly
cohesive programs are often desirable as they are generally easier to maintain and promote
encapsulation. The LCOM or Lack of Cohesion in Methods metric is used to assess the
cohesion of a program by counting the number of strongly connected components in each
class [26]. A highly cohesive class has only one such strongly connected component i.e., the
value of the LCOM metric is one. Inspired by the LCOM metric, we develop the Signature
Connectedness Graph (SCG), a construct that measures the degree of connectedness of
signatures in an Alloy model. The SCG metric allows us measure the cohesion of an Alloy
model. We define the cohesion of an Alloy model as the degree of connectedness between
its components. Exploring the connectedness of signatures in Alloy also provides us with
valuable insight that can be used when developing optimizations for the language.

Approach: The Signature Connectedness Graph or SCG is a measure of the number
of strongly connected components of a model’s signature graph. This metric is a good
indication of how often a signature references another signature. In a signature graph, two
signatures are connected if:
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� A signature extends another one.

� A signature is a subset of another one.

� A signature’s field uses another signature

� The formulas within a signature make reference to another signature or another
signature’s fields.

We assess the number of strongly connected components in the graph as the value of the
SCG metric. An SCG of one indicates that every signature is connected in some way to all
other signatures. An SCG of zero occurs when there are no signatures in a model, which
can be characterized as a bad modeling practice. A SCG>1 indicates that there exists a
number of signature sub-graphs that are not connected.

We gradually build the SCG over multiple phases. We start by extracting subsignature
extension declarations from the model. We then iterate over the declarations and identify
the names of the extensions as well as the parent signature. We add the extension and
parent vertices to the graph and create an edge between each extension and its parent. We
also account for subsignature extensions declared using enum . We repeat this process with
subset signature declarations and augment the SCG with additional vertices representing
subset signatures and their parent signatures. We also add edges between the subset and
superset vertices. Next, we add any remaining top-level signatures that are not already in
the SCG.

In the next phase, we extract field declarations from the body of signatures. If a field
references one or multiple other signatures, we add vertices for these referenced signatures
to the SCG (if they are not already in it) and create edges between the referenced signa-
tures and the signature under which the field is introduced. In the final step of the SCG
building process, we inspect the formulas in the signature fact blocks and augment the
SCG accordingly. If a formula contains a reference to another signature, we create an edge
between the referenced signature and the signature that contains the formula. Referenced
signatures that are not already in the SCG are added before creating the aforementioned
edge. Similarly, if a formula in a signature fact block references the field of another sig-
nature, we create an edge between the signature that contains the relation and the one
that contains the formula. For example, Figure 5.5 shows a number of signature declara-
tions. A (on line 1) is a top-level signature with a field f1 on line 2 that references the
signature B1 declared as a subset of B on line 6. The signature B is an top-level signature
declared on line 5. A1 and A2 are subsignature extensions of A declared on line 4. The
facts block associated with C contains a reference to the field f1 of A. Figure 5.6 contains
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the SCG corresponding to the signature declarations in Figure 5.5. The graph contains
six vertices: A, A1, A2, B, B1 and C. The colored bidirectional arrows indicate the four
types of connections that can exist between two signatures. The edge that connects A to
A1 and A2 indicates that A1 and A2 are subsignature extensions of A. A is also connected
to B1 with a field connection arrow since the f1 field of A references B1. Additionally, B1
is connected to B with subset signature connection. Lastly, the formula connection arrow
between A and C exists due to the f1 (which is a field of A) reference in the facts block of
C. When examining the SCG in Figure 5.6, we immediately notice that there exists a path
between any two signature vertices in the graph i.e., there is only one strongly connected
component that spans the entire graph. Hence, the SCG metric value is one.

1 sig A {

2 f1 : B1

3 }

4 sig A1 , A2 extends A {}

5 sig B {}

6 one sig B1 in B {}

7 sig C {} {no iden & f1}

Figure 5.5: Alloy Signature Declarations
Figure 5.6: SCG = 1

1 sig A {

2 f1 : B1

3 }

4 sig A1 , A2 extends A {}

5 sig B {}

6 one sig B1 in B {}

7 sig C {}

Figure 5.7: Alloy Signature Declarations
Figure 5.8: SCG = 2

The signature declarations in Figure 5.7 are identical to the ones if Figure 5.5 with
the exception of the removal of the formula in the facts body of C. Figure 5.8 shows the
SCG corresponding to the signature declarations in Figure 5.7. Note that C is no longer
connected to A since the facts body of C does not reference f1 anymore. The graph in
Figure 5.8 contains two distinct strongly connected components: the first one consists of
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a single vertex (C) and the second one consists of the group of vertices A, A1, A2, B and
B1. Consequently, the SCG metric value of the graph in Figure 5.8 is two.

Computation Predominant Use (Mode) Typical Use (Median)

SCG 1 1

Table 5.9: SCG Metric Value

Computation 12.5th 25th 50th 75th 87.5th

SCG 1 1 1 1 2

Common Range: [1, 2]

Table 5.10: Percentile Distribution of SCG Metric Values

Once the SCG is built, we proceed to compute and report the metric value by counting
the number of strongly connected components in it. We present the predominant and
typical use SCG values as well as a percentile distribution and a common range.

Results: Tables 5.9 and 5.10 show the use criteria values and percentile distribution of the
SCG metric respectively. The predominant and typical use values for the SCG metric are
both one. The percentile distribution shows that 62.5% of SCG values are exactly one.
The common range [1, 2] indicates that 75% of all SCG values are either one or two. We
come to the conclusion that the overwhelming majority of Alloy models have an SCG of
one and feature a strongly connected set of signatures.

Findings: We believe that:

� Alloy models are highly cohesive given that the overwhelming majority of models in
our corpus had an SCG metric value of one.

� Modelers may benefit from having access to the SCG to understand their models.
Language and tool designers may want to consider creating a tool that generates the
SCG graph and metric for Alloy models.

RQ# 26: What kind of sets is quantification applied to?

Motivation: Alloy allows modelers to create quantified constraints that apply to one or
more quantified variables. Quantifiers in Alloy include all, some , no, lone and one.
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We examine the sets associated with quantified variables and classify them based on their
hierarchical status (top-level, subset or extension). We also examine the use of quantified
set expressions i.e., quantification is applied to an expression that binds two or more
sets, which could be signatures or fields. Subsets and subsignature extensions make type
checking significantly more challenging and are one of the reasons that Alloy has a single
universe and little type checking. However, if most quantified sets are not subsets or
extensions, then a type checking system may be a worthwhile investment for Alloy and
subsets can be expressed via set membership.

Approach: We extract from the model the names of all top-level signatures, subset signa-
tures and subsignature extensions. We then extract sets names from quantified expressions
and classify them accordingly. We are only able to classify sets that are declared in the
model and not those imported from external modules. We also extract and tally up the
total number of quantified set expressions. We report the percentage distribution over the
different kinds of quantified variables.

Kind Distribution

Top-Level 56.6%

Subset 0.7%

Extension 19.9%

Set Expression 22.8%

Table 5.11: Quantification by Variable Kind

Results: Table 5.11 shows the results of this research question. Top-level sets constitute the
vast majority (56.6%) of sets used in quantified expressions. Subsignature extensions are
the second most prominent type of sets used in quantification (19.9%). Subset signatures
account for 0.6% of the total number of sets used in quantification which leads us to believe
that quantification over subsets is rare in Alloy models. Lastly, set expressions account for
22.8% of all sets used in quantified expressions.

Findings: Our results suggest that:

� Given that most quantified sets are top-level signatures, a type system may be a
worthwhile addition to Alloy. Language and tool designers who may want to consider
adding a type checking mechanism to Alloy.

RQ# 27: How often are signatures used as structures?
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Motivation: Alloy does not provide a syntax for structures that are just containers (records).
Instead, a separate set can be introduced to act as a mapping to the elements contained in
the structure. An alternative way to mimic structures in Alloy is to use relations of high
arity (i.e., large tuples), which would reduce the number of sets in the model. However,
relations of high arity generally cause poor performance in analysis plus it is not possible to
use the transitive closure operator on relations of arity greater than two. If signatures are
often used as structures, then Alloy language designers might consider providing support
(in syntax and analysis) for structures as is found in other declarative modeling languages
such as TLA+, B and DASH.

Approach: A set is being used as a structure if it is only used as an index to the elements
of the structure and never used by itself. We identify sets that are only used to access
fields via a join operator in formulas. We start by extracting all signature names and
identifying the box or dot join expressions involving each distinct signature and one of its
fields. Expressions that contain an application of the transitive closure operators (e.g.,
A.^f1 or A.*f1) are excluded from this count. We report the total number of signatures
used as structures for each model.

Results: We find that 0.4% of all signatures are used only as structures. The typical use
criterion is 0, which leads us to believe that a typical Alloy model does not contain a
signature used as a structure. We conclude that signatures are rarely used as structures.

Findings: We find that:

� Even though other declarative modeling languages such as TLA+ have structures,
this construct does not appear to be needed in Alloy.

RQ# 28: Are Alloy modelers creating abstract signatures with no children?

Motivation: Abstract signatures are generally used for the sole purpose of creating subsig-
nature extensions from them. However, Alloy does not prevent users from creating abstract
signatures with no extensions. In this case, the abstract signature behaves like a regular
signature. This practice is discouraged and can be categorized as a bad modeling practice.

Approach: We extract from the model all the names of parent signature as well as abstract
signatures. We then cross-reference the two lists to identify abstract signatures that are not
parent signatures. The identified signatures are declared abstract but they are not extended
in the model. We report the percentage of abstract signatures without any children across
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all models and across models that are not declared as modules. We consider the subset of
models that are not declared as modules to account for the fact that abstract signatures
declared in a user-created module may be extended in another file that import the module.

Results: The percentage of abstract signatures with no children comes up to 2.6% out of
the total number of signatures (or 31.1% of abstract signatures) across all models. When
considering only models that are not declared as modules, we find that abstract signatures
with no children constitute 0.5% of all signatures (6.3% of abstract signatures) in this subset
of models. These results confirm that creating abstract signatures with no children is a
rare practice among Alloy modelers given that most abstract signatures with no children
are declared in modules and thus are probably being extended in other models.

Findings: We conclude that:

� Abstract signatures with no children do not appear to be a problem that needs to be
addressed by language and tool designers.

RQ# 29: Are modelers creating abstract signatures with no fields?

1 abstract sig A {}

2 sig A1 , A2 extends A {}

3 pred at_least_one_A {some A}

4 run at_least_one_A for 5 A

5

6 sig B1 , B2 {}

7 pred at_least_one_B {some B1 + B2}

8 run at_least_one_B for 3 B1 , 2 B2

Figure 5.9: Abstract Signatures without Fields

Motivation: Abstract signatures are used to their full extent when they have fields that
can be inherited by their subsignature extensions. However, abstracts signatures without
fields can still be created in Alloy. While their utility is reduced compared to abstract
signatures with fields, they still offer some advantages. Daniel Jackson notes that abstract
signatures without fields can make a model shorter and easier to modify in the future [10].
For example, Figure 5.9 shows how abstract signatures without fields can still be beneficial
to modelers. Signature A on line 1 is declared as an abstract signature (without fields) with
two subsignature extensions A1 and A2 on line 2. Since A is abstract, we know that A =

A1 + A2. Thus, any time we need to reference the union of A1 and A2, we can simply use
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A as shown in the predicate at_least_one_A on line 3. Should the model be modified
in the future to include a third subsignature extension A3 of A, the union reference would
not need to be updated. If we did not make use of an abstract signature with no fields,
we would have to explicitly reference the union as shown in predicate at_least_one_B

on line 7. These union references would have to be manually updated in the future if
the modeler was to add more subsignature extensions of A. Using abstract signatures
with no fields also allows modelers to take advantage of the scope inference mechanism
of Alloy. The command on line 4 only sets the scope for A and lets the Alloy Analyzer
infer the scopes of A1 and A2 whereas the command on line 8 explicitly mentions the
scopes of B1 and B2. While the advantages offered by abstract signatures with no fields
are significant, they do not tap into the inheritance capabilities of Alloy. We explore the
use of abstract signatures without fields to help educators better understand how modelers
are using abstract signatures in their models

Approach: We extract from the model all abstract signature declarations and classify them
as either abstract signatures with fields or abstract signatures without fields. We present
the percentage distribution of abstract signatures between these two categories.

Construct Distribution

Abstract Signatures with Fields 31%
Abstract Signatures without Fields 69%

Table 5.12: Distribution of Abstract Signatures with and without Fields

Results: Table 5.12 shows the results of this research question. We find that abstract signa-
tures without fields account for 69% of all abstract signatures whereas abstract signatures
with fields account for 31% of all abstract signatures. It is evident that modelers are using
abstract signatures without fields extensively.

Findings: We find that:

� Educators should ensure that abstract signatures with no fields are being used for
purposeful reasons (as described above) rather than just to deepen the set hierarchy.

5.4 Formulas

Formulas in Alloy are used to describe constraints about the model. Formulas differ sig-
nificantly depending on the modeling style used. In this section, we examine the different
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styles of writing formulas.

RQ# 30: How often do modelers use the different styles of writing formulas?

Motivation: We consider the three styles for writing formulas described at the beginning
of Jackson’s book on Alloy [37]. Figure 5.10 shows the same formula expressed in three
different styles. The formula states that the relation f maps all elements of A to some
element in B1. The three formula styles are defined as follows:

� In the predicate calculus style (shown on line 1 of Figure 5.10), quantifiers over
variables are used along with Boolean operators (but no set operators).

� In the relational calculus style (shown on line 2), expressions denote relations,
and multiplicity operators on relations are used to accomplish quantification.

� In the navigation expression style (shown on line 3), expressions denote sets and
quantification can be used.

Predicate calculus is commonly used in comprehension expressions to create a set or
relation from a constraint. It is also used for subtle constraints since it often matches
the formulation of the constraint in natural language. The relational calculus style results
in very concise formulas. The three styles do not have equivalent expressive power. The
navigational style is the most expressive among them because the predicate and relational
calculus styles lack transitive closure and quantifiers respectively. Some formulas written
in Alloy may not fit into any of the three modeling styles. By answering this question,
we help educators determine how much to emphasize the distinction between the different
styles in teaching.

1 all a1 ,a2:A| a1 ->a2 in f2 implies a1 != a2 // predicate calculus

2 no iden & f2 // relational calculus

3 no a: A | a = a.f2 // navigation expression

Figure 5.10: Three Formula Modeling Styles

Approach: We extract formulas contained within the body of facts, predicates, functions
and assertions. The collected expressions are then filtered to exclude sub-expressions. The
processed collection of formulas includes only top-level expressions. Next, we perform post-
processing on each expression to identify the style used. Formulas containing a quantified
variable and field names without any occurrences of set operators fall under the predicate
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calculus style category. If a formula does not contain a quantified variable but references
a relation name with or without set operators, then it is classified as a relational calculus
formula. Finally, if an expression contains a quantified variable and set operators, then
it falls under the navigation expression style. Predicate and function calls in a formula
are ignored for this classification. We count the number of formulas belonging to each
formula style. After processing all the formulas in a file, we classify the model as one of the
following six categories: pure predicate calculus, pure relational calculus, pure navigation
expression, dominant predicate calculus, dominant relational calculus, or dominant navi-
gation expression. If all the formulas in a model fall under one modeling style, then the
model will have a pure label corresponding to that formula style. Otherwise, the model
gets labeled with the dominant writing style i.e., the style matching the largest number of
formulas in that model.

Model Classification Distribution

Pure Relational Calculus 33.9%

Dominant Relational Calculus 43.5%

Pure Navigation Expression 4.9%

Dominant Navigation Expression 16.9%

Pure Predicate Calculus 0.3%

Dominant Predicate Calculus 0.5%

Table 5.13: Model Classification by Formula Style

Results: Table 5.13 shows the relational calculus formula style is the most-used style across
the pure and dominant categories whereas predicate calculus is the least common style.
We conclude that Alloy modelers prefer relational calculus and tend to avoid predicate
calculus. Navigation expression is a popular formula style with modelers likely when the
constraint is too complex to be expressed with relational calculus. The ubiquity of the
relational calculus style highlights the usual goal of overall simplicity in Alloy modeling
because the vast majority of formulas are expressed with the most concise style.

Findings: We find that:

� Educators may want to consider the frequency of use of the different formula modeling
styles when deciding which modeling style to teach first or emphasize.

� A user study to determine how novice modelers use the different formula styles com-
pared to experienced modelers may be of interest.
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5.5 Scopes

Alloy models are bounded i.e., they must have a specified maximum possible size. A scope
is a bound on the size of signature sets and can be changed for each command query. If
the maximum scope for a set is not specified, the Alloy Analyzer will assume that each
top-level signature is limited to three elements. In this section, we explore how modelers
are setting scopes in their models, the kinds of signatures that have set scopes as well as
scope-setting practices that are discouraged.

RQ# 31: How are scopes chosen in Alloy models?

Motivation: For analysis, the Alloy Analyzer chooses a default scope for sets that have not
been assigned a scope in a query. If a modeler does not include a scope, it can indicate
either that the default scope is adequate for their analysis or that they do not know how
to choose a reasonable scope. We also examine how often exact scopes are used (rather
than all scopes less than or equal to the set scope). An exact scope limits the number of
instances that need to be checked. Hence, an exact scope is likely to reduce the analysis
time, but produces a less general result if the model is unsatisfiable. But there are some
sets that are inherently of an exact scope (e.g., colors of a traffic light).

1 sig A {}

2 sig A1 , A2 extends A {}

3 pred show {}

4 run show for 2 A

Figure 5.11: Scope Derivation Case 1

1 sig A {}

2 sig A1, A2, A3 extends A {}

3 pred show {}

4 run show for 6 A, 1 A1 , 3 A2

Figure 5.12: Scope Derivation Case 2

1 sig A {}

2 sig A1 , A2 , A3 extends A {}

3 pred show {}

4 run show for 1 A1 , 3 A2 , 2 A3

Figure 5.13: Scope Derivation Case 3

Approach: The answer to this research question is complicated by the fact that the scope
of a signature may be derived from the scope of another signature. Scope derivation
stems from the set hierarchy. For instance, if a top-level signature with a set scope has
multiple child subsignature extensions with no scopes associated with them, the scopes
of the extensions are derived to be equal to that of the parent signature. Figures 5.11
and 5.14 illustrate this case of scope derivation. The top-level signature A is extended
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with two subsignature extensions A1 and A2. The run command on line 4 sets the scope
of A to two. The scopes of A1 and A2 are inferred to be two as well. Similarly, if a
top-level signature has a set scope and all its subsignature extensions (mutually disjoint)
except for one have scopes associated with them, then the missing scope of the extension
can be derived. This second case of scope derivation is shown in Figures 5.12 and 5.15.
The command query on line 4 sets to the scope of A, A1 and A2 to six, one and three
respectively. The scope of A3 is inferred to be two.

Figure 5.14: Scope Derivation Case 1

Figure 5.15: Scope Derivation Case 2

On the other hand, if the top-level signature does not have a set scope, but its children
subsignature extensions have scopes associated with them, then the parent signature has a
derived scope equal to the sum of the scopes of its child extensions as shown in Figures 5.13
and 5.16. The command on line 4 sets the scope of A1, A2 and A3 to one, three and two
respectively. The Alloy Analyzer computes the scope of A by summing the scopes of A1,
A2 and A3 and A gets a scope of six.
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Figure 5.16: Scope Derivation Case 3

We devise six distinct categories for the scope of a signature:

� Set exact: The scope is explicitly set in the run/check command using the keyword
exactly .

� Set non-exact: The scope is set in the run/check command without using the
exactly keyword.

� Derived exact: The scope is not explicitly set, but derived to be exact.

� Derived non-exact: The scope is not explicitly set, but derived to be non-exact.

� Model Exact: The scope is not explicitly set, but required to be an exact value by
the model (e.g., the use of one in a signature declaration).

� Default non-exact: The scope is not explicitly set and cannot be derived so it is
assigned a default non-exact scope.

The Alloy Analyzer sets the scopes for all sets using explicitly set scopes, derived
scopes, and default values for scopes. We extract and classify the scopes for all signatures
in individual run and check commands in all the models.

Results: Table 5.14 shows that half of all run and check queries fall in the default non-
exact category. Model exact is the second most populous category coming in at 18.2%.
The scarcity of exact scopes compared to non-exact scopes is evident when examining the
results. We hypothesize that modelers may not be familiar with the exactly keyword
and consequently are not using it abundantly.

Findings: The findings of this research question are as follows:
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Scope Category Distribution

Default Non-Exact 51.5%

Model Exact 18.2%

Set Non-Exact 15.6%

Set Exact 8.8%

Derived Non-Exact 4.8%

Derived Exact 1.2%

Table 5.14: Scopes Categories Across All Queries and All Models

� Most Alloy modelers formulate queries without specifying scopes in them. We also
find that modelers prefer setting an upper bound for sets as opposed to dictating an
exact size.

� Educators are encouraged to explain when exact scopes are appropriate.

� Further studies should be conducted to explore the relationships between scopes,
Jackson’s generator axioms [37] and the significance axioms discussed in [30]. Gener-
ator axioms are used to ensure that instances where increasing the scope would satisfy
an assertion are not erroneously produced as counterexamples. Significance axioms
ensure that the scope is large enough to be interesting. The scope only increases
linearly to the finite number of operations.

RQ# 32: Are scopes being set at the top level or subset/subsignature exten-
sion level?

Motivation: Scopes can be set for top-level signatures, subset signatures and subsignature
extensions. Modelers can set these scopes in a command query or in a signature declaration.
In this research question, we examine the type of signatures that have scopes assigned to
them as well the different levels (query or signature) at which these scopes are being set. By
inspecting scope levels, we can help educators get a better understanding of how modelers
are setting scopes in their Alloy models.

Approach: We extract signature names from run and check commands and then classify
them as top-level signatures, subset signatures or subsignature extensions. We then tally up
the number of each signature type. Similarly, we extract the names of signatures declared
with a multiplicity (e.g., lone and one) and categorize them. We exclude signatures
declared with multiplicity some since they do not constrain the set size to a specific value
and thus do not fall under the same category as commands and the multiplicities lone
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and one. We report data summary criteria for top-level signatures, subset signatures and
subsignature extensions at the command and signature levels.

Kind Distribution

Top-level 83.7%

Subset 0.0%

Extension 16.3%

(a) Commands

Kind Distribution

Top-level 4.4%

Subset 0.2%

Extension 95.4%

(b) Signatures with Multiplicity one

Kind Distribution

Top-level 0.0%

Subset 0.8%

Extension 99.2%

(c) Signatures with Multiplicity lone

Table 5.15: Scope Levels

Results: The results of this research question are summarized in Table 5.15. At the com-
mand level, the vast majority of scopes (83.7%) are attributed to top-level signatures. The
remaining 16.3% of scopes at the command level are subsignature extensions. We did not
find any subset signatures with a scope set at the command level. Signature kind distri-
bution is fairly similar for signatures with multiplicity one and lone , with subsignature
extensions being the dominant type of scope assignments. We did not identify any top-level
signatures with multiplicity one.

Findings: We come to the following conclusions:

� Subsignature extensions account for the vast majority of signatures with multiplicity
one and can be replaced with a dedicated scalar construct. Language and tool
designers may want to add a scalar construct to Alloy.

� Subsignature extensions constitute the vast majority of signatures with multiplicity
one. Thus, educators are encouraged to highlight enums as a means to create
ordered subsignature extensions with multiplicity one.

RQ# 33: How often is the ordering module applied to a set with a non-exact
scope?
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Motivation: The ordering module can be used to place an ordering on a parameterized
signature. The ordering module forces the signature on which it was instantiated to be
exact. The Alloy Analyzer does not explicitly warn modelers against using a non-exact
scope with an ordered signature. The implicit exact constraint can lead to unexpected and
erroneous results.

1 open util/ordering[C]

2

3 abstract sig A {}

4 sig B extends A {}

5 sig C extends A {}

6

7 pred show {}

8 run show for 7

Figure 5.17: Model from Stack Overflow Question [11]

Figure 5.17 shows an Alloy model posted on Stack Overflow [11] that showcases the issues
that can be caused by using a non-exact scope with an ordered signature set. In this model,
A is an abstract signature with two subsignature extensions B and C. The predicate show

does not contain any constraints. The run command on line 8 uses a set non-exact scope
of 7. If the signature C was not an ordered set, then A, B and C would be given a non-exact
scope i.e., an upper bound of 7. In any instance of the model, the sum of the elements
in B and C is at most 7. However, since C is an ordered set, it is forced to have an exact
scope of 7. This exhausts the scope quota for signature A, which leaves signature B with an
implicit scope of 0. Consequently, no instances of the model will have elements in B, which
may not be the intention of the modeler. We examine the use of the ordering module on
sets with a non-exact scope to determine if this bad modeling practice is prevalent among
modelers.

Approach: We extract from the model the set names that have an ordering applied to them
using an open statement. Next, we extract from command queries all sets that have a
non-exact scope. We include all three non-exact scope categories (default non-exact, set
non-exact and derived non-exact). Finally, we cross-reference the lists of sets to identify
ordered sets with a non-exact scope. If a signature set is used in multiple command queries
and thus falls under multiple scope categories it is counted once for the total number of
ordered sets with a non-exact scope. However, we count duplicates multiple times when
computing the percentage distribution across commands in all models.
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Scope Category Distribution

Set Non-Exact 84.4%

Default Non-Exact 14.9%

Derived Non-Exact 0.7%

Table 5.16: Scope Category Distribution Among Ordered Sets

Results: We find that modelers are frequently applying the ordering module to a set with
a non-exact scope given that 54.8% of all ordered sets have a non-exact scope. Table 5.16
shows the distribution of ordered sets across the non-exact scope categories. The vast
majority of ordered sets with a non-exact scope fall under the set non-exact scope category
(84.4%) followed by the default non-exact scope category (14.9%). Only 0.7% of ordered
sets with a non-exact scope fall under the derived non-exact category. Given that set
non-exact is the dominant scope category, we can say with a certain degree of confidence
that modelers are explicitly setting non-exact scopes for ordered sets. We hypothesize that
these results are an underestimate of the actual frequency of occurrence of this practice.

Findings: We conclude that:

� Educators are encouraged to highlight this bad modeling practice and explain its
repercussions on the command results.

� Language designers may want to update the Alloy Analyzer to allow it to generate
a warning when the ordering module is applied to a set with a non-exact scope.

RQ# 34: How are scopes set for integers in Alloy?

Motivation: In Alloy, integer scope specifications determine the maximum bit-width for
integers. For instance, a command containing the scope 6 Int assigns to the signature
Int the range of integers from -32 to + 31. The default integer scope in Alloy is 4 so
only integers in the range [−8, 7] are considered during the instance generation. Setting an
integer scope that is too low may result in an overflow that causes valid counterexamples
to be missed by the analyzer. Setting a scope that is too high may negatively affect solving
time. We seek to determine what scope values modelers assign to integers.

Approach: We extract and tally up all command queries containing an integer scope spec-
ification. We compute the predominant and typical use criteria values as well as the

78



Integer Scope Predominant Use (Mode) Typical Use (Median)

Value 5 5

Table 5.17: Integer Scope Values

percentage distribution of integer scope value and present the percentage of integer scope
out of the total number of scoped sets in commands.

Integer Scope 12.5th 25th 50th 75th 87.5th

Value 3 4 5 6 8

Common Range: [3, 8]

Table 5.18: Percentile Distribution of Integer Scope Values in Commands

Results: We find that integer scope specifications account for 8% of the total number of
scoped sets in commands which indicates that setting integer scopes in Alloy models is not
uncommon. Table 5.17 shows the predominant and typical integer scope criteria. A typical
Alloy model sets the scope of integers to 5 as shown by the typical use criterion. The most
common integer scope value is also 5 as shown by the predominant use criterion. Table 5.18
shows the percentile distribution of integer scope values. We find that the common range
for integer scopes is [3, 8] i.e., 75% of integer scope values fall in that range.

Findings: Our findings are listed below:

� Given that the default scope for integers in Alloy is 4, some modelers may be making
their problems too large by specifying integer scopes that are higher than needed.

� Language and tool designers may want to reconsider the default scope for integers in
Alloy given that modelers often specify higher integer scopes than the default scope.

� Educators are encouraged to familiarize students with proper integer scope use and
help them find alternative ways of modeling problems with numeric constants without
using integers. (See Section 5.2)
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5.6 Summary

In this chapter, we presented a series of research questions that examine how the con-
structs of the Alloy language are used. These “deeper-level” questions are split into five
subsections: Modules, Integers, Sets, Formulas and Scopes. In Section 5.1, we explore the
use of user-created and library modules. Section 5.2 investigates the use of integers and
the possibility of substituting integers for alternative constructs. Next, we examine the use
of sets in Section 5.3 and perform an extensive study of the relationships and hierarchies
that bind them. In Section 5.4, we classify formulas in Alloy models based on the writing
used to formulate them. Lastly, Section 5.5 explores the scope-setting practices of Alloy
modelers. We present a summary of our findings split into three categories: findings for
language and tool designers, findings for educators and findings for optimization developers.

Findings for Language and Tool Designers:

� Alloy language and tool designers may want to develop model management IDEs to
help modelers manage imported user-created modules.

� Some library modules are rarely used and hence language designers may want to drop
them in future versions of Alloy.

� Language designers may want to add a built-in order construct to represent numeric
constants.

� 55.3% of all integers used in fields do not need to be integers and could be a set with
a linear ordering. Language designers could modify the Alloy Analyzer to allow it to
warn users about integer constants that are only used as a linear order.

� The Alloy Analyzer could notify modelers about integer uses that can be replaced
with an application of the ordering module.

� Modelers are using the set cardinality operator to set the size of signature sets.
Given that this practice is inefficient in analysis, tool designers are encouraged to
add a warning that discourages its use and provides alternative methods to specify
the signature set size (multiplicity keywords, command queries).

� Language and tool designers may want to give modelers access to the SCG to allow
them to gauge the connectedness of their models.

� Language and tool designers may want to add a scalar construct to Alloy.
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� Language and tool designers are encouraged to add a type system to Alloy along
with type checking mechanisms.

� A dedicated structure/record construct is not needed in Alloy.

� Abstract signatures are almost always extended with subsignature extensions.

� The ordering module is commonly applied to sets with a non-exact scopes. We
recommend that tool designers discourage this practice by warning modelers when
they use a non-exact scope with an ordered set.

� Language and tool designers may want to reconsider the default scope for integers in
Alloy given that modelers often specify higher integer scopes than the default scope.

Findings for Educators:

� Modelers are not using the ordering module to its full extent given the profuseness
of integers used solely to impose a linear ordering. Educators are encouraged to
promote the use of the ordering module.

� We encourage educators to highlight the importance of using multiplicity keywords
and command queries to set the size of signature sets in lieu of the set cardinality
operator because setting the size of a signature using the set cardinality operator
leads to longer solving times.

� Educators may want to consider the frequency of use of the different formula modeling
styles when deciding which modeling style to teach first or emphasize.

� enums are an underutilized construct in Alloy. Educators are encouraged to highlight
enums as a means to create ordered subsignature extensions with multiplicity one.

� Modelers tend to use non-exact scopes far more frequently than exact scopes. Edu-
cators are encouraged to explore the different scope categories with student modelers
and highlight the performance gains that can be achieved by using exact scopes.

� Educators should discourage the use of non-exact scopes with an ordered set.

� Integer scopes should be explained in greater detail. Educators should also encourage
students to find alternative ways of modeling problems with numeric constants that
do not involve integers.
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Findings for Optimization Developers:

� Developers are encouraged to create optimizations on analysis for the ordering module
and for integers in Alloy because they are used frequently.

� Optimization developers are encouraged to internally transform integer applications
used to impose a linear order to ordered sets that take advantage of the ordering
module.

� We recommend that developers invest in the development of Alloy optimizations that
convert applications of the set cardinality operators that specify the size of a signature
set to command queries or signature declarations with a multiplicity keyword because
specifying the size of a signature using the set cardinality increase model complexity
and solving time.

� Given the fairly shallow depth of extension set hierarchy graphs in Alloy models,
optimizations do not necessarily need to scale favorably for deep extension hierarchies.

� Creating subsets of a subset is a fairly rare practice in Alloy. Hence, optimization
developers do not necessarily need to account for this particular instance of set hier-
archy when developing their tools and engines.

� The shallow set hierarchies in Alloy models are another argument in favor of a type
system in the Alloy language.
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Chapter 6

Analysis Complexity

In this chapter, we explore research questions related to Alloy model features that could
affect analysis complexity by increasing solving time. We also examine the use of certain
model features such as partial and total functions that can be exploited for optimizations
in different solvers. The research questions in this chapter can be used as a basis for
future work optimizations in solvers. We discuss the use of second-order operators (set
cardinality and transitive closure), partial and total functions and the depth of joins and
quantification.

6.1 Second-order Operators

This section explores the use of second-order operators in Alloy models. Searching for
instances in models that use second-order features involves extensive expansion of formulas
and thus can affect analysis complexity and solving time. If the operators are used profusely
in Alloy, developers may want to investigate optimizations with these operators in mind.

RQ# 35: How common is the use of the set cardinality operator in Alloy mod-
els?

Motivation: The set cardinality operator (#) allows modelers to specify the size of a set
consisting of a signature, field or formula. We have previously found in Chapter 5 that set
cardinality is being used to specify the size of sets in Alloy models. We assess the frequency
of set cardinality operator use in Alloy models to help developers determine whether or
not to create optimizations centered around this second-order operator.

Approach: We extract from the model all instances of the set cardinality operator. We
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account for predicate and function calls that contain uses of the set cardinality operator
i.e., the number of set cardinality operators in a predicate or function is scaled according to
the number of calls corresponding to that predicate or function. We report the percentage
of models that have at least one set cardinality operator in our corpus of models along with
the non-zero predominant and typical use criteria. We also present the non-zero percentile
distribution and common range for the number of set cardinality operators in a model.

Construct Predominant Use (Mode) Typical Use (Median)

Set Cardinality (non-zero) 2 6

Table 6.1: Set Cardinality Operator Count in Alloy Models

Construct 12.5th 25th 50th 75th 87.5th

Set Cardinality (non-zero) 2 2 6 14 26

Common Range: [2, 26]

Table 6.2: Percentile Distribution of Set Cardinality Operator Count

Results: We find that 34.8% of all models in our corpus have at least one use of the set
cardinality operator. Table 6.1 shows the non-zero predominant and typical use values for
the set cardinality operator count. We find that the non-zero predominant value is two
whereas the non-zero typical value is six. Thus, a typical Alloy that uses set cardinality
contains six uses of this operator. Table 6.2 shows the percentile distribution of the set
cardinality operator count. We find that the non-zero common range is [2, 26] which means
that 75% of set cardinality operator count are between two and twenty-six. Therefore, we
conclude that the set cardinality operator count can vary significantly among models that
make use of it.

Findings: Our results suggest that:

� The set cardinality operator is used in a significant percentage of Alloy models.

� Models that use set cardinality usually contain a relatively high number of uses of
this operator.

� Developers are encouraged to create solvers and optimizations that address the abun-
dant use of the set cardinality operator in Alloy.
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RQ# 36: How common is the use of transitive closure in Alloy models?

Motivation: The transitive closure operator is a unary operator that can be applied a
binary relation. When the non-reflexive transitive closure operator (^) is applied to
a binary relation r, it returns the result of the following expression:

^r = r + r.r + r.r.r + ...

When the reflexive transitive closure operator (*) is applied to a binary relation r, it
returns the following infinite set:

*r = iden + r + r.r + r.r.r + ...

which can simplified as:
*r = iden + ^r

Uses of the transitive closure operators involve extensive expansions of the formulas in
the model for solving, which leads us to believe that these operators may impact analysis
complexity and solving time. We explore the use of transitive closure operators in Alloy
models to help optimization developers decide how much to focus on the development of
optimizations that target these operators.

Approach: We extract and tally up the number of reflexive and non-reflexive transitive
closure operators in the model. We scale the occurrences of these operators in predicates
and functions according to the number of calls made to the these constraint containers.
We compute and report the percentage of models that make use of transitive closure
operators. We report the non-zero predominant and typical use criteria as well the non-
zero percentile distribution and common range. We opt to use the non-zero values given
that the all-inclusive values were mostly zeroes and thus were not very informative.

Operator PU (Mode) TU (Median)

Transitive Closure (non-zero) 1 5
Non-Reflexive Transitive Closure (^) (non-zero) 1 3

Reflexive Transitive Closure (*) (non-zero) 1 6

Table 6.3: Transitive Closure Operators in Alloy Models

Results: We find that 26.8% of models in our corpus contain at least one transitive closure
operator. We also find that 19.4% of models contain at least one use of the non-reflexive
transitive closure operator whereas 16.2% of models have at least one use of the reflex-
ive transitive closure operator. Table 6.3 shows the non-zero predominant and typical
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Operator Percentage Distribution

Non-Reflexive Transitive Closure 35.1%
}

= 100%
Reflexive Transitive Closure 64.9%

Table 6.4: Percentage Distribution of Transitive Closure Operators

use values for the transitive closure operators. Models that make use of transitive closure
operators typically contain five uses of these operators. Table 6.4 shows the percentage dis-
tribution of transitive closure operators between the non-reflexive and reflexive categories.
While there are slightly more models that contain use of the non-reflexive transitive closure
operator, the applications of the reflexive transitive closure operator (64.9%) significantly
outnumber those of the non-reflexive operator (35.1%).

Operator 12.5th 25th 50th 75th 87.5th CR

Transitive Closure 1 2 5 11 16 [1, 16]
Non-Reflexive Transitive Closure 1 1 3 5 8 [1, 8]

Reflexive Transitive Closure 1 2 6 11 15 [1, 15]

Table 6.5: Non-zero Percentile Distribution of Transitive Closure Operators

Table 6.5 shows the percentile distribution and common range of transitive closure oper-
ators. We find in the models that make use of transitive closure operators, 75% of the
transitive closure operator counts fall between one and sixteen.

Findings: The results of this research question suggest that:

� Given that 26.8% of models in our corpus contain transitive closure operators and
given the relatively substantial number of uses of transitive closure operators in these
models, we encourage developers to explore developing optimizations centered around
these operators.

6.2 Partial and Total Functions

This section explores the use of total and partial functions in Alloy models. These functions
are handled differently by different solvers. For example, KodKod represents total functions
as relations with additional constraints, whereas Portus [41] represents total functions as
total functions for SMT solving. We include this analysis of the types of field relations used
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(partial, total) because tools connecting Alloy to SMT solvers (e.g., El Ghazi et al. [28])
can express specialized relations as functions in first-order logic.

RQ# 37: How common are partial and total functions in Alloy models?

Motivation: User-introduced partial functions in Alloy are declared as fields under signa-
tures and can take one of the these two forms:

� f: e1 -> lone e2

� f: lone e

The set multiplicity keyword lone indicates that the each element in the domain is mapped
to zero or one element in the range, which makes the field a partial function. Note e1 can
be a larger set expression that includes multiple sets. A total function is a function that
maps every element in the domain to some element in the range. User-introduced total
functions in Alloy can take one of the following forms:

� f: e

� f: one e

� f: e1 -> one e2

The set multiplicity keyword one is used to indicate that every element in the domain
is mapped to exactly one element in the range. The first two forms are equivalent given
that the default multiplicity for a field in Alloy is one. In the third form, e1 may be a
larger set expression that references other sets. The built-in Alloy library modules contain
a number of total and partial functions. We explore the use of user-introduced, library
and overall (i.e., including user-introduced and library) total and partial function in Alloy
models to assess whether or not optimizations and solvers that target these constructs
should be developed.

Approach: We count the number of user-introduced and library partial and total functions
across all models. We also consider the overall number of partial and total functions which
includes user-introduced total and partial functions and those imported from a library
module and used at least once. We present the percentage distribution of fields across
these different categories.

Results: Table 6.6 shows the percentage distribution of fields among the six categories
of partial and total functions. We find that user-introduced partial functions account for
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Function Percentage Distribution

User-introduced Partial Functions 10.7%


of all fields

User-introduced Total Functions 50.0%
Library Partial Functions 2.1%
Library Total Functions 6.9%

Overall Partial Functions 12.9%
Overall Total Functions 57.0%

Table 6.6: Percentage Distribution of Total and Partial Functions

10.7% of all fields whereas user-introduced total functions constitute 50% of all fields. We
also find that 58.6% of all user-introduced total functions (i.e., 29.3% of all fields) are
over top-level signatures. SMT solvers treat user-introduced total functions over subsets
as partial functions. Hence, optimizations that target total functions would be limited
to user-introduced total functions over top-level signatures. Library partial functions are
significantly less common and account for 2.1% of fields only. Library total functions are
used more frequently account for 6.9% of all fields. Overall, partial functions account for
12.9% of all fields whereas total functions account for 57% of all fields. Total functions are
clearly prevalent in Alloy models. Partial functions are not as abundant as total functions
but still account for a considerable portion of all fields.

Findings: We conclude that:

� Total functions are used extensively in Alloy models. Thus, it is worthwhile for
developers to work on improving the analysis methods with a focus on total functions.

� Partial functions are used modestly in Alloy models. Developers could potentially
create optimizations that handle these functions.

6.3 Depth of Joins and Quantification

The depth of joins and quantification are factors that are generally considered to make
automated verification of finite problems take longer. In this section, we discuss the use
the dot and join operators in Alloy and the depth of joins in formulas. We also explore the
depth of quantification in Alloy models to assess whether or not developers should focus
on improving analysis methods with a focus on nested quantification.

RQ# 38: What the typical depth of joins in Alloy models?
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Motivation: The dot join f1.f2 of two relations f1 and f2 is the relation obtained by
taking every combination of a tuple in f1 and a tuple in f2 and including their join, if
it exists. The relations f1 and f2 do not need to have the same arity. The box join
operator [] is semantically identical to the dot join but its arguments are in a different
order and it has different precedence. For instance, the expression f1[f2] is equivalent
to f2.f1. Dot joins bind tighter than box joins e.g., f1.f2[f3] is equivalent to f3.(

f1.f2). The main reason for the inclusion the box join operator in Alloy is its ability
to provide a syntactic means of expressing an indexed lookup in a way that resembles
object-oriented programming languages. Deep joins involve extensive expansions of the
formulas for solving 1 and could affect solving time and analysis complexity. We explore
the use and depth of box and join operators in Alloy models.

Approach: We count individual uses of the dot and box join operators to get a better idea of
the frequency of these operators. We also compute the depth of joins by extracting the top-
level expressions containing applications of the dot and box join operators and counting
the number of expressions bound together by these operators. We report a percentage
distribution between dot and box joins as well as the predominant and typical use criteria
values of these operators. We present the common range for the use and depth of the join
operators to gauge the variations in the these values.

Measure PU (Mode) TU (Median) Percentage Distribution

Dot Join 6* 15 90.6%
}

= 100%
Box Join 1* 0 9.4%

Depth of Joins 2 2 -

Table 6.7: Dot and Box Joins in Alloy Models

Results: Table 6.7 shows the predominant and typical use values for the join operators
and the depth of joins along with the percentage distribution between the dot and box
join operators. The dot join operator is clearly more prevalent in Alloy models compared
to the box join operator and accounts for 90.6% of all join operators whereas the box join
operator constitutes only 9.4% of join uses. A typical Alloy model contains 15 uses of the
dot join operator but no use of the box join operator. Joins in Alloy are fairly shallow as
shown by the predominant and typical use values for the depth of joins that are both two.

1(x,y) in f1.f2 <=> some z | (x,z) in f1 and (z,y) in f2
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Measure 12.5th 25th 50th 75th 87.5th Common Range

Dot Join 0 2 15 54 108 [0, 108]
Box Join 0 0 0 3 9 [0, 9]

Depth of Joins 2 2 2 3 3 [2, 3]

Table 6.8: Percentile Distribution of Dot and Box Join Uses and Depth of Joins

Table 6.8 shows the percentile distribution and common range of the uses of join operators
and the depth of joins. There is a noticeable amount of variation in the frequency of dot
join given that the common range is [0, 108]. We find a similar trend in the frequency of
box joins. The common range for the depth of joins is [2, 3] which implies that 75% of all
join expressions bind two or three relations. We come to the conclusion that while the use
of join operators (especially dot joins) is a common occurrence in Alloy models, deep joins
are fairly uncommon.

Findings: Based on the results of this research question, we conclude that:

� The dot join operator is used extensively in Alloy models but the depth of joins is
fairly shallow.

RQ# 39: What is the typical depth of quantification in Alloy models?

Motivation: Constraints in Alloy can be quantified using a number of built-in quantifiers.
A quantified constraint takes the form Q a: B | F where Q is a quantifier, x is the
quantified variable of kind B and F is a formula denoting the constraint. There are six
quantifiers in the Alloy language:

� all a: B | F: the constraint F holds for every element a in B

� some a: B | F: the constraint F holds for some element a in B

� no a: B | F: the constraint F holds for no element a in B

� lone a: B | F: the constraint F holds for at most one element a in B

� one a: B | F: the constraint F holds for exactly one element a in B

Alloy allows for nested quantification in expressions e.g., the constraint all a: B | lone

a.f states that every element a in B is mapped to at most one element in the field f.
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Nested quantifiers are generally believed to affect analysis complexity and solving time.
We explore the depth of quantification to find if Alloy modelers are making use of deep
quantified constraints that can be the target of future optimizations.

Approach: We extract from the model top-level quantified formulas and compute the depth
of quantification by examining the nesting of quantification in these top-level formulas. We
report the predominant and typical use criteria values for the depth of quantification.

Measure Predominant Use (Mode) Typical Use (Median)

Depth of Quantification 1 1

Table 6.9: Depth of Quantification in Alloy Models

Measure 12.5th 25th 50th 75th 87.5th

Depth of Quantification 1 1 1 1 2

Common Range: [1, 2]

Table 6.10: Percentile Distribution of Depth of Quantification

Results: Table 6.9 shows the results of this research question. We find that the predominant
and typical depth of quantification are both one. The common range shown in Table 6.10
shows that the vast majority of quantification depths are 1 with a smaller number being
two. We conclude that nesting quantifiers is a fairly uncommon practice in Alloy.

Findings: We find that:

� The depth of quantification in Alloy formulas is shallow. Optimizations that target
deeply quantified constraints may not yield substantial improvements for the solving
time in Alloy models.

6.4 Field Arity

High-arity fields are often discouraged in Alloy models. This section explores the arity of
fields declared under signatures to determine if modelers are creating fields with high arity
that may have an impact on analysis complexity and solving time.

RQ# 40: Are high-arity fields common in Alloy models?
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Motivation: Fields in Alloy are declared in the body of signatures. The following signa-
ture declaration sig A {f: e} contains a field declaration f: e whose domain is the
signature under which it is declared i.e., A and whose range is given by the expression e

that may include one or more sets. For example, the signature declaration
sig A {f1: B -> lone C} instantiates a new field f1 with arity three. Note that
the smallest field arity is two since a field must bind the signature under which it is declared
with at least one other set. We explore field arities in Alloy models to determine if modelers
are frequently creating high-arity fields that could be addressed in future optimizations.

Approach: We extract from the model all field declarations and compute their arities by
counting the number of sets in the type expression of the field declaration plus one for the
signature under which the field is declared. We report the predominant and typical use
values as well as the common range for field arities in our corpus of models.

Measure Predominant Use (Mode) Typical Use (Median)

Field Arity 2 2

Table 6.11: Field Arities in Alloy Models

Measure 12.5th 25th 50th 75th 87.5th

Field Arity 2 2 2 2 3

Common Range: [2, 3]

Table 6.12: Percentile Distribution of Field Arities

Results: The results of this research question are presented in Tables 6.11 and 6.12. The
predominant and typical use values for field arity are both two, which indicates that the
most-frequent and typical field arities in Alloy are two (i.e., the smallest field arity pos-
sible). The percentile distribution shown in Table 6.11 also showcases the prominence of
fields with arity two given that 62.5% of all field arities are exactly two and 12.5% are
exactly three. We conclude that high-arity fields are uncommon in Alloy models since the
common range of field arities is [2, 3].

Findings: We find that:

� High-arity fields are uncommon in Alloy models and thus are not a viable candidate
for future optimizations.
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6.5 Summary

In this chapter, we discussed a number of factors that are generally believed to impact
analysis complexity and solving time. We examine the use of second-order operators (set
cardinality and transitive closure) as well as the frequency of partial and total functions.
We also explore the depth of joins and quantification in Alloy models. We find that
second-order operators are prevalent in our corpus of models. Modelers are also using a
considerable number of total and partial functions. The use of the dot join operator is
widespread in Alloy models, but the depth of joins is generally shallow. Similarly, nesting
quantifiers is an uncommon practice for Alloy modelers. Lastly, we examine field arities in
Alloy models to determine the frequency of high-arity fields. The findings in this chapter
are all aimed at optimization developers and are presented below.

Findings for Optimization Developers:

� Developers are encouraged to create solvers and optimizations that address the abun-
dant use of the set cardinality operator in Alloy.

� Given that 26.8% of models in our corpus contain transitive closure operators and
given the relatively substantial number of uses of transitive closure operators in these
models, we encourage developers to explore developing optimizations centered around
these operators.

� Total functions are used extensively in Alloy models. Thus, it is worthwhile for
developers to work on improving the analysis methods with a focus on total functions.

� Partial functions are used modestly in Alloy models. Developers could potentially
create optimizations that handle these functions.

� The dot join operator is used extensively in Alloy models but the depth of joins is
fairly shallow.

� The depth of quantification in Alloy is shallow. Optimizations that target deep
quantified constraints would probably not be effective on Alloy models.

� High-arity fields are uncommon in Alloy models and thus are not a viable candidate
for future optimizations.
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Chapter 7

Related Work

To the best of our knowledge, our Alloy corpus study is the first of its kind to study to
explore the modeling characteristics of Alloy users. Other Alloy corpus studies examine the
semantics of the models and focus on optimizations for the language or the development
of external tools. Previous studies briefly discuss the syntactic features and constructs
of the Alloy language but do not provide an in-depth look at the complex patterns in
Alloy models beyond a simple tallying up of constructs. We briefly examine other corpus
studies performed on programs written in object-oriented programming languages. We also
discuss the object-oriented literature that inspired some of the research questions in this
work. Finally, we provide a brief overview of two profiling techniques that we attempted
to use for this work.

7.1 Alloy Profiling

Wang et al. [56] correlate Alloy model features with analysis time. They examine a number
of static features of Alloy models at three different levels: an Alloy model, its Kodkod
model, and its SAT model. The tally of these features on 119 Alloy models (103 from the
Alloy Analyzer release 4.2) plus analysis of these models at varying scopes is used to train
a machine learning component to predicate the best SAT solver from the characteristics of
the problem. They found the features extracted from the Kodkod model to be the most
valuable for predicting the best solver with the lowest analysis time. In comparison with
our work, the 123 features Wang et al. extracted at the Alloy model level are based on
counting the number of occurrences of types of nodes (e.g., particular operators) in the
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abstract syntax tree (AST), and include properties of the entire AST such as how many
nodes are in the tree.

Erata [29] profiled some syntactic characteristics (e.g., arity, use of transitive closure,
use of integers) of a set of 109 Alloy models for discussion on the Alloy mailing list.
Compared to these efforts, our work is more ambitious given that it aims to understand
how people write Alloy models (rather than solver performance). We look at a more
general set of Alloy models (2,138 models) and draw conclusions from larger patterns
within the model’s syntax. Unlike our corpus study, Erata’s work does not provide any
recommendations or actionable items based on the findings.

Ringert and Wali [48] performed a semantic pairwise comparison of Alloy models. The
developed method converts two Alloy models into a single model that can generate in-
stances of each model. The proposed algorithm was integrated into the existing Alloy code
base. The comparison can thus be conducted in the Alloy Analyzer without the need to
use external tools. The developed tool can check if two models are equivalent or if a model
is a refinement or extension of another model. The corpus of models used to conduct an
evaluation of the proposed method contained 654 Alloy models gathered from different
sources including the iAlloy and Platinum evaluation models (both of which are included
in our corpus). The translation algorithm has some limitations but it is still effective on the
vast majority of models in the collected corpus. The researchers found that their proposed
method yielded favorable results in terms of effectiveness and analysis cost. Ringert and
Wali performed some rudimentary profiling of the models in their corpus and reported the
sizes of Alloy models in terms of lines of code and numbers of signatures, fields, facts, and
functions/predicates (including those from imported models). Unlike our work, Ringert
and Wali examined models from a semantic point of view. Their work does not attempt to
examine how modelers use the syntactic features of Alloy and does not attempt to identify
particular patterns or trends in the models.

7.2 Software Metrics and Corpus Studies

Chowdhury and Zulkernine [26] use complexity, cohesion and coupling metrics as a means to
predicate software vulnerability in programs. The authors provide empirical evidence that
non-cohesive programs that exhibit high degrees of complexity and coupling are generally
less secure. Chowdhury and Zulkerine use a suite of complexity, cohesion and coupling
(CCC) metrics often used to assess the quality of software programs over their development
life cycle. The CCC metrics include Source Line of Code (SLOC), Lack of Cohesion in
Methods (LCOM), Number of Children (NOC), Depth and Width of Inheritance Trees
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(DIT and WIT), etc. We have drawn inspiration from Chowdhury and Zulkernine’s work
when formulating some of our research questions (e.g., length of Alloy models) and metrics
(e.g., SCG, Extension/Subset Hierarchy Graphs). Nevertheless, our work does not aim to
assess the quality of Alloy models or uncover safety vulnerabilities in them. Chowdhury
and Zulkerine conducted a case study using bug reports from fifty-two Mozilla Firefox
releases to validate their framework.

We have drawn inspiration from object-oriented programming and UML modeling met-
rics such as those described in Briand and Jüst [25] and SDMetrics [58]. Briand and Jüst
performed a literature review of 99 studies that measure four software quality attributes:
reliability, maintainability, effectiveness and functionality. The study aimed to identify
links between object-oriented measures and quality attributes. The researchers found that
complexity, cohesion, size and coupling measures are more closely related to reliability and
maintainability than inheritance measures. However, inheritance measures can still affect
reliability and maintainability depending on the context and structure of the program.

Lopes and Ossher [43] conducted a quantitative study on a large corpus of 30,911 Java
projects of different sizes using linear regression and found that certain characteristics
of programs differ significantly with program size. Lopes and Ossher also found that the
internal structure of programs can vary depending on the scale of the project and thus scale
and program size have significant implications on object-oriented software metrics that do
not currently account for differences in program size and scale. Their findings reinforce the
idea that programming-in-the-small differs considerably from programming-in-the-large.
Lopes and Ossher propose corrective measures that can be applied to existing software
metrics to ensure that these metrics are size-independent. Our work takes inspiration
from Lopes and Ossher’s study given that we correlate certain model characteristics with
features such as the number of signatures, predicates and functions. We also correlate
certain Alloy model features using linear regression. However, our findings do not have
any implications on metrics given that no previous studies have devised such metrics for
Alloy models.

7.3 Profiling Techniques

When we first set out to devise a static analysis methodology, we explored different tools
used in the industry. SonarQube [16] is an open-source platform used for code inspection
and static analysis of code to detect bugs and security vulnerabilities in more than twenty
programming languages. Support for additional languages can be added to SonarQube.
For instance, Ruiz et al. [49] developed a tool called Xtext2Sonar capable of taking a
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domain-specific language grammar written in Xtext [17] and generate a Java plugin for
the SonarQube platform. The plugin allows developers to perform code quality checks
on any file written in the domain-specific language. We did not make use of SonarQube
and Xtext2Sonar due to SonarQube’s quality-oriented set of features that aim to identify
potential problems with the code as opposed to providing profiling statistics.

Rascal [12] is a metaprogramming language used to construct parsers, analyze and
transform source code, and define new domain-specific languages. We considered using
Rascal to perform our static analysis profiling, but adding support for Alloy in Rascal
proved to be more time-consuming than developing our own ANTLR parser because Rascal
does not provide automatic parser generation and thus adding support for Alloy in Rascal
would have required a considerable amount of implementation work on our end.
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Chapter 8

Conclusion

This thesis presents a methodology to profile Alloy models and identify patterns in them.
We build an ANTLR parser for Alloy capable of generating a parse tree from a syntactically
sound model. We use the XPath querying language in tandem with parse tree matching
to extract patterns from the parse trees of models. We devise a number of research ques-
tions that differ in purpose and complexity. Research questions in the “Characteristics of
Models” category aim to assess the “surface-level” features of models whereas the “Pat-
terns of Use” questions use complex patterns to investigate the use of the Alloy language
constructs. The “Analysis Complexity” questions examine the use of model features and
constructs that may impact analysis complexity and solving time. For each research ques-
tion, we report one or more data summary criteria including the predominant use (mode),
typical use (median), percentage distribution, percentile distribution and common range.
The data summary criteria are carefully chosen to accurately answer the research question
and account for the skewness of the generated data.

When examining the characteristics of models, we explore the length of Alloy models
as well as the use of signatures in terms of number and kind (top-level, subsignature
extensions, subset signatures, etc.). We also explore the formula count in Alloy models
and the use of constraint containers (predicates, functions and assertions) and command
queries. Lastly, we discuss the corner cases of the Alloy language by assessing the use of
five uncommon features: union supersets, bit shifting operators, set constants, macros and
fields defined using set union and set difference. We use linear regression as a statistical
tool to determine the best predictors for model length and field count. Our results show
that there exists a high positive correlation between the number of formulas and the model
length and between the number of top-level signatures and the field count.

98



We explore various patterns of use in Alloy to get a better understanding of how
modelers are using the language’s constructs. We investigate the use of library and user-
created modules as well as integers. We also examine the use of sets (signatures and
fields) in Alloy and the hierarchies that result from the relationships between them. We
devise external structures that depict the relationships that exist among sets. Signature
Hierarchy Graphs showcase the hierarchy that results from the subsignature extensions
and subset signatures whereas the Signature Connectedness Graph reflects the degree of
connectedness among the signatures of a model. Additionally, we investigate the use of the
different formula modeling styles and attempt to identify how modelers are setting scopes
in their models.

The “Analysis Complexity” research questions discuss the use of Alloy model features
and constructs that are generally believed to impact solving time. We explore the use of
second-order operators (set cardinality and transitive closure) as well as total and partial
functions. We also assess the use of the dot and box join operators along with the depth of
joins. We examine nested quantified expressions and assess the depth of quantification in
Alloy models. Lastly, we examine field arity to determine if modelers are creating high-arity
fields that may impact affect analysis complexity.

8.1 Findings

From the results of our research questions, we formulate findings divided into three cat-
egories: findings for language and tool designers, findings for educators and findings for
optimization developers. Findings for language and tool designers aim to guide the evo-
lution of the Alloy language by adding new constructs and features or removing rarely
used ones. We present educators with a series of findings to help them identify which con-
structs and practices to emphasize when teaching student modelers. The findings aimed
at optimization developers provide suggestions for back-end improvements. We present a
summary of our findings:

Findings for Language Designers:

� Language designers are encourage to explore type checking mechanisms for the Alloy
language to provide faster feedback to users because types can be used to partition
a universe of atoms.

� The abundant use of scalars in Alloy models is evident and may warrant attention
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from language and tool designers, who should consider adding syntactic sugar that
allows modelers to create scalars directly.

� Language designers may want to remove the ability to run functions from the Alloy
language given the scarcity of its use.

� Language designer may want to consider removing assertions from future versions of
Alloy since they are a redundant construct that is not used frequently.

� Language designers may want to consider removing the ability to name constraint
blocks in run and check commands since it is not widely used and it does not offer
any advantages in terms of reusing the constraints.

� Language designers should consider dropping support for bit shifting operators in
future versions Alloy so that solving engines do not have to support these operations.

� Given the scarcity of fields declared using set union and set difference, language
designers may want to remove support for these expression in fields to simplify the
language.

� Since user-created modules are used frequently in Alloy, language and tool design-
ers may want to develop model management IDEs to help modelers manage these
imported user-created modules.

� Some library modules are rarely used and hence language designers may want to drop
them in future versions of Alloy.

� Integers in Alloy take more time in analysis. Language designers should add built-
in identifiers that model numeric constants (e.g., One, Two, etc. ) to satisfy the
majority of integer uses without actually using integers for analysis in addition to
modifying the Alloy Analyzer to allow it to warn users about integer fields that are
only used as a linear order.

� Modelers are using the set cardinality operator to set the size of signature sets.
Given that this practice is inefficient in analysis, tool designers are encouraged to
add a warning that discourages its use and provides alternative methods to specify
the signature set size (multiplicity keywords, command queries).

� Language and tool designers may want to give modelers access to the Signature Con-
nectedness Graph (SCG) to allow them to gauge the connectedness of their models.
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� A dedicated structure/record construct is not needed in Alloy.

� Abstract signatures are almost always extended with subsignature extensions.

� The ordering module is commonly applied to sets with a non-exact scopes. We
recommend that tool designers discourage this practice by warning modelers when
they use a non-exact scope with an ordered set because it can give non-intuitive
results.

Findings for Educators:

� Educators are encouraged to highlight the value of abstract signatures because they
allow modelers to take advantage of inheritance and scope inference in addition to
making the models more concise and easier to modify in the future (the union of
multiple signatures can be replaced with a reference to the parent abstract signature).

� Given that enums are an underutilized construct in Alloy, educators are encouraged
to highlight the use of enums to concisely instantiate multiple ordered signatures
with multiplicity one.

� Educators are encouraged to ensure that student modelers are using signature facts
correctly to avoid erroneous results. Alternatively, educators may want to discourage
the use of signature facts.

� Educators should encourage student modelers to use unparameterized predicates in-
stead of assertions to simplify the language.

� Given their untyped nature, macros are significantly more flexible than predicates
and functions and can be used in ways that other constraint holders cannot. Since
macros are underutilized in Alloy models, educators are encouraged to highlight them
and promote their use when teaching student modelers.

� Modelers are not using the ordering module to its full extent given the profuseness
of integers used solely to impose a linear ordering. Educators are encouraged to
promote the use of the ordering module.

� We encourage educators to highlight the importance of using multiplicity keywords
and command queries to set the size of signature sets in lieu of the set cardinality
operator because setting the size of a signature using the set cardinality operator
leads to longer solving times.
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� Educators may want to consider the frequency of use of the different formula modeling
styles when deciding which modeling style to teach first or emphasize.

� Modelers tend to use non-exact scopes far more frequently than exact scopes. Thus,
educators are encouraged to explore the different scope categories with student mod-
elers and highlight the performance gains that can be achieved by using exact scopes.

� Educators should discourage the use of non-exact scopes with an ordered set.

� Integer scopes should be explained in greater detail. Educators should also encourage
students to find alternative ways of modeling problems with numeric constants that
do not involve integers.

Findings for Optimization Developers:

� Given that union supersets are scarce in Alloy models, optimization developers can
safely omit support for union supersets when developing their optimizations.

� Developers can safely omit support for fields declared using set union and set differ-
ence in their optimizations without significantly compromising the usefulness of the
tools.

� Developers are encouraged to create optimizations for the ordering module and for
integers in Alloy because they are used frequently.

� Optimization developers are encouraged to internally transform integer applications
used to impose a linear order to ordered sets that take advantage of the ordering
module because the use of integers in Alloy models is discouraged due to its impact
on solving time.

� We recommend that developers invest in the development of Alloy optimizations that
convert applications of the set cardinality operators that specify the size of a signature
set to command queries or signature declarations with a multiplicity keyword because
specifying the size of a signature using the set cardinality increases model complexity
and solving time.

� Given the fairly shallow depth of extension hierarchy graphs in Alloy models, opti-
mizations do not necessarily need to scale favorably for deep extension hierarchies.

� Creating subsets of a subset is a fairly rare practice in Alloy. Hence, optimization
developers do not necessarily need to account for this particular instance of set hier-
archy when developing their tools and engines.
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� The shallow signature hierarchies in Alloy models are another argument in favor of
a type system in the Alloy language.

� Developers are encouraged to create solvers and optimizations that address the abun-
dant use of the set cardinality operator in Alloy.

� Given that 26.8% of models in our corpus contain transitive closure operators and
given the relatively substantial number of uses of transitive closure operators in these
models, we encourage developers to explore developing optimizations centered around
these operators.

� Total functions are used extensively in Alloy models. Thus, it is worthwhile for
developers to work on improving the analysis methods with a focus on total functions.

� Partial functions are used modestly in Alloy models. Developers could potentially
create optimizations that handle these functions.

� The dot join operator is used extensively in Alloy models but the depth of joins is
fairly shallow.

� The depth of quantification in Alloy formulas is shallow. Optimizations that target
deeply quantified constraints would probably not be effective on Alloy models.

� High-arity fields are uncommon in Alloy models and thus are not a viable candidate
for future optimizations.

8.2 Threats to Validity

Our results in evaluating a set of research questions on a corpus of Alloy models allows us
to make claims regarding common characteristics and patterns in Alloy modeling. In this
section, we consider the threats to the validity of our results.

External Validity: The results of this study were derived by examining a corpus of
scraped Alloy models in addition to a number of models provided by Jackson’s book on
Alloy and previous studies. While the randomized nature of the model selection process
improves the generality and applicability of the results, we cannot ignore the possibility of
obtaining different results when running our scripts on another corpus of models. We note
that we do not classify or categorize the models to differentiate between expert and novice
modelers. Replicating this study on a corpus of models that pertains to one particular
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category of modelers could produce results that deviate from the ones presented in this
work. We also do not categorize models by size or date. By aggregating the analyses over
the whole corpus, the results presented in this work may mask the fact the results might
be different for certain subgroups of the corpus (e.g., large vs. small, old vs. new, complete
vs. incomplete, etc.).

Internal Validity: A purely syntactic static analysis of Alloy models is used to derive
our results. We acknowledge that incorrect expressions, commented-out text, and unfin-
ished models could skew our results. Our analysis is performed on a per-file basis and
thus our profiling may have missed certain characteristics and patterns (e.g., inheritance,
pure/dominant formula modeling style, use of certain constructs, etc.) in models that span
over multiple files. We do take some cautionary measures to address these shortcomings
in our profiling. The measures are explained as need in the research questions discussed
in Chapters 4, 5 and 6. Our parser was tested extensively to ensure that it can properly
parse any syntactically correct model written Alloy versions 3-5. The individual scripts
used to answer the research questions were thoroughly tested with a number of unit tests to
ensure that all variations of a particular query can be detected and extracted successfully.
For some research questions, we present the non-zero data summary criteria since the all-
inclusive values are all zeros and do not provide any meaningful insights. We acknowledge
that the non-zero data summary criteria may present an inflated use frequency for some
constructs.

Construct Validity: Some research questions in this work are inspired by concepts
used to assess object-oriented programs (e.g., set hierarchy graphs, signature connect-
edness graph (SCG), etc.). Alloy is a modeling language and differs significantly from
programming languages, which may affect the applicability and relevance of these research
questions. We also acknowledge that other research questions could be devised to assess
different aspects of Alloy models. The observations and inferences made in this study
could change significantly if additional measures or Alloy constructs are considered for
each research question.

8.3 Future Work

Our corpus study is the first of its kind to perform a static analysis of Alloy models. While
our corpus contains a large number of diverse Alloy models, it does not distinguish between
the different kinds of models. Future studies may want to disaggregate the corpus of models
to get a better understanding of the habits and trends of different Alloy modelers. For
instance, models used an educational environment may exhibit different characteristics and
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patterns than the ones used in industry. A categorization of models based on size (i.e.,
small vs. large) could yield a number of insights into the differences that separate smaller
Alloy models from larger ones. We believe that our study presents a good assessment of
the current state of Alloy modeling. However, a disaggregation of models by timestamps
or date (i.e., old vs. new) could help us determine if the use of language features and
modeling idioms have changed over time.

This thesis lays the foundation for a number of future research directions. Not only
can the findings aimed at educators be used to help student modelers but they can also be
incorporated into future literature on the Alloy language to provide stylistic and functional
guidelines for new modelers. The findings aimed at language and tool designers can help
the evolution of the Alloy language and the Alloy Analyzer by adding new constructs or
removing unused ones and providing modelers with additional features and warnings in
the Analyzer. Developers can also benefit from the findings presented in this work to help
them identify key components and practices in the language that can be the target of
future optimizations.

In Chapter 6, we assessed the use of Alloy model features and constructs that are
believed to affect analysis complexity and solving time. However, we did not prove the
existence of any correlation between solving time and model features. Future research can
attempt to correlate solving time with these model features and constructs to corroborate
these claims. A linear regression could be conducted as a statistical means of identifying any
correlations that exist between solving time and model features. In particular, multiple
linear regression (MLR), which is a statistical technique that uses several explanatory
variables to predict the outcome of a response variable, could be used to correlated multiple
model features with solving time. Our work found that usage of set cardinality, transitive
closure and dot joins is relatively frequent in Alloy models. Future work can attempt to
correlate these operators with solving time.
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[25] Lionel C. Briand and Jürgen Wüst. Empirical studies of quality models in object-
oriented systems. volume 56 of Advances in Computers, pages 97–166. Elsevier, 2002.

[26] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities. Journal of systems architecture,
57(3):294–313, 2011.

[27] Diego de Azevedo Oliveira and Marc Frappier. Verifying SGAC Access Control Poli-
cies: A Comparison of ProB, Alloy and Z3. In Alexander Raschke, Dominique Méry,
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using alloy: A survey. Electronic Proceedings in Theoretical Computer Science, 206:46–
60, 03 2016.

[52] Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov. Evaluating
state modeling techniques in alloy. In Proceedings of the Sixth Workshop on Software
Quality Analysis, Monitoring, Improvement, and Applications, 2017.

[53] Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 632–647. Springer Berlin Heidelberg, Berlin, Heidelberg.

[54] Amirhossein Vakili and Nancy A Day. Finite Model Finding Using the Logic of Equal-
ity with Uninterpreted Functions. In International Symposium on Formal Methods,
pages 677–693. Springer, 2016.

[55] World Wide Web Consortium (W3C). Xml path language (xpath) 3.1. https://www.
w3.org/TR/2017/REC-xpath-31-20170321/. Last accessed: 2021-02-03.

[56] W. Wang, K. Wang, M. Zhang, and S. Khurshid. Learning to Optimize the Alloy
Analyzer. In ICST, pages 228–239. 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), 2019.

[57] Hillel Wayne. Practical TLA+: Planning Driven Development. Apress, 2018.
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Appendix A

Alloy Language Grammar

A.1 ANTLR Notation

The grammar presented in this appendix uses the ANTLR standard notion and contains
the following operators:

� : for starting a rule definition;

� ; for ending a rule definition;

� ’x’ for a char or string literal x;

� x* for zero or more repetitions of x;

� x+ for one or more repetitions of x;

� x|y for a choice of x or y;

� x? for an optional x

in addition,

� (x (’,’ x)*)? means zero or more comma-separated occurrences of x

� x (’,’ x)* means one or more comma-separated occurrences of x
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A.2 Grammar

The complete Alloy grammar used to generate the parser used in this work is presented
below:

1 specification : module? open* module? paragraph* EOF | EOF;

2

3 module : ’module ’ name ( ’[’ ’exactly ’? name (’,’ ’exactly ’

? name)* ’]’ )?;

4

5 names_opt: names?;

6

7 as_name_opt: (’as’ name)?;

8

9 para_open: (’[’ names_opt ’]’)?;

10

11 open : priv ’open’ name para_open as_name_opt ;

12

13 macro_expr : ’=’? ’{’ (expr* | decls)’}’ | ’=’ (expr | decls)

;

14

15 macro : ’let’ name (’[’ names ’]’)? macro_expr;

16

17 paragraph : factDecl | assertDecl | funDecl | cmdDecl |

enumDecl | sigDecl | predDecl | macro;

18

19 factDecl : ’fact’ name? block;

20

21 name_opt : name?;

22

23 assertDecl : ’assert ’ name_opt block;

24

25 nameID : name ’.’ ID | ID;

26

27 decls_f : ’{’ decls ’}’;

28

29 funExpr : expr;

30

31 funDecl : priv ’fun’ nameID paraDecls_opt ’:’ expr ’{’

funExpr ’}’;
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1 nameOrBlock: (name|block)? | (nameID block)?;

2

3 name_cmd_opt : (name ’:’)?;

4

5 scope_opt : scope?;

6

7 run_or_check : ’run’|’check’;

8

9 cmdDecl : name_cmd_opt run_or_check nameOrBlock scope_opt;

10

11 paraDecls : ’(’ (decl (’,’decl)*)? ’)’ | ’[’ (decl (’,’decl)

*)?’]’;

12

13 paraDecls_opt : (paraDecls)?;

14

15 predDecl : ’private ’? ’pred’ nameID paraDecls_opt block;

16

17 typescopes : typescope (’,’ typescope)*;

18

19 but_typescopes : (’but’ typescopes)?;

20

21 expect_digit : (’expect ’ DIGIT)?;

22

23 scope : ’for’ number but_typescopes expect_digit | ’for’

typescopes expect_digit | ’expect ’ DIGIT;

24

25 exactly_opt: ’exactly ’?;

26

27 typescope : exactly_opt number (name | ’seq’ | ’int’);

28

29 decls : (’,’? decl (’,’decl)* )?;

30

31 multiplicity: mult?;

32

33 abs : ’abstract ’?;

34

35 priv : ’private ’?;

36

37 abs_multiplicity : abs multiplicity | multiplicity abs;
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1 sigDecl : priv abs_multiplicity ’sig’ names sigExtension ’{’

decls ’}’ block_opt;

2

3 names: name (’,’ name)*;

4

5 enumDecl : ’enum’ name ’{’ names ’}’;

6

7 mult : ’lone’ | ’one’ | ’some’;

8

9 union: name (’+’ name)*?;

10

11 superSet: name | union;

12

13 sigExt : ’extends ’ name | ’in’ superSet ;

14

15 sigExtension: sigExt?;

16

17 exprs : (expr (’,’ expr)*)?;

18

19 notOp: (’!’ | ’not’)?;

20

21 decls_e : decl (’,’ decl)*;

22

23 expr : ’let’ letDecl (’,’ letDecl)* blockOrBar

24 | quant decls_e blockOrBar

25 | unOp expr | expr binOp expr | expr arrowOp expr

26 | expr notOp compareOp expr

27 | expr (’=>’|’implies ’) expr ’else’ expr

28 | ’sum’ ’[’? exprs ’]’? | expr ’[’ exprs ’]’ | disjFunc

29 | constant |’int’ | ’seq/Int’ | ’(’ expr ’)’| name | ’@’

name | ’this’

30 | block | quant expr binOp expr

31 | ’{’ decl (’,’ decl)* blockOrBar ’}’ | decls_f |STRING;

32

33 num : ’-’? number;

34

35 const_sets: ’none’ | ’univ’ | ’iden’;

36

37 constant : num | const_sets;
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1 disjFunc : ’disj’ ’[’ (expr (’,’ expr)*)? ’]’;

2

3 disjoint : (’disj’ | ’disjoint ’)?;

4

5 disj : ’disj’?;

6

7 comma_opt : ’,’?;

8

9 decl : priv disjoint names ’:’ disj expr comma_opt | name ’=’

expr;

10

11 letDecl : name ’=’ expr;

12

13 quant : ’all’ | ’no’ | ’some’ | ’lone’ | ’one’ | ’sum’;

14

15 setCard: ’#’;

16

17 tcOp : ’*’ | ’^’ ;

18

19 unOp : ’!’ | ’not’ | ’no’ | mult | ’set’ | setCard | ’~’ |

tcOp | ’seq’;

20

21 bit_shifter_operators: ’<<’ | ’>>’ | ’>>>’;

22

23 dotOp: ’.’;

24

25 add: ’+’;

26

27 sub: ’-’;

28

29 binOp : ’||’ | ’or’ | ’&&’ | ’and’ | ’<=>’ | ’iff’ | ’=>’ | ’

implies ’ | ’&’ | add | sub | ’++’ | ’<:’ | ’:>’ | dotOp |

bit_shifter_operators;

30

31 mult_or_set : (mult |’set’)?;

32

33 arrowOp : mult_or_set ’->’ mult_or_set;

34

35 rel_operators: ’=’ | ’<’ | ’>’ | ’=<’ | ’>=’| ’<=’;
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1 compareOp : rel_operators | ’in’;

2

3 block : ’{’ expr* ’}’;

4

5 block_opt: block?;

6

7 blockOrBar : block | bar expr;

8

9 bar : ’|’;

10

11 name : (’this/’)? (ID ’/’)* ID;

12

13 DIGIT : [0-9] ;

14

15 number: DIGIT+;

16

17 ID : ALPHA ( ALPHA | DIGIT )* | STRING;

18

19 ALPHA : [a-zA-Z"\u0080 -\ uFFFF_ ]+;

20

21 WS : [ \t\r\n]+ -> skip ; // skip spaces, tabs, newlines

22

23 COMMENT : ’/*’ .*? ’*/’ -> skip;

24

25 LINE_COMMENT : (’//’ | ’--’) ~[\r\n]* -> skip;

26

27 STRING : ’"’ (~’"’|’/"’)* ’"’;
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