A Comprehensive Study of
Declarative Modelling Languages

by

AMIN BANDALI

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

© AMIN BANDALI 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Declarative behavioural modelling is a powerful modelling paradigm that enables users to model
system functionality abstractly and formally. An abstract model is a concise and compact representation
of key characteristics of a system, and enables the stakeholders to reason about the correctness of the
system in the early stages of development.

There are many different declarative languages and they have greatly varying constructs for repre-
senting a transition system, and they sometimes differ in rather subtle ways. In this thesis, we com-
pare seven formal declarative modelling languages B, EVENT-B, ALLOY, DASH, TLA*, PLUSCAL,
and ASMETAL on several criteria. We classify these criteria under three main categories: structuring
transition systems (control modelling), data descriptions in transition systems (data modelling), and
modularity aspects of modelling. We developed this comparison by completing a set of case studies

across the data- vs. control-oriented spectrum in all of the above languages.

Structurally, a transition system is comprised of a snapshot declaration and snapshot space, initializa-
tion, and a transition relation, which is potentially composed of individual transitions. We meticulously
outline the differences between the languages with respect to how the modeller would express each
of the above components of a transition system in each language, and include discussions regarding
stuttering and inconsistencies in the transition relation. Data-related aspects of a formal model include
use of basic and composite datatypes, well-formedness and typechecking, and separation of name spaces
with respect to global and local variables. Modularity criteria includes subtransition systems and data
decomposition. We employ a series of small and concise exemplars we have devised to highlight these
differences in each language. To help modellers answer the important question of which declarative
modelling language may be most suited for modelling their system, we present recommendations based

on our observations about the differentiating characteristics of each of these languages.

iii

Acknowledgements

I would like to thank my supervisor Dr. Nancy A. Day, for her continued support throughout my
Master’s studies, and for teaching me so many valuable lessons, including how to do research and how
to write about it. Her vast knowledge and kindness, and her supporting me as I worked my way through
different research topics and learned new things has been paramount in me arriving at where I am today.
I will always be thankful to her, for I have bettered not just as a researcher but as a person as well.

I'sincerely thank Dr. Joanne M. Atlee and Dr. Derek Rayside, for their agreeing to read my thesis
and provide insightful comments in an incredibly short period of time, due to the my life circumstances.

I'would like to thank my colleagues Ali Abbassi, Jose Serna, Khadija Tariq, Elias Eid, Tamjid Hossain,
and Joseph Poremba for our fruitful discussions and collaborations as a research group.

I would also like to thank all of my teachers and mentors who, one way or another, have had a role
in helping me get to where I am today. As such, I thank my wonderful Computer Science teachers
including Mr. Farzaneh and Mr. Seniuk throughout grade school and high school for inspiring me and

encouraging me to always explore and learn more.

I would like to thank Dr. Jonathan S. Ostroft for introducing me to formal methods, and teaching
me so much about it and its important role in software engineering for building reliable and correct
systems. I also thank my mentor and good friend Simon Hudon who I always look up to, for teaching
me about formal logic and formal methods along with Dr. Ostroft, and for our countless fruitful
discussions. Who would have thought a simple email about the formal specification of a binary search
implementation would lead us to learn about our mutual interest in Haskell, and be the start of many

more discussions, conversations, and our friendship!

I would like to thank Dr. Richard M. Stallman (rms) for launching the GNU Project and the Free
Software movement, founding the Free Software Foundation, and dedicating his life to giving the gift of
computing freedom to people all around the world. I am inspired by rms and the many other folks who
help the cause of the free software movement, by either directly working on free software or contributing
through various other means, to give a hand in building a world where we the people can carry out our

computations in freedom.

Finally, I would like to thank my family and friends for their love and support throughout my life.
I am forever grateful to my parents and grandparents for their unconditional love and guidance they
gave me in all stages of my life, and for their immense sacrifices in order to provide an opportunity for
my brother and I to build ourselves a better future.

iv

To my loving mother Roya,
my guiding father Bardia,
my dear brother Hossein,
my beloved grandparents

Ali, Ziba, Feizalah, and Farangis,
and my late teachers
Hasan Jalili,

Mahin Mohammadiyoun,
and Aliasghar Yousefinia

gy mbree y3lo 4y sl

Loy pdgStim)4

(O P33€ 53Ny
5l Siie (BS)5)ok g LS50
oSSy g dllpasd b g Gle
JRE/JL RV
Ghle e Olgyslis
Og2doo (g Ulg)dLiy

Lihwg yaolle (lgyslis

Table of Contents

List of Tables ix
List of Figures X
1 Introduction 1
1.1 Declarative Modelling Languages 2
1.2 Selectionof Languages 3
1.3 Thesis Contributions 4
1.4 ThesisOutline s 5
2 Background 6
2.1 B e e e 6
2.2 Event-B . . . L e e 7
23 Alloy ... e 8
2.4 Dash 9
2.5 T At 10
2.6 PlusCal 10
2.7 Asmetall s 11
3 Methodology 12

vi

4 Control Modelling

4.0 Terminology
41 Snapshotand SnapshotSpace oL oL
4.2 Initalization
4.3 Transition Relation
4.4 Transitions
4.5 Invariants oL
4.6 Fairness e
4.7 Discussion onInconsistency oo

5 Data Modelling

5.0 Terminology
S1 Primitiveso e e e e e e e e
5.2 Constructors and Multdiplicities Lo L Lo
5.3 Expressions
S4 Events L e e
5.5 CONStants v it e e e e e e e e e e e e e
5.6 Well-formedness and Typechecking
S7 Scopes
5.8 MissingFeatures o o

6 Modularity

7 Case Studies

71 EHealth oo
72 Digital Watcho o
73 Musical Chairso
7.4 Library Management
7.5 Railway Scheduling Deadlock Freedom

vii

16
16
19
21
23
27
32
34
34

39
39
41
45
51
52
53
54
57
58

59

8 Recommendations 78

9 Related Work 81
10 Conclusion 86
References 89
APPENDICES 928
A Tool versions 929
B Meta 101

Bl Colophon 101

B.2 Copyrightand Licence L o 101

C GNU GENERAL PUBLIC LICENSE 102

viii

List of Tables

2.1

31

4.1

5.1

6.1

7.1

4.1
5.1
6.1

Language name stylizationsand colours Lo 0L 7
Order of modelling case studies across languages 14
Summary of control aspects of languageso Lo 17
Summary of data aspects of languages L L L Lo 40
Summary of modularity aspects of languages oL L 60
Lines of code for each case study across the languages 64
Summary of control aspects of languages L L Lo 87
Summary of data aspects of languages oL L L 87
Summary of modularity aspects of languages L0000 87

ix

List of Figures

31

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

5.1
5.1
5.2
5.2
5.3

7.1

Our case studies, across the data- vs. control-oriented characterization spectrum . . . 13
Snapshots and variables (from the Library casestudy) 20
Initialization (from the Library casestudy) 22
Inconsistent update of a snapshot variable in ASMETAL 25
Explicit transition relation (from the Library casestudy) 26
Big step (spis asnapshot;ssisasmallstep) o000 27
Decomposition of a transition 77 oL 28
Transitions (from the Library casestudy) 33
DASH model with a contradictory transition postcondition 36
AsM that eventually reachesdeadlock o o000 37
A deadlocked transition systemin Band EVENT-B 38

Invalid contradictory transition postcondition thanks to PLUSCAL’s label semantics 38

Primitives in snapshot declarations across languages (partone) 42
Primitives in snapshot declarations across languages (parttwo) 43
Composite units of data in snapshot declarations across languages (partone) 46
Composite units of data in snapshot declarations across languages (part two) 47
RecordsinBand TLAT e 48
Membership predicate representation for sets and functions in ASMETAL 67

Chapter 1

Introduction

Architects draw detailed plans before a brick is
laid or a nail is hammered. Programmers and
software engineers do not. Can this be why houses
seldom collapse and programs often crash?

— Leslie Lamport, Turing Award Winner, 2013

Distinguished Computer Scientist Leslie Lamport explains that blueprints help architects make sure
what they are planning to build will work. Furthermore, “working” means more than merely not
collapsing, but rather serving the intended purpose. Engineers and architects use blueprints as a common
language between themselves and their clients, and use it to precisely plan out ahead of time the structure
that they will build. However, programmers and software engineers rarely even sketch out what their
programs are intended to do, before starting to write the code. Even the simplest and most commonly
taught algorithms such as binary sort sometimes require careful thinking about their intricate details to
ensure their correctness, let alone complex systems with dozens or more subsystems and parts intended

to work together.

When designing complex systems, Lamport argues, the need for formal specifications should be
as obvious as the need for blueprints when designing a skyscraper. However, few programmers even
know of existence of specification languages and their supporting tools, much less how to use and write
specifications for the systems they design.

There are a number of reasons why formal specifications are important and useful. Most mainstream

programming languages currently commonly used by programmers, such as C, C++, or Java, usually

require programmers to be deep into the implementation details, imperatively specifying exactly how
each task should be carried out. It is often challenging to keep in mind the big picture of what the parts
are supposed to do individually and as a group, without getting bogged down with other less relevant
details. Having formal specifications in one’s toolbox enables abstracting away from irrelevant details,
focusing only on the heart of the matter and making sure it is well understood, and that the proposed

solution correctly fits and serves the required purpose.

1.1 Declarative Modelling Languages

The languages studied in this thesis are declarative modelling languages for behavioural formal specifica-
tion using a state-machine-oriented/transition system approach. These languages in essence model a
Kripke structure underneath. Declarative behavioural modelling is a powerful technique for modelling
systems in a concise way, free of design or implementation details. Declarative modelling languages allow
describing systems in a higher level of abstraction than permitted by typical mainstream programming

languages like C or Java.

Models written using declarative behavioural modelling languages, such as Z [77], ALLOY [46],
and TLA™ [50], have the following general characteristics [12]:

1. they describe the transitions in a declarative manner using constraints, rather than through

imperative calculations and/or statements;

2. they include user-defined and -axiomatized units of data, which can represent rich datatypes such

as lists and trees;

3. they have a formal mathematical and logical foundation, usually first-order logic (FOL) and/or
set theory; and

4. they allow writing models without specifying the size of sets (the scopes); the scopes may need to

be specified for analysis.

We are motivated to do this study by the many applications and demonstrated usefulness of declar-
ative modelling languages and model checking to help design systems or analyze and verify proper-
ties about the design of existing systems. Examples include Zave’s use of ALLOY and Spin to find
specification-level bugs in the specification of the Chord network protocol [81], Newcombe’s report

on the use of TLA™ by engineers at Amazon which has helped find subtle bugs in complex real-world
systems and prevent the bugs from reaching production [65], and the use of B by Huynh ez 4/. for for-
malizing a new healthcare access control model with conflict resolution for managing patients’ consent
as to who can access their Electronic Health Records (EHR), while taking into account the regional
laws and regulations of Québec and Canada that allow overriding patient consent regarding access to
their EHR under certain strictly defined scenarios to protect the patient’s life [44].

Declarative models allow modellers to sketch out and reason about systems and how they change
over time in an abstract and declarative way, without having to worry about irrelevant details. An
important question, given that there are a great many number of languages to choose from, is how does
one make a choice of which language to use? This thesis presents a comparison criteria and compares a
number of popular declarative languages, highlighting the control and data modelling aspects, as well
as the modularity of models in each language. Comparisons between modelling languages are useful
to provide a means of discerning which modelling language is most suitable for modelling a system.
Models in these languages may vary in length and organization, and doing a number of case studies
in multiple languages helps us better expose the differences in paradigms, conventions, and structures
among the languages. Common constructs in the languages often vary in subtle ways, and through
our case studies, we tease these differences apart for each language. The equivalence of our models is by
observation, using a model checker and potentially other available tool support for each language to
verify a series of properties about the models across all of the selected languages.

In comparison to other works comparing declarative modelling languages [65, 81, 37, 21], we focus
on models of transition systems. We develop a set of categorized comparison criteria and examine in
depth each language with respect to each of the criterion. Further, we use these criteria to compare a
diverse range of examples on the data- vs. control-oriented characterization spectrum, modelling each
of the five examples in all of the seven languages, producing a total of thirty-five models. We use these
models and our observations from carrying out the case studies to make recommendations as to which

language(s) we think would be the best fit for modelling various kinds of transition systems.

1.2 Selection of Languages

We selected the seven popular, declarative modelling languages B [14], EVENT-B [15], ALLOY [46],
DASH [74], TLA" [50], PLUSCAL [52], and ASMETAL [39] for comparison. We chose languages
that have tool support for model checking. However, we are not comparing the languages on their tool

support, because tool support and the analysis performance of those tools are subject to change, and

3

can change much more easily than the logic and semantics of the language. This point of view is also
shared by Lamport, with TLA* existing for several years before the TLc model checker and the rest of
the TLA* Toolbox were created for it.

We did not include other formal specification languages for various reasons. For instance, we
omitted the Z [77] and VDM [48] specification languages, due to the lack of model checking tool
support for them, and formalisms based on process algebras and Petri Nets, as they are at a different
(often lower) level of abstraction compared to declarative modelling languages. We also did not include
Electrum [61, 27, 31], another extension of ALLOY, as we decided to include at most one extension for
each language, and we found DASH and its features to be a bigger change from ALLOY than Electrum.

Statecharts-based languages and UML state machines [9] provide a graphical manner to describe
system behaviour, but do not completely fall into the category of declarative specification languages:
their semantics are often not fully formal and they lack support for declaring datatypes. OCL [8] is a
declarative language that can be used in combination with UML to constrain the pre and postconditions
of transitions.

The languages of model checkers such as SMV [64] and Spin [43] are lower-level descriptions
than what is often convenient for a user. nuXmv [28] is a re-implementation and extension of SMV
that adds support for verification of infinite datatypes, such as integers and reals, and incorporates a
verification engine with state-of-the-art sAT-based algorithms. However, they all have limited support
for user-declared datatypes. Furthermore, in SMV/nuXmv the scope of datatypes and relations must be
set at modelling time, which forces users to modify their models every time they want to analyze and
check properties in at larger scope.

1.3 Thesis Contributions

The contributions of this thesis are

* aset of criteria to compare declarative modelling languages;
* adiverse set of case studies on the data- vs. control-oriented characterization spectrum;

* the comparison of the selected declarative modelling languages (B, EVENT-B, ALLOY, DASH,
TLA", PLUSCAL, and ASMETAL) based on these criteria by carrying out the case studies; and

* our recommendations for the choice of modelling language based on the characteristics of the
transition system under description, rooted in our observations of the differences and similarities
between the languages with respect to our comparison criteria from the several case studies we
carried out.

The overview of the methodology for comparing the selected languages for this thesis is to do a
number of case studies in each language, taking notes on their characteristics and differences while doing
so. Each of the chosen case studies is a model previously done in one (or possibly more) of the selected
languages. The choice of the order of languages for each case study was made randomly to address any
potential concerns for bias in that regard.

1.4 Thesis Outline

Chapter 2 provides background on the seven declarative modelling languages used in this work. Chap-
ter 3 describes our methodology for carrying out the research and modelling of the case studies across
the languages, as well as addressing potential threats to validity. In Chapter 4, we discuss the control
modelling aspects in each language, meaning the structuring of transition systems in terms of a individual
transitions, in Chapter 5 we consider the data modelling aspects of each language and the structuring of
transition systems in terms of their data descriptions, and in Chapter 6 we investigate the constructs
relating to modularity of models in the languages and the structuring of transition systems on a larger
scale in terms of files as well as subtransition systems. Chapter 7 provides an overview of our case studies,
and how our comparison criteria highlighted interesting and/or difterent features and characteristics of
each language while modelling each case study. Chapter 8 presents recommendations for the choice of
declarative modelling language based on the characteristics of the transition system under description.
Finally, Chapter 9 presents related work, and Chapter 10 provides concluding remarks.

Chapter 2

Background

In this chapter, we provide background on the seven declarative modelling languages we selected to
study and carry out our case studies in this work. For each language, we give a brief background about
its history and origins, and its logic. Detailed information about the language will be covered in the
comparisons of the following chapters. We also report on the tools we used to support our modelling

efforts. Information about the version of each tool we used is available in Appendix A.

As we will be frequently referring to languages by name in the next chapters of this thesis, to make the
language names easier to spot and discussions easier to follow, we adopt the language name stylizations
shown in Table 2.1. Further, the keywords in each of the languages are colour-coded, to help make
distinguishing between the code snippets across the languages easier in later chapters.

21 B

B [14, 30] is a formal method originally developed by Jean-Raymond Abrial in the 1980s as a successor
to Z, and using an Abstract Machine Notation (AMN) for specification of systems. B is used in the
development of correct by construction software, with tool support for specification, design, and
verification (animating, model checking, and theorem proving) of software systems.

The logic of B is rooted in first-order logic and set theory. Sets are created using either set compre-
hension, or set operations (such as Cartesian product, intersection, power set, efc.) and can be used
for updating a variable’s value to create a transition system. Predicates can be axiomatized or defined

using propositional logic operations and set predicates. Functions can be declared both explicitly using

6

Table 2.1: Language name stylizations and colours

Original Stylized
B B

Event-B | EVENT-B

Alloy ALLOY
Dash DASH
TLA*

PlusCal | PLUSCAL

Asmetal. | ASMETAL

function types (partial, total, surjective, ezc.), or implicitly by restricting relations. B supports refinement
of machines, allowing the modeller to start at a high level of abstraction, and gradually refine their model
to more concrete ones.

Given B’s longevity, various tooling software has been developed over the years to support the B
method and development of B models. These include the B-Toolkit originally developed by B-Core and
now available as free software [7] under the 2-clause BSD license [6], the proprietary Atelier B industrial
tool developed by ClearSy, and the ProB animator and model checker [58] released as free software
under the EPL v1.0 license [4]. We used the ProB tool for writing and checking our B models.

2.2 Event-B

EVENT-B [15] is a simplification and extension of the B method. While B is largely used for specifica-
tion and verification of software systems, EVENT-B was designed to enable the modelling of complete
systems (software, hardware, as well as the surrounding environment), merging the gap between speci-
fication of the software and the rest of the system. EVENT-B is a successor of B, and its logic is very
similar to that of B and is rooted in first-order logic and set theory.

Although EVENT-B is a successor of B and its syntax is a simplification and extension of that of B,
where a B model is simply a plaintext file with its content directly matching the B syntax, an EVENT-B
model is a series of multiple complex XML files. This means B models can easily be read and written

using any text editor, but reading and writing EVENT-B models effectively requires a special-purpose

7

text editor for parsing and modifying the XML files without getting in the way of the modeller. At the
time of writing this work, the only available tool support for EVENT-B is the Rodin Platform [16, 47],
an eclipse-based IDE released as free software under the EPL v1.0 license [S]. The Rodin Platform
comprises a set of plugins, including a text editor for creating and editing EVENT-B models, plugins for
integration with the ProB animator and model checker, a IKIEX exporter plugin for generating typeset
documents from EVENT-B models, and more. Even though the Rodin Platform’s model editor is
capable of editing EVENT-B models, the user has to point and click or use several keyboard shortcuts
to make various parts of the model description editable. We believe that this, along with the fact that the
text editor is barely customizable, makes Rodin less suitable for writing larger models.

Lastly, the current latest release of the Rodin Platform as of the time of this writing is over two
years old, and is based on a version of Eclipse that suffers from a known bug that causes it to crash
immediately when used with any Java version newer than Java 8. Considering that many GNU/Linux
distributions have been dropping this old release of Java from their repositories, and as time goes by
more distributions continue to do so, this effectively means that the Rodin Platform cannot be used on

newer machines and operating systems.

For the EVENT-B models of our case studies, we used the Rodin Platform, as well as the ProB
plugin for Rodin, which supports exporting EVENT-B models from the Rodin Platform for analysis
using the standalone ProB tool.

2.3 Alloy

ALLOY [45, 46] is a declarative modelling language designed for exploring and describing structures
and their properties. ALLOYs logic is a relational logic with set theory, that is both powerful enough to
express complex structures and constraints on them while allowing fully automated analysis of models

written in the language.

ALLOY is primarily supported by the Alloy Analyzer [46] tool, a finite model finder for analyzing
ALLOY models by finding satistying instances for predicates or counterexamples to assertions in finite
scopes. The Alloy Analyzer comes with a visualizer and evaluator, which are invaluable for visualizing
generated instances and evaluating ALLOY expressions when writing or debugging ALLOY models.
Properties to be checked are written in ALLOY itself as predicates or assertions along with the main
specification of the model. The Alloy Analyzer through Kodkod [79] integrates with multiple saT
solvers, allowing the modeller to easily switch solvers and choose the one that performs the best for their

use-case.

Besides the Alloy Analyzer, a variety of other tools have been developed by the Alloy community.
These include Astra [13] for Alloy to SMT-LIB translation, as an alternative to Kodkod; and ALDB [1],
a command-line tool for debugging transition system models written in ALLOY, which allows the
modeller to step through the transitions of a transition system model, similar to stepping through the
lines of code of a program using a debugger for a programming language.

In ALLOY, there are multiple possible approaches for constructing snapshot traces for model
checking; for instance by using ALLOY’s built-in util/ordering module for imposing a linear total
order on snapshots, or using transitive closure-based approaches, e.g. as used in the CTL modules
developed for ALLOY for transitive closure-based model checking (TCMC) [34]. For our case studies,
we used both of these methods for model checking our ALLOY models. In this work, we will not

consider the construction of traces to be a part of the model.

2.4 Dash

DASH [73, 74] is a new modelling language for writing declarative behavioural models, combining the
logic of ALLOY with common control-oriented modelling constructs of labelled control state hierarchy
and named events, as introduced by Harel [41]. DASH is built as an extension to ALLOY, with its
language being a superset of the ALLOY language. DASH provides syntactic constructs for specifying
and factoring transitions. Transitions can be factored by states, like in Statecharts, or by events and/or
conditions; making DASH a flexible language capable of accommodating different modelling paradigms.
DASH implements transition comprehensions, enabling the description of a group of transitions using
a single statement. DASH follows the usual semantics of Statecharts: transitions from states higher in
the hierarchy have priority over those lower in the hierarchy, and concurrent states can each take one
transition in response to an environmental input forming big steps (consisting of multiple transitions).
Properties to be checked are written along with the main specification of the model either in the form
of ALLOY expressions in escape blocks, or in a small domain-specific subset of DASH, based on the
underlying CTL module (TCMC) used by DASH’s tool support for model checking.

Tooling around DASH is built using Xtext [10], and includes a compiler for translating DASH to
ALLOY, allowing the modeller to benefit from use of the Alloy Analyzer for model checking [72] and
model finding like regular ALLOY models. A text editor with syntax highlighting for DASH is available
as an Eclipse plugin. Also, the DASH website at <http://dash.uwaterloo.ca:8080/dash/> includes an
online editor for writing DASH models and translating them to ALLOY in the browser.

http://dash.uwaterloo.ca:8080/dash/

25 TLA*

TLA™ [50] is a formal specification language developed by Leslie Lamport, based on the idea that using
simple mathematics is the best way to write formal descriptions; and that a specification language should
provide the bare minimum required for writing simple mathematics to describe systems precisely. TLA*
has first-order logic with an untyped classical set theory as its modelling language, and was originally
designed for writing high-level specifications of reactive, distributed, and asynchronous systems. LTL
properties to be checked are written along with the main specification of the model using the full TLA*
language, including several temporal operators such as ¢ and O for expressing temporal properties.

Tool support for TLA* is mainly the TLA* Toolbox, an Eclipse-based IDE tailored for writing and
working with TLA™* specifications. The TLA* Toolbox includes the SANY parser and semantic analyzer
for TLA*, the TLC model checker [80, 50], the PLUSCAL algorithm language [52], the TLATEX
pretty printer [S0], and the TLAPS (TLA* Proof System) [29]. TLA" supports model refinement.

For the TLA™ models of our case studies in this work, we used the TLA' Toolbox and the TLC
model checker, which is already set to use multiple worker threads out of the box. For model checking

very large models, TLC can run on a cluster of compute nodes.

2.6 PlusCal

PLUSCAL [52] is a formal specification language created by Leslie Lamport fifteen years after TLA*
for describing and reasoning about algorithms, as an alternative to traditional informal pseudocode.
PLUSCAL has two separate syntaxes: a C-syntax [53] similar to the C family of programming languages,
and a more verbose but clearer P-syntax [S4] which we have opted to use in this work. The verbosity of
the P-syntax makes the meaning of the code clearer. While each of PLUSCAL’s syntaxes resemble that of
an imperative programming language, semantically PLUSCAL is more expressive than a programming
language, since any mathematical formula that can be represented in TLA™ may be used asa PLUSCAL
expression. PLUSCAL models are translated into TLA*, and may then be verified using the TLC model
checker and the other TLA* tools. LTL properties to be checked are written using the full TLA*
language, including several temporal operators such as ¢ and O for expressing temporal properties.

For our PLUSCAL models, we used the TLA* Toolbox, which as described above, has a plugin
for translating PLUSCAL to TLA*. The PLUSCAL syntax is embedded in TLA™" as a special block

comment in a TLA' module.

10

2.7 Asmetal

ASMETAL [71, 38, 39] (Asmeta Language) is a modelling language developed by Gargantini ez a/. as
part of the Asmeta framework, based on the Abstract State Machines (asms) [25, 40] formal method.
The logic of ASMETAL is first-order logic, with added semantics for snapshot variable updates and
transition definitions, as formalized in [25]. Properties to be checked are written along with the main
specification of the model using ASMETAL expressions, as well as additional LTL and CTL temporal
operators available from libraries distributed with the model checker. Asmeta is a framework comprised
of a variety of tools to aid with validation and verification of AsMm models. At the time of writing this
work, Asmeta is an active research project consisting of an extensive collection of tools for verification
and validation of AsMms, released as free software [7] under the GPLv2+ license [2, 3].

The most relevant of these tools for our comparison are the Asmee editor for ASMETAL, the
AsmetaLc compiler and parser for ASMETAL, the Asmeta$S simulator, the AsmetaA animator, and
the AsmetaSMV model checker based on NuSMV. As our work is centred around a comparison of
modelling languages with model checking tool support, we were hoping to make extensive use of the
various Asmeta tools, especially the AsmetaSMV model checker, which supports model checking both
LTL and CTL properties. Unfortunately, we found that AsmetaSMV currently only supports a limited
subset of the ASMETAL language, and we ran into these limitations with our models. Further, we
learned that the AsmetaA animator and Asmeta$S simulator suffer from similar limitations. For our case
studies, since our goal is to compare the modelling languages and not their available tool support, we
opted to use the full capabilities of the ASMETAL language, which is not yet fully supported by the
tooling as of today. As such, for verifying our ASMETAL models we rely on the parser and typechecker
for ASMETAL, and additionally the animator and simulator when possible.

11

Chapter 3

Methodology

In this chapter we describe the methodology used for carrying out the research and modelling of the case
studies across the languages. We describe the principles put into designing our methodology, including
how we devised the comparison criteria, and the measures we took to avoid bias in the work as much as

possible.

To compare declarative modelling languages for writing models of transition systems, we began by
selecting six relatively small examples and modelled them in three declarative modelling languages, with
help from my colleagues and now former students Ali Abbassi and Jose Serna. We collaborated while
writing the models, answering each other’s questions and providing clarifications about any aspect of
the models. These examples are those without an asterisk in Figure 3.1 of the data- vs. control-oriented
characterization spectrum. A model is more control-oriented if it has complex conditions for when a
transition is relevant that are naturally expressed using modes, control states, or concurrency. A model
is more data-oriented if it has complex constructions of data. Based on our experience modelling these
examples, we described the differences and similarities we observed across the languages, forming an
initial set of comparison criteria to compare the languages against; and published our results [12]. These
criteria included datatypes and typechecking, expressions, constructs for specifying the structure of
transition systems and their semantics, and scalability of models.

Next, we expanded on our initial set of comparison criteria to include other interesting charac-
teristics of declarative modelling languages that we did not previously consider, such as the various
kinds of inconsistency in models, the detailed discussions about well-formedness, and decomposition
of a transition system into subtransition systems. Further, we expanded our set of chosen declarative
modelling languages from the initial three languages (B, DASH, and TLA™) to include ASMETAL,

12

g
< <4 \GQ & ¢
N N

$ ‘iﬁ & & F & 4 &

g S & N & SR O
szﬁ Y & » S & N N

SRS A
f } } } } } } i
data-oriented control-oriented

Figure 3.1: Our case studies, across the data- vs. control-oriented characterization spectrum

ALLOY, EVENT-B, and PLUSCAL as well. We then chose a diverse set of examples from across the
characterization spectrum from our initial set of examples. These were the three most interesting and
non-trivial examples among the ones we already had. We modelled these examples in the newly added
languages as well, helping us make sure we correctly set up the tool support available for all of the
languages.

Having made sure we are set up to use the supporting tools available for each language by modelling
our previous examples in the newly added languages, we expanded our set of examples with two new
larger systems. These two are the Library and Railway systems, marked with an asterisk in Figure 3.1.
Collectively, we increased our number of models from eighteen (six models in three languages) small
models to thirty-five (five models in seven languages) including larger examples. Our final case studies
are those typeset in bold in Figure 3.1, presented in this thesis. Table 7.1 in Chapter 7 shows the sizes of
the models in the common measuring unit Lines of Code, highlighting our use of larger and realistic

examples for our case studies in this work.

Table 3.1 shows the case studies and languages considered in this work. For each case study (row),
the number in each column indicates the order in which the model was completed in that language. We
tried to make the table such that most columns include either a 1 or an E, meaning that at least one of
the case studies was first modelled by us in that language, or originated in that language. We then used
that version as the reference model for the next models of that case study ported to the other languages.
Our first three models of EHealth, digital watch, and musical chairs were completed concurrently, and
thus are all labelled ‘1’ in the table. For the case studies where no reference model was available, we used
the informal or semi-formal description of the system from the originating paper to write a first model,
and used that model as our reference for the subsequent models of the case study. To avoid any bias, we
assigned a random order to each model of each case study in each of the languages. We carried out the
case studies top to bottom, starting with the EHealth system and ending with Railway, learning new

languages as needed. While doing so, we observed and took notes about various characteristics of the

13

modelling languages according to our comparison criteria, focusing on those used in the current model,
and how we believed they affected the modelling process. With the help of these notes, we later developed
isolated exemplars, which are small examples meant to demonstrate the differences between languages
with respect to a particular criterion. If a model needed updating (e.¢. addition of new properties, new
criteria, new insights, ezc.), we iterated through the versions of the model in all languages, updating those

accordingly as well. Through this process we further expanded our set of comparison criteria.

Table 3.1: Order of modelling case studies across languages

Language +
B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL

Case study
EHealth [68] 1 2 3 1 1 4 5
Musical Chairs [66] 1 4 E [35] 1 1 3 2
Digital Watch [41] 1 2 5 1 1 4 3
Library [36,37] | E[37] 1 E[37] 3 5 2 4
Railway [63] 1 7 3 5 6 4 2

Legend: E indicates Existing models, 7.¢. those that we had no influence on. The numbers in
each row indicate the order of languages the case study was done in.

Our methodology was designed to limit bias towards one language or another when drawing our
conclusions regarding language comparisons and recommendations based on them. For threats to
validity, a possible threat to znternal validity is that not all languages were the source/reference language
in which a case study was modelled in. To partially alleviate this, we made sure that at least most of the
chosen languages were the source/reference for at least one case study. To further minimize threats to
internal validity, we randomized the order in which we carried out each case study across the languages.
A possible threat to external validity is that we may be missing comparison criteria that could have risen
have we had done more case studies. Further, we only have five examples as part of our case studies. To
partially remedy this, we made sure to use a diverse set of examples across the data- vs. control-oriented
characterization spectrum, and of different sizes. A possible threat to construct validity is that our
recommendations for each case study may be biased by our previous knowledge of some language, as
we are more familiar with some languages more than others. To alleviate this bias, we have included
multiple new languages and new case studies, that we were not previously familiar with. Another
potential threat to construct validity is not all of our models may follow all the idioms of the languages,
due to the modeller being a novice user of some the languages. To partially remedy this, we use E models
as references for our models of case studies whenever they are available to us. Further, our comparison

criteria are very syntax-based, thus our comparison is not based on idioms and writing idiomatic models.

14

Threats to conclusion validity are those concerning the validity of our conclusions and recommendations
about the choice of modelling language. To address these, we devised an extensive set of comparison
criteria to compare the languages against while carrying out the case studies, and used a diverse set of
examples for our case studies based on which we make our recommendations.

15

Chapter 4

Control Modelling

In this chapter, we discuss in depth the control aspects and the structure of transition systems as
modelled in each of our selected modelling languages. Each section starts with a brief summary of the
characteristics of the languages with respect to the section’s comparison criterion, followed by detailed
discussion of the criterion across the languages. Table 4.1 summarizes the differences in the structure
of transition systems as modelled in each of our selected declarative modelling languages. Another
important element in modelling is understanding how inconsistencies appear in each language. While
inconsistencies in models may appear in all languages, we discuss some of the details and ramifications

of these inconsistencies in Section 4.7.

As a reminder, the main concern of this thesis is comparison of the selected modelling languages for
modelling transition systems, even though some of these languages may be used for more general-purpose
modelling. Namely, the PLUSCAL algorithm language is a language designed for formal specification of
algorithms as a counterpoint to pseudo-code, and ALLOY is a declarative specification language capable
of modelling complex structural and behavioural constraints of software systems. For our purposes, we
do not consider checked properties to be a part of the model.

4.0 Terminology

As choice of terminology varies from one language to the next, we first define some standard terminology
that we will use throughout this chapter when comparing the seven languages. We will use the words
implicit and explicit carefully when referring to language constructs in this chapter: we say a construct

16

Table 4.1: Summary of control aspects of languages

Language +
L. B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Criteria
Snapshot variables VARIABLES VARIABLES varies in state variables signature
Initialization INITIALISATION INITIALISATION init init Init variables default init
TR representation I I E I ME I ME
Frame problem unchanged unchanged may change env unchanged monitored
Control state - o o 4 _ _ _
ierarchy
Invariants INVARIANT (V) INVARIANTS (V) fact (C) invariant (C) SW) Sw) invariant (V)
. . . JUSTICE,
Fairness _ — — — WF, SF fair, fair+ COMPASSION
Stuttering E E E I(m)+E I(a)+E I(a) + E I(m)+E

Legend:

TR: Transition Relation. E: Explicit. ME: Mostly Explicit. I: Implicit. S: Described in TLC model settings. C: Constraints
on snapshot space. V: Verified to hold. I(a): Implicit with all variables unchanged. I(m): Implicit with monitored variables

unchanged.

is explicit in a language if the language has a textual representation corresponding to that construct; and

otherwise we say it is zmplicit, which may potentially be built/calculated by the tool support behind the

scenes.

Snapshot: is a mapping of variables to values.

Snapshot space: is the set of all possible snapshots of a transition system, ze. the cross product
of variable values.

Transition System: a transition system 73 is a tuple (S, TR, I) where S is a set of snapshots,
TR C § X § a transition relation, and / C § a set of initial snapshots. A model in a declarative
modelling language defines a transition system that starts in an initial snapshot sp € 7 and
progresses from a snapshot s to the next snapshot s’ for (s, s) € TR.

Labelled control state: is a distinguished set of variables with a finite set of values, that are used
to control when a transition can be taken. Languages with labelled control states can have control

state hierarchy and concurrency.

Transition: a transition relation may be composed of a set of transitions,each 77 C TR C S X §
with potentially multiple (5, s) mappings from source snapshot s to destination snapshots’. When
a transition is defined using declarative constraints, it represents a set of pairs; hence our use of
T C TR (as opposed to T" € TR) above.

17

* Trace: is an execution path, consisting of a series of steps, where a step is a pair (5, 5”) of snapshots
where (5, 5') € TR.

* Monitored variable: also referred to as an environmental variable, is one that can be only observed
by the model but not changed by it — they are only changed by the environment. Monitored
variables are commonly used for modelling environmental phenomena such as temperature as
obtained from a sensor. Conversely, a controlled variable (a non-environmental variable) is one

that may be both observed and changed by the model.

* Frame problem: refers to the issue of how snapshot variables that are not explicitly changed
in a transition may or may not change from one snapshot to the next. The frame problem
is particularly an issue in declarative languages that rely on logical constraints on variables for
describing the changed and unchanged variables in a transition. Since in all studied languages
only one transition is taken per step, the frame problem can be discussed at the transition level
(Section 4.4). If in a language more than one transition may be taken in a step, the frame problem

would need to be discussed in the context of the transition relation as well.
* Invariant: of a transition system is a formula that is true in all snapshots.
* Fairness constraint: is a condition on the traces of a transition system model.

* Stuttering step: is often used to allow a change in the external environment. The exact semantics
of stuttering steps — when they might occur, and which variables they allow to change and which
ones they keep unchanged — may difter between two declarative modelling languages, and from
one model to the next. A declarative modelling language may have an implicit notion of stuttering,
in which case it will also have accompanying semantics as to when stuttering steps may occur:
whether stuttering steps have a lower ‘priority’ and may occur only when no other transitions
are enabled, or if they have the same priority as other transitions and may occur even when one
or more other transitions are enabled. In a language with implicit stuttering, if it differentiates
between monitored and controlled variables then usually its stuttering steps will allow monitored
variables to change while keeping controlled variables unchanged, otherwise its stuttering steps
will keep all variables unchanged (each stuttering step is a self-loop from a snapshot back onto
itself). In languages without implicit stuttering, a stuttering step must be modelled using an
explicit transition definition, and the modeller may decide which variables may change and which
are kept unchanged. Explicitly-added stuttering steps (as transition definitions) always have the
same priority as other transitions. Adding stuttering steps is one way of ensuring the totality of a
transition relation.

18

4.1 Snapshot and Snapshot Space

A snapshot is a mapping from variables to values. The first criterion we will compare across the languages
is representation of snapshots and variables of a transition system in each language. Note that the more
data-oriented aspects of snapshots and the snapshot space are discussed in Chapter 5.

In B, EVENT-B, TLA*, PLUSCAL, and ASMETAL a model has a clause for declaring variables,
in DASH variables are declared at the top of the main snapshot block, and in ALLOY the declaration
location of variables varies depending on the choice of snapshot representation. Figure 4.1 has exemplars
showing snapshot declarations across the languages.

* In B, the variables are declared in the VARIABLES clause of the machine.
* In EVENT-B, the variables are declared in the VARIABLES part of the machine.

* ALLOY is a more general-purpose modelling language not dedicated specifically to modelling
transition systems, and does not have an explicit construct/keyword for declaring a snapshot or its
variables. Thus, the choice of snapshot representation is with the modeller. A common paradigm
for representing snapshots in ALLOY is using a State signature, with its fields corresponding to
variables. See [78] for other techniques for snapshot modelling in ALLOY.

* In DASH, a snapshot is explicitly declared using the state keyword, and variables are usually
declared at the top of each state block. As DASH supports labelled control state hierarchies,
snapshot definitions can be distributed through nested state blocks. Also, DASH has explicit
syntax for marking a variable as part of the environment, using the env keyword.

* In TLAY, the variables are declared using
* In PLUSCAL, global variables are declared using the variables keyword in an algorithm.

* In ASMETAL, variables are declared in a signature block. Variables fall into two general cat-
egories of static constants — which do not change during a machine’s run — and dynamic
variables — which may be changed by an agent’s actions or updates. Dynamic variables are the

snapshot variables, and are further classified into monitored and controlled.

19

o Ul AW N =

o U~ W N =

// B 1 // Dash 1 \x TLA+
ABSTRACT_VARIABLES 2 conc state Library { 2 members, books,
loan, 3 env in_m: lone MemberID loans, reservations

member, 4 env in_b: lone BookID
book, 5 members: set MemberID
reservation 6 books: set BookID
7 loans: books one -> one
(members)
8 reservations: books one
-> one (seq members)
9
10 3}
// Event-B 1 // Alloy 1 * PlusCal
VARIABLES 2 sig Lib { 2 variables loans, members,
loans 3 members:set Member, 3 books, reservations;
members 4 books: set Book ,
books 5 loan: books -> members,
reservations 6 membersReservingOneBook: seq
members -> books,
7 Renew: books -> members
8 3
// Asmetal
signature:

controlled members: Powerset(MemberID)

controlled books: Powerset(BookID)

controlled loans: Powerset(Prod(BookID, Powerset(MemberID)))
controlled reservations: Powerset(Prod(BookID, Seq(MemberID)))

00 N O U1 A W N =

Figure 4.1: Snapshots and variables (from the Library case study)

20

4.2 Initialization

This section discusses how to specify the value of the variables for the initial snapshot(s) of the transition
system in each language. All the studied languages distinguish syntactically variable initialization from
variable declaration, except for PLUSCAL which not only allows but recommends specifying the
initial value of each variable together with its declaration. Further, all the languages except ASMETAL
support some form of nondeterministic assignment for initialization of variables. Figure 4.2’s exemplars

demonstrate initialization across languages.

* In B, the INITIALISATION clause is used to assign values to variables for the initial snapshot(s). The
INITIALISATION keyword is followed by one or more substitutions (i.e. assignments; see Chapter 6
of [30]), using any of the :=" (becomes equal substitution), “:€” (becomes part of substitution),
and ‘: ()’ (becomes such that substitution) operators. The ‘:=" operator is used similar to variable
assignment in typical programming languages, whereas “:€” assigns a randomly-chosen element
from the given set to the variable, and with : ()’ the modeller can write a declarative formula

constraining the value of the variable.

* In EVENT-B, the INITIALISATION clause is used to assign values to variables for the initial snap-
shot(s), with actions using any of the “:=’ (deterministic assignment), “:€’ (nondeterministic
assignment of a set member to a variable), and :|” (nondeterministic assignment to a variable us-
ing a before-after predicate) operators (see Section 3.3.8 of [47]). The ‘:=" operator is used similar
to variable assignment in typical programming languages, whereas ‘:€” assigns a randomly-chosen
element from a set to the variable, and with “: |” the modeller can write a declarative formula

constraining the value of the variable.

* ALLOY does not have an explicit construct/keyword for initializing variables. Commonly, a
predicate, conventionally named init, is used to constrain the variable values for the initial

snapshot(s). Any ALLOY expression over the variables may be used to constrain each variable.

* In DASH, an init block is used within a conc state (concurrent state) to declare the values of
the variables in the initial snapshot(s). Any ALLOY expression may be used for constraining the
variables.

* In TLA", a predicate, conventionally named Init, is used to describe the values of variables in

the initial snapshot(s). Any TLA* formula may be used to constrain the values of the variables in

21

o U1 AW N =

A w NN =

// B 1 // Dash 1 \x TLA+
INITIALISATION 2 conc state Library { 2 Init ==
loan := {} || 3 e 3 /\ members = {}
book := {} || 4 init { 4 /\ books = {}
member := {} || 5 no members 5 /\ loans = <<>>
reservation := {} 6 no books 6 /\ reservations = <<>>
7 no loans 7 * <<>> is the empty
8 no reservations sequence/function
9 3
10 3
// Event-B 1 // Alloy 1 *x PlusCal
INITIALISATION 2 // Lib is the snapshot sig 2 variables loans = <<>>,
THEN 3 pred Init [L: Lib] { 3 members = {3},
loans, members, books, 4 no L.books 4 books = {3},
reservations := {3}, {3, 5 no L.members 5 reservations = <<>>;
{3}, {3 // acti 6 no L.loan
END 7 no L.membersReservingOneBook
8 no L.Renew
9 3
1 // Asmetal
2 default init s@:
3 function members = {3}
4 function books = {}
5 function loans = {}
6 function reservations = {}

Figure 4.2: Initialization (from the Library case study)
the Init predicate. Note that there is nothing special about the name Init, and any other name
may be used, since it is not a built-in keyword.

* In the PLUSCAL algorithm language, the initial values of the variables are often specified along
with their declaration in the variables part of the algorithm. Typical TLA* formulas may be
used for constraining the variables.

* In ASMETAL, the initial values of the variables are given in a default init block, using the =’
operator. ASMETAL does not support any form of nondeterministic variable initialization.

22

4.3 ‘Transition Relation

This section describes how each language allows a modeller to create a transition relation, 7R, of a
transition system. We describe the languages with respect to this criterion, ranging from those wherein
the representation of TR is the most explicit, to those where it is the least explicit. For each language,
we examine its constructs for defining a transition relation, and how stuttering steps are represented in
the language. In the next section, Section 4.4, we will examine each language’s constructs for defining

transitions that are composed together to form 7R.

Of the languages studied in this thesis, ALLOY, TLA", and ASMETAL require a more explicit
representation of a transition relation, where 7R is defined mostly in the model text. Figure 4.4 shows
exemplars defining a transition relation in each of these three languages. Because TR is described via a
set of constraints, and not imperative definitions, a declarative modelling language may allow expressing

inconsistent transition relations.

In ALLOY, the transition relation, TR, is defined completely explicitly, and its form can vary greatly
depending on how the snapshot, variables, and transitions are defined. For instance, with a State
signature as the snapshot representation and its fields as variables, 7R can be decomposed into predicates
that can be viewed as transitions. In Section 4.4, we will discuss conventions used for defining transitions
in ALLOY. Stuttering in ALLOY may be modelled explicitly, by writing a transition that constrains
some or all of the variables to remain unchanged.

In TLA*, the transition relation is defined mostly explicitly. By convention, the transition relation is
a predicate Next defined as the disjunction of all of the model’s transition predicates, which is the method
best supported by TLC, the accompanying model checker for TLA*. Though in TLA* one could write
models not using disjunctions to join the transition predicates, TLC is not optimized to handle such
models as well, because it rewrites the transition relation as a disjunction of as many simple subactions
as possible [80]. If TR is not a disjunction, two possible issues arise: First, from a debugging perspective,
the visualizer will 7ot show TR as a composition of smaller transition predicates, thereby making it harder
to reason about the model and its behaviour. Second, from a model checking performance perspective,
TLC spawns a worker thread for each subaction to explore the snapshot space, but because TR was ot
broken down into smaller subactions, TLC may not spawn an optimum number of worker threads. For
predicates taking one or more arguments, existential quantification over the corresponding set(s) may
be used to bind an element from that set and pass to the predicate. TLA* has implicit stuttering, and
stuttering steps may occur between any two transitions, including when the system has not reached a

deadlock. This implicit addition of stuttering to 7R does not change the meaning of a model, since all

23

TLA formulas are invariant under stuttering (ze. adding or removing stuttering steps does not affect

whether or not a behaviour satisfies a temporal formula).

In ASMETAL, the transition relation 7R is defined mostly explicitly using a special rule named
r_Main, the main rule. The main rule is by convention broken down into smaller rules, each a transition.
The main rule specifies when and how each transition will be called. ASMETAL is more of an imperative-
style language (though it does include various declarative, constraint-like expressions and rules, which
is why we chose to include it in our set of languages), and does not support defining the transition
relation as a disjunction of multiple transitions like the other languages with explicit 7R representation
do. Thus, to write a transition relation that would take a randomly-chosen transition each time, we have
to declare an enumerated set with each element corresponding to one transition, use the choose rule in
the definition of the transition relation to choose an element from that set, and use a switch with a case
for each transition, executing the transition corresponding to the chosen element of the enumerated
set. This can be cumbersome and error-prone in a model with a large number of transitions, since
the modeller may forget to update the switch cases when adding or removing transitions. Stuttering
in ASMETAL can be added explicitly, using the skip rule, as well as occurring implicitly in the case
of a deadlock, which happens when the update set corresponding to a transition is empty (ze. no
variable assignments in the transition) or when the update set is inconsistent (z.e. there are conflicting
assignments to the same variable, one form of which is simultaneous assignment to the same variable in
aparallel block, as shown on Figure 4.3). Implicit stuttering in an AsM allows changes to the monitored
variables by the environment, so as to enable potential further progress of the transition system [75].
This stuttering behaviour added implicitly to 7R also ensures that TR is total.

The remaining languages — B, EVENT-B, PLUSCAL, and DASH — each have an explicit con-
struct for defining transitions, which are implicitly composed together to form a transition relation. In
each language, only one transition is allowed to be taken in each step, and all different interleavings of
the transitions are considered for modelling concurrency.

The transition relation in B, EVENT-B, and PLUSCAL is implicitly formed as follows: at any
step, any transition whose precondition is satisfied (z.e. is enabled) may be chosen to be taken. There
is no requirement on the preconditions of the transitions to be non-overlapping, and more than one
transition may be enabled at the same time, resulting in a branch in the snapshot space graph. In the
remainder of this section, we will refer to this formation of TR as TR zp.

In B, the transition relation is implicitly formed, per 7R;s4p, and is a composition of transitions,
referred to as operations in B, which may have zero or more preconditions, and one or more substitutions

from which postconditions may be derived. A stuttering step in B must be represented explicitly, using

24

1 // AsmetalL

2 asm inconupd

3 import StandardLibrary

4

5 signature:

6 controlled var: Integer

7

8 definitions:

9 rule r_varinc = var := var + 1
10 rule r_vardec = var := var - 1
11
12 main rule r_Main =
13 par
14 r_varinc[]

15 r_vardec[]

16 endpar

17

18 default init s@:

19 function var = 42

Figure 4.3: Inconsistent update of a snapshot variable in ASMETAL

the skip generalized substitution — also referred to as the identity substitution — which takes no action.

In EVENT-B, the transition relation is formed implicitly, per 7R;24p, and consists of transitions,
referred to as events in EVENT-B, which may have zero or more preconditions, and one or more actions
from which postconditions may be derived. In EVENT-B, a stuttering step must be denoted explicitly,
using a skip event, which is a transition that is always enabled (its guard is TRUE) and does nothing (it
has no actions).

In PLUSCAL, the transition relation is formed implicitly, per 7R;s4p, wherein the transitions are
implicitly disjoined together, A stuttering step in a PLUSCAL algorithm may be represented explicitly
ina process, using the skip atomic instruction, or implicitly, between any two PLUSCAL steps (defined
in Section 4.4 below). Since PLUSCAL specifications are ultimately translated to TLA* and checked by
TLC, one may opt to not use the automatically generated transition relation and write their own. In the

next section, for PLUSCAL we will look at how transitions are created from the process descriptions.

In DASH, the transition relation is formed implicitly following the semantics of concurrent, hi-
erarchical state machines. For a transition to be taken, the snapshot must include the source state of

the transition, and transitions exiting states at a higher level in the hierarchy have priority over lower

25

* TLA+ 1 // Alloy
Next == 2 pred TransLCR[m: Member]
\/ \E b \in BookID: 3 {
\/ Acquire(b) 4 all 1: Lib - LibOrd/last |
\/ Discard(b) 5 LCR[m, 1, 1.LibOrd/next]
\/ Return(b) 6 3
\/ \E m \in MemberID: 7 pred LCR[m: Member, L, L': Lib]
\/ Join(m) 8 {
\/ Leave(m) 9 some b: Book |
\/ \E m \in MemberID, b \in BookID: 10 Cancellm, b, L, L']
\/ Cancel(m, b) 11 or Return[m, b, L, L']
\/ Lend(m, b) 12 // For test switch Leave and Buggyleave
\/ Renew(m, b) 13 or Leave[m, L, L']
\/ Reserve(m, b) 14 // or BuggylLeave[L, L']
\/ Take(m, b) 15 3}
1 // Asmetal
2 main rule r_Main =
3 choose $b in BookID, $m in MemberID, $rule in Ruleld with true do
4 switch($rule)
5 case ACQUIRE:
6 r_Acquire[$b]
7 case CANCEL:
8 r_Cancel[$m, $b]
9 case DISCARD:
10 r_Discard[$b]
11 case JOIN:
12 r_Join[$m]
13 case LEAVE:
14 r_Leave[$m]
15 case LEND:
16 r_Lend[$m, $b]
17 case RENEW:
18 r_Renew[$m, $b]
19 case RESERVE:
20 r_Reserve[$m, $b]
21 case RETURN:
22 r_Return[$b]
23 case TAKE:
24 r_Take[$m, $b]
25 endswitch

Figure 4.4: Explicit transition relation (from the Library case study)

26

env input env input

big step

S5y,

P
stable

spo
stable

states. Particularly distinct from the other languages is the concurrent and hierarchical states found

Figure 4.5: Big step (sp is a snapshot; s is a small step)

in a DASH model. Because of this concurrency, DASH makes the distinction between big steps and
small steps in the transition relation, as shown in Figure 4.5. Big steps consist of multiple small steps,
which are each one transition. In a big step, at most one transition per concurrent region can be taken.
Monitored (environmental) events can change only at big step boundaries (called a stable snapshot),
so the occurrence of a monitored event can trigger multiple transitions as long as the transitions are
in different concurrent regions. Events generated by one transition can trigger other transitions (in
different concurrent regions) within the same big step. Implicit stuttering in DASH happens only at
the big step boundaries, when no more transitions may be taken. For stuttering when one or more

transitions are enabled, an explicit stuttering transition must be used.

4.4 Transitions

This section describes how each language can represent a transition 7" of a transition system. As we are
working with declarative modelling languages, each transition describes a set of pairs (s,5") € T. To
create a transition 77 € TR C § X § we may use two-snapshot predicates, assignment operators, or
both; depending on the language. A predicate corresponding to a transition 7" describing a set of pairs
(5,5") € T canbe broken down into prer on the source snapshot and post7 on the source and destination
snapshots, combined using some logical connective _?_, as shown in Figure 4.6. The transition may
only be taken when prer is true. Each of prer and postr may in turn consist of one or more explicit
language constructs.

The preconditions prer of the transition may consist of guards guardr, a source labelled control state

srer, and triggering event evtr; and the postconditions post may consist of actions actr, destination

27

T(s5)

[prer(s)] 2 [postr(s 5]
[gudrdr(s) A srer(s) A €Z)tT(J)] R [dCl‘T(J, 5') A destr(s") A genc‘uz‘T(J')]

Figure 4.6: Decomposition of a transition 7°

control state destt, and generated events genevtr, constraining the snapshot and variables after the
transition is taken. We will describe the languages in increasing order of explicit language constructs for

describing a transition. Figure 4.7 shows exemplars for declaring transitions in each language.

ALLOY does not have a special construct for defining transitions. Commonly, a transition is
modelled as a predicate — defined using the pred keyword — over unprimed and primed variables, con-
straining the value of the variables in the source and destination snapshots. Unlike the other languages,
primed variables do not carry any special meaning in ALLOY, and are used as a common modelling
convention. Though a transition may be represented using a single predicate, Farheen’s guidelines [35]
separate a transition definition into two separate predicates — one for preconditions over the variables
in the source snapshot, and another for postconditions over the variables in the source and destination
snapshots — to promote structure. Commonly, the pre and post predicates for each transition are
conjoined together to form the main transition predicate (z.e. 2 in Figure 4.6 would be A), and the
transition predicates are then disjoined together to form the transition relation. This is referred to as
the disjunctive modelling method in Farheen’s guidelines. The guidelines recommend this method for
decomposing the transition relation and transitions of a transition system because using this method,
adding a transition does not change the behaviour of other existing transitions, and is thus more likely to
produce a transition relation expected by the modeller. With respect to the frame problem, in ALLOY
any variable not constrained in a transition predicate may change nondeterministically from the source

to the destination snapshot, and there is no distinction between monitored and controlled variables.

In TLA", a transition (an action in TLA* terminology) is a two-snapshot predicate over unprimed
and primed versions of all variables, constraining each variable in the source and destination snapshots.
Similarly to ALLOY, in TLA™ a transition may be further broken down into separate pre and post parts
for clarity. The preconditions of a transition are commonly a series of one or more conjoined formulas
over unprimed variables in the source snapshot and optionally over the transition arguments if any, and
the postconditions or actions of a transition are conjoined formulas over primed and unprimed variables,

constraining each variable in the destination snapshot. The pre and postconditions are often conjoined

28

together, z.¢. _*_ in Figure 4.6 would be A. With regards to the frame problem, TLA™ requires that
all transitions constrain the value of every variable, either by constraints on the primed and unprimed
variables or by marking them with the keyword. TLA* does not make a distinction between
monitored and controlled variables.

ASMETAL does not have any construct for decomposing a transition into separate pre and post
parts; and a transition definition consists only of an action — a rule in ASMETAL terminology. An
action may be one of several rules, producing a set of assignments to controlled variables. The transition
rule may be a simple rule such as the skip rule or the update rule (z.e. variable assignment, using the
:= operator), or a more complex rule such as parallel or sequential block, if, case, forall, choose,
etc., which enables composition and combinations of other rules together. A transition in ASMETAL
does not have preconditions on when it may be taken, and conditional rules such as if and case are
used to constrain the action(s) of the transition. These differ from preconditions in that their use does
not impact whether or not a transition is enabled (in ASMETAL, all transitions of a model are always
enabled). In ASMETAL, for (5, 5’) € T the transformation of s to 5" is defined as the effect of applying
as an atomic step the result of a consistent update set (one with no conflicting variable assignments) on s.
With respect to the frame problem, any controlled variable not assigned to in a transition is unchanged

by that transition, and retains its value from the source snapshot.

In B, a transition is referred to as an operation, each consisting of one or more actions — called a
generalized substitution — which may take several forms (see Chapter 6 of [30] for an exhaustive list of
the forms). An action may be a compound substitution — such as a block substitution (BEGIN S END)
or a preconditioned substitution (PRE P THEN S END) with precondition P required to be true before
calling the operation (otherwise the operation will not be enabled and cannot be executed) and S the
body of the substitution — or a simple one like “:=’ (becomes equal), “:€” (becomes part of), or : ()’
(becomes such that). The simpler substitutions can either be the entire body of a substitution, or be
used in one of the compound substitutions like the ones mentioned above. Note that ©:=’and “:€” are
used similar to assignment in typical programming languages, whereas with *: ()’ the modeller may refer
to the value of the variable before substitution (in the source snapshot) using the $0 suffix. For example,
x$0 would refer to the value of x in the source snapshot, and x to its value in the destination snapshot.
With respect to the frame problem, in B any variable not assigned to in a substitution retains its value
and is unchanged by that transition. B does not distinguish between monitored and controlled variables.

In EVENT-B, a transition is referred to as an event, and is a simplification of a B operation. In contrast
to B, in EVENT-B a transition has only one general form, consisting of one or more of the following parts:
parameters, guards, and actions. A guard, defined in the WHERE clause of the transition and the only form

29

of precondition in EVENT-B, is the precondition required to be true for the transition to be enabled. A
transition may have an arbitrary number of parameters. Like a snapshot variable, each parameter has a
type — which must be declared as a guard of that transition — and a unique name. An action, consisting
of an assignment, describes how the source and destination snapshots relate, and is a simplification of
B’s generalized substitutions. Each action has a label, used for identifying and/or referring to that action.
Labels are used throughout EVENT-B tool support, and are useful for identifying the role/kind of
a construct involved in a machine or proof about the machine. By convention, an action label starts
with the act prefix, and a guard label starts with the grd prefix. An EVENT-B assignment operator
is either deterministic or nondeterministic. The ‘:=’ operator is for deterministic assignment of the
right-hand side value to the left-hand side variable, “:€” for nondeterministic assignment of an element
of the right-hand side set to the left-hand side variable, and ‘: |” for (nondeterministically) constraining
the value of the left-hand side variable with the before-after predicate (a two-snapshot predicate over
unprimed and primed variable names) given on the right-hand side. Similarly to B, “:=” and “:€’ are
used without primed variables, and ‘: |’ is used with primed version of variables referring to their value
in the destination snapshot. Regarding the frame problem, similarly to B, in EVENT-B any variable
not assigned to using an assignment operator is unchanged by the transition and retains its value. No
distinction is made between monitored and controlled variables in EVENT-B.

In PLUSCAL, we can leverage the language’s constructs for expressing concurrency and nondeter-
minism to model a transition system in the form of an algorithm. Similar to a programming language,
PLUSCAL has a control flow semantics that defines the meaning for the algorithm text and how it may
be executed. When modelling a transition system in PLUSCAL, a single-step process will be a transition
in the resulting transition system. The preconditions of a transition are specified using an await (or
when) statement which acts like a guard, allowing the process body to be executed only when the guard
expression evaluates to TRUE. In PLUSCAL, a single step, referred to as an atomic action, corresponds
to the execution of the statements contained between one /azbel and the next. A label is an identifier
marking a location in a PLUSCAL algorithm, similar to a label in a traditional programming language
like C. An algorithm has a program counter pointing to the current label being executed, and may be
thought of as corresponding to non-hierarchical control states. Since normally the body of a PLUSCAL
process is executed only once, whereas a transition in a transition system may be taken any number
of times as long as it is enabled, we add a goto statement at the very end of each process to jump back
to the label at the very beginning of that process, allowing the process to be taken again. In addition
to global (algorithn-wide) variables, each PLUSCAL process may have local variables declared using
the variables keyword. A local or global variable x can be initialized to expr using a declaration of
the form variable x = expr. In process body, variables may be assigned to using the : = operator, and

30

will otherwise retain their value from the source snapshot. PLUSCAL does not distinguish between

monitored and controlled variables.

DASH is the language with the most language constructs for modelling a transition of a transition
system studied in this thesis. A transition in DASH is defined using the trans keyword, optionally
consisting of the parts described below. The preconditions of a DASH transition may be divided into
three parts:

1. The guard condition of the transition, denoted using the when keyword, which is an ALLOY

expression over the snapshot variables that when true the transition would be enabled.

2. The source labelled control state of the transition, denoted using the from keyword. Since DASH
has explicit control state representation using state blocks, labelled control state blocks may be
nested to form a CONTROL STATE HIERARCHY, useful for grouping related states together. In
the absence of an explicit from part, the most immediate state containing the transition definition
will be used as the source labelled control state of that transition.

3. The event triggering the transition, denoted using the on keyword, for triggering the transition
whenever a certain event is fired. Events are useful for modelling broadcast communication and
cascading effects. The (optional) on part indicates the name of the event triggering the transition.

The postconditions of a DASH transition may be divided into three parts:

1. The actions of the transition, denoted using the do keyword, are two-snapshot ALLOY expres-
sions over unprimed and primed variables describing the value of each variable in the destination
snapshot, modelling the effects of executing the transition.

2. The destination labelled control state of the transition, denoted using the goto keyword. In the
absence of an explicit goto part, the most immediate state containing the transition definition
will be used as the destination labelled control state of that transition.

3. The generated events, denoted using the send keyword, for firing one or more events upon the
execution of the transition. The (optional) send part denotes the name of an event or a set of
comma-separated events to be generated when the transition is taken.

31

DASH semantics define two kinds of steps: big steps and small steps. A big step consists of one or
more sequential small steps meant to represent the transition system reacting to the external environment
or its own internal changes. Each small step corresponds to a transition, and small steps are taken until
the system cannot take anymore transitions, at which point it is said to have become szable. With respect
to the frame problem, monitored variables (marked with env) in DASH are allowed to change from one
snapshot to the next when the next snapshot is stable (z.¢. at the big step boundaries), and will otherwise
retain their values from the source snapshot. For controlled variables, if the primed version is mentioned
in the action of a transition, it is assumed that the action will constrain it; otherwise, they are forced to

retain their value from the source snapshot.

4.5 Invariants

This section describes how invariants for a transition system are represented in each language. An
invariant of a transition system is a formula that is true in every snapshot of the transition system. In

other words, an invariant must hold in the initial snapshot and after every transition.

In B and EVENT-B, invariants are written in the INVARIANT and INVARIANTS section of a machine
respectively. In a model checking setting, e.¢. using ProB, the invariants are checked to hold in every snap-
shot. In a theorem proving setting, the invariants must be proven to be established by the initialization,
and be preserved by every transition.

In ALLOY and DASH, invariants are written in fact blocks. DASH additionally has invariant
blocks. In both languages, invariants are constraints on snapshots and limit the reachable snapshot space
of the model.

In TLA* and PLUSCAL, invariants are defined as TLA* predicates. In a model checking setting,
these predicates must be added to the Invariants portion of the TLC settings for the model, which will
then be checked to hold in every snapshot. In a theorem proving setting, invariants appear as consequent
of an implication in a

In ASMETAL, invariants are defined using the invariant over keywords, in the definitions
section of an AsM after the rule (transition) definitions. ASMETAL invariants are verified to hold in
every snapshot of the model during analysis (e.¢. animating or model checking).

32

1 // B 1 // Dash

2 Join (member_) = 2 trans join {

3 PRE 3 when !(in_m in members)

4 member_ : MEMBERID & 4 do members’' = members + in_m

5 member_ /: member 5 3%

6 THEN

7 member := member \/ { member_ }

8 END;

1 \x TLA+ 1 // Event-B

2 Join(member) == 2 Join: // not extended ordinary

3 /\ member \in MemberID 3 ANY

4 /\ member \notin members 4 member

5 /\ members’' = members \union {member} 5 WHERE

6 /\ << books, loans, reservations >> 6 member : MemberID not theorem // grdil
7 member /: members not theorem // grd2
8 THEN
9 members := members \/ {member} // actl
10 END

1 // Alloy 1 * PlusCal

2 // Lib is the snapshot sig 2 process Join = "Join"

3 ke 3 variable member \in MemberID

4 Join 4 begin

5 - */ 5 join:

6 pred CanJoin[m: Member, L: Lib] { 6 when member \notin members;

7 // m does not exist in the Library. 7 members := members \union {member};

8 no (m & L.members) 8 goto join

9 3 9 end process

10

11 pred Join[m: Member, L, L': Lib] {

12 ----Precondition----- 1 // Asmetal

13 CanJoin[m, L] 2 rule r_Join($m in MemberID) =

14 - Postcondition------ 3 if (notin(members, $m)) then

15 // add the m in the set of members 4 members := union(members, {$m})

16 L'.members = L.members + m 5 endif

17 === Nochanges-----

18 NoChangebooks[L, L']
19 NoChangeloan[L, L']

20 NoChangeSeqgBook[L, L']
21 NochangeRenew[L, L']
22 %

Figure 4.7: Transitions (from the Library case study)

33

4,6 Fairness

This section describes how fairness constraints [57, 20, 49] for a transition system are represented in
each language. A fairness constraint is a condition on the snapshot traces of a transition system model.
A trace is said to be fair with respect to a formula if and only if it satisfies the formula. There are two
kinds of fairness constraints: weak fairness (also referred to as justice) and strong fairness (also referred to
as compassion). In a declarative modelling language, fairness constraints can either be used to limit the
model to include only “fair” traces, or as part of the properties to limit the traces on which a property is

evaluated. In this work, we are only interested in the former.

In B, EVENT-B, ALLOY, and DASH fairness constraints are not part of the transition system
model, but rather part of the properties to be checked.

In TLA™, weak or strong fairness for transitions can be added to the specification of the transition
system using the WF and SF operators respectively. If a transition with weak fairness is always enabled, it
will eventually be taken. If a transition with strong fairness is enabled infinitely often, it will eventually
be taken.

In PLUSCAL, a process can be marked as weakly fair using the fair keyword, or strongly fair using
fair+. Further, fora PLUSCAL label A: in an unfair process, A: + marks the label as weakly fair; and for
alabel A: in an weakly fair process, A:+ makes it strongly fair. In both cases, A: - marks the label as unfair.
The notion of weak and strong fairness in PLUSCAL match those of TLA*.

In ASMETAL, for a Boolean formula f, JUSTICE fimposes weak fairness and requires that f be true
infinitely often. For two Boolean formulas f and g, COMPASSION (f, g requires that if f is true infinitely
often then g be true infinitely often as well (the missing closing parenthesis is intentional and part of the
ASMETAL grammar). JUSTICE and COMPASSION must be used in the definitions section of an AsMm,
after the rule (transition) definitions but before any of the invariants and the main rule.

4.7 Discussion on Inconsistency

In declarative models, inconsistency stems from contradictions in logical formulas. All languages
allow inconsistencies and there is no distinguishing comparison criteria. However, it is important to
understand the effects of these inconsistencies in models. In the context of declarative transition systems,

we consider three kinds of inconsistency that may occur in the description of a transition system:

34

* Contradictory transition postcondition: when the logical formula corresponding to the post-
condition of a transition is a contradiction. One possible form of contradictory transition
postconditions is simultaneous assignment (also sometimes referred to as parallel assignment) to
the same variable in a transition. Having a contradictory transition postcondition is possible in
all languages.

* Contradictory transition relation: when the logical formula corresponding to the transition
relation, TR, is a contradiction (Z.e. is never true), and therefore there does not exist a snapshot
trace satisfying the constraints of 7R’s definition. In B, EVENT-B, PLUSCAL, and DASH, one
cannot create a contradictory TR explicitly, since the transition relation of the model is created
implicitly from the elements described by the modeller, and the above languages do not have an
explicit language construct for defining 7R in the model text. However, it may still be possible to
create a contradictory transition relation indirectly if there are inconsistencies in these elements,

and having a contradictory transition relation is possible in all languages.

* Deadlock: refers to a snapshot that has no explicitly modelled outgoing transitions. In the
absence of stuttering steps in a declarative modelling language, this means a non-total transition
relation. Some languages perform implicit stuttering steps when a transition system reaches a
deadlock, thereby ensuring the totality of the transition relation and enabling potential further
progress of the transition system. Another method for ensuring the totality of a transition relation
is making the transition preconditions complete; ze. setting up the transitions such that the
disjunction of the preconditions of all transitions combined is true.

It is possible to write contradictory transition postconditions in ALLOY and DASH that possibly
resultin a contradictory 7R (when no other transition is enabled). Figure 4.8 is an exemplar of a transition
system with a contradictory transition postcondition. In both ALLOY and DASH it is possible to have
a contradictory TR for which no satisfying instances exist. In ALLOY, TR is written explicitly by the
modeller and thus may be the direct source of inconsistency; whereas in DASH, TR is constructed
implicitly, and TR-related inconsistencies would be those trickling up from the individual transitions.
For instance, in DASH a contradictory (false) transition postcondition leads to a contradictory TR;
and even though DASH has implicit stuttering at the big step boundaries, they only happen when all
the transition preconditions are false, and will not help when a transition’s precondition is true but its
postcondition is false. In ALLOY, it is possible to have a non-total transition relation that reaches a
deadlock wherein no transitions can be taken.

Inconsistency in TLA™ comes in several forms. The simplest is an obviously false specification —

35

1 abstract sig A {}

2 one sig al, a2, a3 extends A {}
3

4 conc state Example {

5 v: one A

6 trans al_to_a2 {

7 when { v = al }

8 do { v/ = a2}

9 }

10 trans a2_to_a3 {

11 when { v = a2 }

12 // contradictory postcondition:
13 do {

14 "= a2

15 "= a3

16 3

17 }

18 init { v =al1}

19 3%

Figure 4.8: DASH model with a contradictory transition postcondition

for instance Init = 1 = 2, or Init = a € @ — which results in TLC errors like “The spec is trivially
false because Init is false” or “Init is never enabled” — which can be an instance of the contradictory
transition postcondition or contradictory transition relation categories of inconsistencies. In TLA™, a
contradictory transition postcondition results in that transition never being enabled. It is also possible
to write a transition relation that eventually reaches a deadlock, as well as writing a contradictory 7R for
which no satisfying instance exists.

In ASMETAL, it is possible to write a transition relation for an AsM that eventually reaches a
deadlock. Figure 4.9 is an example of an AsM that eventually reaches a deadlock (when v = 3). The
interpretation of the deadlock depends on the tooling used: for instance, the interactive runner for
Asmeta considers the deadlock snapshot the end of execution and will terminate the run when that
snapshot is reached, whereas the Asmeta animator will stutter infinitely when the deadlock state is

reached.

In B and EVENT-B, a transition with a contradictory postcondition (e.g. an action/substitution
like x :€ @ thatis always false) is effectively never enabled (same as a transition with a false precondition),
and the transition system would thus reach a deadlock if no other transition is enabled. In Figure 4.10,

36

1 asm example

2

3 import StandardLibrary

4

5 signature:

6 domain Coord subsetof Integer
7 controlled v: Coord

8

9 definitions:
10 domain Coord = {1..5}
11
12 rule r_vinc =
13 while v < 3 do
14 v:i=v +1
15
16 main rule r_Main = r_vinc[]
17

18 default init s0:
function v =1

—_
o

Figure 4.9: AsM that eventually reaches deadlock

the transitions contra_pre and contra_post in both B and EVENT-B are always disabled and each
transition system is deadlocked. Both B and EVENT-B employ static checks as part of their type system
to catch various modelling errors like type mismatches (e.¢. a = @ in the above exemplar) or simultaneous

assignment to the same variable (e.¢. a := al; a := a2)in the same transition.

For PLUSCAL, the general conditions described for TLA™ above apply to PLUSCAL models as well.
However, PLUSCAL has additional safeguards to make certain kinds of inconsistency unrepresentable
in valid models. This is achieved by using PLUSCAL /abels to impose restrictions on valid statements
and expressions. For instance, each labelled section may only contain at most one assignment statement
for each variable. This eliminates a case of contradictory transition postcondition corresponding to the
logical formula 4’ = b A 4 = ¢ where b # c. Figure 4.11 shows an example of this, and PLUSCAL will
show an error about a missing label between lines 8 and 9.

37

—_

N NN NN = —a 43 a3
AW N =2 © O 0N O Ul A W N = O

1 // B 1 // Event-B 1 // Event-B (continued)
2 MACHINE example 2 CONTEXT 2 MACHINE
3 SETS 3 co 3 mo
4 A = {al, a2} 4 SETS 4 SEES
5 VARIABLES 5 A 5 co
6 a 6 CONSTANTS 6 VARIABLES
7 INVARIANT 7 al 7 a
8 a: A 8 a2 8 INVARIANTS
9 INITIALISATION 9 AXIOMS 9 a: A
a := al 10 partition(A, {al1}, {a2}) 10 EVENTS
OPERATIONS 11 INITIALISATION:
contra_pre = 12 THEN
PRE 13 a := al
FALSE = TRUE // problem 14 END
THEN 15 contra_pre:
a := a2 16 WHERE
END; 17 FALSE = TRUE // problem
contra_post = 18 THEN
PRE 19 a := a2
a = al 20 END
THEN 21 contra_post:
a :: {} // problem 22 WHERE
END 23 a = al
END 24 THEN
25 a :: {3} // problem
26 END
Figure 4.10: A deadlocked transition system in B and EVENT-B
1 EXTENDS Naturals
2
3 (x --algorithm example
4 variables a = 1;
5 process contra_post = "contra_post”
6 begin
7 contra_post:
8 a = 2;
9 a := 3 \x problem
@ end process
1 end algorithm %)

Figure 4.11: Invalid contradictory transition postcondition thanks to PLUSCAL’s label semantics

38

Chapter 5

Data Modelling

In this chapter, we discuss in depth the description of the data aspects of models in each of the declarative
modelling languages examined in this thesis. This data is constrained in the guards and actions of
transitions and in the invariants of the model. We first lay out the terminology we use in this chapter in
Section 5.0. In Section 5.1 and Section 5.2 we discuss the primitives and constructors of composite units
of data in each language respectively. In Section 5.3 we discuss the expression syntax of each language
and notable differences between them. Section 5.4 discusses the notion of events and how they can be
modelled in modelling languages that do not have that notion. Section 5.5 discusses the declaration of
constants across the languages. Section 5.6 discuses well-formedness conditions and typechecking of
type signatures in each language. In Section 5.7 we look at how the sizes of the sets used in the models
is set in each programming language. Finally, in Section 5.8 we mention some missing features and
constructs that are absent in all the languages we studied. Table 5.1 summarizes the differences in the
data aspects of the selected declarative modelling languages with respect to modelling transition systems.

5.0 Terminology

The following are the terminology we use to describe the data-related characteristics of declarative

modelling languages.

* Primitives: are the smallest unit of data in a language, usually consisting of scalars and sets.

39

Table 5.1: Summary of data aspects of languages

Language +
B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Criteria
Primitives scalars, sets scalars, sets sets same as ALLOY scalars, sets same as TLAY scalars, sets
Constructors fun, Fel’. rec, fug, r.el? r.el,_ . same as ALLOY fun, rel same as TLAY rel
multiplicity — multiplicity multiplicity
Z,N,N;, B Z,N, B, Z,N,R,B, Z,N,R,C, B,
Built-ins st,r 523 lt,reej Z,N,N;, B str, seq, same as ALLOY str, rec, same as TLAY char, str, seq
» 8¢9, ord, graph seq, bag bag, map, Undef
Events — — — event — — —
Constants CONSTANTS CONSTANTS — — CONSTANTS static
Type signatures
& v v v v — — v
typechecking
Subtypes — v v v N4 Vv v
Scopes v v v v v v —
Legend:

Z: Integers, N: Naturals, N;: Naturals excluding zero, R: Reals, C: Complex numbers, B: Booleans.

fun: function, rel: relation, rec: record, seq: sequence, ord: ordering, str: string, char: character.

Constructors: are operators that create composite units of data from primitives or other com-
posite data units. For example, functions, relations, and records are constructors. Constructors
include multiplicities, which impose constraints that limit the values in the composite data being

constructed.

Built-ins: of a language are the names of particular primitives or particular composite data units
that are part of the syntax of the language or part of its standard libraries, and are available to the

modeller without declaration in the model.

Standard library: of a language is the collection of one or more modules that are distributed
with the tool support for the language, and include the built-ins and utility functions that may or
may not be hard-coded and/or built into the language.

Event: denotes an occurrence at a moment in time. In some languages, an event may be used as
a precondition of a transition. Events are often helpful in describing the abstract behaviour of

reactive systems.

Constant: is a mapping from a name to a value, either a primitive or a composite data unit. In
contrast to a snapshot variable, a constant retains its value throughout all of the transitions of the

transition system. Not all of the languages distinguish between variables and constants.

40

* Type signature: is syntax in a language to denote the kind of object contained in a snapshot

variable, constant, or quantified variable as either a primitive or a composite data unit.

Typechecking: refers to checking that the constraints expressed in the type signatures are consis-

tent with the use of the data in the formulas.

Subtype: is the name of a subset of values of another set that can be used in a type signature.

Scope: is the size of a set of objects; 7.¢. the total number of distinct elements it contains.

5.1 Primitives

In this section, we examine the primitives of each language. Primitives are the smallest unit of data
in a language, and usually consist of scalars and sets. In declarative modelling languages, similar to
programming languages, scalars are objects like numbers, Booleans, strings, or a user-declared object.
A set is an unordered collection of distinct objects, and is itself an object as well. Sets are a critically
important part of declarative modelling languages, and are the fundamental building blocks for more
complex units of data. We also examine whether each language supports subtypes, indicating whether

or not it is possible to declare a set that is a subset of another set and can be used in a type signature.

The primitives of B consist of scalars and sets. In B, sets are declared in the SETS section of the
machine, and are of two kinds: enumerated and deferred. An enumerated set is one where its elements
are listed in the declaration of the set, whereas the declaration of a deferred set does not include a list of
its elements. B does not support subtypes, but they can be modelled using membership predicates. For
example, a parent set A is declared on line 3, and a constant predicate isC is declared and constrained on
lines 8 and 11 to model the subtyping. isC must be used as a precondition for any use of the R1 relation.
To declare a snapshot variable to be a scalar from a given set, we add a type signature using the *:” set
element operator and the name of the set, as on line 16 of the B code block in Figure 5.1. To declare a
snapshot variable whose value is a set of elements from a given set, we use the POW operator (for powerset)

in the type signature, as on line 15.

The primitives of EVENT-B consist of scalars and sets. Sets are declared in the SETS section of a
context, separate from the machine definition. There are two kinds of sets in EVENT-B: carrier and
enumerated. A carrier set can be declared simply by adding its name to the SETS section of the context.
To declare an enumerated set, in addition to adding its name to the SETS section, we list its elements

under the AXIOMS section, using the partition operator. The first argument to partition is the name

41

0 N O U W N =

—_ a4
w N =2

14
15
16
17

// textual description
sets and constants:

A, B: set

C: subset of A

cl: a constant of type C

c2: integer constant with value 3

variables and events:
v1l: powerset of A
v2: integer
evl, ev2: events

// B
SETS

A; B;

Event = {evl, ev2}
VARIABLES

vl, v2, evs
CONSTANTS

isC, c1, c2
PROPERTIES

// subtype predicate

isC : A --> BOOL &

cl : A&

c2 : INTEGER & c2 = 3
INVARIANT

vl : POW(A) &

v2 : INTEGER &

evs : POW(Event)

00 N O U w N =

N = —m —a a2 a2 a4 a4
S W 00 N O U1l A W N = O WO

// Asmetal

signature:
enum domain Event = {EV1 | EV2}
abstract domain A

1

2

3

4

5 abstract domain B
6 domain C subsetof A

7 monitored evs: Powerset(Event)
8 controlled v1: Powerset(A)

9 controlled v2: Integer

10 static ¢1: C

11 static c2: Integer

12 definitions:

13 function c2 = 3

// Event-B 1 // Event-B (continued)
CONTEXT 2 MACHINE
co 3 mo
SETS 4 SEES
A 5 co
B 6 VARIABLES
Event 7 v
CONSTANTS 8 v2
C 9 evs
nC 10 INVARIANTS
evl 11 vl : POW(A)
ev2 12 v2 : INT
cl 13 evs : POW(Event)
c2
AXIOMS
partition(B, C, nC)
card(C) > @
partition(Event, {ev1}, {ev2})
cl : C

c2 : INT & c2 = 3

Figure 5.1: Primitives in snapshot declarations across languages (part one)

42

1 // Alloy 1 // Dash
2 sig A, B {3} 2 open util/integer
3 sig C extends A 3 sig A, B {}
4 enum Event { evl, ev2 } 4 sig C extends A {}
5 sig Const { 5 sig Const {
6 cl: one C, 6 cl: one C,
7 c2: one Int 7 c2: one Int
8 }Y{c2=31} 8 3
9 sig Example { 9 state Example {
10 vl: set A, 10 vl: set A,
11 v2: one Int, 11 v2: one Int,
12 evs: set Event 12 event evl {}
13 3% 13 event ev2 {}
14 invariant { Const.c2 = 3 }
15 3%
1 * TLA+ 1 * PlusCal
2 Integers, FiniteSets 2 EXTENDS Integers, FiniteSets
3 A, B, C, c1, c2 3 CONSTANTS A, B, C, cl
4 vl, v2, evs 4
5 5 (x --algorithm example
6 Event == {"evl”, "ev2"} 6 variables v1, v2, evs;
7 7
8 TypeOK == 8 define
9 /\ v1 \in A 9 c¢2 ==
10 /\ v2 \in Singleton(Int) 10 \x helper predicate
11 /\ evs \in Event 11 Singleton(S) == {{i} : i \in S}
12 /\ ¢l \in C 12 Event == {"ev1"”, "ev2"}
13
14 TypeOK ==
15 /\ v1 \in SUBSET A
16 /\ v2 \in Singleton(Int)
17 /\ evs \in SUBSET Event
18 /\ c1 \in C
19 /\ c2 \in Int
20 end define
21 end algorithm %)

Figure 5.1: Primitives in snapshot declarations across languages (part two)

43

of the set, and subsequent arguments are disjoint sets of elements, as on line 18 of the EVENT-B code
block in Figure 5.1. Declaring a subtype in EVENT-B is also done using the partition operator by
providing the name of the parent set as the first argument, and the names of the children as subsequent
arguments, as on line 16. To declare a snapshot variable to be a scalar from a given set, we add a type
signature using the “:” set element operator and the name of the set, as on line 12. To declare a snapshot
variable whose value is a set of elements from a given set, we use the POW operator (for powerset) in the

type signature, as on line 11.

The primitives of ALLOY consist only of sets, and there are no scalars in ALLOY. A “scalar” in
ALLOY is represented using a singleton set. For instance, 5 is really syntactic sugar for the singleton set
{53. Sets are declared using the sig keyword (for signature). If formulas are added as ‘signature facts’
immediately following a signature, they are implicitly quantified over the elements of the signature.
Subset signatures can be declared using the in keyword. Note that multiple subsets declared using in
may not necessarily be disjoint. To declare disjoint subsets of a set, the extends keyword can be used, as
on line 3 of Figure 5.1. Enumerated sets can be declared using the enum keyword, as on line 4, which
is syntactic sugar for declaring a parent abstract sig, and declaring its elements as one sig singleton
sets, each of which extends the parent set. To declare a snapshot variable whose value is an element of a
given set, we use the one multiplicity keyword in the type signature, as on line 11. To declare a snapshot
variable whose value should be a set of elements from a given set, we use the set multiplicity, as on
lines 10 and 12. DASH’s state syntax is translated to an ALLOY signature, and the above statements
about ALLOY apply to DASH as well.

The absence of real scalars in ALLOY has various implications. On the one hand, everything being
sets implies having a simpler, non-overloaded set of operators that can readily be applied to various
objects in the language. On the other hand, it means there are some unusual characteristics of the
language. For instance, in ALLOY Boolean values are not scalars, and even though formulas have
Boolean values, variables never do [46, p. 137]. The reason for the absence of Boolean-valued expressions
is that their presence would render an expression like not p ambiguous when p contains zero or more
than one Booleans. Instead, Boolean-like valuations can be mimicked using the Boolean set from the
util/Boolean module of ALLOY’s standard library.

The primitives of TLA* and PLUSCAL consist of scalars and sets. Sets can be declared either as
constants in the section of a module, or as a predicate definition whose right-hand side is
a set-valued constant expression. To declare a set to be a subset of another set, we can use the
keyword. To declare a snapshot variable whose value is an element from a given set, we add a type

signature using the ‘\in’ set membership operator and the name of the set, as on line 10 of the TLA*

44

code block in Figure 5.1. To declare a snapshot variable to be a scalar from a given set, we can either
use the powerset keyword along with the set membership operator “\in’, or just use ‘\subseteq’.

Line 11 shows an example of the former.

In ASMETAL, the primitives are scalars and sets. Sets are declared using the abstract domain
keywords, as on lines 4 and 5 of the ASMETAL code block in Figure 5.1. To declare elements for
a set, one can either change the set declaration from abstract domain to enum domain and list the
enumeration elements as on line 3, or declare the elements using the static keyword, as on lines 10 and
11. In ASMETAL, a subtype is declared using the subsetof keyword, as on line 6. To declare a snapshot
variable to be a scalar from a given set, we add a type signature with the name of the set, as on line 9.
To declare a snapshot variable whose value is a set of elements from a given set, we use the Powerset
keyword, as on lines 7 and 8.

Each language consists of some built-in sets and scalars that are elements of those sets. In B and
EVENT-B, the built-ins are Booleans, naturals, and integers. B additionally has strings. TLA* and
PLUSCAL have Booleans, naturals, integers, reals, and strings. In ASMETAL, the built-ins are Booleans,
naturals, integers, reals, complex numbers, characters, and strings. ALLOY and DASH have integers
and Booleans, but the names typically used for scalars in these sets are actually singleton sets. ALLOY
also has strings, but currently the only elements in the set of strings are the string literals used in the
current model, and the analyzer cannot find arbitrary instances for strings like it can do for other sets.

5.2 Constructors and Multiplicities

In this section, we examine constructors and multiplicities across the languages. Constructors are
operators that create composite units of data from primitives or other composite data units. Multiplicities
in a constructor impose constraints that limit the values in the composite data. Constructors appear in
type signatures. We also discuss how formulas can be used to constrain composite units of data in many
languages, but we do not consider these formulas to be constructors because they are not part of a type
signature, and a formula can do much more than constrain the form of one kind of data. Figure 5.2 helps
compare the languages with respect to constructors and multiplicities using an equivalent snapshot
declaration across the languages.

The composite units of data in B are functions, relations, and records, each with various pre-defined
operations available to the modeller. Functions can be created using the “arrow” operators built into

the B language. These arrow operators are: + (partial functions), — (total functions), > (partial

45

g A~ ow NN =

[e2]

- ® W O N O Ul B~ W N =

—_ o

00 N O U1 A~ W N =

—_ g a4 a4 g
0 N O U1 A~ W N = O O

// textual description
uninterpreted sets from Figure 6.1
snapshot variables:
f1: total function from A to B
f2: monitored surjective function from
A to B
R1: 1-to-2 binary relation from C to B
s1: sequence of A's

// B
VARIABLES
f1, f2, R1, si
INVARIANT
f1: A-->B &
f2 : A-->>B &
R1T : AxB &
s1 : seq(A) &
T(v).(v: A & isC(v) <=>
card(R1(v)) = 2 &
not(isC(v)) => card(R1(v)) = @)

// Event-B
MACHINE
mo
SEES
co
VARIABLES
f1
f2
R1
s1
INVARIANTS
f1: A-->8B
f2 : A -->>8B
Rl : C<->B
s1 : NAT +-> A
lv..v:C=
(card({v} <| R1) =1 &
card(R1[L {v} 1) = 2)

// Asmetal
signature:

controlled f1:
monitored f2:

Powerset(Prod(A, B))
Powerset(Prod(A, B))
Powerset(Prod(C, B))

Seq(A)

Powerset(Prod(D1, D2)) -> Boolean
derived issurfun: Powerset(Prod(D1, D2)) -> Boolean
derived is1to2: Powerset(Prod(D1, D2)) -> Boolean
derived ran: Powerset(Prod(D1, D2)) -> Powerset(D2)

controlled ri:
controlled s1:
derived isfun:

definitions:

function dom($f in Powerset(Prod(D1, D2))) =
{$d1 in D1, $d2 in D2 |
contains($f, ($d1, $d2)): $d1}
function isfun($f in Powerset(Prod(D1, D2))) =
isEmpty({$d1 in D1, $d21 in D2, $d22 in D2 |
contains($f, ($d1, $d21))
and contains($f, ($d1, $d22))
and neq($d21, $d22): $d213})
function issurfun($f in Powerset(Prod(D1, D2))) =
isfun($f) and eq(D2, {$d1 in D1, $d2 in D2 |
contains($f, ($d1, $d2)): $d23})
function is1to2($r in Powerset(Prod(D1, D2))) =
eq(D1, {$d1 in dom($r), $d21 in D2, $d22 in D2 |
contains($r, ($d1, $d21))
and contains($r, ($d1, $d22))
and neq($d21, $d22): $d1})
invariant inv_f1_fun over f1: isfun(f1)
invariant inv_f2_surfun over f2: issurfun(f2)
invariant inv_r1_1to2 over ri1: islto2(r1)

Figure 5.2: Composite units of data in snapshot declarations across languages (part one)

- 0 W 0 N O Ul »h W N =

—_

O N O U1 AW N =

—_ 4 a4 a4 4 a g
W 0 N O U1 A W N = O VW

// Alloy
sig Example {
f1: A -> one B,
f2: A some -> one B,
R1: C -> B,
s1: seq A

fact R1_multiplicity {
all a: A | #(a.R1) =2

\x TLA+
Integers, FiniteSets, Sequences
f1, f2, R1, sl

* helper operators
Range(f) == {f[x] : x \in
SurFun(a, b) == {f \in [a -> b] :
RelRange(R) == {x[2] : x \in R}
RelDomRes(S, R) == {x \in R : x[1] \in S}
OneToN(R, n) ==
\A x \in RelDom(R) :
Cardinality(RelRan(RelDomRes(R, {x}))) =n

3

TypeOK ==
/\ f1 \in [A -> B]
/\ f2 \in SurFun(A, B)
/\ R1 \in C \X B * \X is cross product
/\ OneToN(R1, 2)
/\ s1 \in Seq(A)

b = Range(f)}

O N O U1l A W N =

o

10
1
12
13
14
15
16
17
18
19

// Dash
state Example {
f1: A -> one B,
env f2: A some -> one B,
R1: C -> B,
s1: seq A,

fact R1_multiplicity {
all a: A | #(a.R1) =2

\x PlusCal
EXTENDS Integers, FiniteSets, Sequences

(x --algorithm example
variables f1, f2, R1, s1;

define

* helper operators

Range(f) == {f[x] : x \in DOMAIN f}

* ... all helpers identical to the TLA+ ones

TypeOK ==
/\ f1 \in [A -> B]
/\ f2 \in SurFun(A, B)
/\ RT \in C \X B * \X is cross product
/\ OneToN(R1, 2)
/\ s1 \in Seq(A)
end define
end algorithm *)

Figure 5.2: Composite units of data in snapshot declarations across languages (part two)

47

0 N O g AW N =

—_ A
N = O O

// B
MACHINE rectest
VARIABLES vrec, vbar

INVARIANT
vrec : struct(foo : INTEGER, bar :
vbar : BOOL

INITIALISATION
vrec := rec(foo : 9, bar : FALSE) ||
vbar := TRUE

OPERATIONS
setvbar = vbar := vrec'bar

END

BOOL) &

1 * TLA+

2 —mmmmmmme—- rectest —------------
3 Integers

4 vrec, vbar

5

6 Init ==

7 /\ vrec = [vrec |-> 9, bar |->
8 /\ vbar =

9

10 setvbar ==

11 /\ vbar' = vrec.bar

12 /\ vrec

13

14 TypeOK ==

15 /\ vrec \in [foo : Int, bar :
16 /\ vbar \in

17

18 Spec ==

19 /\ Init
20 /\ [1[setvbar]_<<vrec, vbar>>
21 /\ [1TypeOK
22

Figure 5.3: Records in B and TLA*

48

injections), > (total injections), -+ (partial surjections), = (total surjections), and »» (total bijections).
Relations can be created using the < arrow operator. The B code block in Figure 5.2 shows examples of
using some of these operators. Line 5 shows a total function f1, and line 6 shows a surjective function f2.
R1 on line 7 is a binary relation, with the additional 1-to-2 constraint imposed in a formula on lines 9 — 11.
s11is declared to be a sequence of A’s, as on line 8. Since functions and relations in B are both represented
as sets of pairs, they can also be created using the set literal notation along with the — (“maplet”) pair
constructor. In addition to functions and relations, B also has records with named fields, as shown in
the B code block of Figure 5.3. The struct operator denotes the set of records matching the given field
signatures, and is used in the type signature when declaring a new record. A new instance of a record can
be created using the rec operator. Built-in constructors in B include (zero-indexed) sequences and trees.

EVENT-B’s composite units of data are functions and relations. EVENT-B, similar to B, has
various arrow operators for constructing functions and relations. In addition to all of B’s functions and
relations arrows mentioned above, EVENT-B has three additional arrows for constructing specific kinds
of relations. Namely, «- (total relations), <> (surjective relations), and «» (total surjective relations).
In Figure 5.2, line 12 shows a total function f1, and line 13 shows a surjective function f2. R1 on line 14
is a binary relation, with the additional 1-to-2 constraint imposed on lines 16 — 18. Since EVENT-B
does not have a built-in sequence constructor, we can use a partial function from NAT to A to represent

s1as a sequence of A’s, as on line 15.

TLA* does not have type signatures, and thus no constructors; but composite units of data can be
specified using TLA* formulas. The composite data units in TLA* are functions and relations. TLA*
also supports records, which are built on top of functions. The TLA* code block of Figure 5.3 shows
an example of declaring and using TLA* records. Lines 6 — 12 showcase formulas that constrain data to
be of a certain composite form. For instance, we define SurFun(a, b) to return the set of all surjective
functions from a to b, f1 is required to be a total function from A to B (line 15), f2 a surjective function
from A to B (line 16), R1 a binary relation between C and B (line 17) and constrained to be a 1-to-2 relation
(line 18), and s1 a sequence of A’s (line 19).

ASMETAL’s primary composite data unit is relations, created using the Powerset and Prod construc-
tors for creating sets and tuples respectively. Although ASMETAL has a dedicated function constructor
arrow that can be used in type signatures, it is not always be the best representation for a function, since
the possible operations on a function are limited. Lines 3 — 5 show the declaration of three relations,
which are constrained by the invariants on lines 28 — 30. The f1 total function from A to B is defined as
a set of pairs, where the set elements satisfy the constraint laid out in isfun: the set of elements from

f1’s domain that map to two different elements in £1’s range must be empty. The surjective function f2

49

from A to B is defined as a set of pairs, where the set elements satisfy the constraint laid out in issurfun:
first, f2 must already be a function; and additionally, £2’s codomain must match the set of elements
mapped to by f2 (z.e. every element of £2’s codomain must be mapped to by an element in £2’s domain).
The 1-to-2 binary relation r1 from C to B is defined as a set of pairs, where the set elements satisfy the
constraint laid out in is1to2: each element of r1’s domain must map to two different elements from its

range. Lastly, s1 is declared to be a sequence of A’s.

ALLOY’s composite unit of data is relations, created using the ‘->’ arrow constructor. As relations
are ubiquitously used in ALLOY models, ALLOY provides convenient dot join .” and box join ‘[1’
operators [46, p. 57-62], which resemble record field access and array indexing respectively. Somewhat
hidden to users of ALLOY is that ALLOY does not actually have record objects; and though signatures
and their fields mimic records and record fields, signatures are actually sets (z.e. unary relations) and
signature fields are top-level identifiers themselves, each a relation mapping their parent signature to the
field’s value from the set declared in the field’s type signature. This can be confusing to new users trying
to understand the output of the analysis (¢.g. counterexamples for model checking), when a variable
name is actually a relation.

ALLOY provides a range of multiplicity constraints within its type signatures. A multiplicity
constraint is a constraint limiting the number of elements in the range associated with elements in the
domain. ALLOY has four multiplicity keywords, set (any number), lone (zero or one), one (exactly
one), and some (one or more). When the type signature is a set (z.e. unary relation), it can be prefixed
with a multiplicity keyword asin x: m e, where x is the set being constrained, m is the multiplicity
keyword, and e is the set-valued bounding expression. The default multiplicity for a set-valued type
signature is one. Thus, if the multiplicity keyword m is omitted, x: e makes x a ‘scalar’ (z.e. a singleton
set). Here is the meaning of the other multiplicities on sets:

x: set A x becomes a subset of the set A
y: lone By can either be empty or a singleton subset of the set B
z: one C zbecomes asingleton subset of the set C; equivalent to z: €

x: some D x becomesa nonempty subset of the set D

When the type signature is a relation (of arity greater than one), it cannot be prefixed with a multiplic-
ity keyword. Multiplicity keywords may appear around the ‘->’ arrow constructor, asin x: el m->n e2,
where mand n are multiplicity keywords, and e1 and e2 are sets. The expression x: el m->n e2 means
the relation x is constrained to map each member of e1 to n members of e2, and to map m members

of e1 to each member of e2. e1 and e2 need not be sets (unary relations) or even named relations; and

50

they may be any arbitrary expressions. The above description is generalized by replacing ‘member’ with

‘tuple’. Below are examples of some commonly-used multiplicities on relations:

x: A ->one B x becomes a total function from A to B

y: A ->lone B y becomes a partial function from A to B

z: A one->one C z becomes a total bijective function from A to €

x: A some->one C x becomes a total surjective function from A to C
y: A some->lone D ybecomes a partial surjective function from A to D
z: A some->some D z becomesa nonempty relation from A to D

DASH has the same constructors and multiplicities as ALLOY.

Having considered constructors across the languages, we now briefly touch on the names of built-ins
in each language. B’s built-ins include sequences and trees. ALLOY’s built-ins include a constructor
that imposes linear total order on other sets, (zero-indexed) sequences, strings, and graphs. DASH shares
ALLOY’s built-ins. TLA*’s built-ins include composite data units like records, bags, and (one-indexed)
sequences, from TLA™’s standard modules. Recent TLC versions override the definitions from most of
these standard modules in the host language (Java) for improved efficiency. PLUSCAL shares TLA*’s
built-ins. ASMETAL’s StandardLibrary.asm [11] contains a large number of built-ins such as bags,
maps, products (tuples or pairs), and (zero-indexed) sequences.

5.3 Expressions

In this section, we discuss briefly the syntax of each language for writing formulas, and the operators
and constructs provided in each language for writing expressions. Since all of the languages are based
on first-order logic and set theory, their expressions are reasonably similar in succinctness. They all
provide operations to create and modify primitives and composite data units, such as sets, relations, and
functions. In the following, we discuss only the interesting differences in the expression syntax of each
language.

The expressions of B and EVENT-B have a more imperative style than declarative, in that initial-
ization and changing of variables are primarily done using the ‘:=" assignment operator. Additionally,
both languages have a nondeterministic assignment operator ‘:€’ for setting the value of a variable to a
nondeterministically-chosen element from a set. However, as declarative modelling languages, both
B and EVENT-B support changing a variable in a declarative style using the “: ()’ and : |” operators

51

respectively, for when a regular assignment is not flexible enough and we would like to declaratively
constrain the value of a variable. In B, assignments statements are combined using the ‘| |” and *;’
operators, for parallel and sequential assignments respectively. Since both relations and functions in B
and EVENT-B are represented as sets of pairs, in addition to the arrow operators described earlier they
can also be created using the set literal notation along with the ‘=’ (“maplet”) pair constructor.

ALLOY and DASH have expression languages that include set operators mixed with first-order

logic. Models typically make extensive use of the join operator because every unit of data is a relation.

TLA™ has a small number of essential operators for conveniently working with sets and functions,
TLA™" also hasthea operator, IF. . .. expressions, expressions, LET. . IN expressions,
and . Even though TLA™ is a very small language, one can easily define new custom operators .
For instance, on line 6 of Figure 5.2 we define the Range operator which is absent in TLA*, to return the
range of a function. TLA* uniquely supports recursive and higher-order operators, which take other

operators as arguments.

The ASMETAL language rarely uses symbols and most operators have long-form textual names.
ASMETAL’s built-in units of data are opaque, in that operations defined on primitives cannot be
applied to composite data units. This means that the operations on the built-in composite data units are
limited by what is currently implemented in the tool support for the language. As of now, in ASMETAL
sets are the most flexible/featureful construct in the language, and the modeller may need to fall back
to using them as the underlying representation of a data unit if the built-in data unit provided by the
language does not include the operations they need. For instance, few operations are available for the
built-in function constructor in ASMETAL. Since an ASMETAL function cannot be treated as a set
of tuples, the set operations are not defined on functions. As such, when more flexibility is needed, e.g.
for writing formulas for dealing with a function as a whole, the built-in function constructor cannot be

used, and instead the more flexible ‘set of pairs’ representation must be used.

5.4 Events

An event denotes an occurrence at a moment in time, such as a button being pressed or a card swiped.
An event may be used as a precondition of a transition. Among the declarative modelling languages
studied in this work, events are a feature unique to DASH. A statechart event in DASH can be added
to a snapshot using the event keyword, as on lines 12 and 13. The semantics of events in DASH is that
they persist as long as transitions are enabled, allowing multiple transitions to be taken in response to an

input from the environment.

52

To model events in languages other than DASH which do not have a notion of events built into
them, we use regular snapshot variables. There are several possible approaches for keeping track of the
triggered state of the events of a model. One approach is to use one snapshot variable for each event,
with the value of each variable drawn from a two-element set, for whether or not the event is currently
triggered. A language’s built-in Boolean set or another two-element set with more descriptively-named
elements are good candidates for the type signature of this snapshot variable. Another approach is to
declare an enumerated set with one element per event. Then, declare one set-valued snapshot variable
whose value is a subset of the enumerated set of events, with each currently triggered event being a
member of this set. Constraints must be added to specify the desired semantics of events, such as
whether the event persists. Figure 5.1 shows exemplars using this approach across the languages (besides
DASH, which has built-in support for events).

5.5 Constants

A constantisa mapping from a name to a value, either a primitive or a composite data unit. Constants
retain their value throughout all of the transitions of the transition system. Figure 5.1 shows examples
of declaration of constants across the languages. In B, constants are declared under the CONSTANTS
section of a machine, and are further constrained in the PROPERTIES section. In EVENT-B constants are
declared under the CONSTANTS sections of a context, and are further constrained in the AXIOMS section
of the context. The B and EVENT-B code blocks in Figure 5.1 show examples of this. In ASMETAL,
constants are declared under the signature section after snapshot variables, using the keyword static,
as shown on lines 10 and 11 of the ASMETAL code block in Figure 5.1. A constant may be assigned a

specific value under the definitions section, as on line 13.

ALLOY and DASH do not have a keyword or construct for constants. Thus, a “constant” is declared
like a regular variable as a field of a signature, and must be constrained to have the same value in all
snapshots. To avoid confusing constants with snapshot variables, we declare them in a separate signature,
conventionally named Const. In ALLOY, further constraints, such as having the constant be a certain
literal value, can be imposed using either a fact or a predicate. In DASH, these constraints are added
in an invariant block inside a state. Lines 5 — 8 and 5 — 8 of the ALLOY and DASH code blocks of
Figure 5.1 show examples of constant declarations in ALLOY and DASH; and lines 8 and 14 of the
ALLOY and DASH code blocks show an example of a constraint being imposed on the constant c2
using a signature fact and an invariant in ALLOY and DASH respectively.

In TLA* and PLUSCAL, constants are declared under the section of the module. For

53

model checking with TLC, every constant must be constrained in the “Model Overview” page of the
model in the TLA* toolbox. A constant can be constrained using either an “ordinary assignment” (any
valid TLA* expression that can be assigned to a variable), or can be constrained to be a “model value”
or a “set of model values”. In TLC terminology, a “model value” is a unique value equal only to itself.
Alternatively, if we use a predicate definition like c2 == 3, we will not have to declare c2 as a constant
under , and every mention of c2 is replaced with 3 during analysis. This works in both TLA*
and PLUSCAL, and is similar to the practice of defining constants and magic values in C programs using
preprocessor macros. Note that this approach only yields a constant when the right-hand side expression
is a constant expression, such as an integer literal, and for instance c2 == cc \in Integer:

would 7ot result in c2 being a constant, since is not guaranteed to always return the same value
each time it is evaluated. The TLA* and PLUSCAL code blocks of Figure 5.1 show an example of the

former and latter method respectively.

5.6 Well-formedness and Typechecking

Well-formedness is a condition under which a formula or expression is valid in a formal language, and
has a well-defined meaning. In this section, we investigate the notions of well-formedness across the
seven declarative modelling languages, and the constructs in each language that help make it easier for
modellers to find or avoid mistakes in their models, such as use of type signatures and typechecking.
In this section, we focus on static well-formedness checking techniques, which include parsing and
typechecking. All the languages studied in this work do basic forms of syntax checking when parsing
input models.

Typechecking is the process of checking whether the use of data in the formulas conforms to the
constraints expressed in the type signatures. With respect to typechecking, the following two questions
arise: First, does a language have type signatures? The answer is that B, EVENT-B, ALLOY, DASH,
and ASMETAL do have type signatures, and TLA* and PLUSCAL do not. Second, does a language
with type signatures have a separate typechecking pass from other forms of analysis? The answer to this
question is yes; all of the languages we studied that have type signatures also have a typechecking pass

separate from the main analysis (¢.g. model checking).

In TLA", there are few well-formedness checks beyond the basic syntax checking done by the parser.
TLA* does not have type signatures, so variable and constant declarations only consist of names. Any
typing constraints must be stated with other invariants and are properties checked to hold in every

snapshot of the transition system during the main analysis. An example of such typing constraints is the

54

TypeOK predicate defined on lines 15 — 19 of Figure 5.2. In our experience, having to manually add typing
invariants in the absence of a typechecker can be error-prone and can hinder the debugging experience,

as the errors arising from the violation of these typing constraints can result in cryptic error messages.

Compared to TLA*, PLUSCAL has a number of safeguards in place that make certain classes of bugs
syntactically invalid, thus allowing the parser to catch them when the modeller asks for the TLA* trans-
lation of their PLUSCAL model [52]. Examples include mistakes such as multiple assignments to the
same variable in a transition, and having unreachable statements. These are eliminated by PLUSCAL’s
notion of labels, and where they may or must appear in the transition definition. For the above two
examples, the former is prevented due to the rule that a variable may only be assigned to once between
any two labels in a PLUSCAL process, and the latter is eliminated by the requirement that a label must
be added for any statement that follows a goto or return statement. For PLUSCAL models, typing
constraints can be added using the same approach as TLA™ described earlier.

In ALLOY, the only well-formedness checking is a kind of typechecking. Type signatures constrain
the model’s reachable snapshot space. There are two kinds of type errors in ALLOY [46, 33]:

1. since ALLOY’s logic assumes each relation has one fixed arity, an expression resulting in relations
of mixed arity is illegal; and

2. an expression that can be shown to be redundant itself or contain a redundant sub-expression,
based on the declarations alone, is ill-typed. A common example of this is an expression that is

redundant due to being equal to the empty relation.

The current implementation of DASH performs several well-formedness checks in addition to
ALLOY’s. Currently, typechecking in DASH is not as thorough as in ALLOY, and some type errors
will only be caught in the generated ALLOY model. DASH’s well-formedness checks are as follows [74]:

* Every top level state must be declared as conc (error).

* If a model has state hierarchy then there must be one default child state defined (error).

* Either all children states at the same level of the hierarchy are concurrent or none at all (error).
* Only snapshot variable declarations can be primed (error).

* Monitored (environmental) events cannot be generated in a transition (warning).

* Monitored (environmental) variables cannot be primed (error).

* A transition action must constrain the next value of (non-env) variables (error).

* Elements in a state should have different name (not currently enforced).

Besides well-definedness conditions, B and EVENT-B also use typechecking to statically catch type

errors like assigning a value from a set to a variable with a type signature declaring a different/incompatible

55

set, and applying a function to an argument not matching its type signature. To ensure that models only
contain well-defined formulas, B and EVENT-B rely on well-definedness proof obligations. These are
formulas corresponding to conditions that are expected to hold when performing certain actions, such
as integer division and function application, in order for the action to be well-defined. For example,
division by zero is not well-defined, and neither is applying a function to an element outside its domain.
In a theorem proving setting, these well-definedness conditions have to be proven, along with other
proof obligations. In a model checking or animation setting, ProB performs well-definedness checking
during constraint solving, model checking, or animating. In B, type signatures are declared in the
INVARIANT section along with other invariants. Similarly, type signatures in EVENT-B are declared in
the INVARIANTS section along with the other invariants of the machine.

Type signatures in ASMETAL are included along with each variable declaration. Further, the
ASMETAL grammar uses various syntactic rules to distinguish between language elements:

* name of (local) variables must start with a dollar sign ($);

* enumerated set elements must start with two upper-case letters, followed by zero or more upper-
case letters, underscores, or digits;

* domain (set) names must start with an upper-case letter;

* rule names must start with a lower-case ‘r’, followed by an underscore (z.e. “r_");

* function names (including snapshot variables) must start with a lower-case letter, but 7ot start
with the string “r_” (to avoid confusion with rule names);

* invariant names must start with the letters “inv” followed by an underscore (Z.e. “inv_"); and

* natural numbers must have a ‘n’ suffix (e.g. 14n is the natural literal for the number fourteen),
and integers must not have a suffix (e.¢. 13 is the integer literal for the number thirteen).

These syntactic rules allow the Asmeta parser to detect a variety of errors statically during parsing,
including some type errors that would normally be caught by a typechecker rather than a parser. For
example, (mis)using an integer where a natural number is expected, or confusing an enumerated set
element with the parent set or a variable. The Asmeta typechecker in turn helps catch other ill-typed
formulas and errors like trying to calculate the sum of one and the empty set ({3 + 1), or assigning a set
to a variable previously declared to be a string.

56

5.7 Scopes

In this section, we look at the constructs in each of the declarative modelling languages and/or their tool
support provide for setting the scope (size) of each of the sets used in the model. None of the languages
studied in this work require specifying the scopes as part of the model. However, some of the languages
allow the definition of scopes to be part of the model.

In ASMETAL, there is no default set size, and user-defined domains and their elements must be
explicitly stated if needed. For instance, a signature like abstract domain A is sufficient for declaring
a new set A and using it in the model, including with a choose rule. However, the Asmeta Animator
and Simulator currently enter an infinite loop if we try to animate or simulate a model without scopes
for all sets. To use the abstract domain, we have to declare its elements. For example, static al: A
declares an element a1 in A, which is required to be distinct from another element static a2: A inA.
Alternatively, we could either declare a new concrete domain that is a subsetof the abstract domain and
specify elements for it and use it instead of using A directly; or, change A into an enumerated domain
like enum domain A = {AA1 | AA2}.

For B, the ProB animator and model checker requires that all deferred sets to be given a finite
cardinality. This is done by adding to the PROPERTIES section a card(SETNAME) = n predicate for each
deferred set SETNAME, or by adding to the DEFINITIONS section a definition scope_SETNAME == m..n
; or alternatively scope_SETNAME == n, equivalent to 1..n. For sets with no specified cardinality, a
DEFAULT_SETSIZE=2 will be used. To limit the scope of implementable integers (INT) and naturals
(NAT and NAT1), we can add the definitions SET_PREF_MININT == x and SET_PREF_MAXINT == y in the
DEFINITIONS section to set MININT to x and MAXINT to y, which default to -1 and 3 respectively.

As ProB integrates into Rodin (the tool support for EVENT-B), the above descriptions about
adding scopes to B models mostly apply to EVENT-B models as well. The difference is that EVENT-B
does not have a DEFINITIONS section like B does; so the only method for setting specific sizes for carrier
sets is by adding a card (SETNAME) = naxiom for each carrier set SETNAME. The default set size, the default
values of MININT and MAXINT, and other ProB preferences may be changed from the Rodin tool by going
to the Window menu, selecting Preferences, and clicking on ProB in the left pane.

In TLA*, the size of sets may be specified under the section of a model using the Card
operator. The cardinality of the largest set that the TLC model checker can handle is 1000000 by default.
This can be changed using the -maxSetSize x command-line option to set the value to x, if using TLC
from the command-line. When using the TLA* toolbox, the value can be changed by opening the Model
Overview, clicking on Additional TLC Options, expanding the Parameters section, and changing the

57

option there. The upper bound for this option is Java’s Integer .MAX_VALUE. The largest value for TLA™’s
Int and Nat sets is Integer .MAX_VALUE, and the smallest value for Int is Integer .MIN_VALUE.

In ALLOY and DASH, scopes are upper bounds or exact sizes of sets, and are specified for each
run or check command. All top-level signatures have a default scope of 3. The two exceptions to this
rule are the two special Int and seq signatures, both of which have a default scope of 4. Int’s scope
is the maximum bit-width for integers. For example, a scope of 6 allows Int to range from -32 to +31.
For seq, the assigned scope is the length of the largest allowed sequence. For example, a scope of 5 on
seq allows sequences of up to 5 elements. Given a predicate x and an assertion y, in its simplest but
still useful form, a command may look like run x or check y, where no scope is specified and thus
the above default scopes will be used. Note that this does not apply to the special signatures Int and
seq, and their scopes only change when set explicitly, as explained below. The following explanations
apply to both run and check commands, but we will use run in our examples. Given the signatures A, B,
and C, run x for 5 sets the upper bound scope for A, B, and C to 5. To use a different scope for some
signatures, we use the but keyword: run x for 5 but 4 B sets the upper bound for every signature
to 5, except for B, which is given an upper bound of 4. To force an exact scope for a specific signature,
we can use the exactly keyword: run x for 5 but 4 B, exactly 6 A setsan upper bound of 5 for
all signatures, except for B which is given an upper bound of 4, and A which is forced to have an exact
size of 6. We do not have to set a default scope for all signatures in a command, as long as we explicitly
specify the scope for each signature or if ALLOY can infer it implicitly. For details about the cases where
ALLOY can calculate the scopes implicitly, see [46, p. 283].

5.8 Missing Features

None of the languages explicitly support operators for dynamic allocation of parts of the state (Z.e. “new”
as in Spin [43]). Further, none of the languages have a “message passing channel” feature like Spin
does, and such a construct must be modelled using snapshot variables and techniques ensuring correct
synchronization. Also, none of the languages have a built-in construct for time; but it can be modelled
using techniques such as the “explicit-time” approach explained in [51, 82], wherein the current time
is represented as the current value of a snapshot variable, and the passage of time is modelled using a
transition that increments the value of that variable.

58

Chapter 6

Modularity

To create large models, some form of modularity is needed. In this chapter, we discuss how each language
provides support for modularity in a description of a transition system. Our case studies were not large
enough to exercise the differences presented in this chapter, and we cannot use small exemplars to

showcase these differences in a meaningful way. Modularity can be evaluated from two points of view:

(1) How can a description of a single transition relation be decomposed into multiple parts? This
decomposition may take the form of

(a) subtransition systems that are composed to create the single top-level transition relation
implicitly or explicitly, where a subtransition system is a full description of a transition

system; or

(b) subformulas relevant to other aspects of the model — such as a grouping information

(axioms, ezc.) regarding a unit of data — which we refer to as a data decomposition.

(2) How can a description of a single transition system be decomposed into multiple files? Typically
a decomposition into multiple files involves interfaces that can be parameterized and have private

and public parts.

It may be possible for the decompositions of (1) to be realized in multiple files. In the following, we
describe the different means within a language of decomposing the transition relation (ze., (1) above)
and within this discussion address when/how different parts of the transition relation can be realized in
multiple files. Both (1) and (2) may involve differing namespaces.

59

Table 6.1: Summary of modularity aspects of languages

Language "
Criteria B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL

subTRs v — v — v — v
sub7R namespaces — — — v* — — —
Dus decomponion |, v

File import SEES, ... SEES open open EXTENDS import

File export varies entire context non-private — non- non-LOCAL export
File parameterization v — v Vv Vv Vv —
File namespaces — — v — v Vv —
Syntax overloading — — v Vv — — v

*: Due to DASH’s per-state namespaces.

In B, the definition of the transition relation is implicit, and it is possible to decompose a transition
system into subtransition systems. Each B machine resides in one file, under one namespace. The B
language has extensive constructs for creating relationships between machines, using the keywords SEES,
INCLUDES, PROMOTES, EXTENDS, USES, and IMPORTS [30]. A B machine can reference the name of another
machine along with these keywords to establish the desired kind of relationship with that machine. The
SEES keyword grants a machine read-only access to see the data components (z.e. sets, constants, and
variables) of another machine, and the INCLUDES keyword grants read-write access to the data components
of the included machine, allowing instantiation if the machine is parameterized (over a scalar or set
parameter). More specifically, INCLUDES allows establishing a subtransition system relationship where
the SETS, CONSTANTS, PROPERTIES, VARIABLES, INVARIANT, ASSERTIONS, and INITIALISATION sections of
the included machine are in effect prepended to those of the including machine. The details of the
remaining keywords and the relationships they establish are beyond the scope of this work. There is no
support for syntax overloading in B.

In EVENT-B, the definition of the transition relation cannot be further decomposed into subtran-
sition systems. In EVENT-B, there are two kinds of files: contexts and machines. Contexts describe
non-changing parts of the system, namely the sets, constants, and axioms; and a machine contains the
snapshot and transitions (the transitions are implicitly combined to build the transition relation). A
machine can see any number of contexts by adding their names under its SEES section. The only possible
relationship between two machines in a project is where one machine REFINES another. There is no
support for syntax overloading in EVENT-B.

An orthogonal perspective on the notion of modularity in B and EVENT-B is the concept of

60

refinement [14,15, 30, 47]. The idea behind refinement is starting the description of a transition system
at a very abstract level and with minimal details, and gradually refining that description over several
refinement steps to arrive at a more concrete and complete description. Both B and EVENT-B have
tool support dedicated to assisting the modeller with performing refinement steps and doing them
correctly, by presenting various proof obligations that need to be proven correct at each step. Details on
refinement is beyond the scope of this work.

In ALLOY, the definition of the transition relation is explicit as a formula. Therefore any means in
ALLOY of decomposing formulas can be used to decompose the description of a transition system. In
Chapter 4, we discussed some typical styles of decomposing transition systems into different formulas
(e.g., with pre and postconditions). Within one ALLOY file, the namespace includes all of the identifiers
declared/defined in the current file.

In ALLOY, formula decomposition can be split across multiple files. This decomposition could be
for subformulas of the transition system or for a grouping of axioms regarding a unit of data. ALLOY
refers to each file as a module, which may be given a name using the module keyword at the beginning of
the file. By default, all of the identifiers declared or defined in a file are exported, along with the exported
identifiers of all of the other files imported into the current file using the open keyword. However,
signatures, their fields, functions, and predicates can be marked as private, making them private to the
current module and not appear in the namespaces of other modules that import the current module. To
assign a dedicated namespace to the identifiers of an imported module, we can use open. . as. For example,
open utils as u will bring the definitions of the utils module into scope under the u namespace, and
an identifier named test can be referred to using u/test. In ALLOY, a module can be parameterized
over an argument, similar to the notion of genericity in programming languages. For instance, ALLOY’s
ordering module is parameterized over a signature on which the module will impose a linear total order.
In ALLOY, for syntax overloading, fields in different signatures can use the same name, as long as the
two signatures do not overlap (by one being a subset of the other). In other words, the type signatures
for two fields with the same name must differ at least in the first column. Further, two predicates or
functions may share the same name, so long as the type signatures for their arguments are not identical

(z.e. an unambiguous name resolution possible).

In DASH, the definition of the state hierarchy for the transition relation must all reside together in
one file because the transition relation is defined implicitly. This includes DASH invariants (declared
using invariant or fact), which must be in the same file as the transition system. In DASH, each state
has a dedicated namespace. Separate namespaces create interfaces between states, while still allowing

global communication. A reference to an identifier in another state must be given by its fully qualified

61

name. A qualified name is formed by following the state hierarchy separating state names with /” and
then adding the element name. In DASH, the data modelling aspects of a transition system are described
separately from the state hierarchy and therefore can be separated into multiple files as in ALLOY.
ALLOY’s file-level module system and namespaces are available to DASH models, with the exception of
per-file dedicated namespaces (using open. . as), which are not yet implemented in DASH. The details
of ALLOY’s syntax overloading apply to DASH as well.

In TLAY, the definition of the transition relation is explicit as a formula. Therefore any of the means
of decomposing formulas in TLA™ can be used to decompose the description of a transition system.
Within one TLA* file, the namespace includes all of the identifiers declared/defined in the current file.

In TLA™, formula decomposition can be split across multiple files. This decomposition could be
for subformulas of the transition system or for a grouping of axioms regarding a unit of data. TLA*
refers to each file as a module, which must be given a name using the keyword at the beginning
of the file. By default, the identifiers of all of the predicates defined in a module are exported, along
with those of the other modules imported into the current module. To import another module into
the current module, we use the keyword. To import the definitions of a module M into a
dedicated namespace, instead of importing it directly, we add a definition M == M. We can
then use M!def to refer to a definition def from the M module. In TLA*, a module is parameterized
over its . As such, if M has declared A, B(which may potentially be higher-order
operators), they must be instantiated usingM == M A <- el, B <- e2,whereeland
e2 are TLA" expressions such as literals or identifiers of sets or constants from the current namespace.
To mark a definition or an instantiation as local to the current module, we use the keyword,
preventing it from appearing in the namespaces of the other modules importing the module. TLA*
supports a number of user-definable symbols, but as with other definitions, they must not clash with
any existing definitions for those symbols, as TLA* does not support syntax overloading.

In PLUSCAL, a transition system is defined in an algorithmblock. The definitions of the transitions
represented using PLUSCAL processes must all reside together in that algorithmall in one file, because
the transition relation is defined implicitly. Each process can optionally have local variables only available
to that process, declared and initialized using the variables keyword before the beginning of the body
of the transition. Locally-scoped bindings using LET..IN TLA™ expressions are possible as well. In
PLUSCAL, the data modelling aspects of a transition system can be described separately from the
transition definitions, and therefore can be separated into multiple files as in TLA*. TLA*’s file-level
module system is available to PLUSCAL models as well. The details of TLA*’s user-definable symbols
and lack of syntax overloading apply to PLUSCAL as well.

62

In ASMETAL, the definition of the transition relation is explicit as an ASMETAL rule. Therefore
any of the means of decomposing rules in ASMETAL can be used to decompose the description of a
transition system. Within one ASMETAL file, the namespace includes all of the identifiers declared or
defined in the current file.

In ASMETAL, a model can be split across multiple files for subtransition system and data decom-
position. ASMETAL refers to each file as a module, and there are two kinds of modules. A module
containing a transition system — ze. amain rule (transition relation) and an init (initial snapshot)
section — is given a name using the asm keyword. Modules not including the above two constructs can
be created using the module keyword, and may contain type signatures and specifications for data units.
A module can selectively export a subset of its definitions using a comma-separated list of identifiers
with the export keyword, or export everything at once using export *. To import a module, we use the
import keyword along with the name of the module, and optionally a parenthesized comma-separated
list of identifiers if only some of the module’s definitions are desired. ASMETAL does not support
prefixed/namespaced imports, and there is no support for parameterized modules. In ASMETAL,
functions and transition definitions may be overloaded, so that functions with different type signatures

can share the same name.

In summary, the B, ALLOY, and TLA*, and ASMETAL languages allow decomposition of the
model into subtransition systems across multiple files, while EVENT-B, DASH, and PLUSCAL only

allow data decomposition across multiple files.

63

Chapter 7

Case Studies

In this chapter we present several case studies across the data- vs. control-oriented spectrum that we
carried out to help us compare the languages with respect to our developed comparison criteria. We
dedicate a section to each case study, in which we examine the models of that case study in each language,
mentioning the noteworthy characteristics and the differences between them based on the criteria in the
control and data modelling chapters. When discussing a particular criterion, we put the criterion’s name
in bold in the sentence. Our case studies were not large enough to exercise the differences presented in
the modularity chapter. We conclude each section with our recommendations as to which language(s)
are better suited for modelling that particular case study.

Table 7.1 shows the sizes of each model of each system across the languages. The entry in row i column
j is the number of lines of code for the model of the case study 7 in the language j. The models for our case
studies can be obtained from <https://bndl.org/mmath> or <https://github.com/WatForm/models>.

Table 7.1: Lines of code for each case study across the languages

Language +
B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Case study

EHealth 62 111 135 95 120 101 87

Digital Watch 135 210 295 112 197 160 142
Musical Chairs 68 84 130 65 101 106 97
Library Management 180 164 317 120 146 151 207
Railway 82 86 387 280 79 84 78

64

https://bndl.org/mmath
https://github.com/WatForm/models

7.1 EHealth

The first case study tackled in this thesis is the EHealth (Electronic Health) system, originally done
in TLA* by Professor Jonathan S. Ostroff [68]. The goal of the EHealth system is to make sure that
medications prescribed to patients are safe, by keeping track of dangerous interactions between the
medications recorded in the system. The system allows a transition adding a medication to a patient’s
prescription if and only if it does not interact dangerously with any of the other medications previously
prescribed to that patient.

The EHealth system falls on the very data-oriented end of the data- vs. control-oriented characteri-
zation spectrum due to its use of rich primitives (such as sets and tuples) and constructors (such as
relations and functions), and having no need for fine control of when a transition is relevant beyond the

preconditions of each action. It consists of the following components:

* two sets representing all patients and medications in the universe;

* four snapshot variables representing sets of patients, medications, interactions, and prescriptions
registered in the system; where the variable for interactions maps each medication to a set of
medications with which it has undesired interactions, and the variable for prescriptions maps
each patient to a set of medications prescribed to that patient; and

* transitions for adding patients and medications, and for adding and removing interactions and
prescriptions.

We consider the following three safety properties for the EHealth system:

* Symmetry of interactions: medication 7z, has an undesired interaction with a medication 2, if

and only if 7, has an undesired interaction with ;.
* Irreflexivity of interactions: no medication has an undesired interaction with itself.

e Safety of prescriptions: for all pairs of medications 72; and 7, and patient p, if 7y and m; are

prescribed to p then 7 and m; do not have an undesired interaction.

The transitions for adding an interaction and adding a prescription must have appropriate pre-
conditions to ensure that the above safety properties are always satisfied. Namely, prescription of a

mediation for a patient must only be allowed if the newly prescribed medication does not have an

65

undesired interaction with any of the patient’s existing prescribed medications. Further, addition of a
pair of medications as having undesired interaction must only be allowed if the two medications are
different, and that they are not both prescribed to any patient already.

The TLA* model of the EHealth system is used as reference for modelling the system in the other
languages studied in this work. I had written the TLA™* version, as a completed extension of the snippets
in Prof. Ostroft’s technical report [68], based on the descriptions there. As TLA™ does not have
constructors for partial functions, the model uses relations for representing the prescriptions and
interactions data. Although we wrote the transitions such that the relations represent partial functions,

we did not impose any additional constraints enforcing this.

The B and DASH models of the EHealth system were written by Ali Abbassi and Jose Serna
respectively. Compared to TLA* where there are no type signatures, B and DASH have type signatures
and typechecking.

Similar to the B EHealth model, the EVENT-B model also has type signatures with automatic
typechecking. In contrast to the B model, the EVENT-B version correctly uses type signatures that
are consistent with the use of data in the model. The EVENT-B model uses the constructor a partial
function representation for prescriptions and interactions data over only the set of people and medica-
tions that have been added to the system. This representation establishes the invariants in the initial
snapshot and preserves them in future snapshots.

The notable difference between the DASH EHealth model and the reference TLA™ version is the
use of DASH’s monitored variables for the input variable declarations, by marking the input patient
and input medications snapshot variables with the env keyword.

The first notable difference between the ALLOY and TLA™ models of the EHealth system is that
in the ALLOY model, we represent the input variables as snapshot variables prefixed with “in_” that
are never constrained in the destination snapshot. Due to the nature of the frame problem in ALLOY,
this effectively makes these variables monitored variables. Although one could use a similar approach
in TLA™, it makes little sense to do so, because in TLA* every snapshot variable must be constrained
in every transition, and making the input variables part of the snapshot would make the transitions
needlessly more verbose. In fact, this is the reason why all of our ALLOY models for the case studies are
the largest, because in ALLOY all (non-monitored) snapshot variables that are to remain unchanged by a
transition must be constrained by that transition. The second difference between the two models is that
in the ALLOY model, the predicate for every transition requires the source and destination snapshot of
the transition as arguments. However, in the TLA* model, the arguments to each snapshot are only the

input variables, as TLA* has built-in support for source and destination snapshots using unprimed and

66

primed variable names, and the packaging of the snapshot is implicit; whereas in ALLOY, unprimed
and primed variables do not have any significant meaning in the language, and the packaging of the

snapshot is an explicit signature.

The PLUSCAL model of the EHealth system closely resembles the TLA™ version, with many
common/overlapping TLA™ expressions between the two models. Where the TLA* model used a
TLA* action (definition) directly for defining each transition, in the PLUSCAL version each process
corresponds to one transition. Since the processes each contain a single PLUSCAL label, the translation
of the PLUSCAL model back to TLA* results in one TLA™ transition per each PLUSCAL process.

The ASMETAL EHealth model, like the reference TLA* model, uses a relation representation for
the prescriptions and interactions data because of ASMETAL’s lack of a partial function constructor.
This model is one of two ASMETAL models among our case studies for which we were able to use the
AsmetaSMV model checker, because as previously mentioned, AsmetaSMV currently only supports
a limited subset of the ASMETAL language, and in this model we were able to confine ourselves to
using the limited subset of the language. For instance, use of Powerset in type signatures for declaring
set-valued snapshot variables is not supported by the model checker, so we did not use it in this model.
To work around the limitation, we used membership predicates for representing membership in the sets
and functions in the type signatures of the snapshot variables, as shown in Figure 7.1.

controlled patients: Patients -> Boolean
controlled medications: Medications -> Boolean
controlled interactions: Prod(Medications, Medications) -> Boolean

A w N =

controlled prescriptions: Prod(Patients, Medications) -> Boolean
Figure 7.1: Membership predicate representation for sets and functions in ASMETAL

For the EHealth case study, we found all languages and their tooling to be adequate and useful for
modelling and debugging the system, as there is little structure in the control aspects of the transition
system, and the primitives and constructors used in the example are fairly standard across declarative
modelling languages. For the ASMETAL EHealth model, although the need to use a membership
predicate representation for sets, so that we could use the AsmetaSMV model checker, did not pose a
serious issue in our modelling and verification process, we did find it to be an annoyance and deviation
from the reference model nonetheless. More importantly, ASMETAL does not have a constructor
for partial functions. Further, while writing the ALLOY model, we found ourselves running into
strange behaviours with our model, which we eventually noticed was due to under-specification in

some of our transition definitions, relating to the frame problem, where in ALLOY any variable not

67

constrained in a transition may freely change from the source to the destination snapshot. This may
be a common mistake by modellers of varying levels of experience, and may be hard to debug due to
it causing unexpected behaviour in various parts of the model. As such, we would be less inclined to

recommend ALLOY for modelling this example.

7.2 Digital Watch

The second case study in this thesis is the digital watch example, an adaptation of Harel’s model [41].
The digital watch system consists of a digital display and four buttons 4, b, ¢, and 4. The watch has several
modes/states of operation that may be accessed using specific sequences of button presses. The digital
watch system has a large number of control states and many events triggering transitions between
them, and depends on control state hierarchy to decompose these into related parts. Considering this,
and the model’s limited use of primitives and constructors, the digital watch example falls on the very
control-oriented end of the data- vs. control-oriented characterization spectrum. For the digital watch
system, we consider the following reachability property: from any snapshot, when 4 is pressed, it is
possible to get to a snapshot in which in the next snapshot the watch will be in the Time state.

The reference model for the digital watch system is written in DASH by Jose Serna [12]. The model
makes extensive use of DASH’s state construct to hierarchically decompose the watch’s behaviour.
The model’s control state hierarchy consists of two concurrent regions, one representing the state of
the watch’s display light, and the other representing the current active display. It also uses DASH’s
environmental (monitored) events for representing the button presses of the watch and passage of
time, to enable transitions. The above reachability property does not always hold in the DASH model

and is not an invariant of the system, as expected.

The B and TLA* models of the digital watch system were written by Ali Abbassi and myself respec-
tively. Since control state hierarchy and events are not supported by any of the modelling languages
studied in this work besides DASH, we model these features using other constructs available in each
language. For control state hierarchy, we model all transitions flatly (z.e. no hierarchy), which required
extra care to ensure that the preconditions of the transitions of the flat model are written correctly, so
that each transition in the flat model is only enabled if and only if its corresponding transition in the
hierarchical model is enabled. This involves making sure that the hierarchical and concurrent states
of the reference model are faithfully represented in the non-hierarchical versions. We use one variable
for representing each concurrent region of the reference model, ensuring that the concurrent regions

can change independently of each other. For events, we model each using a combination of a variable

68

keeping the triggered state of the event, and a transition (or pair of transitions) to change that variable.
We allow events to persist arbitrarily long into the future. The advantages of these approaches include the
fact that the flat model closely resembles the original hierarchical model. The disadvantages include that
extra care needs to be taken to make sure that the preconditions for each transition are set up correctly
to faithfully match the behaviour of the transition in the hierarchical model as closely as possible. In the
absence of DASH’s per-state namespaces, we use a naming convention for the names of transitions to
highlight the state of the reference model each transition belongs to. The above descriptions apply to
the remainder of the digital watch models in all of the languages (besides DASH).

The behaviour of the B model by Abbassi does not fully match the earlier descriptions, particularly
with respect to events. In Abbassi’s model, the transitions modifying the display state also change the
triggered state of the events. However, these two belong in separate concurrent regions, and doing so
effectively ties together the two concurrent regions of the reference model. This results in a special-case

behaviour not necessarily guaranteed by the original model.

One difference between the TLA* and EVENT-B models of the digital watch system and the rest
of the models is that for the pressed/released state of the four buttons, we used a total function that
maps each button to a Boolean value, instead of four separate Boolean variables. This allows for a more
compact representation of events, with only one or two transitions that could change the state of any of

the events, as opposed to requiring one or two transitions per each event.

In the ASMETAL digital watch model, we represent events as monitored variables (using the
monitored keyword) which may change freely from one snapshot to the next. This eliminates the need
to include transitions for toggling the variable(s) representing the triggered state of the events. As
discussed in Chapter 4, ASMETAL does not support defining the transition relation as a disjunction
of multiple transitions. To write a transition relation that would take a randomly-chosen transition
each time, we have to declare an enumerated set with each element corresponding to one transition, use
the choose rule in the definition of the transition relation to choose an element from that set, and use a
switch with a case for each transition, executing the transition corresponding to the chosen element of
the enumerated set. This is especially cumbersome and error-prone in a model such as the digital watch
system with many transitions, as the modeller may forget to update the switch cases when adding or
removing transitions. The ASMETAL digital watch model is the second of the two ASMETAL models
among our case studies for which we was able to use the AsmetaSMV model checker, finding a satistying
instance for the reachability CTL property.

The PLUSCAL digital watch model closely resembles the TLA* version, with many common
TLA™ expressions between the two models. These include the reachability property written asa TLA*

69

expression. Where the TLA* model used a TLA™ action (definition) directly for defining each transition,
in the PLUSCAL version each process corresponds to one transition. Since the processes each contain
asingle PLUSCAL label, the translation of the PLUSCAL model back to TLA* results in one TLA*
transition per each PLUSCAL process.

For the digital watch case study, we found DASH’s unique control state hierarchy and events
constructs to be powerful and convenient abstractions for modelling the various states/modes of the
control-oriented digital watch system. We thus recommend DASH as the most suitable language for
this example.

7.3 Musical Chairs

The musical chairs case study (originally in [66]) resides near the middle of the data- vs. control-oriented
characterization spectrum. The musical chairs example is a game consisting of a number of players and
chairs. At any time during the game, there is always exactly one less chair than there are players. In
each round, the players circle the chairs while music plays. The music is then stopped abruptly, and the
players have to scramble to sit on a chair. The one player who did not manage to sit down is eliminated,
and one of the chairs is also eliminated. The music then resumes, and the next round begins. This
process is repeated until only one player remains, dubbed the winner.

The snapshot variables in a musical chairs model consist of two sets for active players and active
chairs, and a mapping from chairs to players for keeping track of the occupied chairs. Further, the
current mode of the game (players are sitting, walking, ezc.) is represented either as an enumerated set
or using control states. The status of music (playing or paused) is represented either using events for
control states, or as a snapshot variable and transition(s) changing it.

For the musical chairs case study, we consider the following safety and liveness properties:

The number of players is always one greater than the number of chairs.

It is possible that a specific player named Alice wins.

The game will always eventually be in the “sitting” state.

The number of active players always eventually reaches one and remains at one.

70

The reference model for the musical chairs example is written in DASH by Jose Serna. The model
uses DASH’s control state hierarchy for representing the different modes of the game. Further, two
environmental (monitored) events MusicStops and MusicStarts are used to model the abrupt stopping
and starting of music. The above four properties were verified to hold for the DASH musical chairs
model.

The DASH model of the musical chairs example used as the reference for the other models in this
work was itself modelled after an ALLOY musical chairs model [35] by Sabria Farheen. A notable
difference between this ALLOY model and the DASH model of this system is the absence of control
states and events in ALLOY. Thus, the current mode of the game is represented using a snapshot
variable with its value a member of an enumerated set, and the starting and stopping of music are
modelled as transitions that directly change the snapshot variables, including the mode of the game.
The above four properties were included and verified to hold for the ALLOY musical chairs model as

well.

Similar to the ALLOY musical chairs model, the B musical chairs model [12] by Ali Abbassi uses
a snapshot variable for representing the mode of the game along with two snapshot variables keeping
the sets of active players and active chairs, and an occupancy mapping between the two. There are
some notable differences between the two models. Namely, the B version uses the constructor of a
total function in the type signature of the occupancy mapping, and has two extra variables keeping
the player and chair to be eliminated at the end of the current round. Further, an Assign constant
predicate is defined and used to constrain the occupancy mapping according to the given sets of chairs
and players. Also, there is no snapshot variable keeping the status of music explicitly, and there are no
separate transitions dedicated to starting and stopping of music. Instead, the effects of starting and
stopping the music are carried out in the main transitions of the system. This choice of representation
makes the B musical chairs model more different than the models of this system in the other languages,
since starting and stopping of music is not a standalone event in this model, and is @/ways accompanied
by a change/progress in the game. These changes are 7oz inherently necessary, and it is possible to model
the system in B without them.

The differences between the TLA* and DASH musical chairs models stem from the absence of
control states and events in TLA™*. As with the previous TLA*™ models, we used a snapshot variable
for tracking the current state of the game, corresponding to DASH’s use of control state hierarchy.
This makes the TLA™ model more similar to the ALLOY version. However, in contrast to the ALLOY
model, for the TLA* model we used a Boolean variable for modelling the status of the music, and used a
separate transition ChangeMusicPlaying for changing the status of music. For this reason, along with

71

the fact that we are checking liveness properties for the system, we impose fairness conditions on the
transitions. As such, we added weak fairness (justice) on the ChangeMusicPlaying transition and strong
fairness (compassion) on the rest of the transitions in the model, so that the firing of the music change
transition would not starve the main transitions.

The expressions of the ASMETAL musical chairs model are less declarative and more imperative
than our other musical chairs models, because in ASMETAL we cannot constrain the destination
snapshot value of the occupancy function in a declarative manner, as we would in the other languages.
We could use ASMETAL’s set comprehension notation if the occupancy mapping was a relation; but we
cannot use a formula or constructor to further constrain that set of pairs to be a function in a declarative
way. Instead, for filling up the occupancy function when the music stops, we have to use a helper
transition to update the occupancy mapping for each chair one by one using a forall rule over the active
chairs and a nested choose rule over the active players (excluding the loser of the round). A reasonable
idea may be to keep the type signature of the occupancy function as Powerset (Prod(Chair, Player)),
but this will not work because gradually updating the occupancy mapping using the union function
is seen as assigning multiple different values to the same snapshot variable, and thus an inconsistent
update. Therefore we have to change the type signature to Chair -> Player. We will not be able
to easily extract all the information we need from a variable with this type signature; for instance we
need to introduce a separate variable to keep track of the number of occupied chairs. Due to these
limitations, the ASMETAL musical chairs model has tedious imperative-style operations for updating
the function-valued snapshot variables.

The PLUSCAL musical chairs model for the most part resembles the TLA* version, with many
common TLA™" expressions between the two models. Aside from the inherent differences between
PLUSCAL and TLA" in terms of defining transitions, the two models also differ in how they constrain
the occupancy function: Assignment to snapshot variables in PLUSCAL is done only using the :=
assignment operator and the constraints need to be described all at once, whereas in TLA*’s declarative
approach, the modeller describes how each snapshot variable changes, using one or more conjuncts.
Also related, in regular TLA* expressions we can always refer to the source snapshot value of a variable
in a transition using its unprimed name, whereas we cannot do so in PLUSCAL if the variable is assigned
to in the current transition. In PLUSCAL, we can declare a variable local to the namespace of that
process and initialize it with the source snapshot value of that variable, and use the local variable where
needed in the process (transition) body.

The EVENT-B musical chairs model uses the language’s rich arrow constructors for various func-
tional and relational units of data in type signatures as well as snapshot variable assignments. These

72

arrows, when combined with the : | nondeterministic assignment operator, are a powerful way of writing
terse and concise descriptions of functions. We declare the occupancy mapping to be a partial injection
from chairs to players, and in the Sit transition we assign to the occupancy function a total injection
from the sets of active players to active chairs, enforcing the two criteria that each chair can have only
one player sitting on it, and each player may only sit on one chair.

For the musical chairs case study, we found DASH’s control state hierarchy and events to lend
themselves well to modelling this system. The control states and their hierarchy are used to concisely
and precisely represent the current state/mode of the game, and DASH’s environmental (monitored)
events are a natural candidate for modelling the starting and stopping of music. Since these features are
unique to DASH, we believe they give DASH an advantage over the other languages. After DASH, we
found B and EVENT-B’s extensive set of arrow constructors to be convenient and powerful tools for

writing concise type signatures and constrains on functional and relational data units.

7.4 Library Management

The library management case study (originally by Frappier ez 4/. in [36, 37]) resides at the very data-
oriented end of our data- vs. control-oriented characterization spectrum. The library management
information system has a set of members and a set of books available in the library. Members can join
and leave the library, and books may be acquired or discarded by the library. Each member can borrow a
certain maximum number of books and return any of them when they wish. Members can also reserve
abook if it has already been lent to another member. Doing so will add the member to a wait list for
the book, and they can pick up the book when it becomes available to them. They can also cancel their
reservation at any time if they wish to. Members may renew any of their borrowed books if no other
member has entered the reservation waiting list for that book. A member may only leave the library
(relinquish their membership) when they are not borrowing or reserving any of the library’s books, and
abook may only be discarded by the library if it is not loaned to or reserved by any members.

The snapshot variables in the library management system consist of two sets for acquired books
and registered members, and two mappings, one for keeping track of the books loaned to members,
and the other for tracking the reservations placed for the currently-unavailable books. This mapping
should store the order in which reservations were placed, so as to allow a pickup only by the member
who placed the current oldest reservation for that book.

The reference model for the library management case study is in B by Frappier ez 4/. [37]. The model

uses the constructor of a partial function from books to members for keeping track of the lent books,

73

and a total function from books to an injective sequence of members for tracking the reservations. A

number of safety and liveness properties are included in the reference B model, such as:

A book may be reserved only if it has been lent or already reserved by another member.

A book cannot be lent to a member if it is reserved.

A member is allowed to pick up a reservation only if their reservation is the current oldest.

Ultimately, a member can leave the library. (CTL property, not expressible in LTL)

In addition to the B library management model used as reference for our subsequent models, the
above paper by Frappier ez a/. also contains an ALLOY model of the system. This model, though written
well before Farheen wrote her style guidelines [35], adheres to several of Farheen’s recommendations
promoting structure, including decomposing each transition definition into two separate predicates,
for preconditions over the variables in the source snapshot and postconditions over the variables in
the source and destination snapshots, respectively. With respect to the frame problem in ALLOY, the
modellers also took the extra step to put the no-change formula for each snapshot variable into a separate
predicate, and use those predicates in the transition definitions instead of repeating the constraints. We

believe this may be excessive, given the simplicity and triviality of such constraints.

The EVENT-B library management model is in many ways similar to the reference B model, con-
sidering the closeness of the two languages. A notable difference between the two is the absence of a
sequence constructor in EVENT-B. As such, we had to use a partial injective function from the set of
natural numbers to members to model the injective sequence of members from the reference B model.
EVENT-B’s lack of built-in sequences and operations on them was particularly inconvenient when
writing the Reserve transition, where we need to update the reservation mapping for the given book

and insert the new member with the correct index in the book’s reservation function.

The TLA* and PLUSCAL models of the library management system are similar to the reference B
model in their use of a partial function for representing the loans mapping from books to members.
They difter from the B model in that the TLA* and PLUSCAL models do not have type signatures
and constructors, and use a formula definition in the typing constraint to express that loans should
be a partial function. However, since all TLA* functions are by default total, it may not be obvious
to a modeller how to specify a partial function. To declare a partial function, we first add a helper
definition PFun(S, T) == {[s -> T1 : s \in S} describing all partial functions from

S to T, where the domain could be any subset of S. We can then use this predicate to write a constraint

74

such as loans \in PFun(books, members), making loans a partial function from books to members.
There are other possible representations and constraints for loans, such as [books -> members]
and [books -> members \union NULLJ, but aside from diverging from the reference specification, the
other disadvantages of using these include adding unnecessary verbosity to the model and requiring
special treatment of the NULL constant throughout the model, respectively.

Modelling the library management system in PLUSCAL and checking it using the TLC model
checker helped expose a bug in one of the properties from the reference B model, due to incorrect

assumptions about operator precedence and associativity in B along with using = instead of #.

With respect to the criterion of syntax of expressions, the ASMETAL library management model
is more verbose compared to our other models of this system, because in ASMETAL most operators
have long-form textual names. However, in terms of transitions and type signatures it is very similar to
our other library management models. Since ASMETAL transitions are always enabled and there is no
keyword for checking whether a transition is enabled, we factored out the conditions of the top-level i f
rule for each transition into separate derived functions. We then used these functions in the properties
to check when each transition can be taken.

The DASH model of the library management system is fairly similar to the reference B model. We
were able to translate and check the properties from the original B model to DASH, as they all happened
to lie in the set of properties expressible in both LTL and CTL. Additionally, as DASH’s tool support
supports CTL model checking, we were able to express in DASH one of the CTL properties that was
commented out in the original model and not expressible in LTL.

For the library management case study, we found the Cancel and Reserve operations to be the most
challenging to model correctly across the languages. This is because these operations require correctly
updating or overriding the entry corresponding to a book in the reservations mapping, where each
entry itself is an ordered collection of members. This has to be done while preserving the structural
correctness of the underlying data unit. This was hardest to do in EVENT-B, TLA*/PLUSCAL, and
ASMETAL. For EVENT-B, the absence of a built-in sequence constructor and supporting operations
was what made this challenging. For TLA*/PLUSCAL, even though TLA™ has built-in sequences, we
found the available operations for correctly modifying sequences to be lacking for our purposes in the
expressions. Thus, the challenge was writing correct custom definitions for operations on functions
and sequences. We found that ASMETAL’s more imperative-style expressions make modelling this
system more challenging. Namely, the lack of certain declarative operations and the difficulty of writing
a transition relation that would take a randomly-chosen transition, described earlier. As such, we

recommend B, DASH, or ALLOY for modelling this system. We would recommend exercising caution

75

while using ALLOY, due to the dangers of under-specification relating to the frame problem.

7.5 Railway Scheduling Deadlock Freedom

The railway scheduling deadlock freedom (railway for short) case study originally by Mazzanti ez 4/.
in [63] resides near the middle of the data- vs. control-oriented characterization spectrum. The railway
system is a model of a yard consisting of eight trains and their missions. The yard contains a number of
critical sections of railway tracks that the scheduling algorithm must ensure are never saturated, which
would cause a deadlock in the system where no train could proceed. Briefly, this is done by keeping
track of the number of trains currently present in each critical section, and making sure that number is
always below a certain maximum that would not cause the system to reach a deadlock. For the railway
case study, the property we are interested in is whether all of the trains always eventually reach their
final destination, ze. the last station on their mission. For a model to satisty this property, it must be
accompanied with appropriate fairness constraints.

The railway system was originally modelled in UMC, Promela/SPIN, NuSMV, mCRL2, CPN
Tools, FDR 4, and CADP. Thus, for our first model of this system that we wrote (in B), we based our
work mostly on the descriptions in the original paper, occasionally comparing our model against the
paper’s accompanying NuSMV and Promela models for clarification. For the subsequent models of the

system, we used our B model as the reference.

The B and EVENT-B railway models use type signatures to specify what the precise ranges of
the valid natural numbers of the model’s primitives are. Compared to the models accompanying the
original paper, our B and EVENT-B models use a more compact representation for the train missions
and critical section constraints. Instead of declaring eight separate snapshot variables one for each
train, we use the constructor for a total function with the domain 0. .7. This allows accessing the
missions and constraints using the index for each train, alleviating the need for writing eight separate
move_train transitions, one for moving each train. Instead, the B and EVENT-B models each have only
one transition for moving all of the trains, which indexes into the relevant snapshot variables using the
currently chosen train ct as the index. The chosen train index, represented by the ct snapshot variable,

is updated in a round-robin fashion each time the choose_train transition is executed.

The ASMETAL model of the railway system is similar to the reference B version. The notable
difference is ASMETAL'’s distinction between controlled and monitored variables. We designate the
snapshot variable for the currently chosen train as a monitored variable, eliminating the need for having

a choose_train transition.

76

The ALLOY railway model differs from the reference B model in a number of ways. These differences
stem from the fact that ALLOY’s built-in integers are highly inefficient in analysis (it is not a modelling
language problem; see Section 5.1 and Section 5.7), and increases in scope of integers results in them
quickly becoming a performance bottleneck during the analysis. As such, instead of using integers for
modelling trains and stations, we use an enumerated set for each, allowing us to avoid increasing the
scope of integers. The downside of this approach is that it makes writing the model more tedious, and
drastically increases the line count for the ALLOY model, as we can no longer use only one transition

capable of moving any of the trains, and have to write one transition per each train.

The PLUSCAL and TLA™ models of the railway system differ from our reference B model due
to the absence of constructors and type signatures in TLA* and PLUSCAL. The PLUSCAL and
TLA™ models are very similar to each other. Both models have two transitions, one for moving any
train, and another for choosing the train to be moved, with strong fairness imposed on the former and
weak fairness on the latter. This helps make sure the transition for changing trains does not starve the

transition for moving a train.

The DASH railway model is similar to the ALLOY model, differing from the reference B model
in their use of an enumerated set representation instead of integers for the train stations. Aside from
the inherent differences between DASH and ALLOY, the two models differ in their use of ALLOY’s
more recent features in its expressions language. Namely, DASH does not yet support ALLOY’s let
expressions and the enum short-hand for declaring an enumerated set. The other main difference between
the two models is that in the DASH model, we use the env keyword for the chosen train snapshot variable
to mark it as a monitored variable, allowing the environment to choose which train to move next. This
lets us eliminate the choose_train transition in favour of a more general train-choosing mechanism.
However, similar to the ALLOY model, the DASH railway model is noticeably larger than the other
models of the railway system, as we have to write one transition per each train, for the same reasons as
the ALLOY model, explained earlier.

For the railway scheduling deadlock freedom case study, the limitations of integers in ALLOY really
shows during analysis, and needs to be worked around if possible. For the ALLOY and DASH railway
models, we kept the scope of integers at a minimum by using enumerated sets instead of integers for
representing the 27 train stations. We believe that B, EVENT-B, TLA*, PLUSCAL, and ASMETAL are
better equipped to handle this model’s use of integers. DASH and PLUSCAL in particular distinguish
between controlled and monitored variables, allowing the modeller to denote the snapshot variable for
the currently chosen train as a monitored variable changed by the environment. This eliminates the
need for a transition for changing the variable.

77

Chapter 8

Recommendations

Based on our experience modelling the case studies presented in Chapter 7 across the languages, in this
chapter we present more general recommendations for the choice of declarative modelling language
depending on the characteristics of the system under description.

For models where fine control over the transition relation of the transition system by the modeller
is desired, ALLOY, TLA*, and ASMETAL are the most suitable languages, as they use an explicit

representation for the transition relation.

For modelling control-oriented systems where the relevance of the transitions and their being
enabled can be captured using (potentially hierarchical) control states, we believe DASH is a great
choice for the modelling language. While our case studies showed that these systems can be modelled in
any of the languages we studied, we found DASH’s control state hierarchy and events to enable the
modeller to model control-oriented systems in an abstract, concise, and convenient way. Also, DASH’s
per-state namespaces allow separation of names, while still allowing global communication between
different states through a clear interface of fully-qualified names.

A common source of mistakes and unexpected behaviour bugs in ALLOY models is the under-
specification of behaviours, relating to the frame problem. In ALLOY, any variable not constrained
in a transition may freely change from the source to the destination snapshot. This can result in
the model exhibiting strange behaviours that could be especially hard to debug. TLAY, also a highly
declarative language, addresses this problem by requiring that every transition constrain every snapshot
variable, either explicitly using primed and unprimed names of variables, or denoting the unchanged

variables using the keyword. For this reason, we believe TLA* is a better choice than ALLOY

78

for modelling larger data-oriented models, as it eliminates an entire common, hard-to-debug class of

problems using static syntactic checks.

For models where a clear distinction between the system and its surrounding environment is desired,
DASH and ASMETAL both distinguish between controlled and monitored variables. DASH addi-
tionally supports environmental (monitored) events as well, which are those that are fired exclusively by
the environment and not by any of the system’s transitions.

For highly data-oriented systems, we found B and EVENT-B’s extensive set of arrow constructors
for various relational and functional units of data to be powerful tools for writing terse and concise
descriptions of highly-constrained composite units of data, both in type signatures and in formulas.
Although ALLOY/DASH using multiplicities and TLA*/PLUSCAL through the use of flexible and
expressive TLA™ expressions could describe the same set of constraints on data, B/EVENT-B allow
this in a more convenient way. We found ASMETAL to be the least declarative and least flexible in this
regard.

As B and EVENT-B are similar languages with the same roots, and EVENT-B is a successor of B,
the choice between the two languages may not be immediately obvious. Compared to B, EVENT-B is a
smaller and much simpler language. While B supports several kinds of relationships between machines,
in EVENT-B the only kinds of relationships are a machine importing one or more contexts, and a
machine refining another machine. Further, B has built-in constructors for sequences and trees while
EVENT-B does not. On the other hand, B only has one arrow constructor for declaring a relation,
whereas EVENT-B has three additional arrows for constructing specific kinds of relations; namely total,
surjective, and total surjective relations. Further, EVENT-B has support for declaring subtypes and

partitioning a set into multiple disjoint subsets, whereas B does not.

PLUSCAL brings to the table the power and expressiveness of TLA*’s expressions, wrapped in
a semantics geared more towards modelling multi-process concurrent and parallel algorithms, with
additional well-formedness safeguards that make certain classes of bugs unrepresentable in a valid
model in the language. ASMETAL, too, has semantics for modelling multi-threaded systems.

With respect to modularity, EVENT-B, DASH, and PLUSCAL allow data decomposition of a
model across multiple files. B, ALLOY, TLA*, and ASMETAL additionally allow control decomposi-
tion of a model into subtransition systems across multiple files.

Although we observed subtle and noteworthy differences across the languages with respect to the
stuttering criterion, it did not seem to affect the modelling of our case studies noticeably. Similarly, the
representation of snapshot variables, initialization, constants, scopes, and syntax overloading did

79

not have a significant effect on our process of modelling the case studies. However, these criteria are
useful to acknowledge, helping the modeller see the differences between the languages with respect to
these criteria, when moving from one modelling language to the next.

80

Chapter 9

Related Work

In this chapter, we discuss related work on comparing declarative modelling languages.

The Software Abstractions book [46] includes an appendix that discusses alternative modelling
languages to Alloy. Jackson compares Alloy to four other formal frameworks (B, OCL, VDM, and Z)
by using a simplified version of one of the running examples used earlier in the book and modelling the
example in the other four languages. Jackson’s comparison consists largely of discussing the historical
background as well as tool support for the languages, and goes into little detail about the constructs of
the language or a comparison criteria for comparing the languages.

Newcombe [65] compares TLA* and ALLOY, and concludes that TLA*’s data operations, together
with its higher-order and recursive operators, make descriptions simpler than ALLOY’s for engineers,
particularly with respect to nested record structures. Our comparison looks in detail at the constructs
and semantics of the transition system representations across the languages, whereas Newcombe focuses
on the usage of the languages and their tool support, as well as more on non-functional criteria such as
each language’s minimization of cognitive burden on the modeller, high return on investment, and the

handling of subtle or complex problems.

Zave [81] compares ALLOY and Spin by using them to model a complex system, the Chord network
protocol for a distributed hash table, with the goal of recommending a lightweight formal method
for modelling and analyzing complex network protocols. Zave’s comparison includes a few common
criteria with ours, such as implicit vs. explicit snapshot representation, building blocks for control
and data aspects of the model, scope (size bound) of sets, and the frame problem. Through modelling
and analyzing Chord in ALLOY, Zave arrives at the surprising result that Chord is not correct, as it

81

was previously thought to be. Zave notes that although several previous works had reported on the
application of model checking to implementations of Chord, due to implementations being immensely
more complex than an abstract model, the analyses were necessarily incomplete. Although those previous
works were able to find bugs in the implementations they had analyzed, none of them had found the
specification-level bugs that Zave found. In terms of differences between ALLOY and Spin, Zave notes
that because the Chord specification did not include a strong global invariant, she had to resort to using
Spin to find a provably correct global invariant. Otherwise, Zave notes, the presence of a sufficiently
strong global invariant would have given ALLOY a performance boost sufficient to make it the ‘clear
winner’ of the comparison (by using the invariant to restrict the model’s reachable snapshot space).

Sullivan ez al. [78] compare three snapshot modelling techniques for transition systems in ALLOY
for performance, using four examples. They compare two commonly-used snapshot representation
techniques with a new “parameterization” approach, in which all signature fields are removed from
signature declarations, and are instead added as arguments to all predicates, and fact blocks are converted
to a predicate, referenced in other predicates where needed. Their results suggest that the Alloy Analyzer
exhibits improved performance on examples using their new parameterization technique. In contrast to
Sullivan ez al.’s work, the focus of our comparison is more generally on the techniques for modelling
transition systems across modelling languages, and we do not consider the performance of tool support

for languages as part of our comparison criteria.

Frappier et al. [37] compare six model checking tools (ALLOY, CADP, FDR2, NuSMYV, ProB, and
Spin) for validation of specification of information systems. Their comparison focuses on the ease of
specifying behaviours, properties, and the number of instances that can be checked by each tool for
information systems. They present the requirements for a library management system to be modelled
and checked with the above tools and languages. Their paper is the original source for our library
management case study (Section 7.4). Frappier ez a/l. conclude that a suitable language for validating
information systems using model checking should support a notion of snapshots and transitions, and
that process algebraic operators would be useful for easily expressing information system scenarios.
Further, they conclude that CTL is powerful enough for expressing the kinds of properties they are
interested in, whereas LTL falls short of expressing some of the properties.

Deutsch et al. [32] study the specification and verification of data-driven information systems,
particularly an interactive web application that receives input from the user, potentially interacts with a
database, and displays output to the user. They verify various CTL and CTL" properties about their
model in an asm-like specification language based on an earlier work [76].

Fraikin et al. [36] compare the two specification languages B and EB?, representative of the snapshot-

82

based and event-based modelling paradigms respectively, for modelling information systems. They
compare the two languages by modelling a library information system in each language, and comparing
the models on the four criteria of ease of specifying functional behaviour, validation, verification, and
evolution of a model to meet new requirements. The authors conclude that the two languages are
complimentary. While B seems better at expressing complex ordering and invariants, EB> provides a
simpler, modular, explicit representation of temporal properties. The downside of EB>’s process algebra
is the difficulty of proving preservation of invariants, since it does not include an explicit representation
of pre and postconditions for transitions, while B’s drawback is the difficulty of understanding the
orderings of input events, due to the strong data coupling between transitions.

Mazzanti et al. [63] study and report on the use and diversity of formal methods in railway systems.
They do so in part by modelling and verifying a train scheduling deadlock avoidance algorithm in seven
formal environments (UMC, Promela/SPIN, NuSMV, mCRL2, FDR 4, CPN Tools, and CADP) from
three families of languages (state-machine-oriented, process algebras, and Petri Nets) and comparing
their findings. The authors observe that even small decisions in the design and verification process can
result in drastic changes in tooling performance, especially for the studied process algebraic approaches,
but also notice that a model can be ported to the other environments with limited effort. The authors
believe this helps propel the new idea of formal methods diversity, in which modellers port their model
to several potentially non-certified formal tools to increase their confidence in the correctness of the
results of their analysis and verification. Their paper is the original source for our railway scheduling
deadlock freedom case study (Section 7.5).

Aydal e al. [22] compare four tools (USE, Alloy Analyzer, ZLive, and ProZ) for three modelling
languages (UML, ALLOY, and Z respectively) with respect to strengths and weaknesses of the tools
for analyzing and verifying the models written in each language. In particular, Aydal ez 4/. study and
compare each tool against one another on a course assignment system example, with four comparison
criteria of animation of models, generation of pre and postconditions for transitions, information
reported about the analysis, and the required expertise. They also report on the performance and
efficiency of the tools on their models.

Ardis et al. [21] compare seven formal languages (Modechart, VESM, Esterel, Basic LOTOS, Z, SDL,
and C) on the same example, a telephone switching system. None of the languages they compare are in
the set of languages we compare in this work. The criteria that Ardis ez 4/. used to compare the languages
are much higher-level concerns, such as testability and language maturity, than our comparison, which

focuses on how a transition system model is modelled in a declarative modelling language.

Huynh ez al. [44] formalize SCAG, a new healthcare access control model with conflict resolution

83

for managing each patient’s wishes as to who can access their Electronic Health Records (EHR). The
access control model takes into account regional laws and regulations applicable in Québec and Canada,
where under certain strictly defined scenarios, for safety reasons, patient consent can be overridden to
protect the patient’s life. The authors formalize the access control policies in B and ALLOY, and use
ProB and the Alloy Analyzer to verify properties about their models. The results show that without any
optimizations, the Alloy Analyzer performs better than ProB. However, when using ProB’s capability
for controlling the order of constraint solving, as well as storing frequently-used results in snapshot
variables of the B model, ProB performs significantly better than Alloy for all of the checked properties.

Bruel ez al. [26] survey the role of formalism in system requirements, discussing and comparing
more than twenty approaches to requirements. They classify the studied approaches into fives categories
of natural language, semi-formal, automata and graphs, mathematical, and seamless, based on how
they express requirements. The authors then use a running example of the Landing Gear System [24]
to compare the approaches with respect to nine criteria including level of abstraction, tool support,
separation of the external environment and the system, and verifiability of requirements. Bruel ez al.
present a detailed and lengthy discussion of their results and conclusions; but in short, they conclude
that formal methods complement other (potentially informal) requirement approaches, and that they

should be seen as powerful tools available to every requirements engineer or business analyst.

Leuschel e al. [59] demonstrate the use of B as a high-level constraint modelling language, with
the ProB tool as the constraint solver. They compare B and ProB with ALLOY and the Alloy Analyzer
on several examples, showing the strengths and weaknesses of each tool on the examples. The authors
note the ProB solver’s weaknesses compared to the Alloy Analyzer on certain relational operators such
as relational image and transitive closure, citing improvements to these as future work. Leuschel ez a/.
conclude that using B with ProB can be a nice trade-off between the high performance of low-level
constraints solvers and the high difficulty of encoding problems in them, and the increased computational
power needed for solving problems encoded in higher levels of abstraction.

Samia et al. [70] compare the use of a high-level specification language and tooling such as B and
ProB with a low-level language and tooling such as Promela and Spin. They do so by modelling ten
examples in each language and comparing the models on three criteria of model length, modelling time,
and model checking performance.

Harclift ez al. [42] survey designing and using behavioural interface specification languages. They
compare several specification languages — including JML, SPARK, Spec#, and Dafny — on several
examples. Hatcliff ez al. focus on program verification and languages that allow verifying a program

satisfies certain properties, while our comparison focuses specifically on modelling transition systems in

84

declarative modelling languages, at a higher level of abstraction than typical programming languages.

Maraee and Sturm [62] examine the usage of the OCL declarative language with that of the Java
imperative programming language for understanding and developing constraints in a controlled experi-
ment among a group of undergraduate students. The obtained results suggest that using a declarative
language such as OCL has many advantages for understanding and developing constraints over an
imperative language such as Java, with the differences increasing as the constraints grow more complex.
Writing constraints in a declarative language enables verification and validation of models, whereas
writing them in an imperative language inevitably shifts the focus to low-level implementation details

that are irrelevant to the essence of the constraints.

Lamport and Paulson [55] compare specification with and without a type system, stating advantages
and disadvantages for both typed and untyped specification languages. They compare set theory and
typed formalisms across four general criteria of flexibility, convenience, pitfalls, and abstractness; and
conclude that an untyped set theory could serve as a solid, common foundation upon which different

tool-specific type systems can be overlaid.

Lépez et al. [60] propose a formal framework for assessing the expressivity of formal specification
languages, based on the mutation testing technique. The idea is to create mutated versions of a specifica-
tion that differ from the original specification in some aspect, with some of the mutants still exhibiting
correct behaviour and some behaving incorrectly. Then, model the mutants in the specification language
under study. The authors’ measure of expressivity and suitability of languages for modelling a certain
class of systems is based on the ratio of the correctness of mutants and the correctness of the models of
those mutants in the given modelling language. In other words, whether the models of the correct and

incorrect mutants are distinguishable in the modelling language.

Some textbooks [66,17, 69, 23, 56, 23, 18, 67] introduce various formal and informal modelling
languages, each with their own examples or occasionally the same example, to illustrate certain aspects

of the language. However, they generally do not compare the languages against one another.

In comparison to these related works, we focus on models of transition systems. We develop a set of
categorized comparison criteria and examine in depth each language with respect to each of the criterion.
Further, we use these criteria to compare a diverse range of examples on the data- vs. control-oriented
characterization spectrum, modelling each of the five examples in all of the seven languages, producing a
total of thirty-five models. We use these models and our observations from carrying out the case studies
to make recommendations as to which language(s) we think would be the best fit for modelling various

kinds of transition systems.

85

Chapter 10

Conclusion

This thesis presents

* aset of criteria to compare declarative modelling languages;
* adiverse set of case studies on the data- vs. control-oriented characterization spectrum;

* the comparison of the selected declarative modelling languages (B, EVENT-B, ALLOY, DASH,
TLA*, PLUSCAL, and ASMETAL) based on these criteria by carrying out the case studies; and

* our recommendations for the choice of modelling language based on the characteristics of the
transition system under description, rooted in our observations of the differences and similarities
between the languages with respect to our comparison criteria from the several case studies we
carried out.

We categorize our comparison criteria into three main categories of control modelling, data mod-
elling, and modularity; discussed in detail in Chapter 4, Chapter 5, and Chapter 6 respectively, and
summarized in Table 4.1, Table 5.1, and Table 6.1 respectively, repeated below. Further, we compare
the languages according to these criteria using several case studies presented in Chapter 7, and present
recommendations for the choice of declarative modelling language in Chapter 8 language based on our
experience carrying out the case studies.

86

Table 4.1: Summary of control aspects of languages

Language +
.. B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Criteria
Snapshot variables VARIABLES VARIABLES varies in state variables signature
Initialization INITIALISATION INITIALISATION init init Init variables default init
TR representation I I E I ME I ME
Frame problem unchanged unchanged may change env unchanged moni tored
Control state o o . % . . -
hierarchy
Invariants INVARIANT (V) INVARIANTS (V) fact (C) invariant (C) S(v) S(v) invariant (V)
. . . JUSTICE,
Fairness — — — — WF, SF fair, fair+ COMPASSTON
Stuttering E E E I(m)+E I(a)+E I(a) + E I(m)+E
Table 5.1: Summary of data aspects of languages
Language +
B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Criteria
Primitives scalars, sets scalars, sets sets same as ALLOY scalars, sets same as TLA™ scalars, sets
Constructors fun, fel’. rec, fur}, r.elf r.cl,' . same as ALLOY fun, rel same as TLAY rel
multiplicity ~ multiplicity ~multiplicity
7. N.N;. B Z,N, B, Z,N,R, B, Z,N,R,C, B,
Built-ins L AL B 7 N, N, B str, seq, same as ALLOY str, rec, same as TLA™ char, str, seq
str, seq, tree q h b b
ord, grap seq, bag ag, map, Undef
Events — — — event — — —
Constants CONSTANTS CONSTANTS — — CONSTANTS static
Type signatures
& v v N v — — v
typechecking
Subtypes — v v v N4 v v
Scopes v v v v v v —
Table 6.1: Summary of modularity aspects of languages
Language +
L. B EVENT-B ALLOY DASH TLA PLUSCAL ASMETAL
Criteria
subTRs v — v — v — v
sub7R namespaces — — — v* — — —
Data decomposition Y Y Y Y Y Y Y
into multiple files
File import SEES, ... SEES open open EXTENDS import
File export varies entire context non-private — non- non-LOCAL export
File parameterization v — v v v v —
File namespaces — — v — v v —
Syntax overloading — — v N4 — — Vv

87

If we were creating an 7deal declarative modelling language, it would include the following features

and characteristics:

* amore declarative rather than imperative expression style, so as to stay true to the declarative

behavioural modelling paradigm;

* awide range of constructors for composite units of data, as well as multiplicities for the con-
structors, with constructors for commonly used data units such as total, partial, and surjective

functions built as syntactic sugar on top of multiplicities; as well as support for declaring subtypes;

* implicit representation for the transition relation by default for convenience, along with options
to supplement or tweak the transition relation by more knowledgeable modellers;

* improved tool support for helping the modeller find the sources of inconsistency in their model;

* notion of control state hierarchy or similar constructs to decompose a transition system from a
control modelling point of view into subtransition systems, each having their own (uniquely
addressable) namespace;

* typechecking done as a separate pass, with typing constraints restricting the reachable snapshot
space for improving performance, as opposed to treating typing constraints as properties checked

with other invariants during the main analysis;

* dealing with the frame problem in a way that is both convenient and avoids the issue of under-
specification as seen in ALLOY models, by either adding implicit constraints that keep uncon-
strained variables in a transition unchanged (as DASH does), or by requiring that every variable
either be constrained or marked as unchanged using a special keyword (as TLA* does); and

* aflexible module system for data decomposition of models across multiple files, with each file
hosting one or more parameterized modules that support selective import and export of iden-
tifiers.

DASH already has several of the above characteristics and features, and we believe it has poten-
tial to become even closer to our described ideal language by implementing the missing features and

enhancements from the above list.

In future work, we would like to extend our comparison to include other similar languages and also
extend our comparison criteria to include an examination of tool support, which would address issues

such as performance, robustness, and ease of understanding counterexamples.

88

References

ALDB - A debugger for transition systems modelled in ALLOY. https://github.com/WatForm/
aldb. [Online; accessed May 25, 2020].

Asmeta - License. http://asmeta.sourceforge.net/download/license.html. [Online; accessed May
22,2020].

GNU General Public License, version 2. https://www.gnu.org/licenses/gpl-2.0.html. [Online;
accessed May 22, 2020].

ProB Licence. https://www3.hhu.de/stups/prob/index.php/ProBLicence. [Online; accessed
May 22, 2020].

Rodin Licence - Event-B.org. http://www.event-b.org/install.html. [Online; accessed May 22,
2020].

The B-Toolkit - License. https://github.com/edwardcrichton/BToolkit#license. [Online; accessed
May 22, 2020].

What is free software? https://www.gnu.org/philosophy/free-sw.html. [Online; accessed May
22,2020].

OMG object constraint specification (OCL) specification. http://www.omg.org/spec/ OCL/2.4/
PDF, 2014. [Online; accessed June 15, 2018].

OMG unified modeling language. http://www.omg.org/spec/UML/2.5/PDF/, 2015. [Online;
accessed June 15, 2018].

Xtext. https://eclipse.org/Xtext/, 2017. [Online; accessed June 15, 2018].

89

https://github.com/WatForm/aldb
https://github.com/WatForm/aldb
http://asmeta.sourceforge.net/download/license.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www3.hhu.de/stups/prob/index.php/ProBLicence
http://www.event-b.org/install.html
https://github.com/edwardcrichton/BToolkit#license
https://www.gnu.org/philosophy/free-sw.html
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/UML/2.5/PDF/
https://eclipse.org/Xtext/

[11]

[12]

[13]

StandardLibrary.asm. https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/
STDL/StandardLibrary.asm, 2020. [Online; accessed May 18, 2020].

Ali Abbassi, Amin Bandali, Nancy A. Day, and José Serna. A comparison of the declarative
modelling languages b, dash, and TLA+. In Ana Moreira, Gunter Mussbacher, Joio Aradjo,
and Pablo Sdnchez, editors, 8th IEEE International Model-Driven Requirements Engineering
Waorkshop, MoDRE@RE 2018, Ban{f, AB, Canada, August 20, 2018, pages 11-20. IEEE Computer
Society, 2018.

Abbeassi, Ali. Astra: Evaluating Translations from Alloy to SMT-LIB. Master’s thesis, David R.
Cheriton School of Computer Science, 2018.

[14] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge University Press,

1996.

[15] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge

University Press, 2010.

[16] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and

Laurent Voisin. Rodin: an open toolset for modelling and reasoning in event-b. Inz. J. Softw. Tools
Technol. Transf., 12(6):447-466, 2010.

Vangalur S. Alagar and Kasilingam Periyasamy. Specification of Software Systems. Graduate Texts
in Computer Science. Springer, 1998.

Vangalur S. Alagar and Kasilingam Periyasamy. Specification of Software Systems, Second Edition.
Texts in Computer Science. Springer, 2011.

Yamine Ait Ameur and Klaus-Dieter Schewe, editors. Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 4th International Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceed-
ings, volume 8477 of Lecture Notes in Computer Science. Springer, 2014.

Krzysztof R. Apt and Ernst-Riidiger Olderog. Proof rules and transformations dealing with
tairness. Sci. Comput. Program., 3(1):65-100, 1983.

Mark A. Ardis, John A. Chaves, Lalita Jategaonkar Jagadeesan, Peter Mataga, Carlos Puchol,
Mark G. Staskauskas, and James Von Olnhausen. A framework for evaluating specification
methods for reactive systems experience report. J[EEE Trans. Software Eng., 22(6):378-389,1996.

90

https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/STDL/StandardLibrary.asm
https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/STDL/StandardLibrary.asm

[22] Emine Gokce Aydal, Mark Utting, and Jim Woodcock. A comparison of state-based modelling
tools for model validation. In Richard F. Paige and Bertrand Meyer, editors, Objects, Components,
Models and Patterns, 46th International Conference, TOOLS EUROPE 2008, Zurich, Switzerland,
June 30 - July 4, 2008. Proceedings, volume 11 of Lecture Notes in Business Information Processing,
pages 278-296. Springer, 2008.

[23] Dines Bjerner and Martin C. Henson. Logics of specification languages. Monographs in Theoretical
Computer Science. An EATCS Series, Dec 2007.

[24] Frédéric Boniol and Virginie Wiels. The landing gear system case study. In Frédéric Boniol,
Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe, editors, ABZ 2014: The Landing
Gear Case Study - Case Study Track, Held at the 4th International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, Toulouse, France, June 2-6, 2014. Proceedings, volume 433
of Communications in Computer and Information Science, pages 1-18. Springer, 2014.

[25] Egon Borger and Robert F. Stirk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, 2003.

[26] Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Alexandr Naumchev, Manuel Mazzara, and
Bertrand Meyer. The role of formalism in system requirements (full version), 2019.

[27] Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. The electrum analyzer:
model checking relational first-order temporal specifications. In Marianne Huchard, Christian
Kistner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages
884-887. ACM, 2018.

[28] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model
checker. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages
334-342. Springer, 2014.

[29] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety
properties with the TLA+ proof system. In Jiirgen Giesl and Reiner Hihnle, editors, Automated
Reasoning, 5th International Joint Conference, [JCAR 2010, Edinburgh, UK, July 16-19, 2010.
Proceedings, volume 6173 of Lecture Notes in Computer Science, pages 142-148. Springer, 2010.

P

[30] ClearSy. B Language Reference Manual, version 1.8.6. 2007.

[31] Alcino Cunha and Nuno Macedo. Validating the hybrid ERTMS/ETCS level 3 concept with
electrum. Int. J. Softw. Tools Technol. Transf., 22(3):281-296, 2020.

[32] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven web
applications. J. Comput. Syst. Sci., 73(3):442—-474, 2007.

[33] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for object models. In
Richard N. Taylor and Matthew B. Dwyer, editors, Proceedings of the 12th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, 2004, Newport Beach, CA, USA,
October 31 - November 6, 2004, pages 189-199. ACM, 2004.

[34] Sabria Farheen, Nancy A. Day, Amirhossein Vakili, and Ali Abbassi. Transitive-closure-based
model checking (TCMC) in alloy. Software and Systems Modeling, 19(3):721-740, 2020.

[35] Farheen, Sabria. Improvements to Transitive-Closure-based Model Checking in Alloy. Master’s
thesis, David R. Cheriton School of Computer Science, 2018.

[36] Benoit Fraikin, Marc Frappier, and Régine Laleau. State-based versus event-based specifications for
information systems: a comparison of B and EBS. Software and Systems Modeling, 4(3):236-257,
2005.

[37] Marc Frappier, Benoit Fraikin, Romain Chossart, Raphaél Chane-Yack-Fa, and Mohammed Ouen-
zar. Comparison of model checking tools for information systems. In Jin Song Dong and Huibiao
Zhu, editors, Formal Methods and Software Engineering - 12th International Conference on Formal
Engineering Methods, ICFEM 2010, Shanghai, China, November 17-19, 2010. Proceedings, volume
6447 of Lecture Notes in Computer Science, pages 581-596. Springer, 2010.

[38] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Deriving a textual notation
from a metamodel: an experience on bridging modelware and grammarware. In Joio Andrade
Almeida, Luis Ferreira Pires, and Marten]. van Sinderen, editors, Milestones, Models and Mappings
for Model-Driven Architecture: European Workshop on Milestones, Models and Mappings for
Model-Driven Architecture (3M4MDA), Bilbao, Spain, July 11, 2006. Proceedings, number 02 in
CTIT Workshop Proceedings Series, pages 3347, Netherlands, 2006. Centre for Telematics and
Information Technology (CTIT).

92

[39] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A metamodel-based language and
a simulation engine for abstract state machines. /. UCS, 14(12):1949-1983, 2008.

[40] Yuri Gurevich. Reconsidering turing’s thesis (toward more realistic semantics of programs).
Technical Report CRL-TR-36-84, University of Michigan, September 1984.

[41] David Harel. Statecharts: A visual formalism for complex systems. Scz. Comput. Program.,
8(3):231-274, 1987.

[42] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Miiller, and Matthew J. Parkinson.
Behavioral interface specification languages. ACM Comput. Surv., 44(3):16:1-16:58, 2012.

[43] Gerard]. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-Wesley,
2004.

[44] Nghi Huynh, Marc Frappier, Herman Pooda, Amel Mammar, and Régine Laleau. SGAC: A
multi-layered access control model with conflict resolution strategy. Comput. J., 62(12):1707-1733,
2019.

[45] Daniel Jackson. Alloy: alightweight object modelling notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256-290, 2002.

[46] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2012.

[47] Michael Jastram and Prof Michael Butler. Rodin User’s Handbook: Covers Rodin v.2.8. CreateSpace
Independent Publishing Platform, USA, 2014.

[48] Clifford B. Jones. Systematic software development using VDM (2. ed.). Prentice Hall International
Series in Computer Science. Prentice Hall, 1991.

[49] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872-923,
1994.

[50] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[51] Leslie Lamport. Real-time model checking is really simple. In Dominique Borrione and Wolf-
gang J. Paul, editors, Correct Hardware Design and Verification Methods, 13th IFIP WG 10.5
Advanced Research Working Conference, CHARME 2005, Saarbriicken, Germany, October 3-6,

93

[61]

2005, Proceedings, volume 3725 of Lecture Notes in Computer Science, pages 162-175. Springer,
2005.

Leslie Lamport. The pluscal algorithm language. In Martin Leucker and Carroll Morgan, editors,
Theoretical Aspects of Computing - ICTAC 2009, 6th International Colloguium, Kuala Lumpur,
Malaysia, August 16-20, 2009. Proceedings, volume 5684 of Lecture Notes in Computer Science,
pages 36—-60. Springer, 2009.

Leslie Lamport. 4 PlusCal User’s Manual (C-Syntax), version 1.8 edition, August 2018. https:
//lamport.azurewebsites.net/tla/c-manual.pdf.

Leslie Lamport. A PlusCal User’s Manual (P-Syntax), version 1.8 edition, August 2018. https:
//lamport.azurewebsites.net/tla/p-manual.pdf.

Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed. ACM
Trans. Program. Lang. Syst., 21(3):502-526,1999.

Soren Lauesen. Software Requirements: Styles and Technigues. Pearson Education, 1 edition, 2001.

Leslie Lamport. ~ Safety, Liveness, and Fairness. https://lamport.azurewebsites.net/tla/
safety-liveness.pdf, May 2019.

Michael Leuschel and Michael J. Butler. ProB: A model checker for B. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, International Symposium of
Formal Methods Europe, Pisa, Italy, September 8-14, 2003, Proceedings, volume 2805 of Lecture
Notes in Computer Science, pages 855-874. Springer, 2003.

Michael Leuschel and David Schneider. Towards B as a high-level constraint modelling language -
solving the jobs puzzle challenge. In Ameur and Schewe [19], pages 101-116.

Natalia Lépez, Manuel Nufiez, and Ismael Rodriguez. Assessing the expressivity of formal
specification languages. In Michael Johnson and Varmo Vene, editors, Algebraic Methodology and
Software Technology, 11th International Conference, AMAST 2006, Kuressaare, Estonia, July 5-8,
2006, Proceedings, volume 4019 of Lecture Notes in Computer Science, pages 220-234. Springer,
2006.

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. Lightweight
specification and analysis of dynamic systems with rich configurations. In Thomas Zimmermann,

94

https://lamport.azurewebsites.net/tla/c-manual.pdf
https://lamport.azurewebsites.net/tla/c-manual.pdf
https://lamport.azurewebsites.net/tla/p-manual.pdf
https://lamport.azurewebsites.net/tla/p-manual.pdf
https://lamport.azurewebsites.net/tla/safety-liveness.pdf
https://lamport.azurewebsites.net/tla/safety-liveness.pdf

Jane Cleland-Huang, and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, pages 373-383. ACM, 2016.

[62] Azzam Maraee and Arnon Sturm. Imperative versus declarative constraint specification languages:
a controlled experiment. Software and Systems Modeling, May 2020.

[63] Franco Mazzanti, Alessio Ferrari, and Giorgio Oronzo Spagnolo. Towards formal methods diversity
in railways: an experience report with seven frameworks. S7T77, 20(3):263-288, 2018.

[64] Kenneth L. McMillan. The smv system. Symbolic Model Checking, page 61-85,1993.
[65] Chris Newcombe. Why Amazon chose TLA™. In Ameur and Schewe [19], pages 25-39.
[66] Nimal Nissanke. Formal Specification: Techniques and Applications. Springer London, 1999.

[67] Gerard O’Regan. Concise Guide to Formal Methods - Theory, Fundamentals and Industry Appli-
cations. Undergraduate Topics in Computer Science. Springer, 2017.

[68] Jonathan S. Ostroft. Validating software via abstract state specifications. Technical Report
EECS-2017-02, York University, 2017.

[69] Shari Lawrence Pfleeger and Joanne M. Atlee. Software engineering - theory and practice (3. ed.).
Ellis Horwood, 2006.

[70] Mireille Samia, Harald Wiegard, Jens Bendisposto, and Michael Leuschel. High-level versus
low-level specifications: Comparing B with Promela and ProB with Spin. In Attiogbe and Mery,
editors, Proceedings TFM-B 2009, pages 49-61. APCB, June 2009.

[71] Patrizia Scandurra, Angelo Gargantini, Claudia Genovese, Tiziana Genovese, and Elvinia Ric-
cobene. A concrete syntax derived from the abstract state machine metamodel. In Proceedings of
the 12th International Workshop on Abstract State Machines, ASM 2005, March 8-11, 2005, Paris,
France, pages 345-368, 2005.

[72] Jose Serna, Nancy A. Day, , and Shahram Esmaeilsabzali. Dash: Declarative modelling with
control state hierarchy (preliminary version). Technical Report CS-2018-04, David R. Cheriton
School of Computer Science, 2018.

95

[73] José Serna, Nancy A. Day, and Sabria Farheen. DASH: A new language for declarative behavioural
requirements with control state hierarchy. In JEEE 25th International Requirements Engineering
Conference Workshops, RE 2017 Workshops, Lisbon, Portugal, September 4-8, 2017, pages 64—68.
IEEE Computer Society, 2017.

[74] Serna, Jose. Dash: Declarative Behavioural Modelling in Alloy. Master’s thesis, David R. Cheriton
School of Computer Science, 2019.

[75] Edel Sherratt. Relativity and abstract state machines. In Qystein Haugen, Rick Reed, and
Reinhard Gotzhein, editors, System Analysis and Modeling: Theory and Practice - 7th International
Waorkshop, SAM 2012, Innsbruck, Austria, October 1-2, 2012. Revised Selected Papers, volume 7744
of Lecture Notes in Computer Science, pages 105-120. Springer, 2012.

[76] Marc Spielmann. Abstract state machines: verification problems and complexity. PhD thesis,
RWTH Aachen University, Germany, 2000.

[77] J. Michael Spivey. Z Notation - a reference manual (2. ed.). Prentice Hall International Series in
Computer Science. Prentice Hall, 1992.

[78] Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov. Evaluating state modeling
techniques in alloy. In Zoran Budimac, editor, Proceedings of the Sixth Workshop on Software
Quality Analysis, Monitoring, Improvement, and Applications, Belgrade, Serbia, September 11-13,
2017, volume 1938 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[79] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grumberg and
Michael Huth, editors, Tools and Algorithms for the Construction and Analysis of Systems, 13th
International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4424 of Lecture Notes in Computer Science, pages 632—647. Springer, 2007.

[80] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla* specifications. In
Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design and Verification Methods,
10th IFIP WG 10.5 Advanced Research Working Conference, CHARME 99, Bad Herrenalb,
Germany, September 27-29, 1999, Proceedings, volume 1703 of Lecture Notes in Computer Science,
pages 54—66. Springer, 1999.

[81] Pamela Zave. A practical comparison of Alloy and Spin. Formal Asp. Comput., 27(2):239-253,
2015.

96

[82] Hehua Zhang, Ming Gu, and Xiaoyu Song. Specifying time-sensitive systems with TLA+. In
Sheikh Igbal Ahamed, Doo-Hwan Bae, Sung Deok Cha, Carl K. Chang, Rajesh Subramanyan,
Eric Wong, and Hen-I Yang, editors, Proceedings of the 34th Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2010, Seoul, Korea, 19-23 July 2010, pages

425-430. IEEE Computer Society, 2010.

97

APPENDICES

928

Appendix A

Tool versions

This appendix lists the versions of the tool support for each language we used when carrying out our
case studies. The tools are all free software [7] and publicly available for use by anyone.

* For B, we used ProB:

ProB 1.9.0-release

718e254497d921bb4f82945fefdb73774780d007
Wed Jul 17 16:07:40 2019 +0200

TclTk 8.5.19

SICStus 4.5.1 (x86_64-1linux-glibc2.17): Tue Apr 2 06:27:49 PDT 2019

* for EVENT-B, we used the Rodin Platform Version: 3.4.0.201802230927-6980ca1 along with
theProB for Rodin3 3.0.10.201909041430 de.prob2.feature.feature.group HHU Diisseldorf
STUPS Group plugin.

* For ALLOY, we used the Alloy Analyzer 5.1.0 built 2019-08-14T18:53:58.297Z.

i FOTI)ASIi,VKiUS&iCODﬂHﬂt725Cd790497cf561443033d2af666877df6d58f50f
<https://github.com/WatForm/dash> built using

Eclipse DSL Tools

Version: 2019-12 (4.14.0)
Build id: 20191212-1212

99

https://github.com/WatForm/dash

* For TLA* and PLUSCAL, we used the TLA™ Toolbox and its accompanying tools:
TLA+ Toolbox provides a user interface for TLA+ Tools.

This is Version 1.6.0 of 10 July 2019 and includes:
- SANY Version 2.1 of 23 July 2017
- TLC Version 2.14 of 10 July 2019
- PlusCal Version 1.9 of 10 July 2019
- TLATeX Version 1.0 of 20 September 2017

* For ASMETAL, we used

Eclipse IDE for Java Developers
Version: 2019-09 R (4.13.0)
Build id: 20190917-1200

with the following plugins:

Asmeta Animator 0.0.10

Asmeta editor and simulator 0.9.10
Asmeta model advisor 0.0.14

Asmeta model checker 1.0.6

Asmeta test generator 0.0.3

Asmeta visualizer 1.0.8

100

Appendix B

Meta

B.1 Colophon

This thesis is typeset using Lual&TEX, and its bibliography processed by BibTEX. Georg Duftner’s
EB Garamond acts as both the text and display typeface, monospaced text is typeset in Raph Levien’s
Inconsolata, and the Persian text on the dedication page is typeset using XqI£IEX and XePersian in
Saber Rastikerdar’s J>lw (Sahel).

B.2 Copyright and Licence

Copyright © 2020 Amin Bandali <bandali@uwaterloo.ca>

This thesis is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This thesis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this thesis, in Appendix C.
If not, see <https://www.gnu.org/licenses/>.

You can obtain a copy of this thesis along with complete ISTEX sources from <https://bndl.org/mmath>.

101

mailto:bandali@uwaterloo.ca
https://www.gnu.org/licenses/
https://bndl.org/mmath

Appendix C

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program—-to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License for most of our software;

it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to
surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software,
or if you modify it: responsibilities to respect the freedom of others.

102

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you received. You must make sure that they, too, receive or

can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the
software, and (2) ofter you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked

as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in
the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents
to restrict development and use of software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semicon-
ductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

103

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes copying, distribution (with or
without modification), making available to the public, and in some countries other activities as

well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy, is

not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to
it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole,
that (a) is included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work with that Major
Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on which
the executable work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,

including scripts to control those activities. However, it does not include the work’s System

104

Libraries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Corresponding
Source includes interface definition files associated with source files for the work, and the source
code for shared libraries and dynamically linked subprograms that the work is specifically designed
to require, such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically

from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running the
covered works for you must do so exclusively on your behalf, under your direction and control,
on terms that prohibit them from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.
. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December

1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-

nological measures to the extent such circumvention is effected by exercising rights under this

105

License with respect to the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s users, your or third parties’

legal rights to forbid circumvention of technological measures.

. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any non-permissive terms added in
accord with section 7 apply to the code; keep intact all notices of the absence of any warranty;
and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support

or warranty protection for a fee.

. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet all

of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

(b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4

to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it does

not invalidate such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form

106

a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate”

if the compilation and its resulting copyright are not used to limit the access or legal rights of the

compilation’s users beyond what the individual works permit. Inclusion of a covered work in an

aggregate does not cause this License to apply to the other parts of the aggregate.

. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and S, provided

that you also convey the machine-readable Corresponding Source under the terms of this License,

in one of these ways:

(a)

(b)

Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written ofter, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access to copy the Corresponding

Source from a network server at no charge.

Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,

and only if you received the object code with such an offer, in accord with subsection 6b.

Convey the object code by oftering access from a designated place (gratis or for a charge),
and ofter equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network server,
the Corresponding Source may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Regardless of what server
hosts the Corresponding Source, you remain obligated to ensure that it is available for as

long as needed to satisfy these requirements.

107

(e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding

Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether a product is a consumer
product, doubtful cases shall be resolved in favor of coverage. For a particular product received
by a particular user, “normally used” refers to a typical or common use of that class of product,
regardless of the status of the particular user or of the way in which the particular user actually
uses, or expects or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and
use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless
of how the transaction is characterized), the Corresponding Source conveyed under this section
must be accompanied by the Installation Information. But this requirement does not apply if
neither you nor any third party retains the ability to install modified object code on the User
Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and adversely affects the operation
of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this

108

section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire
Program shall be treated as though they were included in this License, to the extent that they are
valid under applicable law. If additional permissions apply only to part of the Program, that part
may be used separately under those permissions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place addi-
tional permissions on material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original version;
or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

(e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the

109

recipient, for any liability that these contractual assumptions directly impose on those

licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written

license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modity it is void, and will automatically terminate your
rights under this License (including any patent licenses granted under the third paragraph of

section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses for the same material under

section 10.

9. Acceptance Not Required for Having Copies.

110

10.

11.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other
than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not

responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contrib-
utor, whether already acquired or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor version, but do not include
claims that would be infringed only as a consequence of further modification of the contributor
version. For purposes of this definition, “control” includes the right to grant patent sublicenses
in a manner consistent with the requirements of this License.

11

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,

modify and propagate the contents of its contributor version.

n the followin ree paragraphs, a “patent license” is any express agreement or commitment,
In the following th graphs, a “patent| ” is any g t tment
owever denominated, not to enforce a patent (such as an express permission to practice a paten
h d ted, not to enf patent (such press p to practice a patent
or covenant not to sue for patent infringement). To “grant” such a patent license to a party means

to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then
you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient’s use of the covered work in a
country, would infringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify or convey a specific copy
of the covered work, then the patent license you grant is automatically extended to all recipients
of the covered work and works based on it.

A patentlicense is “discriminatory” if it does not include within the scope of its coverage, prohibits
the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying the work, and under which
the third party grants, to any of the parties who would receive the covered work from you, a
discriminatory patent license (a) in connection with copies of the covered work conveyed by you
(or copies made from those copies), or (b) primarily for and in connection with specific products
or compilations that contain the covered work, unless you entered into that arrangement, or that

patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other

112

12.

13.

14.

defenses to infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisty both those terms and
this License would be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General Public License
into a single combined work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the special requirements of the GNU
Aftero General Public License, section 13, concerning interaction through a network will apply
to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify a
version number of the GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional

obligations are imposed on any author or copyright holder as a result of your choosing to follow

113

1S.

16.

17.

a later version.

Disclaimer of Warranty.

THERE ISNO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“ASIS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGR AMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a

warranty or assumption of liability accompanies a copy of the Program in return for a fee.
END OoF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

114

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in
an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c' for details.

The hypothetical commands show wand show ¢ should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface,
you would use an “about box”.

115

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

116

	List of Tables
	List of Figures
	Introduction
	Declarative Modelling Languages
	Selection of Languages
	Thesis Contributions
	Thesis Outline

	Background
	B
	Event-B
	Alloy
	Dash
	TLA+
	PlusCal
	AsmetaL

	Methodology
	Control Modelling
	Terminology
	Snapshot and Snapshot Space
	Initialization
	Transition Relation
	Transitions
	Invariants
	Fairness
	Discussion on Inconsistency

	Data Modelling
	Terminology
	Primitives
	Constructors and Multiplicities
	Expressions
	Events
	Constants
	Well-formedness and Typechecking
	Scopes
	Missing Features

	Modularity
	Case Studies
	EHealth
	Digital Watch
	Musical Chairs
	Library Management
	Railway Scheduling Deadlock Freedom

	Recommendations
	Related Work
	Conclusion
	References
	APPENDICES
	Tool versions
	Meta
	Colophon
	Copyright and Licence

	GNU GENERAL PUBLIC LICENSE

