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Abstract

We present a variety of translation options for converting Alloy to SMT-LIB via Alloy’s
Kodkod interface. Our translations, which are implemented in a library that we call Astra,
are based on converting the set and relational operations of Alloy into their equivalent in
typed first-order logic (TFOL). We investigate and compare the performance of an SMT
solver for many translation options. We have three translation axes, and in total, twelve
different combinations. We compare using only one universal type to recovering Alloy
type information from the Kodkod representation and using multiple types in TFOL. We
compare a direct translation of the relations to predicates in TFOL to one where we recover
functions from their relational form in Kodkod and represent these as functions in TFOL.
We compare representations in TFOL with unbounded scopes to ones with bounded scopes,
either pre or post quantifier expansion.

We propose characteristics for classifying problems, which we hypothesize affect the
performance. We provide a set of test cases with different characteristics, and by testing
our translation on our tests, we create a statistical model to correlate characteristics to
the performance of different translation options. We propose hypotheses regarding SMT
solvers and modelling guidelines, and test them based on our empirical results. Our results
across all these dimensions provide directions for portfolio solvers, modelling improvements,
and optimizing SMT solvers.

At the end, we present a set of questions that suggest future work. These questions are
based on results we could not justify or find a reason for. The subjects of these questions
are SMT solvers and modelling optimizations.
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Chapter 1

Introduction

In the software development process, especially for critical systems, it is vitally important to
find errors and conflicts as early as possible in the process to reduce the cost of development
and maintenance, and eliminate the risk of failure that may cause extensive human and
financial damage. Formal methods offer a variety of ways by which these systems can be
modelled and checked formally, in an abstract and concise way.

First-order logic (FOL) is one of the ways to model the system and inspect its correct-
ness. FOL is largely used in modelling because of the abstraction level and conciseness it
provides. However, the decision procedure for FOL satisfiability is undecidable, meaning
that automatic tools cannot guarantee the termination of the decision procedure. Also,
as the complexity of systems grows, it becomes harder to prove properties for them with
theorem provers, which need manual guidance. Thus, it is necessary to come up with ways
to check models in FOL, at least partially, to gain more confidence in the model.

Finite model finding is one of the suggested solutions to deal with the undecidability
problem following Jackson’s small scope hypothesis [18], which states that a large propor-
tion of errors can be found by testing the model within a relatively small scope. There
are several tools over different languages that are focused on limited domains rather than
checking for unbounded scope, so that the analysis is guaranteed to return an answer,
given adequate computing resources. A popular finite model finding tool is the Alloy An-
alyzer [17]. While the answer for the limited scope problem might not be the answer to
the main problem, it can increase confidence in the proposed model.

Alloy [17] is a language developed by Jackson. This language is based on relational FOL
and is powerful and effective for modelling and describing systems formally. Relational FOL
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is FOL with relational and set theory operations. The Alloy Analyzer, translates the model
into Kodkod, which is the intermediate language between core Alloy and a SAT solver.

Kodkod is a finite model finder for relational FOL based on SAT solvers. Kodkod does
not have a type system, instead, it uses relations to specify different aspects of the model.
Types are translated to unary relations, and different types of functions and relations are
considered as n-ary relations, with extra constraints if needed. Translating functions as
constrained relations can cause inefficiency in the scoped analysis particularly since the
size of relations can grow much faster than functions when the size of the scope grows.

Fortress is a finite model finder for Typed First-Order Logic (TFOL). Fortress uses
SMT solvers [5] instead of SAT solvers, which means it supports types and can use the
help of theories to its advantage in comparison with Kodkod. Additionally, Fortress is
expected to have better results than Kodkod since, as shown in Vakili et al. [24], Fortress
had better analysis performance than Kodkod on Alloy models when tested on the same
benchmark. Consequently, using Fortress for Alloy language problems may increase its
efficiency of the analysis time.

We can inspect unscoped models using an SMT solver directly. In these cases, due
to the presence of quantifiers in the models, the decision procedure is not guaranteed to
terminate. Having this option besides finite model finding in Alloy, gives the user the
ability to check whether the problems can be solved for all scopes or not.

Another way to use an SMT solver to solve Alloy language problems is to ask an SMT
solver to search only with a limited scope. We can do this by adding range formulas where
we put constraints on the number of atoms for each type, meaning that each variable of
each type can only be a member of a finite set of constants. This way, the problem is
syntactically undecidable, but it has only finite scope solutions.

SMT solvers use the SMT-LIB [4] language as the input language, which has a relatively
simple structure. The SMT-LIB language is based on TFOL.

El Ghazi et al. [14], describe a translation directly from Alloy to the SMT solver
Yices [11]. One of the advantages that Yices has compared to the SMT-LIB language
is support for subtypes, which are extensively used in Alloy. This work is for unscoped
problems.

El Ghazi et al. [12] proposed a direct translation from Alloy to TFOL. Another trans-
lation from relational FOL to TFOL is the translation presented in Ulbrich et al. [23]. The
former is a translation from Alloy to SMT-LIB only for unscoped problems, which does
not guarantee the decision procedure termination. The latter, describes a translation from
Alloy to the KeY theorem prover [6] for first-order logic to check Alloy models over un-
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bounded scopes. However, theorem provers do not always automatically solve a problem,
and often require manual guidance of an expert.

Bansal et al.[2] introduces a new theory for solving relational FOL (including set car-
dinality) of finite scope problems in SMT solvers. This theory is a calculus for relational
logic for finite sets in SMT. Since the scope of problems is finite, the decision procedure is
guaranteed to terminate in this work.

Reynolds et al. [20] propose a theory called Finite Cardinality Constraints (FCC) for
doing finite model finding within an SMT solver. But for this theory to fully support the
Alloy language, relational FOL theories are needed. This work is an approach for finite
model finding, in which the satisfiability check is decidable.

Finally, Alloy2B[19] is a tool that translates Alloy models to the B language [1], mak-
ing a variety for B tools available for use on Alloy models including model checkers and
interactive proof tools for examining a model of unbounded scope.

Compared to the above work, in this thesis, we investigate the performance of a number
of translation options for converting Alloy to typed FOL (TFOL). We call our library Astra
(Alloy to SMT-LIB translation). To enable future integration with the Alloy Analyzer, we
start from the Kodkod interface. We compare using only one universal type to recovering
Alloy type information from the Kodkod representation and using multiple types in TFOL.
We compare a direct translation of the relations to predicates in TFOL to one where we
recover functions from their relational form in Kodkod and represent these as functions in
TFOL. We compare representations in TFOL with unbounded scopes to ones with bounded
scopes, either pre or post quantifier expansion.

1.1 Contributions

This thesis is focused on improving and analyzing the performance of the verification of
Alloy models by translating the formulas from Kodkod to TFOL. We describe different
options for translation, which make it possible to experiment with different factors that
may make a difference in analysis performance of Alloy models. We propose hypotheses
about our translation combinations and SMT solvers and test them.

Thesis statement: Alloy can be linked to SMT solvers via its Kodkod in-
terface by translating Kodkod formulas to typed first-order logic. There are
a variety of equivalent ways to do this translation. There is empirical and
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explanatory evidence that model characteristics can be correlated with trans-
lation combinations to achieve the best performance amongst the translation
combinations.

We run our performance tests using the SMT solver Z3 [10] to compare the results
of all of our translation options to each other and Kodkod. We categorized our tests
by characteristics of the model such as depth of quantifiers, number of types, the use of
join, number of functions, etc. and discuss whether there are any meaningful correlations
between model characteristics and our translation options.

Our results are useful to anyone who uses Alloy for verification. We have not yet
implemented transitive closure, cardinality of sets, or support for built-in Alloy types. Our
contribution comparing all of these translation options provides directions for portfolio
solvers, modelling improvements, and optimizing SMT solvers.

We next explain the contributions of this thesis.

1.1.1 Translation from relational FOL to TFOL

Relational FOL and TFOL are equivalent in terms of expressiveness. We propose different
equivalent translations, based on factors that we hypothesize can impact analysis perfor-
mance. Our translations are close to what has been proposed in the work by Ulbrich et
al. [23] and El Ghazi et al. [12], but they differ somewhat, which we describe in Chapter 3.

As presented in Figure 1.1 our different translations have three axes: the type axis, the
function axis, and the scope axis. The options on the type axis are typed and untyped.
There are two different choices on the function axis, functions and predicates. Lastly, we
have Fortress, SMT finite model finding (SMT FMF), and unscoped for the scope axis.
Since the translation axes are independent, the resulting total possible combinations of the
options is equal to twelve. Because the translation starts from Kodkod, we had to reverse
engineer the derived structures and formulas to find the original properties of the model.
Our translation is easier than if we wanted to translate directly from Alloy due to the
simpler structure of the Kodkod language compared to Alloy, but is made harder because
of the reverse engineering required.

1.1.2 Testing a set of benchmarks for performance results

We have eleven Alloy models that are tested for different scopes for a total of twenty-nine
tests. Most tests are not satisfiable because these tend to be harder problems for solvers,
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Figure 1.1: Different translation dimensions and options.

but a few tests have satisfying solutions. These models originated from Kodkod bench-
marks [22], which were also used to test Fortress, and we created some additional models
to ensure that we have models that contained interesting instances of several characteris-
tics. We introduce a set of characteristics that we hypothesize can impact the performance
analysis, and measured them on our models. We test models that represent different com-
binations of these characteristics, and we draw conclusions based on our tests that can be
applied for finding the best option for each model.

1.1.3 Test results and modelling guidelines

We test Astra with our test cases, and present the results for the interesting translation
combinations. Interesting combinations are the ones that perform the best on at least one
test. Out of the total twelve combinations, we found four interesting ones that are analyzed
and discussed.

We then evaluate our hypotheses, and explain them using our empirical data. These
hypotheses provide modellers with guidelines that can improve the performance of the
verification of Alloy models. These guidelines can also be used to understand and improve
SMT solvers. In addition to inspecting out hypotheses, we try to find statistical models
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based on performance times of different options and model characteristics. These statistical
models indicate which characteristics affect performance time the most. Based on our
statistical models, a user can find the option that is most likely to solve the problem faster.
We believe this process can be automated so that the tool can find the best option based
on the characteristics of the model without user’s input.

At the end, we present several questions, based on Astra’s behavior in different combi-
nations. These are the questions that we could not find the answer to in this thesis, and
these questions suggest future work regarding improving SMT solvers’ performance and
creating guidelines for modelling.

1.2 Thesis overview

This thesis is organized as follows: In the next chapter, a brief background on finite model
finding, Alloy, Kodkod, Fortress, and Z3 is provided. Our translation is explained in
Chapter 3. Chapter 4, discusses the tests and their characteristics. In Chapter 5, we
present our test results and conclusions drawn from them. Related work is presented in
Chapter 6. Lastly, we concluded the thesis in Chapter 7.
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Chapter 2

Background

In this section, we present a brief overview of finite model finding, Alloy, Kodkod, Fortress,
and Z3.

2.1 Finite Model Finding

First-order logic satisfiability checking is inherently undecidable, meaning that there is no
algorithm that can solve every problem in FOL. Therefore, there cannot exist an automatic
tool for solving all problems in FOL. The complexity of the models grow as the problems
grow in complexity, and additionally, manual theorem proving requires expertise and is
difficult to use in industrial settings. Automatic tools, such as SMT solvers, often come
up with no answer to our question when they face a complicated problem. To avoid this
problem, finite model finding approaches can be used.

In finite model finding, by limiting the scope of the universe, only the finite solutions
are considered. The decision procedure for finding finite solutions is decidable. Of course,
solving the latter does not mean that the original problem has been solved, but it is helpful
in cases where there is no answer to the original problem. If a solution is found, it is a
solution to the original problem, but if the result is UNSAT, then it is only correct for the
limited scope. Relying on Jackson’s small scope hypothesis [18], more confidence in the
model can be gained through this process.

Finite model finding is used in different settings, such as proving theorems in finite
algebra, checking lightweight formal specification, finding counterexample to tentative the-
orems in interactive proof assistance, bounded verification of code and memory models,
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and declarative configuration and execution. Many different tools have been developed in
this area, such as Forge [15], Fortress [24], Kodkod [22].

2.2 Alloy

Alloy is a declarative language for modelling complex systems. Its core logic is typed
relational FOL. Alloy is an effective lightweight language, and its simplicity, abstraction,
modularity, good tool support, and large community make it a suitable candidate for being
used in different contexts. The Alloy Analyzer, which is the tool for the Alloy language, is
open source, and the users and developers can access and contribute to the tool.

An Alloy model consists of three main parts, declarations, constraints, and assertions.
Types are declared as signatures. Constraints are parts of an Alloy model that limits
the model, and are expressed by facts and predicates. Lastly, assertions are stated by
the check() command on certain predicates. Alloy also allows users to use the run()

command for checking the consistency of the model, with a predicate, or alone.

Alloy has good syntax support for types and inheritance, which increases the modularity
and conciseness of the model. Through the sig and extends keywords, complex type
hierarchies can be defined in Alloy. Relations and functions are defined within sig blocks.
Other constraints and structures can be defined as pred for predicates, fact for invariant
constraints, and fun functions. Facts are assumed to be always true about the model.
Predicates are true wherever they are used. Functions have return values and can make a
model more modular.

Figure 2.1 presents a small Alloy example. Lines 1 to 13 are the declarations. The
type A is an abstract type, meaning that it is equal to the union of all its subtypes, and
it does not contain any member that is not a member of one of its subtypes. Lines 14 to
27 describe the invariants of the model. Lastly, line 28, sets the scope of the problem and
runs the Alloy Analyzer to find a satisfying model.

The declarations include the declaration of types and subtypes, relational functions,
and relations. In this work, for conciseness, we use function instead of relational function.
In the example, types B and C are declared to be subtypes of abstract type A. Function
id is defined within the A signature, in line 3. It is a function, because of the multiplicity
assigned to it, one. We can also find a relation in line 11, since the multiplicity of the
relation is set. Other multiplicities are lone and some, which mean partial function and
relation respectively. The difference between set and some is that each member of domain
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1 abstract sig A {

2 // Function , id: A -> ID

3 id: one ID

4 }

5 sig B extends A {

6 // Function , toC: B -> C

7 toC: one C

8 }

9 sig C extends A {

10 // Relation , toB: C <-> B

11 toB: set B

12 }

13 sig ID {}

14 // Each atom in A has a unique id. (one -to -one function)

15 fact uniqueID {

16 all a, a’: A | a.id = a’.id => a = a’

17 }

18 // Each two different atoms in B have pointers to different Cs

19 // (Different way to specify that toC is a one -to -one function)

20 fact uniqueB {

21 all b, b’: B | not (b = b’) => not (b.toC = b’.toC)

22 }

23 // Relational images of different atoms of type B in toB ,

24 // are disjoint.

25 fact uniqueC {

26 all c, c’: C | not (c = c’) =>

27 not (some b: B | b in (c.toB & c’.toB))

28 }

29 run {} for exactly 6 A, exactly 3 B, exactly 3 C, exactly 6 ID

Figure 2.1: A small Alloy example
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must be mapped to at least one member of the range when some is chosen, however, this
is not true for set.

Invariants are specified within fact blocks. Quantifiers can be used to constrain the
model. The universal quantifier is all, used in lines 16, 19, and 25, and the existential
quantifier is some, used in line 26. The join operation, ., is extensively used in Alloy, to
represent the relational join operation, and function/relation application. For example, in
line 16, since id is a function, a.id behaves like a function application and means id(a).
Other relational operations in Alloy include union (+), intersection (&), set difference (-),
relational transpose (~), and transitive closure (^).

Finally, to specify the scope of the model, we can either use exactly, which means the
problem will be only solved for models with the exact scope as specified, or we can remove
it and have our model checked against at most the numbers specified for each type. We
only deal with exact scopes in Astra.

2.2.1 Kodkod

Kodkod [22] is the intermediate tool that lies between Alloy and SAT solvers. Unlike Alloy,
Kodkod does not have constructs for types or inheritance. The type and function decla-
rations are represented as relations in Kodkod. Types are declared as unary relations in
Kodkod, and functions and relations are declared as n-ary relations with extra constraints.
The rest of the operations are similar to Alloy’s. The subset of Kodkod’s syntax that is
supported in this work is shown in Figure 2.2. We omit comprehension, if-then-else, and
transitive closure.

Kodkod has a Java interface, and it does not have an actual input language. However,
there is an option in the Alloy Analyzer to generate Java code representing the Alloy model
that interfaces with Kodkod. This Java code consists of three data structures that carry
all the information about the Alloy model: a formula; all the generated atoms called the
“atomlist”; and the generated universe for all relations called the “bounds”. Using these
data structures, we can derive the original model.

Kodkod’s pseudo code for the example in Figure 2.1 is presented in Figure 2.3. The
keyword “this” is because of the way Kodkod translates types and chooses names for
variables to differentiate them when the same name is chosen for different constructs. For
example, if a variable is passed as an argument to a predicate with the name P, the variable
would have “P” appended to them. The keyword “univ” is the set of all atoms. Also, each
function and relation that is declared in a signature block has the name of the signature
appended to its beginning. For example, function “id” in Alloy becomes “A.id” in Kodkod.
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formula ::= expr ::=

no expr var

| lone expr | expr ∪ expr
| one expr | expr ∩ expr
| some expr | expr \ expr
| expr ⊆ expr | expr . expr
| expr = expr | expr → expr

| ¬formula | ∼expr
| formula ∧ formula varDecls ::= var : expr[ , var : expr] ∗

| formula ∨ formula universe ::= {atom[, atom]∗}
| formula⇒ formula relBound ::= var :arity [constant, constant]

| formula⇔ formula constant ::= {tuple[, tuple]∗}|{}[×{}]∗

| ∀ varDecls | formula tuple ::= 〈atom[, atom]∗〉
| ∃ varDecls | formula atom, var ::= identifier

arity ::= positiveinteger

Figure 2.2: Partial Kodkod input syntax taken from Torlak et al. [22]
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1 // ==================================================

2 // Kodkod formula:

3 // ==================================================

4 // Declarations:

5 no (this/B & this/C) &&

6 (all this: this/B |

7 one (this . this/B.toC) &&

8 (this . this/B.toC) in this/C) &&

9 (this/B.toC . univ) in this/B &&

10 (all this: this/C |

11 (this . this/C.toB) in this/B) &&

12 (this/C.toB . univ) in this/C &&

13 (all this: this/B + this/C |

14 one (this . this/A.id) &&

15 (this . this/A.id) in this/ID) &&

16 (this/A.id . univ) in (this/B + this/C) &&

17

18 // Facts:

19 (all a: this/B + this/C, a’: this/B + this/C |

20 !((a . this/A.id) = (a’ . this/A.id)) || a = a’) &&

21 (all b: this/B, b’: this/B | !!(b = b’) ||

22 !((b . this/B.toC) = (b’ . this/B.toC))) &&

23 (all c: this/C, c’: this/C | !!(c = c’) ||

24 !(some b: this/B |

25 b in ((c . this/C.toB) & (c’ . this/C.toB))))

26 // ==================================================

27

Figure 2.3: Parts of Kodkod translation pseudo code of the Alloy example
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The top part of Figure 2.3 is type, function, and relation declarations, and the bottom
part is the translation of the facts. The translation of facts is straight-forward, however,
Kodkod has a unique way of declaring types and functions. For example, line 5 states that
types B and C are disjoint, and the domain and range of toC are specified in lines 6 to 9.
These declarations at the beginning are sufficient for all the type constraints and there is
no need to add constraints in translation of facts.

The pseudo code is a comment in the output of the Alloy to Kodkod translation process
because Kodkod does not have any input language, and we can only interface to it through
Java code. The Java code creates Kodkod structures, and then Kodkod translates them
to CNF clauses. Then the SAT solver is called to solve the problem.

Symmetry breaking in Kodkod is done by two methods introduced in Torlak et al. [22].
The first method is based on graph automorphism detection, which is complete, and only
works reasonably for small problems. The second method is a greedy algorithm, called
greedy base partitioning, which finds a subset of the available symmetries that can be
detected in polynomial time. This method is not complete, but in practice, works well for
medium sized problems. Both methods have poor performance for large problems [22].

2.3 Fortress

Fortress [24] is an SMT-based finite model finder, which uses equality with uninterpreted
functions (EUF) as its base logic. EUF is a subset of typed FOL with Equality that excludes
quantifiers and adds the equality predicate. Therefore, EUF is decidable. Fortress input
is TFOL and a scope for each type. The transformation for flattening the formulas and
eliminating the quantifiers is done within Fortress, and the result is translated into the
SMT-LIB2 language, and the Z3 SMT solver is called. Figure 2.4 shows the input syntax
of Fortress.

The formulas and scopes are passed to Fortress for quantifier expansion. The quantifier
expansion fully eliminates the quantifiers expanding them for the finite scope. Fortress’
process has four steps [24]. To illustrate these steps, we present an example. Consider the
formula

∀x, y : A • ∃z : A • (f(x) = f(z))⇒ P (y)

where the scope of type A is 3.

The first step is to transform formulas into prenex normal form, then skolemize and
eliminate existential quantifiers. This means we move all the quantifiers and bound vari-
ables to the beginning of the formula, then replace variables bound by the existential
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Formulas Terms

Φ ::= > | ⊥ | p t : θ ::= v : θ where v ∈ V
::= R(t1 : θ1, ..., tn : θn) ::= c : θ

::= ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Φ1 ⇒ Φ2 | Φ1 ⇔ Φ2 ::= f(t1 : θ1, ..., tn : θn)

::= ∃v : θ • Φ | ∀v : θ • Φ where v ∈ V

Figure 2.4: Fortress input syntax taken from Vakili et al. [24]

quantifier with constants. After this step it becomes

∀x, y : A • (f(x), f(sk))⇒ P (y)

where the sk is a constant replacing variable z. This constant can be any of the values
within the scope of A.

The second step is to generate the universe from the bounds received from the input.
Fortress generates constants of the types. In the example, Fortress creates the set of
constants {a1, a2, a3} in the universe, all of which are of type A and are distinct constants.

The third step is to add range formulas based on the generated universe. These range
formulas are added for each function and constant. For our example, the range formulas
are

sk = a1 ∨ sk = a2 ∨ sk = a3,

f(a1) = a1 ∨ f(a1) = a2 ∨ f(a1) = a3,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3,

and
f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3.

However, the size of the range formulas can be reduced using symmetry breaking tech-
niques. Fortress uses Classen and Sörensson’s symmetry breaking technique [7]. In this
method, we sort our constants in an arbitrary order, and for each constant occurring in the
problem, we pick an element that we have already seen, or a new element, which must be
the least unused element in our ordered list. The range formula after symmetry breaking
is:

sk = a1,
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f(a1) = a1 ∨ f(a1) = a2,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3,

and
f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3.

Symmetry breaking reduces the size of the range formulas.

The last step is to ground formulas. At this step, all universal quantifiers are eliminated
and all the variables bound by them are replaced by constants. During this process some
formulas are simplified if possible. For example, in the formula

∀x, y : A • f(x) 6= f(y) ∨ x = y,

when both x and y are replaced by a1, the formula becomes

f(a1) 6= f(a1) ∨ a1 = a1,

and then it is simplified as >. Also, when x is replaced by a1 and y is replaced by a2, the
formula becomes

f(a1) 6= f(a2) ∨ a1 = a2,

and since all the constants generated in the universe are distinct the formula is simplified
to

f(a1) 6= f(a2).

Fortress has shown promising results when compared with Kodkod [24]. After fix-
ing some bugs in Fortress, we tested the benchmark again to replicate the result. The
comparison result is presented in Table 2.1.

2.4 Z3

Z3 [10] is an efficient SMT solver, which is developed in Microsoft Research Labs. An
SMT solver solves Satisfiability Modulo Theories (SMT) problems, which are satisfiability
problems for first-order logic with theories. Examples of these theories are: arithmetic, bit-
vectors, arrays, and uninterpreted functions. The input language of Z3 is SMT-LIB2 [4].

The algorithm that Z3 uses, is a DPLL-style algorithm [9]. A DPLL algorithm is a SAT
algorithm that takes a set of clauses as input and the output is whether the problem is
unsatisfiable or a satisfying instance. This DPLL-style algorithm is a heuristic algorithm
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Test Results
Test Scope Kodkod (s) Fortress (s)

Geo158 7 2.00 8.74
Geo158 9 33.37 24.03
Geo158 11 461.39 59.10
Geo091 7 2.45 4.89
Geo091 9 32.03 18.97
Geo091 11 887.49 48.50
Alg212 6 5.67 2.04
Alg212 8 221.18 17.98
Alg212 10 Timed out 803.20
Com008 7 0.45 8.11
Com008 9 0.55 118.98
Com008 11 1.79 538.40
Num374 5 26.25 6.42
Num374 6 304.68 59.29
Num374 7 Timed out 1192.29
Set943 7 4.54 2.50
Set943 9 Timed out 4.51
Set943 11 Timed out 8.37
Set948 7 0.59 2.72
Set948 9 0.88 2.55
Set948 11 1.63 10.34
Med009 7 0.37 57.63
Med009 9 0.38 Memory out
Med009 11 0.44 Timed out

Total time - 9988.13 6999.56
# of wins - 11 13
# of timeouts - 4 2

Table 2.1: Test results for comparison between Kodkod and Fortress (Time limit = 2000s)
(In total calculation, Memory out = 2000s, Timed out = 2000s)
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that is one of the most efficient algorithms at this time. This algorithm solves a problem
by creating a tree and searching for a satisfying assignment, and learning conflict clauses.
If a satisfying model is found during the search, Z3 returns the satisfying model. A Z3
satisfying model consists of a specific domain for each type and the functions and predicates
are defined over each of these atoms.

SMT-LIB2 is based on TFOL. Each type is disjoint in SMT-LIB2, and therefore, sub-
typing is not possible by using just the type system. SMT-LIB2 also does not support
relations, so for relation and set declarations, we must use predicates for declaration of
sets and relations. Unary functions are used to create constants. There are several built-in
types, such as numerals, decimals, strings, etc. and each of them have their own theory
library. The theory libraries are used to find satisfying assignments in clauses that contain
expressions in these theories.

2.5 Summary

Since the FOL decision procedure is undecidable, finite model finding approaches can check
for a model within relatively small scopes to gain confidence in the model. Fortress and
Alloy are two finite model finders. The Alloy Analyzer uses Kodkod as an intermediate
language between the Alloy model and SAT solver. Since the test results are in Fortress’
favor when compared with Kodkod, we think Alloy models can be solved faster using
Fortress. Fortress uses Z3, which is an SMT solver. The input language of Z3 is SMT-
LIB2, which is based on TFOL. Z3 uses a DPLL-style algorithm, which is one of the most
efficient algorithms at this time.
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Chapter 3

Astra

We call the Alloy to SMT Translator “Astra”, which translates relational FOL to
TFOL. In this chapter, we describe our translation process.

3.1 Overview

The Alloy language, uses Kodkod as the intermediate language. For ease of integration
with Alloy, we chose Kodkod as the interface, which is much simpler than dealing with all
of Alloy’s constructs. Our translation requires some reverse engineering since parts of the
Alloy model are presented differently in Kodkod.

Our translation starts from a Kodkod file generated by the Alloy tool. Our translation
is done in two passes. The first pass is to determine the types, relations, and functions
declarations. In this pass, Astra extracts and declares all the relations, their types, their
arities, and their multiplicities. During the second pass, the formula is translated using
the information extracted in the first pass.

There are different equivalent translations for each model. We call each of the indepen-
dent factors an axis. There are three different axes:

• Type declaration axis: Typed, Untyped.

• Function declaration axis: Functions, Predicates.

• Scope translation axis: Fortress, SMT finite model finding (SMT FMF), Unscoped.
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Alloy
(.als) 

Alloy Analyzer 

 
Kodkod
(.java) 

Kodkod

 
 
 

SMT-LIB2
(.smt) 

SMT solver
(Z3, ...) 

CNF

SAT solver
(MiniSAT, ...) 

 
TFOL

Step 1: Declare types
a) Typed           
b) Untyped      

Step 2: Declare functions 
a) Predicates    
b) Functions 

Step 3:Translate
formula to TFOL

Step 4: Choose scope 
a) Unscoped          
b) Fortress                
c) SMT finite model finding 

Astra

Figure 3.1: Steps in translation.

Figure 3.1 presents an outline of the steps we use to translate Kodkod to TFOL. TFOL
supports only total functions. Our goal is to create a very direct translation to TFOL from
Alloy. Next, we overview the steps in our translation and the options we investigate for
each step. We explain these steps in detail with the following subsections.

Step 1: Declaring Types. Alloy uses sets as types. In the Kodkod representation,
there is one universe of elements and unary relations constrain the elements to be of a
certain type when needed. In TFOL, we have the ability to use its type space to separate
the elements into types and thereby reduce the size of the set of elements for each quantifier.
We hypothesize that using types will improve the performance of the SMT solver. Our first
translation step is to declare types in TFOL. We explore two options: untyped and typed.

Step 2: Declaring Functions. The next step of translation is to declare the total
functions in TFOL. A predicate in TFOL is a function that returns a Boolean value. We
hypothesize that solving a problem with theories is harder than solving a SAT problem in an
SMT solver. Therefore, using predicates instead of functions can improve the performance,
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at least for UNSAT problems, since if the SMT solver cannot find a satisfying Boolean
assignment, then it does not have to use its theories. Thus, we implement two options for
declaring TFOL functions. The first, which we call “predicates”, is to make all Kodkod
relations predicates in TFOL. The second, which we call “functions”, is to use as many
non-predicate functions as possible in TFOL.

Step 3: Translating Formulas. Step 3 is to translate the formulas in the Kodkod
datatype to formulas in TFOL. In this step, we have to translate set operations (union,
intersection, etc.) into their equivalent in FOL.

Step 4: Choosing Scopes. In Step 4, we transform the formula into prenex normal
form and set the scope for the problem. We hypothesize that if the problem is within a
decidable fragment of TFOL, the SMT solver can solve it quickly without any bounds since
the formula is smaller without introduced constants and their expansion. We also want
to investigate whether quantifier expansion with finite scopes is more efficiently done by
the SMT solver or prior to solving. We investigate three methods for handling the scope:
Fortress, SMT FMF, Unscoped.

Step 5: SMT Solver. In the final step, Step 5, the SMT solver is called on the
problem.

We have not yet proven the correctness of our translation, however, since the translation
is from Kodkod (rather than Alloy) the number of cases to consider for correctness is
reduced and can be seen more directly.

In the following, the translation process, its options, and the combination of the options
is explained thoroughly. For illustration of the translations, the example in Figure 2.1 is
used.

3.2 Step 1: Declaring SMT types

Since Kodkod does not have a type system, it considers everything to be of the same
type, and the different types of the Alloy signatures are unary relations. When translating
Kodkod to SMT, types can play a significant role in the analysis performance of the tool
because SMT solvers use typed FOL. Astra finds the Alloy types by doing a thorough
search in the whole formula. Kodkod type names are auto-generated and may differ from
the original names in Alloy so they can remain unique as the Alloy structures are merged
together.

In Astra, the type derivation process is done in the first pass. In this pass, most of
the formulas are not interesting, and a recursive process collects only the parts of the
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formula that are about types and functions/relations. For n-ary relations in Kodkod, the
multiplicities, which indicate whether the relation is a total function, partial function,
or just a relation, are detected. In this step, if the typed option is chosen, then upon
detection of inheritance, the supertype is split into the subtypes, and only the leaves of
the type hierarchy is declared as SMT types. For the untyped option on the other hand,
everything is assumed to be of the universal type, and all of the leaf types in type hierarchy
are translated as predicates.

For the example of Figure 2.1, Table 3.1 and 3.2 show the state of the translator after
this step for the typed and untyped options respectively. At this stage, types are declared,
but the types of the functions are not detected yet. Hence, functions cannot be declared
in this step.

Types Relation arity Relation multiplicity

B (“id”, 2) (“id”, “one”)
C (“toC”, 2) (“toC”, “one”)
ID (“toB”, 2) (“toB”, “set”)

Table 3.1: Types, functions and relations after detection in pass 1 for typed option.

Types Relation arity Relation multiplicity

Univ (“id”, 2) (“id”, “one”)
(“toC”, 2) (“toC”, “one”)
(“toB”, 2) (“toB”, “set”)
(“B”, 1) (“B”, “set”)
(“C”, 1) (“C”, “set”)
(“ID”, 1) (“ID”, “set”)

Table 3.2: Types, functions and relations after detection in pass 1 for untyped option.

3.3 Step 2: Declaring SMT functions and relations

After we have declared the types and found the name, arities, and multiplicities of the
relations in Step 1, we have different options for how to declare functions in TFOL. Next
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we explain the function and relation declarations for each of the typing options of Step 1.

By using the “bounds” structure of Kodkod the functions’ and relations’ types can be
determined when using the typed option of Step 1. For non-hierarchical types, this process
is straight-forward, because all the unary relations are mapped to exactly one SMT type.
For hierarchical types, some functions and relations may have been defined over several
types, since the domain or range of the relation can be a supertype. In this case, since
all the types in SMT are disjoint, we create different functions with only the leaf types
involved for the functions. In general, a function such as

f : Super1 → Super2

with their domain or range being supertypes, is split into multiple functions:

f11 : Sub11 → Sub21, ..., fmn : Sub1m → Sub2n.

For example, for the function id in the Figure 2.1 Astra detects that the function is
defined over two types, B and C. Table 3.3 shows the function and predicate declarations
after Step 2.

Declarations with functions Declarations with predicates

idB : B 7→ ID idB : B × ID 7→ Bool
idC : C 7→ ID idC : C × ID 7→ Bool
toC : B 7→ C toC : B × C 7→ Bool
toB : C ×B 7→ Bool toB : C ×B 7→ Bool

Table 3.3: Function and predicate declarations after the pass 1 for typed option

The function declaration step has two options: Functions, Predicates. We choose the
functions option when we want the functions to be translated as SMT functions. But
we can also translate them as predicates, with additional constraints. The multiplicity
constraints are:

• one (total function):

∀a : A • ∃b : B •R(a, b) ∧ ∀b′ : B •R(a, b′)⇒ b = b′

• lone (partial function):

∀a : A • ∀b, b′ : B •R(a, b) ∧R(a, b′)⇒ b = b′
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• some (relation with each member of the domain mapped to at least one member of
the range):

∀a : A • ∃b : B •R(a, b)

• set (relation):
None

Hence, the constraints for the example are:

∀x : B • ∃y : ID • idB(x, y) ∧ ∀x′ : B • idB(x′, y)⇒ x = x′

∧ ∀x : C • ∃y : ID • idC(x, y) ∧ ∀x′ : C • idC(x′, y)⇒ x = x′

∧ ∀x : B • ∃y : C • toC(x, y) ∧ ∀x′ : B • toC(x′, y)⇒ x = x′

After this step, the function declarations are complete.

The untyped option of Step 1 does not include types and there is only one universal
type, Univ, so in Step 2 the declarations depend only on the multiplicity and the arity.
The general method is similar to the typed option of Step 1. The functions and predicates
are created are shown in Table 3.4. For the example of Figure 2.1 the following formulas
are added to the translation to constrain declared relations to be functions if we choose
the predicates option in Step 2.

∀x : Univ • ∃y : Univ • id(x, y) ∧ ∀x′ : Univ • id(x′, y)⇒ x = x′

∧ ∀x : Univ • ∃y : Univ • toC(x, y) ∧ ∀x′ : Univ • toC(x′, y)⇒ x = x′

One of the notable differences between Table 3.3 and 3.4 is that there are two id

functions in the former, and one in the latter, and each Alloy type has a membership
predicate. The declaration of only one id function in Table 3.4 is because when the
untyped option is chosen, type constraints are imposed with the type predicates, and
therefore, there is no need to separate subtypes B and C.

3.4 Step 3: Formula translation

In this section, we present the translation options from relational FOL terms to TFOL
terms. To create as direct a translation to TFOL as possible, we represent each set oper-
ation using the characteristic predicate for the set and the propositional operation that is
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Declarations with functions Declarations with predicates

id : Univ 7→ Univ id : Univ × Univ 7→ Bool
toC : Univ 7→ Univ toC : Univ × Univ 7→ Bool
toB : Univ × Univ 7→ Bool toB : Univ × Univ 7→ Bool
B : Univ 7→ Bool B : Univ 7→ Bool
C : Univ 7→ Bool C : Univ 7→ Bool
ID : Univ 7→ Bool ID : Univ 7→ Bool

Table 3.4: Function and predicate declarations after the pass 1 for untyped option

the equivalent of the set operation. For example, the union of two sets is the disjunction
of the characteristic predicate for each of the operands to the union.

This translation can be done in either a top-down or bottom-up traversal of the Kodkod
formula data structure. To handle the generality of set expressions in Alloy, and ease of
later development for transitive closure and simplification methods, we choose a bottom-up
traversal to facilitate its compositionality and so that the types of terms can be determined
from their leaves on the way up. To make a bottom-up traversal possible, we have to provide
a translation for each term, not just each formula. Our translation is defined by the [·]
operator, which takes a term in Kodkod, and translates it into TFOL term. We define
[·] in this section. The type of the Kodkod term must be determined as we walk up the
data structure; we use the notation type(·) to denote this calculation. Figure 3.2 and 3.3
represent the complete translations for typed and untyped options.

The leaves of the Kodkod formula datatype are variables or relations of certain types.
We need this type information in our translation to TFOL. Kodkod stores the types of its
variables with the variable, so the translation of a Kodkod variable or relation is simply a
term of the type in the Kodkod, as in [v : t] in bottom part of the Figure 3.2 and 3.3.

Next, we describe the translation for the set operations. A term in Kodkod must
return a term in TFOL so we translate each non-leaf term into a helper relation and add
a constraint for the meaning of the helper relation. For example, [A ∪ B] where A and B
are both of type t is a new relation R of type t → Bool with an additional constraint of
∀x : t • R(x) ⇔ A(x) ∨ B(x). Thus, the translation of the set operations results in a
TFOL term plus declarations and additional constraints. In the “Set operations” part of
the Figure 3.2 and 3.3, each Rnew is the new relation name.

By using this method of helper relations, our translation results in possibly smaller
clauses but more of them compared to the methods that use top-down approach. This
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Propositional connectives :
[true] := true

[false] := false
[¬A] := ¬[A]

[A ∧B] := [A] ∧ [B]
[A ∨B] := [A] ∨ [B]

[A⇒ B] := [A]⇒ [B]
[A⇔ B] := [A]⇔ [B]

Quantified formulas :
[∀(x : t) • A] := ∀x : t • [A]
[∃(x : t) • A] := ∃x : t • [A]

Set operations :
[A ⊆ B] := ∀x : type(A) • [A](x)⇒ [B](x)

[(v : t) ∈ B] := [B](v : t)
[A ∪B] := Rnew : type(A)→ Bool

add ∀x : type(A) •Rnew(x)⇔ [A](x) ∨ [B](x)
[A ∩B] := Rnew : type(A)→ Bool

add ∀x : type(A) •Rnew(x)⇔ [A](x) ∧ [B](x)
[A−B] := Rnew : type(A)→ Bool

add ∀x : type(A) •Rnew(x)⇔ [A](x) ∧ ¬[B](x)
[∼A] := Rnew : type(ran(A))× type(dom(A))→ Bool

add ∀x : type(ran(A)), y : type(dom(A))•
Rnew(x, y)⇔ [A](y, x)

[A.B] := Rnew : type(dom(A))× type(ran(B))→ Bool
add ∀x : type(dom(A)), y : type(ran(B))•
Rnew(x, y)⇔ ∃z : type(ran(A)) • [A](x, z) ∧ [B](z, y)

[A = B] := [A] = [B]
[v : t] := v : t

[((v1 : t1), (v2 : t2))] := [v1]× [v2]

Figure 3.2: Formula translation for typed option.
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method reduces the size of formulas after quantifier expansion for finite model finding.

For the functions option of Step 2, there are special cases for join where the first
argument, v, to join is a variable or the first argument is the result of a total function
application (which results in a scalar), we translate this expression to function application:

[(v : t).f ] := (f(v : t)) : type(ran(f))
[(v : t).f1.f2] := (f2(f1(v : t))) : type(ran(f2))

When translating quantified formulas, we check the type of the quantified variables. If
a variable of a supertype is detected, then the formula is split into all the subtypes of the
supertype. In general, splitting a quantified formula over supertypes such as

∀x : Super • Φ and

∃x : Super • Φ,

into subtypes results in

(∀x1 : Sub1 • Φ) ∧ ... ∧ (∀xn : Subn • Φ) and

(∃x1 : Sub1 • Φ) ∨ ... ∨ (∃xn : Subn • Φ)

respectively.

For example, the uniqueID fact in the example of Figure 2.1, is translated as

(∀b, b′ : B • idB(b) = idB(b′)⇒ b = b′) ∧ (∀c, c′ : C • idC(c) = idC(c′)⇒ c = c′)),

and fact uniqueB is translated as

∀b, b′ : B • ¬(b = b′)⇒ ¬(toC(b) = toC(b′)),

and fact uniqueC is translated as

∀c, c′ : C • ¬(c = c′)⇒ ¬(∃b : B •Rnew(b)),

where Rnew is a new relation of type B → Bool and

∀b : B •Rnew(c)⇔ toB(c, b) ∧ toB(c′, b)

is added to the end of the translated formula for uniqueC.

If the untyped option is chosen in Step 1, this translation changes slightly. The types
all become the universal type and unary predicates are added as appropriate to limit the
formula to the correct type. For example, the translation for the union operator is:
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Propositional connections :
[true] := true

[false] := false
[¬A] := ¬[A]

[A ∧B] := [A] ∧ [B]
[A ∨B] := [A] ∨ [B]

[A⇒ B] := [A]⇒ [B]
[A⇔ B] := [A]⇔ [B]

Quantified formulas :
[∀(x : t) • A] := ∀x : Univ • t(x)⇒ [A]
[∃(x : t) • A] := ∃x : Univ • t(x) ∧ [A]

Set operations :
[A ⊆ B] := ∀x : Univ • [A](x)⇒ [B](x)

[(v : t) ∈ B] := [B](v : Univ)
[A ∪B] := Rnew : Univ → Bool

add ∀x : Univ • Ptype(A)(x)⇒ Rnew(x)⇔ [A](x) ∨ [B](x)
[A ∩B] := Rnew : Univ → Bool

add ∀x : Univ • Ptype(A)(x)⇒ Rnew(x)⇔ [A](x) ∧ [B](x)
[A−B] := Rnew : Univ → Bool

add ∀x : Univ • Ptype(A)(x)⇒ Rnew(x)⇔ [A](x) ∧ ¬[B](x)
[∼A] := Rnew : Univ × Univ → Bool

add ∀x : Univ, y : Univ•
Ptype(ran(A))(x) ∧ Ptype(dom(A))(y)⇒
Rnew(x, y)⇔ [A](y, x)

[A.B] := Rnew : Univ × Univ → Bool
add ∀x : Univ, y : Univ•
Ptype(dom(A))(x) ∧ Ptype(ran(B))(y)⇒
Rnew(x, y)⇔ ∃z : Univ•
Ptype(ran(A))(x) ∧ [A](x, z) ∧ [B](z, y)

[A = B] := [A] = [B]
[v : t] := v : Univ

[((v1 : t1), (v2 : t2))] := [v1 : t1]× [v2 : t2]

Figure 3.3: Formula translation for untyped option.
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[A ∪B] := Rnew : Univ → Bool
add ∀x • Ptype(A)(x)⇒ (Rnew(x)⇔ [A](x) ∨ [B](x))

where Ptype(A)(x) is the predicate for the type of set A. The change also affects the
translation of the multiplicity constraints in Step 2 in a similar manner.

To compare both type option translations’ effect on inheritance, the fact uniqueID in
the untyped setting is translated as

∀x, x′ : Univ • (B(x) ∧B(x′)) ∨ (C(x) ∧ C(x′))⇒ id(x) = id(x′)⇒ x = x′.

In this translation, the formula is shorter because it is not split for all subtypes of type A.

The alternative of a top-down traversal would have been more difficult to correctly
implement. It would result in longer formulas, but no extra quantified constraints. In a
top-down traversal of a nested set expression, variables of unknown type would have had
to be created on the way down the traversal so that formulas would always be passed back
up the traversal.

3.5 Step 4: Scope translation

The scope of the types is extracted from the Kodkod list of atoms (atomlist). Our translator
traverses this list and maps each type to its scope.

Fortress. If the Fortress scope option is chosen, then the scope is passed to Fortress.
Fortress creates an SMT-LIB2 file and calls Z3. In this method, the end result is a large
quantifier-free formulas in EUF.

SMT FMF. The second scope translation option, which we call SMT finite model
finding (SMT FMF), is to just add the range formulas to the formula. This process differs
depending on the type translation option of Step 1 chosen. If the type translation is typed,
then the range formula is added as the third step in the quantifier expansion process in
Fortress.

For untyped option of Step 1 where there is only one type (Univ), the usual range
formulas are not effective because we want to limit the number of values on each type
rather than the total number of values of the Univ type. Thus, the constraints are added
as a part of a formula. These constraints set the minimum number of each type, which is
equal to the values specified in the Alloy model. Then Fortress sets the exact number of
all atoms, which is the size of the Univ type. These two constraints together set the exact
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scope for the problem. In general, the untyped range formula in a model with m types
each with ni atoms is

∀x : Univ • (A1(x)⇒ ¬A2(x) ∧ ... ∧ ¬Am(x)) ∧ ...
∧(Am(x)⇒ ¬A1(x) ∧ ... ∧ Am−1(x)),

m∧
i=1

(∃x1, ..., xni • Ai(x1) ∧ ... ∧ Ai(xni) ∧ x1 6= x2 ∧ ... ∧ x1 6= xni ∧ ...

∧xni−1 6= xni).

The range formula for the untyped option in the example of Figure 2.1 is

∀x : Univ •B(x)⇒ ¬C(x) ∧ C(x)⇒ ¬B(x),

∃x1, x2, x3 : Univ •B(x1) ∧B(x2) ∧B(x3) ∧ x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3,

and
∃x1, x2, x3 : Univ • C(x1) ∧ C(x2) ∧ C(x3) ∧ x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3.

3.5.1 Unscoped

The final option for scope translation is to ignore the scope and pass the formula without
limited scopes. In this option the SMT solver searches for a solution that may be of infinite
scope. If a problem is found to be UNSAT for unbounded scope, then the result is UNSAT
for any given scope. Also, the decision procedure in this option is an undecidable problem
that might not terminate.

3.6 Step 5: SMT solver

At this stage, every data structure is translated into SMT-LIB2 and a file is created. Then
the SMT solver is called for solving the problem, and the result is reported to the user.

3.7 Implementation

Astra is implemented in Java as a solver that takes Kodkod’s data structures as arguments
to facilitate easy future integration with the Alloy Analyzer. We use the Fortress library
implemented by Vakili and Day [24] as our abstract datatype for TFOL declarations and
formulas.
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3.8 Related work

In this section we discuss and compare similar translations to ours.

With respect to type declarations, KeY [6] types are not required to be disjoint, there-
fore the inheritance translation is straight-forward in work of Ulbrich et al. [23]. In El
Ghazi et al. [12], the inheritance translation is a mixture of our typed and untyped trans-
lation options. Every supertype is translated into a disjoint type in SMT, and then the
subtypes are translated as membership predicates. The rest of the type translations are
quite similar to our work.

With respect to our function declaration option, in Ulbrich et al. [23], the approach for
translating different types of relations and functions is very similar to ours by creating a
helper relation and adding extra constraints. The declaration of different types of functions
and relations in El Ghazi et al. [12] requires definition of additional relations and functions
and constraining them with additional constraints. For example, to define a partial func-
tion, El Ghazi et al. [12] create a relation, and a function and then add a constraint on the
relation that every member of the relation is a member of the function.

With respect to formula translation, our translation is similar to what has been done in
Ulbrich et al. [23] and El Ghazi et al. [12]. The difference is that their translation approach
is top-down. The top-down translation may results in shorter formulas, with less relations.
But using the bottom-up approach, the combinations of the relations and functions can be
stored and reused. Hence, in some models, the bottom-up approach can result in shorter
formula. In addition, the bottom-up approach can facilitate the future implementation of
transitive closure.

With respect to the scope translation options, both Ulbrich et al. [23] and El Ghazi et
al. [12] solve problems for unbounded scopes, while we provide different scope translation
options. This way, for the problems that cannot be solved for the unbounded scope, we
can use finite model finding approaches.

Overall, our focus is to find the best translation combination for solving different sets of
problems. Other similar work focuses on only one combination and testing the performance
for that one combination. While our result shows a performance advantage in most of our
test cases, we also provide guidelines for improving modelling process, as well as existing
tools for solving the models.
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3.9 Summary

We presented our translation process and explained each step thoroughly. Also, we pro-
posed three hypotheses regarding modelling and performance results. Then we discussed
different translation options, and illustrated them by examples. We explained our imple-
mentation, and compared our translation to related work.
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Chapter 4

Performance Testing

In this chapter, we discuss the results of our performance tests. We examine our hypotheses
and explain the results. Finally, we consider the results overall and present questions and
discussion regarding the unexpected results that we observe. Each test case has different
characteristics. The characteristics are chosen from different aspects of a model that we
hypothesize can affect the performance time. All of these tests are compared and presented
against each other to better illustrate the differences between different combinations and
Kodkod.

4.1 Astra options

Our test cases are used to test all of the different options of Astra, to extract practical data
to the extent that conclusions can be drawn from them. Not all different combinations
of the different axes are efficient and interesting in terms of performance time. Some,
unexpectedly, are eliminated due to poor practical test results, and some we expected to
show poor results. For example, we expect functions to make a formula grow more slowly in
size than relations, and therefore, choosing the Fortress option with predicates, is expected
to have poor results relatively. We look deeper into the interesting combinations. The
complete set of combinations and whether they are considered interesting in this thesis
or not is illustrated in Table 4.1. The reasons some of the combinations are rejected are
explained in the following (D stands for discussion):

• D1: Fortress with functions is a good combination, because the slower growth of
the functions with scope growth, compared to predicates, reduces the quantifier
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Table 4.1: Translation combinations. 3 = interesting combination, 7 = rejected combina-
tion

Functions Predicates

Unscoped Fortress SMT FMF Unscoped Fortress SMT FMF

Typed 7: D4 3: D1, D3 7: D4 3: D3, D5 7: D2 7: D6
Untyped 7: D4 7: D6 7: D4 3: D5 7: D2 3: D5, D6

expansion time. So we expected Fortress with functions option would have good
performance and it did.

• D2: We expected the combination of predicates and Fortress to result in poor per-
formance since the formula grows larger with predicates rather than functions as the
scope of the problem grows. These combinations did have poor performance.

• D3: We expected the SMT type system would help combinations with the typed
option to perform well. These combinations did have good performance.

• D4: We expected the combination of functions and SMT FMF or unscoped would
have bad performance because less usage of theories in models with quantified formu-
las can cause improvement to the performance. These combinations did have poor
performance.

• D5: We expected the combination of predicates and SMT FMF or unscoped to be
a good combination because the usage of predicates instead of functions in UNSAT
models with quantified formulas can result in less usage of theories. These combina-
tions did have good performance in three of four combinations.

• D6: Good or poor performance is merely based on the empirical data, and we do not
have an explanation.

4.2 Characteristics of the models

In this section, we discuss the characteristics of the test cases. These test cases come
mainly from the Fortress benchmark [24] that is taken from the Kodkod benchmark [22].
We created additional tests to have a more diverse benchmark for Astra. There are in total
eleven Alloy models and they are tested for different scopes, making 29 tests in total.
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Each test has certain characteristics that affects the tool’s performance. We propose
a set of parameters that we hypothesize can affect the performance. We measure the
number of types, the depth of the function applications, the length of the joins, the depth
of quantifiers, the arity of the relations and functions, the number of functions, and the
number of relations into account.

The number of types is the number of distinct signatures declared in Alloy. This can
affect performance since the existence of types in a model means extra constraints on the
model. The effect of types can be examined through the translation options, by setting
the option to typed or untyped for one problem. It can also show its effect in different test
cases with different number of types.

The depth of the function applications is a parameter that represents the maximum
nestedness of function application in the Alloy model. Nested function applications result
in long joins, since function applications are translated as joins in Kodkod, but they will
be translated as function applications in Astra as we detect them by reverse engineering.
We hypothesize this detection will improve the performance significantly, because the join
operation causes creation of new relations and long joins can result in creation of new
helper relations with impractical arity that makes the analysis practically impossible.

The length of the joins for non-function relations or for the predicates option can
result in creation of new helper relations with large arities that can affect performance
significantly.

The depth of the quantifiers specify the number of quantified variables in the model
after the model is transformed into prenex normal form. The depth of universal and
existential quantifiers are measured separately, as their effect on the performance may
vary. In some combinations, the depth of the quantifiers is increased due to adding range
formulas or other helper formulas, however, these helper variables are not part of the
original model and are not counted.

The arity of the relations and functions is one of the most important parameters
because it causes exponential growth with the scope of the problem. For this parameter,
the maximum arity presented in the model is measured.

Lastly, the number of functions and relations in the model, separately, are two
parameters that affects the performance. Especially, in the options with quantifier expan-
sions, as the number of functions and relations increases, the performance time increases
to the point that the quantifier expansion becomes impractical.

We hypothesize that each of these parameters play a role in the analysis performance
of the tool for a model. We measure and record these characteristics, and compare each
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Table 4.2: Characteristics of the tests.(* = New test)

Test case characteristics
Test # T Application Join

length
Forall Exists Arity # F # R

Num347 1 4 18 3 7 3 3 0
Top020* 1 2 3 4 10 3 5 5
Com008 2 0 1 3 3 2 0 3
Infinity* 1 1 2 2 2 1 1 0
Set943 1 2 4 4 5 3 2 3
Set948 1 2 4 4 7 4 3 4
Alg212 1 2 12 4 5 4 1 0
Geo091 1 1 2 5 10 3 1 5
Geo158 1 1 2 5 8 3 1 5
Med009 1 0 1 3 4 2 0 19
GraphColoring* 3 1 1 2 1 1 2 1

model and the effect of them on the performance time and evaluate the results, so that we
can have a quantified way of measuring a problem’s difficulty for the analysis tools. Also,
as there are various equivalent ways to translate a model, guidelines can be proposed based
on the effect of each parameters, so that modellers can create more efficient models and
choose the appropriate analysis combination.

4.3 Case studies

We chose a number of Alloy models that cover a range of interesting characteristics: 1) num-
ber of types (# T); 2) maximum depth of applications (Application); 3) maximum number
of connected joins (join length); 4) maximum nesting of universal quantifiers (forall); 5)
maximum nesting of existential quantifiers (exists); 6) maximum arity of a relation (arity);
7) number of total functions (# F); and 8) number of relations (# R). We manually mea-
sured these characteristics for each of our models. Table 4.2 represents all the raw data
values. Figure 4.1 uses a radar chart to illustrate how our different models covered these
characteristics. The values are normalized to 5.
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Figure 4.1: Characteristics of tests.
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4.4 Performance results

All of our tests were completed on a computer with 2.6-GHz Intel Core i5 CPU, with a
2500MB Memory limit and a 2000 second time limit for each process. Figure 4.2 shows our
results using a logarithmic scale for time on the y-axis with the twenty-nine tests across
the x-axis. The times include the time for translation and the time for SMT solving (or
SAT solving in Kodkod). The five option combinations with interesting results are shown
by different lines in the graph. The lowest line for a test on the graph means the best
performance. Any lines that hit the uppermost point on the graph mean that we stopped
the test after it had taken 2000 seconds or had run out of memory.

The differences in the performance of the methods is quite considerable in most tests,
ranging from less than a second for the best performing method to over 2000 seconds for
the worst performing method.

In nine of the eleven models, one of our translation combinations produces better results
than Kodkod. The typed, predicates, unscoped option had the best performance in five
models and tied for the best performance on three other models making it the clear winner
in performance. Every combination of options that we included won at least one test.
Overall, the combination of typed, functions, Fortress performed the best for the scoped
combinations (including Kodkod).

4.4.1 Statistical model

In this subsection, we try to find correlation between model characteristics and translation
combinations based on our test results.

Although we do not have a large benchmark, we tried the linear regression method
to find a correlation between the model characteristics and the performance of a method.
Since the number of tests is relatively small for such method, we used it only to rank the
characteristics, and we present a model only for the ones with an R-squared larger than
0.6. This threshold eliminated the models for Kodkod and the untyped, predicates, SMT
FMF method.

The first statistical model we present is for the option combination of typed, functions,
Fortress combination. This statistical model’s R-squared is 0.76, and it points out that the
number of types, the depth of function applications, and the number of relations, play the
most important roles in its performance.
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Figure 4.2: Performance results for tests.

38



The second statistical model is for the typed, predicates, unscoped combination, which
has an R-squared of 0.65. This statistical model points out that the number of types and
the number of functions and relations play the biggest role in performance time of the tool.

Lastly, the untyped, predicates, unscoped combination has the best suiting statistical
model with an R-squared of 0.86. This statistical model, as expected, does not value
the number of types as much. This statistical model mostly emphasizes the arity of the
functions and relations, the depth of function applications, and the number of functions
and relations.

These results give us insight about which options may be more suitable for problems
of certain characteristics. For example, we observed that SAT tests with many types are
better solved by the untyped option, while tests with functions of large arities may be
better solved with other options. These insights can be used as guidelines in the Alloy
modelling process to create models that can be solved more easily by a specific option.

4.5 Evaluation

In this section we evaluate the results, discuss our hypotheses, explain the correlations be-
tween model characteristics and translation combinations, present guidelines for modelling
and analysis, and finally, discuss the results that we could not explain.

4.5.1 Hypotheses

In this subsection, we discuss our hypotheses based on our test results.

• H1: We hypothesized that using types would improve the performance of the SMT
solver.

When working with the Fortress option, the typed option works much better than
untyped. However, although there are slightly better results with the typed option
for other option combinations, the results are not conclusive.

• H2: We hypothesized that using predicates instead of functions, can improve perfor-
mance, at least for UNSAT problems.

Most of the UNSAT problems are solved very quickly when predicates are used,
however, they timed out, or ran out of memory, when the functions option is used.
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• H3: We hypothesized that the unscoped option would often be faster than finite scopes.

Many of the tests with unscoped option are solved within seconds. However, it is
unclear whether this good performance is due to the unscoped option or the predicates
option.

• H4: We hypothesized that our set of model characteristics affect performance results.

Based on the results, the depth of quantifiers is not as important as we hypothesized.
Also, we found out the number of relations and functions, depth of function and
relation application, and function and relation arities affect the performance the
most in all combinations.

4.5.2 Guidelines for suitable analysis combination

In this subsection, we provide some guidelines regarding modelling and model analysis
based on the results we described above. We propose a decision tree based on the empirical
data to decide which combination to choose for a problem with certain characteristics. The
decision tree is shown in Figure 4.3. Based on the empirical results, we find the typed,
predicates, unscoped combination to be the most successful combination. This combination
is chosen as the default. However, if the the problem has a large number of relations, then
Kodkod is the most successful option. If the number of functions in a model is large, then
both Kodkod and the untyped, predicates, unscoped combination have shown promising
results. Lastly, for SAT models, it is better to use either the typed, functions, Fortress
combination or the untyped, predicates, unscoped combination. In summary, our guidelines
are:

• G1: Models with large function arities are best solved by types, predicates, unscoped
combination, based on statistical models.

• G2: For unbounded scope modelling in SMT solvers, for a better chance of solving
UNSAT problems, functions must be declared as predicates with extra constraints,
based on H1 and empirical evidence.

• G3: For SAT problems in SMT solver, it is better to model the problem with only one
universal type and membership predicates for types, based on empirical results and
statistical models. (Refer to “Infinity” and “GraphColoring” models in Figure 4.1
and 4.2.)

• G4: If a model has a large number of relations, it is best to use Kodkod, based on
empirical evidence.
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Figure 4.3: Decision tree
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4.5.3 Discussion

The empirical results raise some questions regarding the internal process of SMT solvers.
We had some unexpected results, such as models “Geo091” and “Geo158”, which could
be solved with the untyped, predicates, SMT FMF combination easily for scopes of 9 and
11, but could not be solved within the 2000 seconds time limit for a scope of 7. Also,
in model “Set943”, the typed, functions, the Fortress combination solved the larger scope
of 11 faster than the smaller scope of 9. This test was repeated multiple times, and the
same result was observed each time. These unexpected results are due to the SMT solver’s
behaviour.

4.6 Summary

We discussed different translation combinations and pointed out the interesting ones. We
presented a set of test cases for our tool, and proposed a set of parameters that we hypoth-
esized are effective in increasing or decreasing the performance time. Then we measured
these parameters for each test case, and compared them to each other. Lastly, we presented
our test results, discussed our hypotheses, and presented statistical models for the relation
between parameters and the performance of the different combinations of Astra.
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Chapter 5

Related Work

In this chapter, we discuss related efforts to translate Alloy to SMT-LIB. Compared to
previous work, we investigate and evaluate multiple options for the translation and try to
correlate them with model characteristics. While other work has evaluated the solving per-
formance of their own translation, none of these works compare solving time for unbounded
with bounded scopes in SMT solvers. Also, we start from the Kodkod interface for ease of
future integration with the Alloy Analyzer. Translating from Kodkod rather than the Alloy
language was easier with respect to having a more basic language to work with, but harder
because we had to reverse engineer from Kodkod the types, type hierarchies, and functions
of the Alloy model. We do not yet support the transitive closure operators, set cardinality
or built-in types and some of these related efforts do support these operations/types.

El Ghazi et al. [14] describe a translation directly from Alloy to the SMT solver
Yices [11]. Since Yices supports subtypes, Alloy’s subtyping can be directly translated
into its Yices equivalent. Partial functions in Alloy are translated to total functions in
Yices by including an empty range value. The focus of their work is on using Yices’ theo-
ries for Alloy’s built-in types in order to leave these types unbounded. Since Yices supports
λ-calculus, set operations are defined using λ-calculus. They evaluate their translation us-
ing one case study.

In El Ghazi et al. [12], a translation directly from Alloy to Z3 is described. It cor-
responds to our typed, unscoped option. They use relations at first and then do some
simplifications for Alloy functions. Their work supports Alloy’s built-in types and the
closure operations for relations. Their results shows Z3 performed well, solving a number
of problems in Alloy. Rather than using helper functions to translate the set expressions,
they take a top-down approach to translation, passing arguments down to the leaf relations,
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which can result in larger formulas.

Ulbrich et al. [23] describe a translation from Alloy to the KeY theorem prover [6] for
first-order logic to check Alloy models over unbounded scopes. Their translation matches
our untyped, relations, and unscoped option. They introduce helper relations to translate
the set expressions using axioms similar to our constraints on the helper relations. KeY
integrates automatic and interactive proof and includes support for some of Alloy’s built-
in types. Their translation handles transitive closure and set cardinality, but these may
require interactive proof methods. Their results show that a number of Alloy assertions
could be proven automatically in the KeY prover.

Reynolds et al. [20] propose a theory called Finite Cardinality Constraints (FCC) for
doing finite model finding within an SMT solver. The theory is based on the EUF subset of
FOL. Vakili and Day [24] report that this method did not have good performance compared
to Fortress.

Bansal et al.[2] introduces a new theory for solving relational FOL (including set car-
dinality) of unbounded scope problems in SMT solvers. This is a calculus for relational
logic in SMT which can be combined with their finite model finding feature. It has been
implemented in CVC4 [3] and evaluated on some problems but not yet linked with Alloy
for evaluation.

Alloy2B[19] is a tool that translates Alloy models to the B language [1], making a variety
for B tools available for use on Alloy models including model checkers and interactive proof
tools for examining a model of unbounded scope. The performance comparison is only
done on one example with different scopes, and hence, does not evaluate the method’s
performance conclusively.

We have not yet translated the transitive closure operators. For a finite scope, it is
possible to expand the meaning of transitive closure as is done by Kodkod. El Ghazi et
al.[13] addresses this problem for unbounded scope by axiomatizing transitive closure in
FOL, in an iterative manner.
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Chapter 6

Conclusion

We have presented an evaluation of various options for translating relational FOL as it
is represented in Kodkod to typed FOL in SMT-LIB. We considered many options for
the translation including: typed vs untyped, predicates vs functions, and unbounded vs
bounded scopes where the formulas are either expanded pre-solving or during SMT solving.
Our results show that with the Z3 SMT solver, the typed, predicates, unscoped combination
is the best combination in general for unbounded scopes; and the typed, functions, Fortress
translation combination is the best for bounded scopes. We created a decision tree for
choosing the best combination based on model characteristics.

We have several directions for future work. There are many interesting directions from
our work to understand how model characteristics relate to solver performance, which could
provide the basis for a portfolio of solvers for Alloy (perhaps based on Why3 [16]). We
plan to investigate translations for the transitive closure operator, set cardinality, and the
mapping of Alloy’s built-in types to SMT theories. We hypothesize that the use of SMT
solvers for these built-in types may provide better performance with unbounded scopes
on these types. Also, for a satisfiable instance, we do not yet return the instance from
the SMT solver to Alloy. This step becomes relevant when we integrate with the Alloy
Analyzer, which is our next step. And we would like to broaden our analysis to include
more SMT solvers or finite model finding techniques.
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