
Prescriptive Semantics for Big-Step

Modelling Languages

by

Shahram Esmaeilsabzali

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2011

© Shahram Esmaeilsabzali 2011

I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With the popularity of model-driven methodologies and the abundance of modelling lan-

guages, a major question for a modeller is: Which language issuitable for modelling a system

under study? To answer this question, one not only needs to know the range of relevant languages

for modelling the system under study, but also needs to be able to compare these languages. In

this dissertation, I consider these challenges from a semantic point of view for a diverse range of

behavioural modelling languages that I refer to as the family of Big-Step Modelling Languages

(BSMLs). There is a plethora of BSMLs, including statecharts, its variants, SCR, un-clocked

variants of synchronous languages (e.g., Esterel and Argos), and reactive modules. BSMLs are

often used to model systems that continuously interact withtheir environments. In a BSML

model, the reaction of the model to an environmental input isa big step, which consists of a

sequence of small steps, each of which can be the concurrent execution of a set of transitions. To

provide a systematic method to understand and compare the semantics of BSMLs, this disserta-

tion introduces the big-step semantic deconstruction framework that deconstructs the semantic

design space of BSMLs into eight high-level, independent semantic aspects together with the

enumeration of the common semantic options of each semanticaspect. The dissertation also

presents a comparative analysis of the semantic options of each semantic aspect to assist one to

choose one semantic option over another. A key idea in the big-step semantic deconstruction is

that the high-level semantic aspects in the deconstructionrecognize a big step as a whole, rather

than only considering its constituent transitions operationally.

A novelty of the big-step semantic deconstruction is that itlends itself to a systematic se-

mantic formalization of most of the languages in the deconstruction. The dissertation presents

a parametric, formal semantic definition method whose parameters correspond to the semantic

aspects of the deconstruction, and thus it produces prescriptive semantics: The manifestation of

a semantic option in the semantics of a BSML can be clearly identified.

The way transitions are ordered to form a big step in a BSML is asource of semantic com-

plexity: A modeller needs to be aware of the possible orders of the execution of transitions when

constructing and analyzing a model. The dissertation introduces three semantic quality attributes

that each exempts a modeller from considering an aspect of ordering in big steps. The ranges of

BSMLs that support each of these semantic quality attributes are formally specified. These speci-

fications indicate that achieving a semantic quality attribute in a BSML is a cross-cutting concern

over the choices of its different semantic options. The semantic quality attributes together with

iii

the semantic analysis of individual semantic options can beused in tandem to assist a modeller

or a semanticist to compare two BSMLs or to create a new, desired BSML from scratch.

Through the big-step semantic deconstruction, I have discovered that some of the semantic

aspects of BSMLs can be uniformly described as forms of synchronization. The dissertation

presents a general synchronization framework for behavioural modelling languages. This frame-

work is based on a notion of synchronization between transitions of complementary roles. It is

parameterized by the number of interactions a transition can take part in, i.e., one vs. many, and

the arity of the interaction mechanisms, i.e., exclusive vs. shared, which are considered for the

complementary roles to result in 16 synchronization types.To enhance BSMLs with the capabil-

ity to use the synchronization types, a synchronizer syntaxis introduced for BSMLs, resulting in

the family of Synchronizing Big-Step Modelling Languages (SBSMLs). Using the expressive-

ness of SBSMLs, the dissertation describes how underlying the semantics of many modelling

constructs, such as multi-source, multi-destination transitions, various composition operators,

and workflow patterns, there is a notion of synchronization that can be systematically modelled

in SBSMLs.

iv

Acknowledgements

For the past six years, Professor Nancy A. Day has been all I could have asked for as a Ph.D.

supervisor. She taught me research, writing, self criticism, and many non-research life lessons.

She gave me the freedom to pursue my research ideas, while advising and helping me when I

was in trouble. This work heavily relies on her insights and advice.

I am grateful to have had Professor Joanne M. Atlee as a memberof my Ph.D. committee and

as a collaborator. Her original, insightful suggestions have been crucial in improving my work.

Professor Daniel M. Berry has been influential in my researchand personal development

during my graduate studies. I am fortunate that I have had a chance to learn so much from him.

I am appreciative that Professor Krzysztof Czarnecki has been a member of my Ph.D. com-

mittee. His encompassing comments have enabled me to broaden my research perspective.

I am thankful to Professor Juergen Dingel for being on my Ph.D. committee. His clear,

insightful comments have provided me with a fresh perspective about my work.

I would like to thank the members of the Watform research lab,past and present, for their

support and friendship over the last six years. I thank the people in my neighbouring office,

Shoham Ben-David, Zarrin Langari, and Ali Taleghani, for being there to chat and laugh. Vlad

Ciubotariu, Alma Juarez Dominguez, Hazem Shehata, and other Watform students, have been all

great friends over these years. Pourya Shaker has been a great friend and officemate. Professor

Jianwei Niu has been a great friend and collaborator. The staffs in Cheriton School of Computer

Science have been so helpful and friendly. Wendy Rush has been a great supportive friend.

The Frizzell and Brummelhuis families have been like a second family for me in Canada.

Evelyn and Don Frizzell provided the perfect environment intheir house for me to focus on

my work. Teresa and Gerry Brummelhuis have been caring, loyal friends for all these years,

including me frequently in their family functions.

I thank my parents, Esmat and Karim, for their love, support,and constant encouragement to

learn. I thank my brothers, Bahram, Hadi, and Kourosh, for their love, friendship, and constant

support. I thank Harry Roettele for being a kind, always-stimulating friend, as well as a great

sports buddy. The Roettele-Bonn family has been a great source of support and fun.

Christa gave me the love and energy to finish this work. Without her love and patience this

work would not have been possible.

v

To Christa

vi

Table of Contents

List of Tables xiv

List of Figures xviii

1 Introduction 1

1.1 Approaches to Semantic Categorization and Comparison 3

1.1.1 Informal, imprecise approaches 4

1.1.2 Formal, implementation-biased approaches 4

1.1.3 Formal, deconstructional approaches 5

1.2 Thesis Overview .6

1.3 Validation .11

1.4 Contributions of the Thesis 13

1.5 Outline of the Thesis .. . 14

2 Common Syntax and Semantics 16

2.1 Normal-Form Syntax .. 16

2.1.1 Control States . 17

2.1.2 Transitions . 19

2.1.3 BSML Syntax in BNF . 20

2.1.4 BSML Syntactic Features .21

vii

2.2 Common Basic Semantics .. 23

2.2.1 Snapshots . 24

2.2.2 Enabledness . 24

2.2.3 Execution . 25

2.2.4 Environmental inputs .. 25

2.3 Representing BSMLs in the Normal-Form Syntax 27

2.3.1 Control States . 27

2.3.2 Transitions . 28

2.4 Summary . 28

3 Semantic Deconstruction 29

3.1 Overview of Semantic Aspects 29

3.2 Big-Step Maximality .. . 35

3.3 Concurrency and Consistency 39

3.3.1 Concurrency . 39

3.3.2 Small-Step Consistency .. 42

3.3.3 Preemption . 43

3.4 Event Lifeline .. 46

3.4.1 External Events . 53

3.4.2 Interface Events . 54

3.5 Enabledness Memory Protocol 58

3.5.1 External Variables .64

3.5.2 Interface Variables in GC .. . 64

3.6 Assignment Memory Protocol 67

3.6.1 Interface Variables in RHS .. . 70

3.7 Order of Small Steps .. 70

viii

3.8 Priority . 72

3.9 Combo-Step Maximality .. . 75

3.10 Semantic Side Effects . 80

3.10.1 Complicated Event Lifeline Semantics 80

3.10.2 Cyclic Evaluation Orders 80

3.10.3 Ambiguous Dataflow . 81

3.10.4 Complicated Explicit Ordering 81

3.10.5 Partial Explicit Ordering 81

3.10.6 Inconsistent Preemption and Priority Semantics 81

3.10.7 Conflicting Maximality .. . 82

3.11 Validation: Specifying the Semantics of BSMLs 82

3.12 Related Work: Semantic Categorization and Comparison. 84

3.13 Summary . 85

4 Semantic Formalization 86

4.1 Overview of Semantic Definition Schema 87

4.1.1 Snapshots and Snapshot Elements 90

4.1.2 Enabledness of a Transition .. . 91

4.2 Syntactic Notation .. . 92

4.3 The Snapshot Element for Control States 92

4.4 Structural Parameters 99

4.4.1 Scope-Parent Priority Semantics . 100

4.4.2 Scope-Child Priority Semantics . 106

4.4.3 No Priority Semantics . 108

4.4.4 Other Priority Semantics .. . 109

4.5 Enabledness Parameters 110

ix

4.5.1 Big-Step Maximality .112

4.5.2 Event Lifeline . 113

4.5.3 Enabledness Memory Protocol .. . 120

4.5.4 Assignment Memory Protocol .. 124

4.5.5 Order of Small Steps . 126

4.5.6 Combo-Step Maximality .128

4.6 Related Work: Semantic Formalization Methods 130

4.7 Summary . 133

5 Semantic Quality Attributes of BSMLs 135

5.1 Quantification over Big Steps 136

5.1.1 Priority-Related Definitions 142

5.2 Semantic Quality Attributes for BSMLs 144

5.2.1 Non-Cancelling . 144

5.2.2 Priority Consistency .. 147

5.2.3 Determinacy . 148

5.3 Semantic Instantiation for Quality Attributes 151

5.3.1 Non-Cancelling Semantics .. . 153

5.3.2 Priority-Consistent Semantics 163

5.3.3 Determinate Semantics .. 170

5.4 Quality Attributes and Syntactic Well-formedness 177

5.4.1 A Syntactic Well-Formedness Criterion for Non-Cancelling 177

5.4.2 A Syntactic Well-Formedness Criterion for Priority Consistency 179

5.5 Related Work: Semantic Properties 184

5.6 Summary . 187

x

6 Synchronization in BSMLs 188

6.1 A Motivating Example .. 189

6.2 Synchronization Syntax 190

6.3 Synchronization Types 193

6.3.1 Well-formedness Criteria for SBSML Models 196

6.4 Applications .. 197

6.4.1 Modelling Multi-source, Multi-destination Transitions 197

6.4.2 Modelling BSML Semantic Options 198

6.4.3 Modelling the Present In Same Event Lifeline Semantics 200

6.4.4 Modelling Composition Operators 202

6.4.5 Modelling Workflow Patterns .. 205

6.5 Related Work: Taxonomies for Synchronization 209

6.6 Summary . 211

7 Formal Semantics for SBSMLs 213

7.1 Formal Syntax .214

7.1.1 Synchronization-Related Definitions 214

7.1.2 Well-Formed SBSML Models . 215

7.2 Semantic Definition for SBSMLs 217

7.2.1 Semantics of SBSMLs vs. Semantics of BSMLs 217

7.2.2 Computing the Potential Small Steps 219

7.3 Formalization of Synchronization Types 221

7.3.1 Formalization . 223

7.3.2 Integration with the Semantic Definition Schema 230

7.3.3 Discussion: Non-Hierarchical Computation 233

7.4 Transformation Schemes and Their Verification 235

xi

7.4.1 Multi-source, Multi-destination Transitions 235

7.4.2 BSML Semantic Options . 248

7.4.3 The Present In Same Event Lifeline Semantics 254

7.4.4 Composition Operators .. 257

7.4.5 Workflow Patterns . 266

7.4.6 Effect of Transformation Schemes on Well-Formedness 270

7.5 Relevance of Semantic Quality Attributes for SBSMLs 272

7.5.1 Non-Cancelling SBSML Semantics 272

7.5.2 Priority-Consistent SBSML Semantics 272

7.5.3 Determinate SBSML Semantics .. 274

7.6 Summary . 275

8 Conclusion and Future Work 276

8.1 Summary of Contributions 277

8.2 Future Work . 279

8.2.1 Including More Languages .. 279

8.2.2 Identifying More Semantic and Syntactic Criteria 279

8.2.3 Identifying Non-Technical Criteria 280

8.2.4 A Unifying Framework for the Enabledness Semantic Aspects 280

8.2.5 Tool Support . 280

References 281

xii

List of Tables

3.1 Big-step maximality semantic options. 36

3.2 Concurrency and consistency semantic options. 40

3.3 Event lifeline semantics. 47

3.4 Differentiating environmental input events from internal events. 55

3.5 Semantic options for interface events. 57

3.6 Enabledness memory protocols. 60

3.7 Variable operators. 62

3.8 Semantic options for interface variables. 66

3.9 Order of small steps semantic options. 71

3.10 Priority semantic options. 73

3.11 Combo-step maximality semantic options. 76

3.12 Example BSMLs and their semantic options. 83

4.1 Syntactic notation for control states in BSMLs. 92

4.2 Syntactic notation for transitions in BSMLs. 93

4.3 Structural Parameters. 104

4.4 Example: Values of attributes for the Scope-Parent priority semantics. 105

4.5 Example: Values of attributes for the Scope-Child priority semantics. 108

4.6 Example: Values of attributes for the No Priority semantics. 109

xiii

5.1 Summary of terminology for semantic aspects. 142

6.1 Synchronization types and their parameters. 193

6.2 Examples of synchronizing transitions. 195

7.1 Syntactic notation for SBSMLs. 215

7.2 Synchronization types and their parameters again. 222

7.3 Invariants of synchronization types for a set of transition τ. 226

7.4 Relations and functions types. 226

xiv

List of Figures

2.1 A model for dialing and redialing. 17

2.2 Interrupting transitions. 20

2.3 The BNF for the BSML normal-form syntax. 21

2.4 Feature diagram for the syntactic variations of BSMLs. 22

2.5 Steps. 24

3.1 Operation of a big step. 30

3.2 A feature diagram for BSML semantic deconstruction. 32

3.3 Dependencies between syntactic and semantic features.. 34

3.4 Dialer system. .. 37

3.5 A model for dialing and redialing, copied from page 17. 38

3.6 A two-bit counter. .. . 39

3.7 Traffic light system. 42

3.8 The revised two-bit counter. 43

3.9 Interrupting transitions. 44

3.10 Interrupting transitions. 45

3.11 The event lifeline of an evente. 46

3.12 Global consistency vs. causality. 50

3.13 Speed control system for a car. 52

xv

3.14 A taxonomy for events. 53

3.15 A taxonomy of events for inter-component communication. 56

3.16 Door controller system: using interface eventsheatandchecktemp. 59

3.17 Door controller system: using interface variableheatand eventchecktemp. . . . 68

3.18 A model for maintaining an invariant betweena andb. 69

3.19 Swappinga andb twice, using combo steps. 77

3.20 Controlling the operation of a chemical plant. 79

4.1 Steps. 87

4.2 Semantic definition schema. 88

4.3 The structure of the semantic definition schema. 89

4.4 A model with interrupting transitions. 95

4.5 The revised two-bit counter, copied from page 43. 99

4.6 Enabledness vs. structural semantic aspects. 101

4.7 An abstract syntax for BSMLs. 102

4.8 Computing potential small steps in the Scope-Parent priority semantics. 103

4.9 Computation of potential small steps for an example BSMLmodel. 105

4.10 Computing potential small steps in the Scope-Child priority semantics. 107

4.11 Transition-aware semantic options. 111

5.1 Big stepT = 〈sp1, k, spk+1〉. 137

5.2 Operation of a big step: structural vs. enabledness semantic aspects. 138

5.3 The structure of a semantic definition schema, from Chapter 4. 141

5.4 A fire alarm system. .. 145

5.5 An improved fire alarm system, compared to the one in Figure 5.4. 147

5.6 A timer. 149

5.7 Transition-based vs. coordinative semantic aspects. 152

xvi

5.8 Examples of cancelling behaviour. 157

5.9 Examples of priority inconsistency (hierarchical priority semantics). 164

5.10 Examples of priority inconsistency (Negation of Triggers priority semantics) . . 166

5.11 Priority consistency and the semantics of external events. 168

5.12 Examples of (non-) determinate behaviour with respectto variables. 171

5.13 An example of a non-determinate behaviour. 172

5.14 Examples of (non-) determinate behaviour with respectto events. 174

5.15 An example model with dataflow over variablev. 178

5.16 A BSML model that is not priority clustered. 180

5.17 Priority consistency in a priority-clusterred BSML model. 182

5.18 Priority inconsistency in a model that is not priority clusterred. 182

5.19 Global consistency vs. priority consistency 185

6.1 Modelling faculty members and their responsibilities,using synchronization. . . 191

6.2 A model for a set of synchronized ice skating programs. 192

6.3 Modelling multi-source, multi-destination transitions using regular transitions. . . 198

6.4 Modelling concurrency semantics in SBSMLs. 199

6.5 Modelling small-step consistency semantics in SBSMLs.. 200

6.6 Modelling preemption semantics in SBSMLs. 201

6.7 Modelling the Present In Same event lifeline semantics in SBSMLs. 202

6.8 Modelling the interleaving composition operator in SBSMLs. 203

6.9 Modelling the environment synchronization composition operator in SBSMLs. . 204

6.10 Modelling workflow patterns in SBSMLs. 206

6.11 Another way to model the sequence workflow pattern in SBSMLs. 207

6.12 Modelling more workflow patterns in SBSMLs. 208

7.1 An abstract syntax for SBSMLs. 214

xvii

7.2 An SBSML model for synchronized ice skating programs. 215

7.3 Semantic definition schema for SBSMLs. 218

7.4 Computing potential small steps of SBSML models. 220

7.5 An SBSML model for faculty members and their responsibilities. 231

7.6 Transforming multi-source, multi-destination transitions into regular transitions. . 239

7.7 Balancing the imbalanced transitions, using thebalancealgorithm. 244

7.8 Applying algorithmtransformtoregularto a self multi-transition. 247

7.9 Applying thebalancealgorithm to a model that has an in-out self transiton. . . . 248

7.10 The effect of applying Algorithm 4. 249

7.11 The effect of applying Algorithm 5. 253

7.12 The effect of applying Algorithm 6. 256

7.13 The effect of applying Algorithm 7. 259

7.14 The effect of applying Algorithm 8. 262

7.15 The effect of applying Algorithm 9. 265

7.16 The effect of applying Algorithm 10. 269

xviii

Chapter 1

Introduction

“A general language-independent framework of semantical concepts

would help to standardize terminology, clarify similarities and differences

between languages, and allow rigorous formulation and proof of semantic

properties of languages. A language designer could analyzeproposed

constructs to help find undesirable restrictions, incompatibilities,

ambiguities, and so on.” [94, p.437]

Robert Tennent

With the increasing presence of software systems in our environment, there is a need for

systematic, reliable ways to specify, create, verify, and maintain these systems. Many believe

that it is through the use of models that the complexity of ever-growing software systems can

be conquered. A model is an abstraction of a phenomenon, which is represented in a modelling

language. Often when modelling a software system, there aremany alternative languages that

can be used. To narrow the range of alternatives, a modeller needs to answer the question of

why languageA, and not languageB, is a more appropriate choice in a certain context. This

dissertation considers this question from a semantic pointof view: What are the semantic criteria

to compareA andB to choose one over another?

In this dissertation, I undertake the above research challenge for the class ofbig-step mod-

elling languages. I introduce the term Big-Step Modelling Languages (BSMLs)1 to describe

1In this dissertation, all of the abbreviations are intendedto be pronounced as their constituent letters, and not
as the phrase they represent. As such, based on this pronunciation convention, I use the appropriate form of the
indefinite article for an abbreviation.

1

a family of behavioural modelling languages that are often used for the requirements specifi-

cation of interactive and reactive systems, which communicate with their environments con-

tinuously. There is a plethora of BSMLs, many with graphicalsyntax (e.g., some statecharts

variants [41, 99] and Argos [68]), some with textual syntax (e.g., reactive modules [3] and Es-

terel [14]), and some with tabular format (e.g., SCR [47, 46]). These languages have in common

that the reaction of a system to an environmental input is abig step, which consists of a sequence

of small steps, each of which is the execution of a set of transitions. Commonly, the syntax of

a BSML includes a combination of hierarchical control states, events, and variables syntax that

are used in a transition syntax that often has guard and action parts. BSMLs provide two major

advantages to a modeller. First, the reaction of a model to anenvironmental input can be con-

veniently modelled as multiple small steps, without worrying about a new environmental input

being missed during the reaction of the model to the current environmental input. And second,

since the reaction of a model to an environmental input can consist of more than one transition,

a model can be decomposed into orthogonal parts, each of which can take part separately in the

reaction. As such, a modeller can decompose a model into parts, each of which either corre-

sponds to a physical component of a system under study or is used to facilitate the separation of

concerns in modelling.

The semantics of many BSMLs have been a contentious area of research. For example,

searching on the internet for the articles whose titles include both the terms “statecharts” (or

“statechart”) and “semantics” returns 139 articles. (Thissearch was carried out using Google

Scholar on December 20, 2010.) Among these articles, there are ones that introduce a new se-

mantics for statecharts and articles that use different semantic definition methods for defining the

semantics of statecharts. While the above situation demonstrates the difficulties of categorizing

and comparing two BSMLs even when they are labelled with the same name, a more compli-

cated situation arises when the semantics of BSMLs with different names are considered, which

usually have less in common with each other than the ones withthe same name.

To compare the semantics of two BSMLs,A and B, their semantics must be known suffi-

ciently clearly and there must be a semantic criterion. But semantics of modelling languages

are defined in different ways, and therefore, either they need to be transformed to a single for-

mat or the semantic criteria by which they are compared must be relevant for different kinds

of semantic definitions. Furthermore, one might be interested in knowing whether there is yet

another modelling languageC that is even better thanA and B according to certain semantic

criteria; or whether there is a way to define such a superior language. Thus, instead of consid-

2

ering only individual pairs of languages and identifying their comparison semantic criteria, it is

desirable to create a common semantic framework for BSMLs inwhich distinct languages can

be distinguished and can be compared according to some common semantic criteria.

Creating such a semantic framework for a large group of languages with different syntactic

and semantic characteristics, however, is a major challenge. In principle, such a semantic frame-

work for a set of languages should consist of a set ofsemantic decision pointsthat categorize

the semantics of the languages based on thesemantic decisionsthat each language adopts at

each semantic decision point. Ideally, (i) these semantic decision points correspond to a set of

high-level, already-established semantic concepts that are understandable to the users of these

languages; and (ii) the semantic decisions are formalizable in a manner such that a resulting se-

mantics for a language clearly embodies its semantic decisions. Thus, if one understands such

high-level semantic decision points and semantic decisions, she/he is likely to understand their

formal semantics. The resulting formal semantics areprescriptive semantics[4, 5] because the

formalism is used in an “active” [4, 5] role to design, and prescribe, a semantics, based on its

semantic decisions. In contrast, in adescriptive semantics[4, 5], a semanticist seems to have

been employed “as a describer” only “for recording design decisions already made”, as opposed

to, “playing a part in the language design process” [5].

Another major challenge is to identify the semantic criteria that can be used to compare

two languages in a manner that helps a language designer or a modeller to choose one over

another. Some of these criteria could belocal in that each compares the semantic decisions of

two languages at a certain semantic decision point. Other criteria could beglobal in that each

compares the set of semantic decisions of two languages at multiple semantic decision points

collectively. Both kinds of semantic criteria, however, are useful: The former kind of criteria

helps one to make individual semantic decisions when choosing or creating a language, while

the latter kind of criteria helps one to compare two semantics as a whole.

1.1 Approaches to Semantic Categorization and Comparison

This section briefly overviews the different approaches that have been used in the literature to cat-

egorize modelling languages. In general, these approachescan be categorized into three groups:

(i) informal, imprecise approaches, (ii) formal, implementation-biased approaches, and (iii) for-

mal, deconstructional approaches.

3

1.1.1 Informal, imprecise approaches

A framework in this category is often a useful, survey-like categorization of a set of related

modelling languages. An example of this approach is the informal comparison of statecharts

variants by von der Beeck [99]. This seminal work compares 20statecharts variants based on a

list of 19 “problems” [99], which includes a combination of syntactic, semantic, and semantic-

formalization issues. In similar frameworks, Fidge compares process algebras CCS [72], CSP

[48], and LOTOS [52], and, Crane and Dingel compare different variations of UML StateMa-

chines and their supporting tools [20]. These frameworks, by definition, are usually insightful

summarizations of different, often ad hoc, features of a set of languages. They are presented at

different levels of preciseness and systematicness. In general, however, the summarization that

each offers can neither be easily extended with new analytical insights nor can be used as the

basis for a unified formalization of the semantics of the languages that are considered. Much

effort is needed to interpret the imprecisely stated features of these languages. Therefore, even

if a uniform semantic formalization of these languages would be possible, it would lead to de-

scriptive semantics: For most semantic features of the languages, it is not clear how to formalize

them in a way that they are manifested clearly in a semantic definition, prescriptively.

1.1.2 Formal, implementation-biased approaches

A framework in this category offers a set of semantic decision points that are derived from the

tool suite that it represents. I call such a tool suite atool-support generator framework(TGF),

which takes the definition of a language, including its semantics, as input, and generates tool

support, such as model checking and simulation capability for that language, as output [81, 25,

28, 75, 65, 6, 38, 87]. TGFs differ in thesemantic input formats(SIF) they use, and the proce-

dure by which they obtain tool support for a language. An SIF can be an existing formalism,

such as higher-order logic [25], structural operational semantic format [28], or a new formal-

ism, such as template semantics [75, 74]. A TGF often strivesfor open-ended flexibility and

extensibility, to accommodate new notations, and thus its SIF is a general, expressive format for

semantic definition. An SIF, by its mission, does not represent a high-level semantic framework

with intuitively understandable semantic decision points, but rather it is an expressive semantic

definition language that is designed to be flexible, extensible, and implementable. Technically,

the semantics of a language specified in an SIF can be considered as prescriptive: All its semantic

4

decisions are trivially embodied in its semantic definition. However, it would be misleading to

consider these semantic definitions as prescriptive, because they are based on a semantic frame-

work whose semantic decision points are often general semantic concepts that are applicable to

a wide, open-ended group of languages. As such, an SIF often produces descriptive semantics

because it aims “for generality at the expense of simplicityand elegance.” [5, p.284]

1.1.3 Formal, deconstructional approaches

A framework in this category is organized around a set of semantic decision points that are

intuitively understandable for stakeholders of the semantics of languages. These frameworks

are also accompanied by semantic formalizations that produce prescriptive semantics. A notable

example of these frameworks is the semantic framework of Huizing and Gerth [50] for a class

of BSML semantics that supports only internal events. The only semantic decision point in their

framework is for the semantics of internal events. The semantic formalization method that they

choose is specialized not only to embody each of the five possible semantic decisions, but also to

highlight the differences between these decisions when formalized. Furthermore, they identify

three semantic criteria that allows one to choose one event semantics over another.

In theUnifying Theories of Programming[49], Hoare and Jifeng advocate a set of principles

for unification and categorization of languages. They consider these principles in the context of

semantic decision points and semantic decisions that are mainly relevant for process-algebraic

languages and programming languages.

Other frameworks can be considered in more than one of the above three categories. For

example, Maggiolo-Schettini, Peron, and Tini compare three semantic variations of statecharts

in the context of a Structured Operational Semantic (SOS) semantic definition framework [67].

I categorize their work into the third category of formal, deconstructional approaches because

they identify semantic decision points that correspond to understandable semantic concepts for

the family of statecharts. However, their work can also be categorized under the second cate-

gory because they intentionally adopt a limited compositional syntax for statecharts, similar to

process-algebras, in order to be able to use SOS.

This dissertation introduces a semantic framework for BSMLs in the formal, deconstructional

approach to semantic categorization and comparison.

5

1.2 Thesis Overview

This dissertation introduces thebig-step semantic deconstructionframework for BSMLs, which

unifies the semantics of a large group of seemingly different modelling languages into the family

of BSMLs. The big-step semantic deconstructiondeconstructsthe semantics of various BSMLs

into eight semantic aspectsand enumerates the commonsemantic optionsfound in existing

BSMLs for each semantic aspect. In a few cases, I have added semantic options that complement

the ones found in the existing BSMLs; these semantic optionsare included to make the range

of possible semantic options for a semantic aspect more systematic. The semantic aspects and

the semantic options are the semantic decision points and the semantic decisions of the family

of BSMLs, respectively. The dissertation presents a parametric semantic definition method that

uniformly formalizes the semantics of most of the languagesin the deconstruction, producing

prescriptive semantic definitions. To compare the languages in the deconstruction, the disser-

tation presents semantic criteria that differentiate two BSMLs based on their differences at the

scope of a single semantic aspect. Furthermore, threesemantic quality attributesare introduced

that compare two BSMLs based on their semantic options for corresponding semantic aspects.

Like any other deconstructional analyses of a set of languages, the big-step semantic decon-

struction provides insights about the range of possible BSML semantics, their interrelationships,

as well as, clues about ways to further the unification of the BSML semantics. This disserta-

tion describes how some of the semantic aspects in the big-step semantic deconstruction can be

unified as different forms ofsynchronizationthat distinguish different BSMLs based on whether

they support certain kinds of synchronizing transitions ornot. Hence, BSMLs can be extended

with a synchronization capability, to result in the family of synchronizing big-step modelling

languages(SBSMLs). With the expressive power of explicit synchronization, SBSMLs can be

used to model the semantics of various existing modelling constructs, revealing that these mod-

elling constructs all use different forms of synchronization in their semantics, and thatthey can

be adopted also by the languages in the family of SBSMLs.

Thesis Statement. The big-step semantic deconstruction is a novel, high-level

semantic framework for the family of BSMLs, with a formal semantic definition

method that produces prescriptive semantics for most of thelanguages in the fam-

ily. Using this framework, BSMLs can be compared at individual semantic decision

points. Some BSMLs offer novel semantic quality attributes that each relieves a

6

modeller from dealing with some of the complexity of ordering of transitions in a

big step of model. The set of all BSMLs that subscribe to a semantic quality at-

tribute can be formally specified by enumerating all combinations of the semantic

decisions that each yields a BSML semantics that subscribesto the semantic qual-

ity attribute. BSMLs can be compared based on the semantic quality attributes that

each BSML has. The family of SBSMLs introduces synchronization capability to

BSMLs. The semantics of SBSMLs can be formally described in aprescriptive man-

ner, similar to the way the semantics of BSMLs are described.The introduction of

synchronization for BSMLs deems some of the semantic decision points of the big-

step semantic deconstruction as unnecessary, because these semantic decision points

and their corresponding semantic decisions can be uniformly described as forms of

synchronization. Lastly, SBSMLs are expressive enough to model the semantics of

many existing modelling constructs, such as the semantics of multi-source, multi-

destination transitions, some of the composition operators of template semantics,

and some workflow patterns. These modelling constructs can be seamlessly adopted

by SBSMLs.

Big-Step Semantic Deconstruction. The various ways that the semantics of events, variables,

concurrency, and priority can be defined in BSMLs create a large design space for the semantics

of BSMLs.

This dissertation introduces the big-step semantic deconstruction that is a novel method to

decompose and organize the semantics of various BSMLs into eight semantic aspects and the

common semantic options found in existing BSMLs for each semantic aspect. The semantic as-

pects are identified mainly based on conceptual sequentiality in the process of creating a big step

in a BSML. The choice of a semantic option for a semantic aspect is independent of the choice

of a semantic option for another semantic aspect, except fora few cases where certain combi-

nations of semantic options lead to inconsistent BSML semantics. These cases are excluded by

the big-step semantic deconstruction; cf., Figure 3.3 on page 34. To achieve understandability

in the big-step semantic deconstruction and prescriptiveness in its formalization, whenever ap-

plicable, I have considered a big step as a whole, rather thanconsidering only its constituent

transitions operationally. For the same reasons, I have used a common normal-form syntax that

is expressive enough to model the syntax of many BSMLs. As a result, I have been able to create

a framework that focuses on semantics, without being sidetracked unnecessarily by the syntactic

7

variations of BSMLs. An existing BSML can be identified in this framework by, first, determin-

ing a mapping from its syntax to the normal-form syntax, and second, by determining the set of

semantic options that represent its semantics. A new BSML can be defined in this framework by

choosing a set of syntactic features and semantic options that have not been considered together

in a language previously.

In the big-step semantic deconstruction, I have consideredonly those languages that each (i)

has an explicit stage in its semantics for sensing the environmental inputs, and (ii) its operational

semantics specifies the reaction of a model to an environmental input as a sequence of small

steps, instead of one single step. For example, process algebras [9] are not considered in the big-

step semantic deconstruction because they support neitherof the above two criteria. Typically,

a language that supports these criteria supports also a combination of events and variables in its

syntax, in order to provide a mechanism to relate the small steps in the sequence. This disser-

tation does not consider languages such as UML StateMachines [78]that canbuffer the received

environmental inputs or the generated events of a model. However, many of the semantic aspects

in the big-step semantic deconstruction are relevant also for these languages. For example, the

notion of run to completion in UML StateMachines [78] is similar to the notion of maximality

of a big step in the big-step semantic deconstruction.

To assist a modeller to choose one semantic option over another, for each semantic option

in the big-step semantic deconstruction, the dissertationpresents a set of semantic properties,

each of which is labeled as anadvantageor adisadvantageof the semantic option. These labels

are determined based on agreed-upon, common wisdom in the literature or a straightforward

rationalization presented in the dissertation that is supported by examples.

Prescriptive Semantics. The formalization of the semantics of different subsets of BSMLs has

been a contentious area of research, as evident by the large number of publications devoted to

the formalization of the semantics of these subsets of BSMLs. The stakeholders of these formal-

izations, like all other formal semantics, vary from tool developers, to modellers, to semanticists.

These stakeholders, however, have competing interests. For example, a tool developer is usually

interested in a precise, operational formalization of a semantics; a modeller might compromise

between understandability and preciseness; and a semanticist might be more interested in a for-

malization that reveals the semantic decisions and semantic properties of a semantics clearly.

The big-step semantic deconstruction provides an opportunity to decouple such concerns.

8

This dissertation presents a semantic definition frameworkthat produces prescriptive, formal

semantic definitions for a large subset of BSMLs: The high-level semantic options of a BSML,

chosen by the various stakeholders of the BSML, can be tracedclearly as separate parts of its se-

mantic definition. The semantic definition framework is a parametricsemantic definition schema

to formalize the semantics of most of BSMLs in the big-step semantic deconstruction. By in-

stantiating the parameters of the semantic definition schema, an operational BSML semantics

is derived. The semantic aspects of BSMLs correspond to disjoint parameters of the semantic

definition schema, and the semantic options of each semanticaspect correspond to the possible

values for the parameter that represents the semantic aspect. The semantic definition schema, its

parameters, and the values of the parameters are specified instandard logic and set theory. Ex-

cept for a couple of cases, the specification of a value of a parameter of the semantic definition

schema is independent of the specification of a value of another parameter. The exceptions deal

with semantics that support a notion ofcombo step, which partitions a big step to consecutive

segments of small steps.

The big-step semantic deconstruction together with this semantic definition framework allow

the underlying semantic options of a BSML to be chosen beforebeing formalized. Therefore,

the semantic formalization process is not used as a way todiscoverthe range of possible seman-

tic design decisions at the time of formalization but as a medium to specifythe already-made

semantic design decisions of a BSML. By analogy, BNF is a prescriptive method for defining

syntax, as opposed to pre-BNF methods, which were descriptive [4]. “In general, the descriptive

approach aims for generality even at the expense of simplicity and elegance, while the prescrip-

tive approach aims for simplicity and elegance even at the expense of generality.” [5, p.284] A

corollary of a prescriptive semantic definition method is that it specifies a clear scope for a class

of semantics.

To validate the correctness of my semantic definition framework formally, a set of formal, ref-

erence semantic definitions for existing languages are needed to check my formalization against

them. However, for each BSML, or a subclass of BSMLs, there are usually many semantic defi-

nitions available in the literature, specified using a rangeof different semantic definition methods.

Thus, instead of proving the correctness of my formalization selectively with respect to one or

more semantic definition, I have used inspection as a method to gain confidence in my formal-

ization: While mapping the semantics of an existing BSML into my semantic aspects and their

options, I have used many example models as witnesses for thecorrectness of my mapping.

9

Semantic Quality Attributes. The complexity of dealing with the semantic intricacies related

to the ordering of the executions of the small steps of a big step can be a source of complexity

and distraction for a modeller. For example, a modeller, or amodel reviewer, might need to

ensure that a certain enabled transition does not mistakenly become disabled in certain execution

scenarios. A semantic quality attribute of a modelling language is a desired semantic property

that is common to all models specified in that language.

This dissertation introduces three semantic quality attributes for BSMLs, each of which aims

to alleviate a kind of semantic intricacy related to the ordering of the small steps of big steps.

The dissertation presents the outlines of the proofs that demonstrate that each of the three se-

mantic quality attributes is realized by any BSML whose constituent semantic options satisfy

a set of identified necessary and sufficient constraints over the choices of the semantic options.

These constraints reveal positive and negative interrelationships among seemingly independent

semantic options by identifying their collective effect. Also, the dissertation shows formally how

it is possible to achieve a semantic quality attribute for a BSML by constraining its syntax via

syntactic well-formedness conditions. This latter approach to achieve a semantic quality attribute

advocates an approach in design of modelling languages in which the syntax and the semantics

of a languages are considered together, as opposed to an approach in which semantics is merely

a function that maps syntax to its meaning.

Using the semantic deconstruction, the relative advantages and disadvantages of the semantic

options, and the characterization of the semantic quality attributes in terms of semantic options,

a modeller or a language designer can either (i) use the semantic quality attributes to narrow the

range of semantic options for a language, or (ii) gain insights about a language’s attributes after

choosing its semantic options. The above two means for language comparison can be used: (a)

as a semantic catalog, to compare the semantics of existing BSMLs and choose an appropriate

BSML; (b) as a semantic scale, to assess the semantic properties of a BSML; or (c) as a semantic

menu, to help design a BSML from scratch.

Synchronization for BSMLs. The prescriptive semantic definition framework in this disserta-

tion formalizes theenablednesssemantic aspects and thestructuralsemantic aspects differently.

The enabledness semantic aspects deal mainly with how the state of a model changes from one

small step to the next. The structural semantic aspects dealwith the meaning of the hierarchial

structure of a model. While the enabledness semantic aspects are uniformly formalized using

a snapshot-element-based approach, inspired by and adapted from template semantics [75, 74],

10

the structural semantic aspects are formalized via logicalpredicates that determine how a set of

enabled transitions can form a small step. Compared to the formalization of the enabledness

semantic aspect, the formalization of the structural semantic aspects are less systematic in that

they do not use a uniform specification method, similar to thesnapshot elements used for the

formalization of the enabledness semantic aspects. In searching for a more systematic method, I

discovered how underlying different structural semantic aspects, there is a unifying theme: Each

represents a form of synchronization.

This dissertation introduces a notion ofsynchronization typeand asynchronizersyntax that

not only preclude the necessity of having most of the structural semantic aspects in the big-step

semantic deconstruction, but also provide the means to explain and recognize that the semantics

of various modelling constructs are forms of synchronization. It shows how each of the semantics

of multi-source, multi-destination transitions [41, 86],the composition operators of template

semantics [75, 74], and the essence of many workflow patterns[96] uses its own different form

of synchronization. Introducing synchronization to BSMLsresults in the class ofsynchronizing

big-step modelling languages(SBSMLs). A synchronizer in an SBSML model has one of the 16

synchronization types. A synchronizer is associated with aset of transitions whose executions

are governed by the synchronization constraints that the synchronizer enforces. A transition

might be controlled by more than one synchronizer.

The formalization of the semantics of synchronization types is done via a novel, declarative

approach that uses relation types to characterize the set ofall synchronizing transitions of a model

according to a certain synchronization type.

This dissertation presents also transformation schemes, in the form of algorithms, (i) to model

the semantic options of the structural semantic aspects of BSMLs, and (ii) to model the semantics

of the modelling constructs whose semantics can be described by synchronizers. The dissertation

presents the outlines of the proofs that demonstrate that each transformation scheme is correct

with respect to its formal description, in case (i), and withrespect to its natural-language descrip-

tion, in case (ii).

1.3 Validation

The big-step semantic deconstruction is anovel semantic framework in that it covers a range

of seemingly unrelated modelling languages that have not been considered together previously

11

in a unifying semantic framework. Chapter 3 presents this framework, its high-level semantic

aspects, the semantic options of each semantic aspect, and the example BSMLs that subscribe

to each semantic option. The enabledness semantic aspects and their corresponding semantic

options arehigh level in that each considers a big step as a whole. The structural semantic

aspects arehigh level in that each corresponds to an already-established semantic concept such

as concurrency, preemption, and priority. The dissertation validates that the semantics of awide

range of BSMLs can be expressed in my semantic framework by enumerating theconstituent

semantic options of each, as summarized in Table 3.12, on page 83.

The semantic definition schema for formalizing BSML semantics, presented in Chapter 4,

producesprescriptive semantics. For each semantic aspect, the semantic definition schema has

a parameter. For those semantic options of the semantic aspect that are supported by the semantic

definition schema, I provide a parameter value for its corresponding parameter. Thus, a semantic

definition of a BSML can be partitioned into parts, each of which corresponds to a constituent

semantic option of the BSML. The prescriptiveness of these semantics can be inspected, and val-

idated, immediately: The formalization of the values of theparameters of the semantic definition

schema are mainly independent.

A semantic option of a semantic aspect can be compared with another on the basis of their

relative advantages and disadvantages. To facilitate suchcomparisons, for the semantic options

of each semantic aspect, the list of their corresponding advantages and disadvantages are pre-

sented in a tabular format, in Chapter 3. These tables include also a list of example BSMLs that

subscribe to each semantic option.

The formal semantics of two BSMLs can be compared on the basisof the novel semantic

qualityattributes that each supports. Chapter 5 introduces three novel semantic quality attributes

together with the enumeration of the BSMLs that support eachof the semantic quality attributes.

A BSML A can then be compared with BSMLB on the basis of these three semantic quality

attributes. Such acomparisonconsiders the collective effect of the constituent semantic options

of A andB: For each BSMLA andB, it is determined whether its set of constituent semantic

options satisfies each of the three semantic quality attributes or not, using the formal specification

of the semantic quality attributes in Section 5.3. The dissertation validates thesoundnessof the

comparison of BSMLs based on these semantic quality attributes by proving that the specification

of the classes of BSML semantics that support each of the semantic quality attribute is correct.

The family of SBSMLs providessynchronization capability for the languages in the family

12

of BSMLs. The formal semantics of SBSMLs is presented in Chapter 7, in a similarprescriptive

way as the formal semantics of BSMLs are described. Comparedto the semantics of BSMLs,

with synchronization capability available for SBSMLs, some of the structural semantic aspects of

BSMLs becomeunnecessaryin SBSMLs because their semantics can be restated using a notion

of synchronization, as described in Section 6.4.2. Section7.4.2 presents algorithms that specify

how the semantic options of a structural semantic aspect canbe modelled by synchronization. It

validates thecorrectnessof each of these algorithms by proving its correctness with respect to

the semantics of its corresponding semantic option.

Finally, SBSMLs are expressive enough to model the semantics of a range of modelling con-

structs, including the semantics of multi-source, multi-destination transitions [41, 86], composi-

tion operators of template semantics [75, 74], and many workflow patterns [96], as described in

Section 6.4. Section 7.4 validates theexpressivenessof SBSMLs by presenting algorithms that

specify how the semantics of these modelling constructs canbe described using synchronization.

Thecorrectnessof each of these algorithms is validated by proving its correctness with respect

to the natural-language description of its corresponding modelling construct.

1.4 Contributions of the Thesis

The following list summarizes the contributions of this dissertation:

• The dissertation introduces a high-level, deconstructional semantic framework for the fam-

ily of BSMLs in the form of semantic aspects and their corresponding semantic options.

This framework is called the big-step semantic deconstruction. The semantic aspects and

the semantic options of the big-step semantic deconstruction relate a large number of mod-

elling languages through their underlying unifying semantic concepts.

• The dissertation introduces a prescriptive method to definethe semantics of most of the

BSMLs in the big-step semantic deconstruction in a manner that distinguishable parts of

a semantic definition can be traced back to the high-level semantic concepts of the decon-

struction.

• The dissertation introduces a set of semantic criteria for comparing two BSMLs. These

semantic criteria enable the comparison of two BSMLs, (i) byenumerating the relative ad-

vantages and disadvantages of each of the constituent semantic options of the two BSMLs,

13

and (ii) by identifying the overall semantic quality attributes of the constituent semantic

options of each of the two BSMLs.

• The dissertation introduces an explicit synchronization capability to the family of big-

step modelling languages, resulting in the new class of synchronizing big-step modelling

languages.

• The dissertation introduces transformation schemes that use the synchronization capability

of synchronizing big-step modelling languages to model some of the semantic aspects

in the big-step semantic deconstruction, as well as, to model the semantics of various

modeling constructs. These transformation schemes revealthat underlying the semantics

of these semantic aspects and modelling constructs there isa notion of synchronization.

1.5 Outline of the Thesis

Chapter 2 introduces the common syntactic constructs and semantic concepts that are used

throughout the thesis. It also briefly describes how the syntax of various big-step modelling

language (BSMLs) can be represented using the common syntaxthat is introduced in this chap-

ter.

Chapter 3 presents the deconstruction of BSML semantics into eight semantic aspects and

their corresponding semantic options. Each semantic aspect is presented in a separate section,

accompanied by example BSMLs that use each of its semantic option and by example models that

demonstrate the role of each semantic option. The research results reported in this chapter have

been published [35, 36], with a more detailed version of the results disseminated in a technical

report [34].

Chapter 4 presents the formalization of the semantics of BSMLs. First, a parametric semantic

definition schema is introduced whose parameters correspond to semantic aspects. Then, the

possible values of each parameter are presented. A version of this semantic definition framework,

which does not cover all of the semantic aspects and options,has been published [31].

Chapter 5 presents the three semantic quality attributes for BSMLs. It also formally specifies

the subset of BSMLs that satisfy each of the semantic qualityattributes. For each of these

specifications, the outline of the proof of its correctness is presented. A summary of the research

results in this chapter has been accepted to be published [32].

14

Chapter 6 introduces a synchronization capability for BSMLs, resulting in the class of syn-

chronizing big-step modelling languages (SBSMLs). Also, it informally describes how various

modelling constructs and semantic options can be modelled using the synchronization capability

of SBSMLs. A summary of the research results in this chapter has been published [33].

Chapter 7 presents a semantic definition framework for SBSMLs. It also presents transfor-

mation schemes, in the form of algorithms, that describe howSBSMLs can be used to specify

the semantics of the modelling constructs and the semantic options of the structural semantic

aspects. For each transformation scheme, the outline of theproof of its correctness is presented.

Lastly, Chapter 8 presents the conclusions of the thesis anddiscusses new directions for

future work.

Each of the Chapter 3, Chapter 4, Chapter 5, Chapter 6 has its own separate related work

section, at the end of the chapter.

Chapters 5 and 6 can be read independently of Chapter 4, except for some of the proofs in

Section 5.3.

In the list of references at the end of the dissertation, a bibliographic entry is followed by the

list of the pages in the dissertation that reference that entry.

15

Chapter 2

Common Syntax and Semantics

“Computer scientists collectively suffer from what I call the Whorfian syndrome1 –

the confusion of language with reality. Since these devicesare described in different

languages, they must all be different. In fact, they are all naturally described as state

machines.
1 Seehttp://en.wikipedia.org/wiki/Sapir-Whorfhypothesis” [60, p.60]

Leslie Lamport

This chapter introduces the syntactic constructs and the semantic concepts that are used, in

Chapter 3, to describe the semantic deconstruction of BSMLs. Section 2.1 presents a normal-

form syntax for BSMLs. Section 2.2 presents the common basicsemantics for big-step modelling

languages. Section 2.3 discusses how the syntax of many BSMLs can be translated into the

normal-form syntax of BSMLs described in Section 2.1.

2.1 Normal-Form Syntax

There is a plethora of BSMLs, including those with graphicalsyntax (e.g., statecharts vari-

ants [99], Argos [68]), those with textual syntax (e.g., reactive modules [3], Esterel [14]), and

those with tabular/equational syntax (e.g., SCR [46, 47]). As is usual when studying a class of

related notations, anormal-form syntax[49] is used that is sufficiently expressive to represent the

16

http://en.wikipedia.org/wiki/Sapir-Whorf hypothesis

WaitFor

Redialer

X

Dial

Dialer

Dialing

Redial
Digits

WaitFor
Redial

t1: (dial(d) ∧ ¬redial)[c<10]

t3: dial(d)[c<10]

/c++; lp := lp×10+ d; ôut(d)

/lp := lp×10+d;
c++; ôut(d)

t6: [c< |p|]
d̂ial(digit(p, (c+1))

X t7: [c = |p|]

t4: [c = 10] DialDigits

t2: (dial(d) ∧ redial)[c = 0]/lp :=d; c:=1; ôut(d)

t5: redial[c = 0]/p:= lp; d̂ial(digit(lp, 1))

Figure 2.1: A model for dialing and redialing.

syntax of other notations. This section presents a normal-form syntax for BSMLs. A BNF rep-

resentation of this syntax is presented at the end of Section2.1.2, after describing the graphical

representation of the syntax.

In the normal-form syntax of BSMLs, a model is defined throughtwo main components: (i)

a set ofcontrol statesthat are organized as ahierarchy tree; and (ii) a set oftransitionsbetween

the control states. Figure 2.1 shows a BSML model in this syntax for a dialing system that has

two functionalities. It can either collect a 10-digit phonenumber or redial a previously dialed

number. The syntactic elements of this model are described next. But for now, it is helpful to

note that the rounded boxes create a hierarchy tree of control states and an arrow between two

control states is a transition.

2.1.1 Control States

A control state (e.g.,DialDigits in Figure 2.1) is a named artifact that a modeller uses to represent

a noteworthy moment in the execution of a model. Such a momentis an abstraction that groups

together the past behaviours (consisting of inputs received by the model and the model’s past

reactions to these inputs) that have a common set of future behaviours. By using a control state,

a modeller can describe future behaviour in terms of the current control state and the current

environmental inputs.

A control state has a name and atype, which is eitherBasic, Or, or And. Graphically, a

17

control state is shown by a rounded rectangular with a label on it that is its name. The set of

control states of a model form ahierarchy tree. A leaf node of a hierarchy tree is aBasiccontrol

state. AnAnd or anOr control state, which is a non-leaf node of a hierarchy tree, is called a

compoundcontrol state. Relationschild, descendant, parent, andancestorare defined with their

usual meanings, as follows. The child relation relates a control state with the immediate control

state below it in the hierarchy tree. The root of the hierarchy tree is not a child of any control

state; this control state is referred to as theroot. A control state is descendent of another if it is its

child through transitivity. The parent relation is the inverse of the child relation: A control state,

s, is the parent of a control state,s′, if s′ is its child. Each control state, except for the root, has a

unique parent by the definition of the hierarchy of control states, which is a tree. ABasiccontrol

state is not a parent of any control state. A control state is ancestor of another if it is its parent

through transitivity. In the model in Figure 2.1, control stateDialing is anAndcontrol state and

has twoOr child control states,Dialer andRedialer; control stateDialDigits is a child ofDialer

and a descendant ofDialing. The name of anAnd control state is specified by a separate solid

box attached to the top left of the rounded box that represents it. The children of anAndcontrol

state are separated by dashed lines. AnAndcontrol state is required to have more than one child,

while anOr control state need not. When a child of anAndcontrol state is anOr control state,

the rounded box that represents it is not drawn because the children of theOr control state can be

surrounded by the border lines of its surroundingAndcontrol state and its dashed lines. AnOr

control state has adefaultcontrol state, which is its child and is identified by an incoming arrow

that has no source control state. In the model in Figure 2.1,WaitForDial is the default control

state ofDialer. The control states with “X” on them, e.g.,WaitForDial, arestablecontrol states,

and have a semantic role in determining the length of a big step, or subsegments of a big step, as

will be described in the next chapter.

A model may have noAndcontrol states. The root control state must be anOr control state

so that the arena of every transition, as described in Section 2.1.2, is guaranteed to exist. AnAnd

control state may have aBasiccontrol state as its child, although usually aBasiccontrol state is

a child of anOr control state. In some of the examples in this dissertation,the root control state

of the model is not shown.

Two control statesoverlapif they are the same or one is an ancestor of the other. For example,

in the model in Figure 2.1, control statesDialing andDialler are overlapping, but not control

statesDialler and Redialler. The least common ancestorof two control states is the lowest

control state (closest to the leaves of the hierarchy tree) that is an ancestor of both. In the model

18

in Figure 2.1, the least common ancestor ofDialDigits andRedialDigitsis Dialing. Two control

states areorthogonalif neither is an ancestor of the other and their least common ancestor is an

And control state. In Figure 2.1,DialDigits andRedialDigitsare orthogonal. Thescopeof a

transition is the least common ancestor of its source and destination control states. Thearena

of a transition is the lowestOr control state in the hierarchy tree that is the ancestor of both the

source and destination control states of the transition. Inthe model in Figure 2.1, both the scope

and the arena of transitiont1 is theOr control stateDialer. In general, however, the scope and

arena of a transition need not be the same.

2.1.2 Transitions

Each transition (e.g.,t1 in Figure 2.1) has a name, both asourceand adestinationcontrol state,

and four optional parts: (i) anevent trigger, which is a conjunction of event literals, some of

which may be negated (a negated event being prefixed by a “¬”); (ii) a guard condition(GC) (en-

closed by “[]”), which is a boolean expression over the set ofvariables of the model; (iii) a set

of assignments(prefixed by a “/”); and (iv) a set ofgenerated events(prefixed by a “̂ ”). A

generated event may have a parameter that can be modelled by associating a variable with it.

An assignment consists of aleft-hand side variable(LHS), and aright-hand side expres-

sion (RHS). All variable expressions and assignments of models are assumed to be well-typed.

Variables and events are global; local variables and scopedevents can be modelled by a renaming

that makes them globally unique.

Two transitions areorthogonalif their source control states are orthogonal, as well as their

destination control states. A transitiont is an interrupt for transitiont′ when the sources of the

transitions are orthogonal and one of the following conditions holds: (i) the destination oft′ is

orthogonal with the source oft, and the destination oft is not orthogonal with the sources of

either transitions (Figure 2.2(a)); or (ii) the destination of neither transition is orthogonal with

the sources of the two transitions, but the destination oft is a descendant of the destination of

t′ (Figure 2.2(b)).

The normal-form syntax is a collection of various syntacticconstructs adopted from different

BSMLs. Some of these constructs have been adapted to fit the overall design of the normal-

form syntax. For example, the notions ofAnd andOr control states are adopted from Harel’s

statecharts [41]; a few of the syntactic definitions for control states are adopted from Pnueli

19

(a) (b)

S S S′

S12
t′

t S′

S1
S′11

S′1t′

t S′2S2

S11

S21

S2

S1

S21

S11

S′21

Figure 2.2: Interrupting transitions.

and Shalev’s work on the semantics of statecharts [86]; and the notion ofstablecontrol state is

adopted from thepause command in Berry and Gonthier’s work that introduces Esterel [14].

2.1.3 BSML Syntax in BNF

Figure 2.3 is the BNF representation of the normal-form syntax of BSMLs, as described in

Section 2.1.1 and Section 2.1.2. For the sake of brevity, theBNF in Figure 2.3 does not include

the declaration of events, variables, etc. The normal-formsyntax uses both boolean expressions,

represented via the “b-expression” symbol in the BNF, and numeric expressions, represented via

the “num-expression” symbol. It is assumed that all expressions and assignments are well-typed.

The default and stable control states, which were graphically represented by an arrow without

a source and a “X” label, respectively, are represented textually in the BNF, via the “Default”and

“Stable” symbols, respectively. The symbol “identifier” isa unique name to identify a syntactic

element such as a control state or a transition; an identifierstarts with a character but can also

include numbers.

Throughout this dissertation, I refer to the normal-form syntax of a BSML through a combi-

nation of elements in the BNF grammar in Figure 2.3 and a set ofhelper definitions, including

the ones described in Section 2.1.1 and Section 2.1.2. The BNF grammar allows me to specify

inductive definitions over the hierarchy tree of models, while the helper definitions allows me to

specify operational definitions that deal with the sequences of small steps of big steps.

20

〈root〉 ::= “Or” 〈state〉+
〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉
〈Orstate〉 ::= “Or” 〈identifier〉 〈state〉+
〈Andstate〉 ::= “And” 〈identifier〉 (〈state〉 〈state〉+)
〈Basicstate〉 ::= (“Basic” | “Default” | “Stable” | “Combo-Stable”)〈identifier〉
〈transitions〉 ::= 〈transition〉+
〈transition〉 ::= 〈identifier〉 〈source〉 〈destination〉

〈trigger〉 (“[” 〈guard〉“]”)
(“/”〈assignment〉∗) (“̂” “ {”〈genevent〉∗“ }”)

〈source〉 ::= 〈state〉
〈destination〉 ::= 〈state〉
〈trigger〉 ::= (〈postevent〉 | 〈negevent〉)∗
〈guard〉 ::= 〈b-expression〉
〈assignment〉 ::= 〈variable〉“:=”〈expression〉“;”
〈expression〉 ::= 〈b-expression〉 | 〈num-expression〉
〈genevent〉 ::= 〈posevent〉
〈posevent〉 ::= 〈identifier〉
〈negevent〉 ::= “¬”〈posevent〉
〈variable〉 ::= 〈identifier〉

Figure 2.3: The BNF for the BSML normal-form syntax.

2.1.4 BSML Syntactic Features

Figure 2.4 is a feature diagram [56] that represents the combination of syntactic constructs of

BSMLs that are of interest for the semantic decision points (semantic aspects) of BSMLs. Each

feature in the diagram is labelled with the sections in Chapter 3 that describe its role and detailed

semantics. The syntax of a BSML must have a notion of transition to specify the behaviour of

a system, thus control states are necessary to define transitions. However, all other syntactic

features in the feature diagram of Figure 2.4 are optional. In practice, the syntax of most useful

BSMLs support at least events or variables.

A leaf node of the feature diagram represents a primitive syntactic feature of BSMLs. For

example, theNegated Eventsnode is the syntactic feature that allows the negation of an internal

event to be used in the event trigger of a transition. A non-leaf node represents a syntactic

feature that has additional syntactic sub-features in its children nodes. For example, theEvent

Triggers node is the syntactic feature that has syntactic sub-features, Environmental Input

21

B
S

M
L

S
yn

ta
x

...

Legend

"And" Branch

"Optional" Feature

Section 3.4.1
Input Events
Environmental

Negated Interface
Events
Section 3.8

Interface Events
Section 3.4.2

Events
Section 3.4

Event

Section 3.4

Section 3.4

Section 3.4.2

Environmental
Output Events
Section 3.4.1

Variables
Section 3.5, 3.6

new

new small

Section 3.5

cur
Section 3.5

Section 3.5

Variable
Operators

Section 3.5, 3.7

Variable
Assignments

Section 3.5

Section 3.5

pre

Interface Variables

Environmental Input
Variables in GC

Control
States
Section 3.3

Section 3.6

Generated
Interface Events

Section 3.8

Negated Events

in RHS
Section 3.6.1

Interface Variables
in GC
Section 3.5.2

Conditions

Generated
Events

Section 3.8
Input Events
Negated Environmental

Environmental Input
Variables in RHS

Environmental Output

And
Section 3.3

Hierarchical

Stable

Triggers

Guard

Section 3.5.1

Section 3.5.1 Section 3.5.1

Section 3.9
Combo Stable

Section 3.8

Section 3.2

Variables in RHS

Figure 2.4: Feature diagram for the syntactic variation points of interest to BSML semantic
aspects.

22

Events, Interface Events, andNegated Events. In the feature diagram in Figure 2.4, only “and”

branches are used for sub-features of a feature: In these branches, if a feature is chosen, then all

of its children sub-features are also chosen, except for thesub-features that are connected to a

small circle, which are “optional” sub-features. An optional feature, as opposed to a “mandatory”

feature, need not be chosen if its parent feature is chosen. All of the features in the diagram in

Figure 2.4, except theControl Statesfeature, are optional features.

The Events andVariables nodes both have child nodes that each represents the necessary

syntactic feature for a specific kind of communication semantics. For example, theEnvironmen-

tal Input Events andEnvironmental Input Variables features are used for the environmental

communication through events and variables, respectively. Similar syntactic features as for the

environmental communication exist for communication through interface events and interface

variables.

The Stable andCombo Stablechild nodes of theControl States feature represent special

kinds of control states that are used to determine when a big step ends or when a segment of a

big step ends, respectively.

2.2 Common Basic Semantics

Initially, a model resides in the default control states of its root control state, no event is present,

and its variables have their initial values. If a model resides in anAnd control state, it resides

in all of its children. If a model resides in anOr control state, it resides in one of its children,

which is by default its “default” child. The operational semantics of a BSML describes how a

model reacts to anenvironmental inputvia abig step. An environmental input is a set of events

and variable assignments that are received from the environment. Figure 2.5 depicts a big step

T, which is a reaction of a model to environmental inputI . A big step is an alternating sequence

of small stepsandsnapshots, where a small step is the execution of a set of transitions (ti ’s), and

a snapshot is a tuple that stores information.1 TheTi ’s (1 ≤ i ≤ n) are small steps ofT, andsp,

sp′, andspi ’s (1 ≤ i < n) are its snapshots. In the examples throughout this dissertation, a big

step is represented as the sequence of its small steps; e.g.,T is represented as〈T1,T2, · · · ,Tn〉.

1Big steps and small steps are often called macro steps and micro steps, respectively. I adopt new terms to avoid
association with the fixed semantics of the languages that use those terms. The big-step/small-step terminology has
been used in the study of the operational semantics of programming languages in a similar spirit as used here [83].

23

...

......

...I

Small Steps

Big Step

t2

tm
sp′

t1

spn−2sp1sp spn−1

T1 Tn−1 Tn

︸︷︷︸︸︷︷︸

T

Combo Steps ︸ ︷︷ ︸ ︸ ︷︷ ︸

︸︷︷︸

︸ ︷︷ ︸

Figure 2.5: Steps.

Some BSMLs, such as RSML [63] and Statemate [43], introduce an intermediate grouping of a

sequence of small steps into acombo step. The small steps of a combo step hide some of their

effects, e.g., the effect of their assignments, from one another. Sections 3.4, 3.5, 3.6, and 3.9

describe when combo steps are useful. In representing a big step, the scope of each of its combo

steps is identified by a surrounding “L M”. For example,〈L T1,T2M, LT3,T4M〉 is a big step that

consists of two combo steps and four small steps.

2.2.1 Snapshots

A snapshot of a model is a tuple that consists of sets of information that each captures a facet of

the computation of a model in a particular moment of execution. As the execution of the model

proceeds, its current snapshot gets updated. A snapshot often consists of: (i) aconfiguration,

which is a set of control states; (ii) avariable evaluation, which is a set of〈variable name, value〉

pairs; and (iii) a set ofevents. Each of a big step, a small step, or a combo step has asourceand

destinationsnapshot (e.g.,spandsp′ are the source and destination snapshots ofT).

2.2.2 Enabledness

In each small step of a BSML model, a set ofenabled, high-priority transitions is chosen to be

executed. In general, a transition is enabled if its event trigger and guard condition are satisfied,

and its source control state is in the source configuration ofthe small step. Different semantic

options use different snapshots of a big step to define enabledness. A transition is high priority

if it cannot be replaced with another transition of higher priority, according to the semantics of

24

priority in the BSML. At each snapshot, there could exist multiple sets of enabled transition,

each of which is apotential small stepthat can be taken.

2.2.3 Execution

The effects of the execution of the transitions of a small step create its destination snapshot.

When a transition is executed, it leaves its source control state (and its descendants), and enters

its destination control state (and its descendants). When entering anOr control state, a transition

enters its default control state, and when entering anAndcontrol state, it enters all of its children.

Thus, if the source (destination) control state of a transition is anAndcontrol state, the execution

of the transition includes exiting (entering) the childrenof the source (destination) control state.

The semantics of event generation and variable assignment differ between BSMLs.

In a few, non-common cases, transition execution can be moreinvolved; e.g., when the least

common ancestor of the source and destination control states of a transition is anAnd control

state. A discussion of these cases is included in Section 4.3.

The execution of a small step isatomic: the variable assignments and event generation of one

transition cannot be seen by another transition, except forone of the semantic options for events,

described in Section 3.4. Because of atomicity, a sequence of assignments on a transition can be

converted to a set of assignments [61, 64].

2.2.4 Environmental inputs

When choosing a BSML for modelling a system under study, the domain of the system must

satisfy the assumptions of the BSML regarding the model’s ability to take multiple transitions in

response to an environmental input and not miss other inputs. There are three types of assump-

tions:

• Fast computation: This assumption, which is usually referred to as the “synchrony hypoth-

esis” or the “zero-time assumption” [14, 40], postulates that the system is fast enough, and

thus never misses an input. The domain of systems that are modelled using this paradigm is

called “reactive systems” [14, 40, 44]. A reactive system isusually a mission-critical sys-

tem that is meant to react to environmental inputs in a timelymanner, at the rate produced

25

by the environment; e.g., the controller system of a nuclearreactor. No environmental in-

puts are missed. Therefore, the implementation of a reactive system should guarantee that

the system is fast enough that all environmental inputs are processed.

A reactive system might be either implemented as embedded software on a piece of hard-

ware, or directly as a piece of hardware [10, 12, 29]. As such,many of the BSMLs that

support the synchrony hypothesis adopt their underlying principles from the principles

of hardware. For example, a BSML might equate a big-step as a reaction of the model

during a “tick” of the global clock of the system; e.g., Esterel [14] and Argos [68]. In

this dissertation, the synchronous languages whose syntaxand semantics are closer to the

hardware and directly support a notion of clock, such as Lustre [39] and Signal [7], are not

considered.

• Helpful environment:2 This assumption postulates that the environment is helpfulby issu-

ing an input only when the system is ready [40]. The domain of systems that are modelled

using this paradigm is called “interactive systems” [40]. An interactive system is different

from a reactive system in that the rate of environmental inputs is dictated by the system,

rather than by the environment. An example of an interactivesystem is an automated

banking machine, which interacts with its environment (i.e., a customer) at its own rate

when it is ready, rather than at the rate the customer might like to provide inputs for it. An

environmental input might be missed by the system when the system is busy processing

a previous environmental input. Therefore, a modeller needs to ensure that the require-

ments of a system are consistent with the assumption that an environmental input might be

missed.

• Asynchronous communication: This assumption postulates that the system has a buffering

mechanism to store the environmental inputs, and thus nevermisses an environmental

input. As such, no constraints are imposed on the computation speed of the system, or on

the frequency of the arrival of environmental inputs.

In this dissertation, only the BSMLs with the first two assumptions are considered. The third

assumption is mutually exclusive with these two assumptions. The BSMLs that adhere to the first

two assumptions share many semantic options. As such, sometimes it is difficult and unnecessary

to label a BSML conclusively as following one or the other assumption.

2The term “helpful environment” is adopted from a similar notion in Interface Automata[26].

26

2.3 Representing BSMLs in the Normal-Form Syntax

It is straightforward to represent the syntax of many BSMLs in our normal-form syntax. Tem-

plate semantics [75, 74], which has a “composed hierarchical syntax” comparable to our normal-

form syntax, describes the mapping of the syntax of many BSMLs to its syntax. In this section,

the syntactic representations of a few less obvious constructs are considered. Additionally, a few

syntactic representations are discussed in Chapter 3, whentheir corresponding semantic deci-

sion points are presented. Also, Chapter 6 presents the syntactic representations of modelling

constructs whose semantics relies on synchronization.

2.3.1 Control States

A BSML may not include the notion of control states. If a model’s reaction to an environmental

input is always independent of its past behaviours, then thenotion of control state is not useful

for the model. In our normal-form syntax, one way to represent the syntax of a BSML that does

not have control states is to create a single control state that serves as the source and destina-

tion control states of all transitions. The notion of the hierarchy of control states might still be

useful for specifying priority between transitions in sucha BSML (cf., Section 3.8 for priority

semantics).

A BSML with a textual syntax without explicit control states, such as Esterel [14], realizes

a line of a program as a control state. For example, in Esterel[14], anexit statement within

a parallel command of a model moves the flow of control from within the parallel command to

the next command outside the scope of the parallel command. The parallel command and the

command after it can be conceptually considered as control states with the parallel command

being anAnd control state. Theexit statement can be considered as a transition that connects

the two control states.

SCR [46, 47] is a BSML that uses a tabular format. The notions of “modes” and “transitions

between modes” in its syntax can be represented by the notions of control states and transitions

between control states, respectively.

27

2.3.2 Transitions

In the normal-form syntax for transitions, event triggers with disjunctions are not allowed, be-

cause an event trigger that has disjuncts can be split into multiple transitions, each with only one

of the disjuncts of the original event trigger and exactly the same other elements as the original;

such a transformation yields a model that is semantically the same as the original model [86].

To model multi-source, multi-destination transitions using single-source, single-destination

transitions, they can be split into multiple transitions that are either taken together, or are not

taken at all. Such an execution scheme requires synchronization between these split transitions.

In Chapter 6, where a notion of synchronization for BSMLs is introduced, such a translation is

described.

2.4 Summary

This chapter presented a normal-form syntax for BSMLs that is designed to model the syntax of

many BSMLs. It first described this syntax informally, followed by a presentation of its BNF. It

presented a feature diagram that shows the variation pointsin the BSML syntax that are relevant

for the semantic decision points. It presented also a commonsemantics for the normal formal

syntax of BSMLs. The variations of this semantics are described in Chapter 3.

28

Chapter 3

Semantic Deconstruction

“No one gets angry at a mathematician or a physicist whom he orshe

doesn’t understand, or at someone who speaks a foreign language, but

rather at someone who tampers with your own language, with this

“relation,” which is yours . . . ” [27, p.115]

Jacques Derrida

This chapter introduces a deconstruction of BSML semanticsinto eightsemantic aspectsand

their correspondingsemantic options. Section 3.1 is an overview of the deconstruction, followed

by sections that describe each semantic aspect. Section 3.10 describes the few identifiedside

effectsbetween the semantic options of different semantic aspects. Section 3.11 provides a sum-

mary of the semantic options via a table that specifies the semantic options of some common

BSMLs. The formalization of the semantics described in thischapter are presented in Chapter 4.

3.1 Overview of Semantic Aspects

The operation of a big step can be deconstructed into the stages described in Figure 3.1. This

systematic deconstruction is based on: (i) conceptual sequentiality in the process of creating

a small step (partly based on the syntactic elements of the model), (ii) orthogonal concerns

in the operation of a big step, and (iii) semantic variation points in existing BSMLs.1 Each

1In this dissertation, I use the terms “semantic variation points” and “semantic variations” interchangeably with
the terms “semantic decision points” and “semantic decisions”, respectively. I use the former pair of terms to refer

29

Determine Transitions

Determine Transitions

Yes

Maximal Combo Step?

Maximal Big Step?

No

No

Determine the Maximal,

Consistent Sets of

Enabled Transitions

Choose One High Priority

Environmental Inputs

Start of Big−step:

Enabled by Events

Enabled by Variables

Determine Transitions that
Satisfy Ordering Constraints

Evaluate Variables in the

Yes

End of Big−step:

Environmental Outputs

Initialization with

Deliver the

Set of Transitions

(Combo-Step Maximality

(Big-Step Maximality

– Section 3.9)

– Section 3.6)

(Concurrency and

(Priority – Section 3.8)

Consistency – Section 3.3)

(Assignment Memory Protocol

Protocol – Section 3.5)

(Order of Small Steps
– Section 3.7)

– Section 3.2)

RHS of Assignments

(Event Lifeline – Section 3.4)

(Enabledness Memory

Figure 3.1: Operation of a big step.

stage of the diagram is associated with one of thesemantic aspectsand is labelled with the

corresponding section of the chapter that describes it. A semantic aspect may be decomposed into

some semantic sub-aspects. A semantic aspect or sub-aspecthas a number ofsemantic options,

each of which is a semantic variation for carrying out a stage. In Section 3.11, it is shown how

the semantics of different BSMLs can indeed be specified through the stages of thisdiagram, or

more particularly, using the semantic aspects and their options. Therefore, it is shown that the

semantic aspects cover all semantic variation points of thelanguages that are considered in the

scope of this dissertation. In a few cases, I have added semantic options for a semantic aspect

that complement the ones found in the existing BSMLs; these semantic options are included to

make the range of possible semantic options for a semantic aspect more systematic.

Next, the role of each stage in Figure 3.1, i.e., each semantic aspect, is described briefly. I use

theSans Serif font to distinguish the name of semantic aspects from normaltext. TheBig-Step

Maximality semantic aspect specifies when a big step ends, at which pointa new big step starts by

sensing new environmental inputs. TheCombo-Step Maximality semantic aspect specifies when

to the semantic differences between two existing BSMLs and use the latter pair ofterms to refer to the semantic
possibilities when designing a BSML. The distinction between semantic variation points and semantic decision
points is similar to the distinction between the notion of “variation points” and the notion of “variable features” in
generative programming [21].

30

a combo step ends, at which point a new combo step starts by adjusting the values of variables

and/or the statuses of events, based on the details of a combo-step semantics, to reflect the effect

of the execution of the small steps of the combo step. TheEvent Lifeline semantic aspect specifies

how far within a big step a generated event can be sensed as present to trigger a transition.

Separate sub-aspects are considered for the semantics ofinternal events, which are not meant to

be observed by the environment of a model, forexternal events, which are used to communicate

with the environment, and forinterface events, which are used to specify communications among

the different disjoint components of a model. TheEnabledness Memory Protocol semantic

aspect specifies the snapshot from which the values of variables are read to enable the guard

condition of a transition. Similar to events,internal variablesandinterface variables, and their

semantics, are distinguished. TheOrder of Small Steps semantic aspect describes options for

the order of transitions that execute within a big step. Fromthe set of transitions enabled by

events, variables, and ordering constraints, theConcurrency and Consistency semantic aspect

determines the set of potential small steps: first, it specifies whether more than one transition

can be taken in a small step; and second, if more than one transition can be taken, it specifies the

consistency criteria for including multiple transitions in a small step. ThePriority semantic aspect

chooses a small step from the set of potential small steps. The Assignment Memory Protocol

semantic aspect specifies the snapshot from which the value of a variable in the right-hand side

of an assignment is read.

The feature diagram in Figure 3.2 shows the eight semantic aspects for BSMLs together with

their corresponding semantic options. Semantic aspects are represented by shaded boxes and

the Sans Serif font, and semantic options are represented by clear boxes and the Small Cap

font. Each semantic aspect is labelled with the section in this chapter that describes it. An arced

branch in the diagram represents an “exclusive or”: If a feature is chosen, then exactly one of its

sub-features is chosen. For example, if theBig-Step Maximality semantic aspect is chosen, then

exactly one of its options, Syntactic, Take One, or Take Many should be chosen. To achieve a

concise diagram, a set of recurring semantic options for event-related semantic sub-aspects are

grouped together as “Event Options”, which is referenced via this label in the diagram.

I partition the BSML semantic aspects into two categories: Theenablednesssemantic aspects

and thestructuralsemantic aspects. The enabledness semantic aspects deal with the semantics

of how a single transition can be included in a big step and what is the effect of its execution.

The structural semantic aspects deal with how a set of enabled transitions can be taken together

in a small step. In the feature diagram in Figure 3.2, enabledness semantic aspects and structural

31

Event Options

B
S

M
L

S
em

an
tic

s

Event Options

Event Options

Legend

"Exclusive Or" Branch...
... "And" Branch

"Optional" Feature

Section 3.4

Section 3.4.1
External Events

External Output
Interface Events
Section 3.4.2

External Input
Section 3.4
Event Lifeline

Strong Synchronous Event

Weak Synchronous Event

Asynchronous Event

Protocol – Section 3.5
Interface Variables

RHS Big Step

RHS Small Step

GC Big Step

GC Combo Step

GC Weak Synchronous Variable

GC Asynchronous Variable

RHS Combo Step

in GC – Section 3.5

in GC – Section 3.5.2

GC Strong Synchronous Variable

RHS Strong Synchronous Variable

RHS Weak Synchronous Variable

RHS Asynchronous Variable

Enabledness Memory

(Internal) Events

Source/Destination Orthogonal

Small-Step Consistency
Section 3.3.2

Big-Step Maximality
Section 3.2

Assignment Memory
Protocol – Section 3.6

Interface Variables
in RHS – Section 3.6.1

(Internal) Variables
in RHS – Section 3.6

Concurrency and

Section 3.3
Consistency

Events

Events

Concurrency
Section 3.3.1 as Environmental

ArenaOrthogonal

Many

Present inWhole

Next Combo Step

Remainder

Present in Same

Present in

Present in

Present in

(Internal) Variables

Next Small Step

Generated Events

Generated Events
Last Small Step

Single

Preemptive

Non-Preemptive

Syntactic

Take One

Take Many

Received Events

Input Events
Syntactic

Hybrid Input
Events

Syntactic
Output Events

Last Combo Step

Hybrid Output
Events

GC Small Step

Preemption
Section 3.3.3

Section 3.7
Order of Small Steps

Hierarchical

Negation of
Triggers

Priority

Combo Take Many

Combo Syntactic

Combo Take One

Dataflow

None

Explicit Ordering

Explicit Priority
Section 3.8

– Section 3.9Combo-Step Maximality

Figure 3.2: The feature diagram representing the BSML semantic deconstruction. The shaded
and clear boxes are semantic aspects and semantic options, respectively. The rounded, shaded
boxes and the solid, shaded boxes are the enabledness and thestructural semantic aspects, re-
spectively. 32

semantic aspects are distinguished by rounded and solid boxes, respectively. As Chapter 4 will

describe, different specification methods are used for formalizing the semantics of enabledness

and structural semantic aspects.

A BSML semantics must subscribe to aBig-step Maximality semantics, as shown by the

corresponding mandatory feature in the diagram in Figure 3.2. The other aspects are optional

and depend on the syntactic features included in the BSML. A BSML semantics might have

more than one priority semantic option, which together constitute its priority semantics (cf.,

Section 3.8).

A semantic aspect or a semantic option might be relevant for the semantics of a BSML only

if a certain syntactic construct is allowed in the BSML. Figure 3.3 enumerates the dependencies

between the syntactic and semantic features. To describe these dependencies, the names of syn-

tactic features in Figure 2.4 and the names of semantic aspects and semantic options in Figure 3.2

are used as propositions, which indicate the choice of the feature in the corresponding feature

diagram. The standard logical operators describe these dependencies. The “p⇒ q” operator is

logical implication: ifp is true thenq must be true. The “p⇔ q” operator is logical equivalence:

either p andq are both true, or both are false. The “p ∨ q” operator is logical or: eitherp, q,

or both are true. The “p ∧ q” operator is logical and: bothp andq are true. For example, the

first dependency asserts that if the syntax for events is usedin a BSML, i.e., the “Events” is true,

there must exist an event lifeline semantic option for it in the BSML, i.e., the “Event Lifeline”

is true, and vice versa. As such, some of the semantic aspectsare relevant only for the BSMLs

whose syntax support certain syntax.

The last three dependencies in Figure 3.3 are between semantic features, as opposed to be-

tween syntactic and semantic features. These dependencieswill be explained in the sections on

the semantic aspects.

In the feature diagram in Figure 3.2, a semantic (sub-)aspect, or its parent, is labelled with the

section in which it is described. The order of these sectionsis intended to minimize the required

forward referencing to other semantics aspects (although some forward referencing cannot be

avoided). In the following sections, for each semantic aspect, its semantic options are summa-

rized in a table that includes a brief description of each semantic option, a list of its characteris-

tics, and a list of representative BSMLs for each option. Each characteristic of a semantic option

is identified as a relative advantage or disadvantage, signified by a “+” or “-”, respectively, which

is determined based on the conventional wisdom on this characteristic. Such wisdom may not

33

1. Events⇔ Event Lifeline

2. (Interface Events⇔ Generated Interface Events) ∧
((Interface Events∧ Generated Interface Events)⇔ Interface Events)

3. Environmental Input Events ⇔ Syntactic Input Events

4. Environmental Output Events⇔ Syntactic Output Events

5. (Negated Events∨ Negated Interface Events∨ Negated External Events)⇔
Negation of Triggers

6. Variable Conditions⇔ Enabledness Memory Protocol

7. Variable Assignments⇔ Assignment Memory Protocol

8. Interface Variables in GC⇔ Interface Variables in GC

9. new⇔ Dataflow

10. new⇒ (GC Big Step ∨ GC Small Step ∨ RHS Big Step ∨ RHS Small Step)

11. new small⇒ (GC Small Step ∨ RHS Small Step)

12. cur ⇒ (GC Big Step ∨ RHS Big Step)

13. pre⇒ (GC Small Step ∨ RHS Small Step)

14. Interface Variables in RHS⇔ Interface Variables in RHS

15. Hierarchical⇒ Hierarchical

16. And ⇔ Concurrency and Consistency

17. Stable⇔ Syntactic

18. Combo Stable⇔ Combo Syntactic

19. Combo-Step Maximality⇔
(Present in Next Combo Step ∨ GC Combo Step ∨ RHS Combo Step)

20. (Combo Syntactic ∨ Combo TakeMany)⇒ (Syntactic ∨ TakeMany)

21. Present in Same⇒Many

Figure 3.3: Dependencies between syntactic features (in Figure 2.4) and semantic features (in
Figure 3.2). (Bold: syntactic features,Sans Serif: semantic aspects, and Small Cap: semantic
options.)

34

always be appropriate for a model depending on the domain of the system under study, the pref-

erence of the modeller, etc. These options cover the variations found in most existing BSMLs.

I have also introduced a few semantic options that do not havea witness in existing languages;

these semantic options are introduced to provide a systematic coverage of the range of possible

semantic options for a particular semantic aspect. As in Figure 3.2, the Small Cap font is used

to express the names of semantic options. Throughout the chapter, many examples are presented

that are meant to demonstrate the differences between semantic options (but not to endorse one

over another). The model snippets in the examples are not complete. Finally in Section 3.11, a

table is presented that summarizes the semantic options chosen by a number of BSMLs.

3.2 Big-Step Maximality

The big-step maximality semantics of a BSML specifies when the sequence of small steps of a

big step concludes. Table 3.1 lists the three possible semantic options. In the Syntactic option,

a BSML allows a modeller to designate syntactically a basic control state of a model as astable

control state. During a big step, once a transitiont that enters a stable control state is executed,

no other transition whose arena overlaps with the arena oft can be executed. In the Take One

option, once a transitiont is executed during a big step, no other transition whose arena overlaps

with the arena oft can be executed. As such, eachOr control state can contribute a maximum

of one transition to a big step. Lastly, the Take Many option allows a sequence of small steps to

continue until there are no more enabled transitions to be executed.

Scope of a big step: In the TakeOne and the TakeMany options, the destination snapshot of a

big step is not obvious, which can be complicated for a modeller. In the Syntactic option, the end

of a big step can be traced syntactically, which can be helpful for constructing and understanding

a model.

Sequential transitions vs. non-terminating big steps: In the Syntactic and Take Many op-

tions, it is possible to specify a computation as a big step that consists of multiple sequential

transitions within anOr control state. But, in these two semantics, it is also possible for a big

step to never terminate because the execution of the big stepnever reaches a snapshot in which

there are no more transitions to be executed. In the Syntacticmaximality semantics, additionally,

35

Table 3.1: Big-step maximality semantic options.
Options Definition Characteristics Examples

Syntactic No two transitions with
overlapping arenas that
enter designated “stable”
control states can be taken
in the same big step.

(+) Syntactic scope
for big steps
(+) Sequential Or
transitions
(-) Non-terminating
big steps

pause command in
Esterel [14], “run
to completion” in
Rhapsody [42] and
UML StateMa-
chines [78]

Take One No two transitions with
overlapping arenas can be
taken in the same big step.

(+) Terminating big
steps
(-) Unclear, non-
syntactic scope for
big steps

statecharts [41, 45,
86], reactive mod-
ules [3], and Ar-
gos [68]

TakeMany Small steps continue until
there are no more enabled
transitions.

(+) Sequential Or
transitions
(-) Unclear, non-
syntactic scope for
big steps
(-) Non-terminating
big steps

Statemate [43] and
RSML [63]

a big step may never terminate because the model never reaches a syntactically designated stable

control state. Some BSMLs with the Syntactic semantics require the non-stable control states of

a model to have “else” transitions so that a big step can always reach a stable configuration (e.g.,

[42, 78]). Otherwise, a big step may halt because no transition is enabled to be executed although

the big step is not maximal yet. In the Take One semantics, a sequence of transitions in anOr

control state cannot be included in a big step, but a big step always terminates.

Stable control states can be used to model the semantics of the pause command in Es-

terel [14, 93]. During a big step, once all non-overlapping control states of the model’s con-

figuration have executed thepause command, the big step ends. As such, if thepause com-

mand is executed outside of a parallel command, then the big step terminates. But if thepause

36

D t1: dial(d)[c < 10]
/c++; ôut(d)

Figure 3.4: Dialer system.

command is executed inside a branch of a parallel command, then the big step terminates when

every branch of the parallel command has executed thepause command. Stable control states

can also be used to model the semantics of “compound transitions” in Rhapsody [42] and UML

StateMachines [78]: The “pseudo states” of a model are modelled as non-stable control states,

and “states” are modelled as stable control states. Some of the BSMLs that support the Take

One semantics, such as reactive modules [3] and Argos [68], are influenced by the principles of

synchronous hardware, which assumes that, during a big step, a non-concurrent part of a model

can take only one transition (equivalently, each hardware component reacts once during a clock

tick). The Take Many semantic option is usually used by the BSMLs that support thenotion of

combo step (e.g., Statemate [43] and RSML [63]). The Statemate tool suite can be configured

to use either the Take One semantic option, whose big steps are referred to as “steps”,or the

TakeMany semantic option together with combo steps, whose big steps are referred to as “super

steps” [43].

Example 1 The model in Figure 3.4 collects a dialed digit of a phone device (environmental

input eventdial(d)) and transmits the dialed digitd to the IP network via generated eventout(d).2

Variablec allows a maximum of 10 digits to be collected, at which point the central IP system

would connect the caller to the dialed callee (the connection functionality of the system is not

described). The “++” operator denotes increment by one.

Let us consider a BSML semantics in which if an environmentalinput event is received at the

beginning of a big step, it persists until the end of the big step. Also, let us consider the source

snapshot where eventdial(d) is received from the environment andc is zero. If theTake Many

big-step semantics is chosen, then transitiont1 is executed 10 times in succession, sending the

same digit,d, 10 times. If theTakeOne big-step maximality semantics is chosen, or theSyntactic

semantics is chosen and control stateD is designated as stable, then the model behaves correctly.

2Throughout the dissertation, when mentioning a syntactic element of a model in an example, whose body is in
the Italic font, I use the normal font to highlight the syntactic element from the rest of the text.

37

WaitFor

Redialer

X

Dial

Dialer

Dialing

Redial
Digits

WaitFor
Redial

t1: (dial(d) ∧ ¬redial)[c<10]

t3: dial(d)[c<10]

/c++; lp := lp×10+ d; ôut(d)

/lp := lp×10+d;
c++; ôut(d)

t6: [c< |p|]
d̂ial(digit(p, (c+1))

X t7: [c = |p|]

t4: [c = 10] DialDigits

t2: (dial(d) ∧ redial)[c = 0]/lp :=d; c:=1; ôut(d)

t5: redial[c = 0]/p:= lp; d̂ial(digit(lp, 1))

Figure 3.5: A model for dialing and redialing, copied from page 17.

Example 2 The model in Figure 3.5, which is the same as the model in Figure 2.1, on page 17,

copied here for convenience, is an extension of the simple dialer in Figure 3.4 to support redial

functionality. The model uses theSyntactic semantic option for big-step maximality. Control

statesWaitForDial andWaitForRedial, each signified by a “X”, are stable control states. For

example,WaitForRedialis used to terminate a big step after the model receives aredial input in

control stateWaitForRedialand dials all the digits of the last dialed number. Once all the digits

of the last-dialed phone number are redialled, control state WaitForRedialis entered again via

transitiont7.

Example 3 The model in Figure 3.6 is for a two-bit counter.3 Control statesBit1 andBit2 model

the least and most significant bits of the counter, respectively. Each time the environmental

input eventtk0, which represents a clock tick, is received, the counter increments by one. Let us

consider a semantics where a received environmental input event persists throughout the big step.

After an even number of ticks,Bit1 sends eventtk1, thereby instructsBit2 to toggle its status. After

counting four clock ticks, theCountergenerates thedoneevent. Consider the snapshot where the

model resides in control statesBit11 andBit21 and a semantics where each small step comprises

the execution of exactly one transition. If theTake One big-step semantics is chosen, then the

model behaves correctly. The firsttk0 input event produces the big step〈{t1}〉, the secondtk0

input event produces the big step〈{t2}, {t3}〉, the thirdtk0 input event again produces the big step

3This example is adopted from [68], where a more elaborate version of it is used as the running example of the
paper.

38

Counter

Bit1

Bit11

Bit12

t2: tk0 t̂k1

t1: tk0

Bit2

Bit21

Bit22

t4: tk1 d̂one

t3: tk1

Figure 3.6: A two-bit counter.

〈{t1}〉, and lastly, the fourthtk0 input event produces the big step〈{t2}, {t4}〉, which generates

eventdone. If theTake Many big-step semantics is chosen, then the model behaves incorrectly

by creating non-terminating big steps; for example, upon receiving the firsttk0 input event, the

model can engage in the following non-terminating big step:〈{t1}, {t2}, {t1}, {t2}, · · · 〉.

3.3 Concurrency and Consistency

BSMLs vary in how the enabled transitions of a model execute together in a small step. In the

examples in the previous section, each small step has exactly one transition, but there are other

options. Table 3.2 lists the three concurrency and consistency semantic sub-aspects that specify:

(i) concurrency: whether more than one transition can be taken in a small step, and if so, (ii)

small-step consistency: which transitions can be taken together, considering the composition

tree of a model, and (iii) preemption: whether the executionof one transition in a small step can

preemptthe execution of another transition or not.

3.3.1 Concurrency

There is a dichotomy in hardware and software about how to model the execution of a sys-

tem: single-transitionvs. many-transition[71, 88, 90, 97]. Similarly, in BSMLs, there are two

options: (i) a small step can execute only one transition in asmall step (the Single option), and

(ii) all enabled transitions that can be taken together are taken in a small step (the Many option).

39

Table 3.2: Concurrency and consistency semantic options.
Options Definition Characteristics Examples

Concurrency
Single A small step consists of

the execution of exactly
one transition.

(+) Simplicity
(-) Non-determinism

statecharts [41,
45, 86], State-
flow [22], and
reactive mod-
ules [3]

Many A small step may con-
sist of the execution of
more than one transi-
tion.

(+) Low chance for
non-determinism
(-) Race conditions

Argos [68] and
Esterel [14]

Small-Step Consistency
Arena Orthog-
onal

The arenas of two dis-
tinct transitions of a
small step are orthogo-
nal.

(+) Simplicity
(-) High chance for
non-determinism

Argos [68] and
Esterel [14]

Source/ Desti-
nation Orthogo-
nal

The source control
states and destination
control states of two
distinct transitions of a
small step are pairwise
orthogonal.

(+) Low chance for
non-determinism
(-) Complex

N/A

Preemption
Non-Preemptive Two transitions that one

is an “interrupt for” an-
other can be taken in a
small step.

(+) Support for “last
wishes”
(-) Counterintuitive
flow of control

Argos [68], and
semantics of
exit and trap
statements in
Esterel [14]

Preemptive Two transitions that one
is an “interrupt for” an-
other cannot be taken in
a small step.

(+) Simple flow of con-
trol
(-) No support for “last
wishes”

N/A

40

The Single option is simple because it does not have to deal with the complexities of executing

multiple transitions (e.g., race conditions), but it can cause undesired non-determinism because

two enabled transitions can execute in different orders.

Race conditions: A model has arace conditionwhen more than one transition in a small step

assign values to a variable. Typically, one of the assignments is chosen non-deterministically [75],

but there are other options [34].

Example 4 Figure 3.7 shows the model for describing the behaviour of a simple traffic light sys-

tem at an intersection.4 The model consists of And control stateTrafficLight, which itself consists

of two Or control states: theNScontrol state controls the traffic in the north-south direction and

theEW control state controls the traffic in the east-west direction. It is assumed that the envi-

ronment provides the sequence of environmental input events: end, change, end, change, · · ·, in a

timely manner according to the schedule of the traffic light. Environmental input eventenddesig-

nates the end of green light for a direction by changing its green lights to yellow. Environmental

input eventchangechanges the direction of traffic by switching the red lights to green lights, and

the yellow lights to red lights. The system is initialized sothat the lights for north-south direc-

tion are green, and the lights for east-west direction are red. Consider the snapshot where the

model resides in control statesEW RedandNS Yellow, and environmental input eventchange

is received. If theTake One big-step maximality semantics together with theSingle concurrency

semantics are chosen, then the model can choose to execute the big step consisting of the se-

quence of transitions〈{t2}, {t4}〉, or the sequence of transitions〈{t4}, {t2}〉, non-deterministically.

However, executing the latter sequence of transitions allows the model to arrive at snapshot

EW GreenandNS Yellow, which is not a desirable behaviour. If theMany concurrency seman-

tics is chosen, then the model executes big step〈{t2, t4}〉, arriving at control statesEW Greenand

NS Red.

Next, two semantic sub-aspects are considered that specifyhow the set of transitions can

be combined to be taken together in a small step, when the Many semantics is chosen. The

small-step consistencysub-aspect deals with transitions that do not preempt each other. The

preemptionsub-aspect deals with transitions that do preempt each other. The two sub-aspects

deal with disjoint sets of transitions of a model.

4This example is adopted from [51].

41

t4: change

t5: endt6: change

EWRed EWGreen

EWYellow

t1: end

t2: changet3: change

NS Green NSYellow

NS Red

East−West

North−S outh

Tra f f icLight

Figure 3.7: Traffic light system.

3.3.2 Small-Step Consistency

For two enabled transitions that neither is an interrupt forthe other, this semantic sub-aspect

specifies whether they can be taken together in a small step. In the Source/Destination Orthog-

onal semantic option, two transitions that are orthogonal (i.e., whose source control states and

destination control states are pairwise orthogonal) can betaken together in a small step. The

Arena Orthogonal option is more restrictive in that two transitions can be included in the same

small step only if their arenas are orthogonal (where the arena of a transition is the lowestOr

control state in the hierarchy of the composition tree that is a common ancestor of the source

and destination control states of the transition). In comparison, the Arena Orthogonal option

is simpler than the Source/Destination Orthogonal option, but it can introduce undesired non-

determinism by not taking all of the enabled transitions that the Source/Destination Orthogonal

option takes. The Arena Orthogonal semantic option and the Take One big-step maximality

semantics are similar: The former semantic option disallows two transitions whose arenas are

the same or ancestrally related to be included in a small step, while the latter disallows the two

transitions to be included in a big step.

Example 5 The model in Figure 3.8 is similar to the model in Figure 3.6, on page 39, but has

the extra Or control stateStatusthat specifies whether the counter is in the process of counting,

42

Counter

Bit1

Bit11

Bit12

t2: tk0 t̂k1

t1: tk0

Bit2

Bit21

Bit22

t3: tk1

Status

Counting

Max

t5: reset

t4: tk1 d̂one

Figure 3.8: The revised two-bit counter.

or it has already counted four ticks and should be reset. Consider the snapshot where the model

resides in control states,Bit12, Bit22, andCounting, and the fourthtk0 event is received. Let us

choose theMany concurrency semantics together with thePresent in Same event communica-

tion mechanism (explained in Section 3.4), in which a generated event can enable a transition

in the same small step. If theArena Orthogonal semantics is chosen, then only{t2} can be

taken, but not together witht4, because the arena oft4 is a parent of the arena oft2. If the

Source/Destination Orthogonal semantics is chosen, then〈{t2, t4}〉 can be taken, and the model

behaves correctly. (As described in detail in Section 4.3, the execution oft4 involves exiting the

Or control stateBit2 and reentering its default control stateBit21. The destination configuration

of the small step isBit11, Bit21, andMax.)

3.3.3 Preemption

The notion ofpreemption[11] is relevant for a pair of transitions when one is aninterrupt for

the other, as described in Section 2.1. Recall that a transition t is an interrupt for transitiont′

when the sources of the transitions are orthogonal and one ofthe following conditions holds: (i)

the destination oft′ is orthogonal with the source oft, and the destination oft is not orthogonal

with the sources of either transitions (Figure 3.9(a)); or (ii) the destination of neither transition is

orthogonal with the sources of the two transitions, but the destination oft is a descendant of the

destination oft′ (Figure 3.9(b)). The Non-Preemptive option allows such at andt′ to be executed

together in the same small step, whereas the Preemptive option does not. In the Non-Preemptive

option, the effect of executing such a small step{t, t′} includes the variable assignments and event

generations of both transitions, but the destination configuration of the small step is determined

43

(a) (b)

S S S′

S12
t′

t S′

S1
S′11

S′1t′

t S′2S2

S11

S21

S2

S1

S21

S11

S′21

Figure 3.9: Interrupting transitions.

as if only t has been executed (i.e., the destination oft′ is not relevant). As such, executing

{t, t′} in Figure 3.9(a) moves the model to control stateS′, and executing{t, t′} in Figure 3.9(b)

moves the model to control statesS′11 andS′21. While complex, due to its counterintuitive flow of

control, the Non-Preemptive option satisfies the “last wishes” of the children of anAnd control

state that is interrupted.

The Non-Preemptive semantics can be used to model the “weak preemption” semantics of

exit andtrap statements in Esterel [14, 40]. The concurrent execution ofanexit command

with a non-exit command complies with the condition (i) above of the interrupt for relation. The

concurrent execution of twoexit commands complies with the condition (ii) above of the inter-

rupt for relation. In Argos [68], a different notion of hierarchical control state than ours is used. A

transition whose source control state is a non-Basiccontrol stateS is an interrupt for a transition

whose arena isS or a descendent ofS. This notion of control state and interrupt can be translated

into the normal-form syntax described here, by turningS into anAndcontrol state with two chil-

dren: One representingS without the interrupt transition, and another having only one transition

that models the interrupt transition. In Esterel [14, 40], in addition to the Non-Preemptive seman-

tics, there is a syntax to specify Preemptive behaviour through the “strong preemption” semantics

of watching statements. In a “do <statements> watching(e)” statement, the execution of

“<statements>” is immediately aborted when eventeoccurs, without satisfying the “last wish”

of “<statements>”. Such awatching statement can be translated into the normal-form syntax

here by creating a transition,t, whose source is anAnd or Or control state that represents the

“<statements>”, and it is triggered with evente. Transitiont in the aforementioned translation

is not an interrupt for any transition, but needs to be assigned a higher priority than the transitions

in its source.

Example 6 The model in Figure 3.10 is an extension of the model in Figure3.5. This model

44

WaitFor

Redialer

X

Dial

Dialer

Dialing

Redial
Digits

WaitFor
Redial

t1: (dial(d) ∧ ¬redial)[c<10]

t3: dial(d)[c<10]

/c++; lp := lp×10+ d; ôut(d)

/lp := lp×10+d;
c++; ôut(d)

t6: [c< |p|]
d̂ial(digit(p, (c+1))

X t7: [c = |p|]

t4: [c = 10] DialDigits

t2: (dial(d) ∧ redial)[c = 0]/lp :=d; c:=1; ôut(d)

t5: redial[c = 0]/p:= lp; d̂ial(digit(lp, 1))

Max X

t: [limit = true] t′: [limit = f alse]

Figure 3.10: Interrupting transitions.

is a model of a dialer system that receives the dialed digits of a phone, through eventdial(d),

and transmits these digits via output eventsout(d), to establish the connection with a destination

phone number. Compared to the model in Figure 3.5, the model in Figure 3.10 additionally

controls the total number of calls that can be established ateach point of time. If the maximum

number of concurrent calls is reached, which is determined by the boolean environmental input

variablelimit , the dialing process is aborted via transitiont. Let us consider the snapshot where

environmental input variablelimit is true, the model resides in control statesWaitforDial and

WaitforRedial, the value of variablec, which is the number of dialed digits so far, is nine, and the

environmental inputdial(d) is received, i.e., the caller dials the last digit of a phone number. Let

us choose theSyntactic big-step maximality semantics and theMany concurrency semantics. If

thePreemptive semantic option is chosen, the system may abort the dialing process by executing

〈{t}〉, and not〈{t1}〉. But if theNon-preemptive semantic option is chosen, then the call would go

through by executing〈{t1, t}〉, arriving at the destination configuration{Max}.

45

...

Small Steps

...

Big Step

.........sp sp′sp3 sp4

T4T3T1 T5T2

C2C1

sp1 sp2

T

Combo Steps

ê

Present in Remainder

Present inWhole

Present in Next Combo Step

Present in Next Small Step

Present in Same

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

Figure 3.11: The event lifeline of the generated evente according to different event lifeline
semantic options.

3.4 Event Lifeline

A generated event of a transition is broadcast to all parts ofa model. An event’sstatus, which

is eitherpresentor absent, can be sensed by the event trigger of a transition. Theevent lifeline

semantics of a BSML specifies the snapshots of a big step in which a generated event can be

sensed as present. In this dissertation, the maximum event lifeline of an internal event is the

big step in which it is generated. Interface events, describe in Section 3.4.2, provide a semantic

option for a lifeline beyond the same big step in which an event is generated. Table 3.3 shows

the five event lifeline semantics: (i) in the Present inWhole option, a generated event is present

throughout its big step, from the beginning of its big step; (ii) in the Present inRemainder option,

a generated event is present in the snapshot after it is generated and persists until the end of its

big step; (iii) in the Present in Next Combo Step option, a generated event is present only during

the next combo step; (iv) in the Present in Next Small Step option, a generated event is present

only in the next snapshot; and (v) in the Present in Same option, a generated event is present

only during the small step in which it is generated (instantaneous communication). Figure 3.11

depicts the event lifeline of the eventegenerated in small stepT2, according to the different event

lifeline semantics. The name of an event lifeline semanticsis followed by a line that depicts the

extent of the big step in whiche is present, according to that semantics.

46

Table 3.3: Event lifeline semantics.
Options Definition Characteristics Examples

Present inWhole A generated
event in a big
step is assumed
to be present
throughout the
same big step.

(+) Modularity
(+) Global consistency
(-) Non-causality
(-) Counterintuitive be-
haviour

Argos [68] and
Esterel [14]

Present in Remainder A generated
event in a big
step is sensed
as present in
the same big
step after it is
generated.

(+) Causality
(-) Unorderedness
(-) Global inconsis-
tency

statecharts [45,
86]

Present in Next Combo
Step

A generated
event can be
sensed as present
only in the next
combo step after
it is generated.

(+) Causality
(+) Partial orderedness
(-) Multiple-instance
events

Statemate [43]
and RSML [63]

Present in Next Small
Step

A generated
event can be
sensed as present
only in the next
small step after it
is generated.

(+) Causality
(+) Orderedness
(-) Multiple-instance
events

statecharts[23]

Present in Same A generated
event can be
sensed as present
only in the same
small step it is
generated in.

(+) Instantaneous com-
munication
(-) Non-causality
(-) Multiple-instance
events

statecharts [82]
and used in [75]

47

The Present inWhole semantic option supports the “perfect synchrony hypothesis” [10, 68].

If a big step is considered as the reaction of a synchronous circuit during a “tick” of the clock,

the semantics of the perfect synchrony hypothesis is similar to the signal rules of synchronous

hardware. In synchronous hardware, a signal is either present or absent during a tick of a clock,

but not both.

The Present in Same semantic option is different from the other semantic options in that the

generated events of a small step cannot affect the enabledness of another small step, making the

small steps of a big step independent of one another. In Chapter 6, this semantics is considered

within the context of synchronization semantics.

Causality: A big step iscausalif its small steps can be sequenced as:T1,T2, · · · ,Tn, such that

any event that triggers a transition in small stepTi (1 ≤ i ≤ n) must be generated by some earlier

small step inT1,T2, · · · ,Ti−1. To a modeller, the transitions of a non-causal big step may seem

counterintuitive, and execute out of the blue. The Present in Whole and the Present in Same

semantic options can create non-causal big steps. To avoid non-causal big steps, some BSMLs

that use the Whole event lifeline semantics introduce a notion of a “correct” model, which never

creates a non-causal big step [14, 16, 93]. Analysis tools can be used to detect “incorrect” models,

conservatively, and reject them at compile time [16, 40]. But if a BSML supports variables, the

detection of incorrect models is undecidable [40].

Orderedness: The Present in Remainder semantics lacks a “rigorous causal ordering” [63]: if

evente1 is generated earlier than evente2, it need not be the case that transitions triggered bye1

are executed earlier than transitions triggered bye2. The Present in Next Combo Step semantics

was devised to alleviate this problem by having a “rigorous causal ordering” between combo

steps, while being insensitive to the order of event generation within a combo step [43, 63]. A

disadvantage of the Present in Next Combo Step semantics is that a modeller needs to keep track

of the scope of a combo step in order to consider its generatedevents all at once in the next

combo step. The Present in Next Small Step semantics is ordered: a transition triggered by an

internal eventecan be executed only ife is generated by a transition in the previous small step.

Modularity: The Present inWhole option is “modular” [50] with respect to events: an event

generated during a big step can be conceptually considered the same as an environmental input

48

event because it is present from the beginning of the big step. All other event lifeline semantics

are non-modular. In a non-modular event lifeline semantics, concurrent parts of a model cannot

play the role of the environment for each other, because extensions of the model may change the

behaviour in different ways than the environment does. As a result, a model cannot be constructed

incrementally.

Multiple-instance events: An instanceof an event in a big step is a contiguous segment of the

snapshots of a big step where the event is present. Two distinct instances of an event correspond

to two disjoint sets of small steps. In the Present in Next Combo Step, Present in Next Small

Step, and Present in Same event lifeline semantics, multiple instances of the same event, gen-

erated by different small steps, may exist in the same big step. Thus, the status of an event can

change multiple times in a big step, making it complicated for a modeller to determine whether

an event is present in a certain snapshot of a big step, or not.

Global inconsistency: When negated events are included in the BSML syntax, the Present in

Remainder semantic option can produce “globally inconsistent” big steps [85, 86]. A big step is

globally inconsistent if it includes a transition that generates an event and a transition triggered

by the absence of that event. A globally inconsistent big step is undesired because an event

is sensed both as absent and present in the same big step. The Present in Remainder semantic

option can achieve a variation of the original global consistency semantics [85, 86], by not taking

a transition that generates an event that was sensed as absent earlier in the big step [66]. The

global inconsistency problem is not relevant for other semantic options because the Present in

Remainder semantic option is the only semantic option that allows maximum one instance of an

event in a big step and yet allows the aforementioned inconsistency. The other lifeline semantics

that allow multiple instances of an event in the same big stepare globally inconsistent, but by

design.

Global consistency vs. causality: Figure 3.12 shows the relationship between the big steps

of the Present in Remainder semantics and the Present in Whole semantics. A big stepT

from a globally consistent Present in Remainder semantics also satisfies a Present in Whole

semantics becauseT’s generated events, by the definition of global consistency, are present from

the beginning of the big step. Conversely, a big stepT′ from a causal Present inWhole semantics

also satisfies a Present inRemainder semantics because, by the definition of causality, an event is

49

and
Causal

Globally
Inconsistent

Globally

Consistent Non−causal

Remainder Whole
Present in Present in

Figure 3.12: Global consistency vs. causality.

sensed as present by a transition ofT′ only if it is already generated in the big step. Therefore, if

global consistency is guaranteed syntactically (e.g., there are no negated event triggers), then the

set of big steps in the Present in Remainder semantics is a subset of the big steps of the Present

inWhole semantics.

Events with parameters: An event can have a value parameter, as in Esterel [14].5 For an

event with a value parameter, the value of its parameter is determined per instance of the event.

When an event instance is generated by more than one transition, the value of its parameter is

determined by a “combine function” [14]. A combine functionis a commutative, associative

function, such as addition, that “combines” the different values of the parameter of an event that

are generated by a set of transitions. In the Present in Remainder, Present in Next Combo Step,

Present in Next Small Step, and Present in Same semantics, a combine function combines the

values of the parameter of an event generated by transitionsin the previous and current small

steps, previous combo step, previous small step, and current small step, respectively. In the

Present in Whole option, the value of the parameter of an event instance is fixed during a big

step, and is determined by combining all of the values of the parameter of the event generated

during the big step.

Implicit events: Some BSMLs useimplicit eventsin their syntax, which represent events that

are generated in response to a certain property of the computation of a model. For example,

the implicit evententered(s) [85] is generated when control states is entered, implicit event

@T(cond) [46, 47] is generated when the value of boolean expressioncondchanges from false

5In Esterel [1], the value parameter of an event can be of type array, which means that, in effect, an event can
have more than one value parameter, each of which being an element of a single array.

50

to true, andassigned(v) [85] is generated when variablev is assigned a value. Implicit events

may or may not have the same semantics as the event lifeline semantics of named events.

Example 7 In Example 3, on page 38, when considering theTake One big-step maximality

semantics, the semantics that subscribes to thePresent in Whole, Present in Remainder, or

Present in Next Small Step event lifeline semantics all yield the expected behaviour.If theTake

One big-step maximality semantics, theMany concurrency semantics, theArena Orthogonal

small-step consistency semantics, thePreemptive preemption semantics (or theNon-Preemptive

preemption semantics) are chosen, then thePresent in Same semantics also yields the expected

behaviour.

Example 8 In the model in Figure 3.5, on page 38, variablelp stores the last dialed phone num-

ber. Upon receiving theredialenvironmental input event,RedialerinstructsDialer, by generating

the correspondingdial events, to dial the digits oflp. (The size of an integer,x, is denoted as|x|,

and itsnth digit asdigit(x, n).) Variablep is necessary because once redialling startslp is over-

written. Consider the snapshot where the environmental input eventredial is received,c is zero,

and |lp| is 10. The environmental input eventredialpersists throughout the big step. A seman-

tics that follows theSyntactic big-step maximality semantics (annotating a stable control state

with a “X”), the Many concurrency semantics, theArena Orthogonal small-step consistency

semantics, thePreemptive preemption semantics, thePresent in Next Small Step event lifeline

semantics, and uses the up-to-date values of variables, canproduce the big step〈t5, {t2, t6}, {t3, t6},

· · ·, {t3, t6}, {t4, t7}〉, which transmits the first digit twice and does not transmit the last digit. If

thePresent in Same event lifeline semantics is chosen, the model produces the correct big step

〈{t5, t2}, {t3, t6}, · · ·, {t4, t7}〉. In both cases, if the size of the redialled number is less than 10, the

model cannot stabilize, and remains in theDialDigits control state.

Example 9 The model in Figure 3.13 is a simple model of a cruise control system of a car.

The system regulates the amount of power transmitted to the wheels of the car by adjusting the

amount of gas that is provided to the engine, in order to maintain the speed specified by the

cruise control system. If the cruise control system is on, de-acceleration does not have any effect

on the amount of gas that is provided to the engine. But if the cruise control system is on and

the acceleration event is received, then the cruise controlsystem is turned off, and acceleration

is processed as usual. The two Or control states of the And control stateFuelControlprocess the

cruise control and acceleration/de-acceleration functionalities, respectively. The environmental

51

O f f On

Ad just

CruiseController

Accelerator

t1: cruise on
/cruise:= true;

t2: accel
/cruise:= f alse;

FuelControl

t3: cruise o f f/cruise:= f alse;

t4: [under speed= true]
încreasegas

t7: deaccel[cruise= f alse] d̂ecreasegas

t5: ¬increasegas
[over speed= true]
d̂ecreasegas

t6: accel
încreasegas

Figure 3.13: Speed control system for a car.

input eventscruiseon andcruiseoff turn the cruise control system on and off, respectively. The

environmental input eventsaccelanddeaccelspecify whether the accelerator is being pressed or

de-pressed, respectively. The boolean environmental input variablesover speedandunderspeed

specify whether the vehicle is moving faster or slower, respectively, than the target speed set by

the cruise control system. Eventsincreasegasanddecreasegasslightly increase and decrease

the amount of fuel into the engine, respectively.

Consider the moment when the cruise control system is on, thesystem is over speed, and the

accelerator is pressed; i.e., when the system resides in control stateOn, over speed= true, and

accelis received from the environment. Let us choose theTake One big-step maximality seman-

tics and theSingle concurrency semantics. If thePresent in Whole semantic option is chosen,

then the only possible big step consists of{t6} and{t2}, which results in the desired behaviour for

the system. If thePresent in Remainder semantic option is chosen, then additionally〈{t5}, {t6}〉 is

a valid big step, which both decreases and increases the amount of gas to the engine. The latter

big step is globally inconsistent, becauseincreasegasis sensed as absent byt5 and is generated

by t6. If the variation of global consistency semantics in [66] ischosen, then〈{t5}〉 is a valid big

step;t6 cannot be taken during the big step since it generatesincreasegas.

52

External

Controlled

Enviromental

Input

Enviromental
Output

Internal

Figure 3.14: A taxonomy for events.

3.4.1 External Events

The model in Figure 3.5, on page 38, uses eventdial in two different ways: (i) as an environmental

input event initiated by a human caller, and (ii) as an internal event generated by theRedialer. To

avoid modelling flaws, many have advocated that the interface of a system with its environment

should be clearly and explicitly specified [79, 101]. A celebrated way to achieve this interface,

as shown in Figure 3.14, is to distinguish between the eventsthat the environment can control,

environmental input events, and the events that are generated by the model,controlled events.

A controlled event may be observable by the environment (i.e., anenvironmental output event),

or not (i.e., aninternal event). The environmental input and output events of a model together

constitute theexternal eventsof the model.

A BSML may choose distinct event lifeline options for environmental input events, envi-

ronmental output events, and internal events, as shown in the feature diagram of Figure 3.2.

Often, the event lifeline semantics of the environmental input events is the X Present inWhole

(or equivalently, the X Present in Remainder) semantics, meaning that an input event persists

throughout a big step, and the event lifeline semantics of the environmental output events is the

same as the event lifeline semantics of the internal events.The prefix “X” in the name of the

semantic options, signifying external event, is used so that no two semantic options would have

the same name.

A BSML may syntactically distinguish environmental input events and environmental output

events from each other, and from internal events. Alternatively, a BSML isnon-distinguishing

if it does not distinguish syntactically between the external events and the internal events of a

model. In these BSMLs, it is still possible to consider inputs received at the beginning of the big

step as environmental inputs, and outputs generated in the last small step or last combo step of

a big step as environmental outputs, each with distinct event lifeline choices. Table 3.4 lists the

53

possible semantic options for differentiating environmental input events and internal events. In

the Syntactic Input Events option, an environmental input event is syntactically distinguished.

Thus a BSML that subscribes to this option is a “distinguishing” BSML. In the Received Events

as Environmental option, an event that is received at the beginning of a big step is considered

an environmental input event. In the Hybrid Input Events option, an event that is received at the

beginning of a big step is considered an environmental inputevent only if it is agenuine inputof a

model, meaning it is not generated by any transitions in the model. While in the Syntactic Input

Events and the Hybrid Input Events semantic options, the set of environmental input events of a

model can be identified syntactically, in the Received Events as Environmental semantic option,

the environmental input events of a model are determined pereach big step.

As shown in Figure 3.2, an event lifeline semantics for the environmental input events can

be chosen, regardless of the choice of the semantic option for distinguishing the input events.

For example, if the semantics for environmental inputs is the Received Events as Environmental

semantic option together with the X Present in Next Small Step semantic option, then an input

event that is received at the beginning of a big step persistsonly for the first small step of the big

step. Environmental output events have similar options; events generated in either the last small

step or last combo step of a big step could be considered as environmental output events.

Example 10 In Example 8, a non-distinguishing semantics was considered for the model in

Figure 3.5, because eventdial can be both received from the environment and generated, possibly

in the same big step. Eventredialis a genuine input. Both theReceived Events as Environmental

and Hybrid Input Events semantic options, together with theX Present in Remainder event

lifeline semantics, yield a behaviour that matches the behaviour specified in Example 8.

If the single-input assumption [46, 47] is assumed, which requires thatdial andredialare not

both received from the environment in the same big step, thendial cannot be received from the

environment at the beginning of a big step and generated in the same big step.

3.4.2 Interface Events

Some BSMLs structure a model as a set ofcomponents, each of which is a compound control

state. The components of a model communicate with each otherthrough theirinterface events

according to aninter-component communication mechanism. Figure 3.15 refines the taxonomy

54

Table 3.4: Differentiating environmental input events from internal events.

Options Definition Characteristics Examples

Syntactic Input Events Only syntactically dis-
tinguished events are
treated as environmen-
tal inputs.

(+) Separates system
from environment
(-) Usually different
semantics for differ-
ent event types

Esterel [14]

Received Events as En-
vironmental

Any event that is re-
ceived at the beginning
of a big step is consid-
ered an environmental
input event.

(+) Treats input and
internal events uni-
formly
(-) No boundary be-
tween system and
environment

statecharts [86]
and
RSML [63]

Hybrid Input Events Only “genuine” inputs
that are received from
the environment at the
beginning of a big step
are treated as environ-
mental inputs.

(+) Distinguishes
between internal and
genuine input events
(-) Complex

N/A

55

External

Controlled

Input
Enviromental Enviromental

Output Interface Internal

··
·

C1

Cn

C2

Figure 3.15: A taxonomy of events for inter-component communication.

of Figure 3.14 by including interface events as a subset of the controlled events of a model. Con-

ventionally, an interface event is generated only by one component, called asending component.

A component that accesses an interface event is itsreceiving component. As such, the interface

events of a model are partitioned into sets, shown by dashed lines in Figure 3.15, each of which

is generated by one component.

Table 3.5 lists the three possible inter-component communication semantic options for inter-

face events. In the Strong Synchronous Event option, a generated interface event is sensed as

present throughout the big step in which it is generated, from the beginning of the big step (sim-

ilar to the Present in Whole semantic option for internal events). In the Weak Synchronous

Event option, a generated interface event is present in the big step in which it is generated,

but only after it is generated (similar to the Present in Remainder semantic option for internal

events). In the Asynchronous Event option, a generated interface event is present in the next

big step, from the beginning of the big step. The Strong Synchronous Event and the Weak

Synchronous Event semantic options have similar advantages and disadvantages as the Present

in Whole and Present in Remainder semantic options, respectively. The Asynchronous Event

semantic option is unique in that a generated event in a big step can influence the behaviour

of the model in the next big step. A modeller or an analyst should keep track of the generated

events in the previous big step to understand the behaviour of the current big step. This seman-

tics for interface events can potentially be a source of complication for a modeller because it

is at odds with the semantics of other kinds of events in a semantics, i.e., internal events and

environmental input/output events, whose statuses cannot persist beyond a current big step. In

the Asynchronous Event semantics, a generated interface event in a big step acts similar to an

environmental input event in the next big step. As such, the Asynchronous Event semantics is

modular with respect to interface events, because an interface event, similar to an environmental

56

Table 3.5: Semantic options for interface events.

Options Definition Characteristics Examples

Strong Synchronous
Event

A generated interface
event of a big step is
sensed as present from
the beginning of the big
step.

(+) Modularity
(+) Unique sta-
tus for an inter-
face event during
a big step
(-) Non-causality

“Hybrid Seman-
tics” [50]

Weak Synchronous
Event

A generated interface
event of a big step is
sensed as present in the
snapshot after it is gen-
erated.

(+) Causality
(-) Unclear sta-
tus of an interface
event during a big
step

N/A

Asynchronous Event A generated interface
event of a big step is
sensed as present in the
next big step after it is
generated.

(+) Modularity
(-) Previous big
step affects cur-
rent big step

“Output” events
in RSML [63]
and “GALS” [89]

input event, is either present from the beginning of a big step or is not present at all.

There are several BSMLs that support the notion of inter-component event communication.

The “hybrid semantics” of Huizing and Gerth [50], which distinguishes between “local” and

“global” events, treats the “global” events of a model according to the Strong Synchronous

Event semantic option. The semantics of “output” events in RSML [63] follows the Asyn-

chronous Event semantics; an “output” event is generated by a component viaa “SEND” com-

mand, and can be received by a component via a “RECEIVE” event in the next big step. Similarly,

the semantics of “registered” events in Esterel [1] followsthe Asynchronous Event semantics.

In “globally asynchronous locally synchronous (GALS)” languages [19, 89], the communication

of events within “local” components of a system follows the semantics of the Present inWhole

option, and the “global” communication of events between components follows the semantics of

57

the Asynchronous Event option.

Example 11 The model in Figure 3.16 shows a door controller system, which is responsible for

unlocking the door to an industrial area only if the temperature inside the area is not above

40°C. The system has two components,Lock andThermometer, separated by the thick dashed

line. The two components communicate via two interface events, checktempand heat. There

are three environmental input events,lock, open, and reset. Eventunlock is the environmental

output event of the model. Consider the snapshot in which themodel resides in itsIdle and

Measurecontrol states,temp= 99, and eventopenis received from the environment. If theTake

Many big-step maximality semantics, theSingle concurrency semantics is chosen together with

the Strong Synchronous Event semantic option, then the big step〈{t1}, {t6}, {t3}〉 is the only

possible big step, which, correctly, does not open the door.If the Weak Synchronous Event

semantic option is chosen, then additionally,〈{t1}, {t2}, {t6}〉 is a valid big step, which opens the

door although the temperature is 99°C. If theAsynchronous Event semantic option is chosen,

the only possible big step is〈{t1}, {t2}, {t6}〉, in which eventheatis sensed in the next big step,

after the door has already been opened.

3.5 Enabledness Memory Protocol

Theenabledness memory protocolof a BSML determines the values of variables that a transition

reads for its guard condition (GC). Table 3.6 shows the three possible memory protocols: (i)

in the GC Big Step option, a read of a variable returns its value from the beginning of the big

step; (ii) in the GC Small Step option, a read of a variable returns its value from the beginning of

the small step; and (iii) in the GC Combo Step option, a read of a variable returns its value from

the beginning of the current combo step.6 As such, in the GC Big Step, the GC Small Step, and

the GC Combo Step semantics, the lastwrite of a value to a variable, via an assignment, during

the current big step, the current small step, and the currentcombo step, respectively, becomes

the value returned by areadof that variable in the next big step, next small step, and next combo

step, respectively.

6As shown in Table 3.6, in SCR [46, 47], both the GC Big Step and GC Small Step memory protocols are used,
but in different syntactic constructs of the language, namely in the “event tables” and “condition tables”, respectively.

58

Above40

Locking

Idle Check
S a f e

Unsa f e

Measure

Measuring

Thermometer

Lock

DoorController

t1: open[door=closed]

t3: heat

t2: ¬heat

ĉhecktemp

ûnlock/door:=open;

t7: reset

t5: lock
/door:=closed;

t4: reset

t6: checktemp[temp>40] ĥeat

Figure 3.16: Door controller system: using interface eventsheatandchecktemp.

59

Table 3.6: Enabledness memory protocols.
Options Definition Characteristics Examples

GC Big Step The value of a variable
during a big step is ob-
tained from the begin-
ning of the big step.

(+) Non-
interference
(+) Modularity
(-) Non-
sequentiality in
small steps

statecharts [45, 86],
SCR [46, 47], and
reactive modules [3]

GC Small Step The value of a variable
is its up-to-date value,
obtained from the be-
ginning of the small
step.

(+) Sequentiality in
small steps
(+) Straightforward
traceability
(-) Interference

Esterel [14] and
SCR [46, 47]

GC Combo Step The value of a variable
during a combo step is
obtained from the be-
ginning of the combo
step.

(+) Some non-
interference
(+) Some sequen-
tiality in small steps
(-) Complicated
traceability

Statemate [43]

60

Traceability: In the GC Big Step semantics, the value of a variable at a snapshot in a big step is

obtained from the beginning of the big step, but the assignments to the variable need to be traced

so that its value is updated for the next big step. In the GC Small Step semantics, the value

of a variable at a snapshot in a big step is determined by tracing all of the assignments to the

variable since the beginning of the current big step. In the GC Combo Step semantics, the value

of a variable at a snapshot in a big step is determined by tracing all of the assignments to the

variable since the beginning of the current combo step in thebig step. But a big step may have

several combo steps, which, compared to the other memory protocols, could make the tracing of

the value of a variable complicated.

Modularity with respect to variables: In general, a semantics is “modular” if it treats the be-

haviour of a new concurrent part of the model the same as the behaviour of the environment [50].

Originally, “modularity” was defined with respect to events[50], but, in the same spirit, I extend

its definition for variables. The GC Big Step is modular with respect to variables because even if

a new concurrent part of a model assigns new values to variables, the new values are visible only

at the beginning of the next big step, just like new environmental values. The other semantic

options are not modular because the behaviour of an additionto an existing model, unlike the

environment, affects the intermediate snapshots of a big step.

Non-interference vs. sequentiality in small steps: The GC Big Step option isnon-interfering:

an earlier small step of a big step does not affect the read value of a later small step. Non-

interference is useful because it relieves a modeller or an analyst from considering the accumu-

lated effect of assignments to a variable during a big step. The GC Small Step option, which is

an “interfering” semantics, is useful for specifying a sequence of computations where each small

step reads the values from the previous small step. Sequentiality is useful because it enables a

modeller to decompose a computation into parts that each is carried out by a separate transition.

The GC Combo Step option enjoys non-interference inside a combo step and sequentiality of

combo steps. In the GC Combo Step option, a big step could consist of multiple combo steps,

which a modeller needs to keep track of each of their scopes.

Variable operators: A BSML may provide avariable operatorthat obtains a value of a vari-

able that is different from its value according to its memory protocol. Table3.7 lists some com-

mon operators together with a brief description of their semantics. It also specifies whether each

61

Table 3.7: Variable operators.
Operator Obtains Value From Memory Protocols Total

pre (e.g., [63]) big-step source snapshot GC Small Step !
cur (e.g., [45]) small-step source snapshot GC Big Step !
new (e.g., [3]) small-step source snapshot GC Big Step and GC

Small Step
%

new small small-step destination GC Small Step !
(e.g., [85]) snapshot

operator istotal or not. A non-total operator mayblockuntil it can be evaluated. As specified in

the table, each variable operator is relevant for certain enabledness memory protocols.

Operatorpre returns the values of variables from the beginning of a big step, thus it is

relevant for the GC Small Step enabledness memory protocol. Operatorcur returns the up-to–

date values of variables, thus it is relevant for the GC Big Step enabledness memory protocol.

Operatornew is different fromcur in that it can be evaluated only if its operand has already been

assigned a value during the big step, which means it requiresa “dataflow” order for the execution

of small steps within a big step (cf., Section 3.7). Thus, operatornew can be relevant for both the

GC Big Step and the GC Small Step enabledness memory protocols.

Operatornew small returns the value of its operand at the end of the current small step. It is

used in the GC Small Step enabledness memory protocol to look ahead the value of a variable.

A variable in the GC of a transition that is prefixed with thenew small operator requires an

evaluation orderbetween the transitions of the small step, in order to obtainthe newly assigned

value of the variable at the end of the small step. If a variable is not assigned a value during

a small step, then its value when prefixed with thenew small operator returns the value of the

variable at the source snapshot of the small step.7 Two transitions can createcyclic evaluation

order by using thenew small operator over variables that are assigned values by one another.

Example 12 The following sequence of arrows shows a sequence of two small steps,

7It is possible to define a non-totalnew small operator that returns a value for a variable, only if it is assigned a
value in the current small step. Such an operator would be in the spirit of the “next” operator in SMV language [58],
which is an input language for a family of model checkers withthe same name. However in the semantics of SMV,
unlike in BSMLs, even if a variable is not assigned a value during a small step, it is assigned a non-deterministic
value, which makes the “next” operator a total operator.

62

t1:/v1:=v3+1
−−−−−−−−→

t2:/v2:=v1+1
−−−−−−−−→,

when v1 = v2 = v3 = 0 at the beginning of the sequence.

Let us also consider a third transition,

t3 : [(v1 + v2 + v3) ≥ 2]/v3 := v1 + v2,

which is intended to be executed after the execution of the above two small steps.

If theGC Small Step enabledness memory protocol is chosen, after the executionof t1 andt2,

the values of variables that are used to evaluate gc(t3) will be v1 = 1, v2 = 2, and v3 = 0. Thus,

gc(t3) is true andt3 can be executed. Ift3 is changed tot31 : [(v1+v2+new small(v3)) ≥ 2]/v3 :=

v1 + v2, gc(t31) will be true because of the evaluation v1 = 1, v2 = 2, andnew small(v3) = 3.

However, ift3 is changed tot32 : [(pre(v1) + pre(v2) + pre(v3)) ≥ 2]/v3 := v1 + v2, gc(t32) will

be false because of the evaluationpre(v1) = 0, pre(v2) = 0, andpre(v3) = 0.

If the GC Big Step enabledness memory protocol is chosen, after the executionof t1 and

t2, the values of variables that are used to evaluate gc(t3) will still be v1 = 0, v2 = 0, and

v3 = 0, from the beginning of the big step. Thus, gc(t3) cannot be executed. Ift3 is changed to

t33 : [(cur(v1)+cur(v2)+cur(v3)) ≥ 3]/v3 := v1+v2, gc(t33) will be true because of the evaluation

cur(v1) = 1, cur(v2) = 1, and cur(v3) = 0. If t3 is changed to transitiont34 : [(new(v1) +

new(v2) + new(v3)) ≥ 3]/v3 := v1 + v2, gc(t34) cannot be evaluated becausenew(v3) could have

been evaluated only if v3 would have been assigned a value by the previous small steps.

Example 13 In Example 8, on page 51, theGC Small Step enabledness memory protocol was

used. If the same semantic options that led to an incorrect behaviour in that example are used,

but the guard condition of transitiont6 is changed to “[new small(c)< |p|]” and its generated

event to event “dial(digit(newsmall(c)+ 1, p))”, then the model behaves correctly:〈{t5}, {t2, t6},

{t3, t6}, · · ·, {t3}, {t4, t7}〉.

The operators in Table 3.7 are not relevant for the GC Combo Stepmemory protocol, but they

can be extended to be used in the context of GC Combo Step memory protocol. For example, a

version ofcur operator for the GC Combo Step semantic option would return the current value

of a variable considering all of the assignments to the variable since the beginning of the current

combo step. Similarly, anew small operator can be defined for the GC Big Step memory

protocol.

63

3.5.1 External Variables

As with events, it is useful to distinguish syntactically between the variables of the model that

can be modified by the environment and the variables of the model that can be modified by the

system [79, 101]. Figure 3.14, which depicts a taxonomy of events, also represents the taxonomy

for distinguishing environmental variables. Theenvironmental output variablesandenvironmen-

tal input variablesof a model are the sets of the variables of the model that can beread from

and written to by the environment, respectively. Theinternal variablesof a model are those vari-

ables that do not communicate with environment.8 The union of the set of environmental input

variables and the set of environmental output variables of amodel is its set ofexternal variables.

The union of the set of environmental output variables and the set of internal variables of a model

is its set ofcontrolled variables, which is the set of variables that can be written to by the sys-

tem. Many modelling languages, including some BSMLs, provide syntax to distinguish between

different types of variables [3, 46, 47, 79]. Unlike for events, the notion of “non-distinguishing

BSMLs” (cf., Section 3.4.1) is not relevant with respect to variables, because most BSMLs either

syntactically distinguish between environmental input variables and controlled variables, or they

do not support the notion of environmental input variables at all (i.e., variables are not assigned

values by the environment).

When external variables are distinct from the internal variables, the memory protocol seman-

tic aspects described in Sections 3.5 and 3.6 specify the semantics of internal variables. The

notion of memory protocol for environmental input variables is not relevant because they are

never assigned a value by a transition; they keep the same value throughout the big-step. Nor-

mally, an output variable is not read by the model, thereforeno option has been included for it in

the feature diagram. If an output variable is read by the model, the semantics of environmental

output variables can be any of the memory protocols, but it would not likely be the Big Step

semantics.

3.5.2 Interface Variables in GC

Some BSMLs allow a component of a model, which is usually a physically distinct part of

the model, to communicate with another component of the model via interface variables. Fig-

8Internal variables are often called “private variables”. The term “internal variables” is adopted to keep the
terminology of variables consistent with that for events.

64

ure 3.15, which depicts the taxonomy of events including interface events, can also describe

the taxonomy of variables including interface variables. As for interface events, convention-

ally, an interface variable can be written to by only one component (thesending component),

but can be read by multiple components (thereceiving components). The semantics of inter-

face variables, similar to memory protocols for internal variables, specifies when a change to an

interface-variable value becomes the value returned by a read of that variable.

Table 3.8 lists the possible inter-component communication semantic options. In the GC

Strong Synchronous Variable option, a write to an interface variable during a big step canbe

read by the GC of a transition right from the beginning of the same big step; i.e., if an interface

variable is assigned a value, only this new value is read during the big step. In the GC Weak

Synchronous Variable option, a write to an interface variable can be read after thevariable is

written to, but the variable can also be read before it is written to, in which case it returns its

value from the previous big step (similar to the GC Small Step semantic option). In the GC

Asynchronous Variable option, a write to an interface variable can be read by the GC of any

transition in the next big step (similar to the GC Big Step semantic option).

Blocking read vs. communication delay: The GC StrongSynchronousVariable semantics is

compatible with the “zero-time computation” principle of the synchrony hypothesis [10, 14]: The

value of an interface variable is exchanged between two components in “zero-time”. However,

there should exist a “dataflow order” (cf., Section 3.7) between the small steps of a big step so

that the value of an interface variable is read only after it has been assigned. A component that

is waiting for the new value of an interface variable is said to beblocking. It is possible for two

transitions to block cyclically on each other creating deadlock. In the GC Weak Synchronous

Variable semantic option, a read operation on a variable never blocks, but it may return astale

valueof the variable from the previous big step or a newly assignedvalue from the current big

step. In the GC Asynchronous Variable semantic option, a read operation on a variable never

blocks, but there is a delay of one big step between writing a new value to a variable and reading

the new value.

Modularity with respect to interface variables: The GC Strong Synchronous Variable and

GC Asynchronous Variable semantic options are modular with respect to interface variables

because the value of an interface variable in these semanticis the same throughout the big step,

similar to an environmental input variable. In these two semantics, the behaviour of a component

65

Table 3.8: Semantic options for interface variables.

Options Definition Characteristics Examples

GC Strong Syn-
chronous Variable

Either an interface vari-
able is not written to
during a big step, or all
of its reads happen af-
ter it has been written to
and it returns the newly
assigned value.

(+) Modularity
(-) Blocking read
and cyclic dataflow
order

Composition
in reactive
modules [3]

GC Weak Syn-
chronous Variable

An interface variable
can be read before or
after it is written to;
in the latter case it
returns the newly as-
signed value.

(+) Non-blocking
read
(-) Stale values for
interface variables

N/A

GC Asynchronous
Variable

The value written to an
interface variable dur-
ing a big step can be
read in the next big
step.

(+) Non-blocking
read
(+) Modularity
(-) Delayed read

“Output”
variables in
RSML [63]

66

that is added to an existing model is perceived as that of the environment, when it comes to the

interface variables in the GC of transitions of the existingmodel. The GC Weak Synchronous

Variable semantic option is not modular with respect to interface variables because the value of

an interface variable may change during a big step, unlike the value of an environmental input

variable.

Example 14 The model in Figure 3.17 is similar to the model in Example 11,but has been

modified: (i) to use the interface variableheat, instead of interface eventheat; and (ii) the func-

tionality of Locking the door is separated from the functionalities of theControllerof the lock

and theThermometer, to allow for the lock to work with different controllers.

Let us consider the snapshot where the model resides in itsIdle, Ready, andMeasurecontrol

states, the door is closed,temp= 99, heat= false, and eventopenis received from the environ-

ment. Also, let us choose theSyntactic big-step maximality semantics, theSingle concurrency

semantics, thePresent in Remainder event lifeline semantics, theGC (and RHS) Small Step

enabledness (assignment) memory protocols, and theGC Strong Synchronous Event interface

event semantics. If theGC Strong Synchronous Variable semantic option is chosen, then the big

step〈{t1}, {t6}, {t9}, {t8}, {t3}〉 is the only possible big step, which correctly does not open the door.

If the GC Weak Synchronous Variable semantic option is chosen, then the big step〈{t1}, {t6},

{t7}, {t9}, {t2}〉 is also possible, which opens the door although the temperature is 99°C. Reversing

the order of{t9} and {t2} yields another big step that opens the door. If theGC Asynchronous

Variable semantic option is chosen, then thetruevalue ofheatis only sensed in the next big step,

and thus the door is opened.

3.6 Assignment Memory Protocol

Theassignment memory protocolof a BSML determines the values of variables that a transition

reads when evaluating the righthand side (RHS) of an assignment. Exactly the same semantic

options as those of the enabledness memory protocol exist: RHS Big Step, RHS Small Step, and

RHS Combo Step. (Their names are prefixed with “RHS” instead of “GC”.) The enabledness and

assignment memory protocols of a BSML need not be the same (e.g., SCR [46, 47]).In SCR [46,

47], the RHS Small Step assignment memory protocol is used together with a combination of

the GC Big Step and GC Small Step enabledness memory protocols. The same advantages and

67

Locking Controller

Check
S a f e

Check
Temp

Thermometer

Measuring

DoorController

d̂isp danger

t10: reset/heat:= f alse;

t3: danger

X

X

X

Measure Above40
XX

Idle

Unsa f e

Ready

t9: checktemp[temp>40]/heat:= true;

t4: tryagain̂ disp tryagain

ĉhecktemp

t1: open[door=closed]
ĉan open t6: can open

t2: ok ûnlock
/door:=open;

t5: lock
/door := closed;

t7: [heat= f alse]
ôk

t8: [heat= true]
d̂anger

Lock

Figure 3.17: Door controller system: using interface variable heat and interface event
checktemp.

68

Invar

t2: /b:= (2×a)+b;

t1: /b:=2×b;

S1

S2

S3

S4

S5

S6

t4: /a:=3×a;

t3: /a:=a+b;

I1 I2

Figure 3.18: A model for maintaining an invariant betweena andb.

disadvantages as the semantic options of the “enabledness memory protocol”, in Table 3.6, apply

to the corresponding semantic options of the “assignment memory protocol” semantic aspect, so

they are not repeated in this section.

Variable operators: The same four variable operators listed in Table 3.7 can be used in the

RHS of assignments. However, when using thenew small operator in an assignment expression,

it may be impossible to find an “evaluation order”. For example, for two assignments,a :=

new small(b)−1 andb:=new small(a)+2, which have a cyclic evaluation order, the value ofa

andb cannot be evaluated.

Example 15 The model in Figure 3.18, which is adopted from an example in [49], is meant to

specify a computation that maintains the invariant thata−b has the same value before and after

the execution of a big step. Consider the snapshot where the model resides in its control states

S1 andS4, a= 7, andb = 2. Let us choose theSingle concurrency semantics. If theTake Many

big-step maximality semantics together with theRHS Big Step assignment memory protocol are

chosen, then the end result would bea = 21 and b = 16, which maintains the invariant that

a−b has the same value before and after the big step. If theRHS Small Step semantic option is

chosen, then the model can create a big step that does not maintain the invariant; for example,

the execution of the big step〈{t1}, {t2}, {t3}, {t4}〉 results ina= 75andb = 18.

69

3.6.1 Interface Variables in RHS

Similar to the using of interface variables in the GC of transitions, as described in Section 3.5.2,

interface variables can be used in the RHS of assignments of the transitions of the different com-

ponents of a system. Exactly the same semantic options as those for interface variables in GC of

transitions can be used for the semantics of interface variables in the RHS of assignments, but

their names prefixed with “RHS” instead of “GC”: RHS Strong Synchronous Variable, RHS

Weak Synchronous Variable, and RHS Asynchronous Variable. The interface variables in GC

semantics of a BSML need not be the same as its interface variables in RHS semantics. Similar

to the GC Strong Synchronous Variable option, a cyclic dataflow order might arise when the

RHS Strong Synchronous Variable semantic option is chosen. The same advantages and disad-

vantages as the ones for the semantic options of the inter-component variable communication, in

Table 3.8, are relevant for the corresponding semantic options of the interface variables in RHS

semantic aspect. Therefore, they are not repeated here.

3.7 Order of Small Steps

At a snapshot, when it is possible to execute more than one small step based on the enabledness of

transitions with respect to guard conditions and event triggers, some BSMLs non-deterministically

execute one (the None option), while others order their executions either by syntactic means (the

Explicit Ordering option) or bydatafloworders (the Dataflow option), as shown in Table 3.9.

Stateflow is an example of the Explicit Ordering option because the transitions of a model are

executed according to the graphical, clockwise order of their arenas [22]. A dataflow order al-

lows only those sequences of small-steps where a transitionthat writes to a variable is executed

before a transition that reads the variable. The dataflow order of a model can be specified by an

explicit partial order between its variables (e.g., SCR [46, 47]), or via variable operatornew, as

described in Section 3.5, to determine data dependencies (e.g., reactive modules [3]). In the stat-

echarts semantics of Pnueli and Shalev [86], the boolean operatorassigned is used in the event

trigger of a transition to determine whether a variable is assigned a value during a big step or

not, which, in effect, induces a dataflow order between small steps of the big step.9 The Explicit

Ordering and Dataflow options can be used to avert undesired non-determinism by disallowing

9The GC Strong Synchronous Variable and RHS Strong Synchronous Variable semantic options for interface
variables, described in Section 3.5.2 and Section 3.6.1, respectively, can also introduce dataflow orders.

70

Table 3.9: Order of small steps semantic options.
Options Definition Characteristics Examples

None Small steps are not
ordered. (+) Simplicity

(-) Non-determinism

statecharts
[41, 45]

Explicit
Ordering

Execution of small
steps is ordered syn-
tactically.

(+) Control over ordering
(+) Control over non-
determinism
(-) Possible unintended order-
ing

Stateflow [22]

Dataflow Small steps are or-
dered so that an as-
signment to a vari-
able happens before
it is being read.

(+) Natural for some domains
(+) Control over non-
determinism
(-) Possible cyclic orders

SCR [46, 47],
reactive mod-
ules [3], and
statecharts [86]

the execution of the small steps that do not satisfy the ordering constraints. In the Dataflow

semantic option, each big step of a model might have a different dataflow order. The Explicit

Ordering option can be difficult to use because a modeller may introduce an unintended order

of transitions. The Dataflow semantics can be difficult to use because a modeller might create

a cyclic dataflow order, either directly or by transitivity.The Dataflow semantics is compatible

with the domain of some synchronous hardware systems where there is an inherent distinction

between the value of a variable at the beginning of a big step,i.e., when the clock ticks, and

during a big step when a value might be assigned to a variable.

Example 16 Consider the semantic options in Example 8, on page 51, that lead to an incorrect

behaviour. One way to fix the incorrect behaviour is to modifythe model by moving the “p := lp”

assignment fromt5 to t2, changing the GC oft6 to “ c < |new(p)| − 1”, and its event generation to

“ dial(digit(newsmall(c)+ 1, p))”. Such a model then behaves correctly:〈{t5}, {t2}, {t6}, {t3, t6},

· · ·, {t3}, {t4, t7}〉, because the dataflow order does not allowt2 and t6 to be executed together.

Example 17 In Example 8, theMany concurrency semantics was chosen together with the

Present in Next Small Step event lifeline semantics, which lead to an incorrect behaviour. If

71

the Single concurrency semantics would be chosen, then the model wouldcreate both a cor-

rect big step, and an incorrect, non-terminating big step (e.g., 〈{t5}, {t2}, {t6}, {t6}, · · ·〉), non-

deterministically. However, if theExplicit Ordering order of small steps semantics according to

the graphical, clockwise order of the arena of transitions would be chosen, then the model would

always behave correctly:〈{t5}, {t2}, {t6},{t3}, {t6}, {t3}, · · ·, {t7}, {t4}〉.

3.8 Priority

At a snapshot of a model, there could exist multiple sets of transitions that can be chosen non-

deterministically to be executed as its small step. Table 3.10 shows three common ways for

assigning a priority to a transition to avert non-determinism. A set of transitionsT1 has a higher

priority than a set of transitionsT2, if for each pair of transitionst1 ∈ T1 andt2 ∈ T2, eithert1 has

a higher priority thant2 or they are not comparable priority wise.

The Hierarchical option is a set of priority semantics that use the hierarchical structure

of the control states of a model to compare the relative priority of two enabled transitions. A

Hierarchical priority semantics is defined by itsbasis, which is one of the three values, Source,

Destination, Scope, and itsscheme, which is either Parent or Child. For example, Scope-Parent

is a priority semantics that gives a higher priority to a transition whose scope is the highest in the

hierarchy of a composition tree.

If a BSML semantics supports neither the Scope-Child nor the Scope-Parent priority seman-

tics, the semantic option No Priority is used to characterize it. In the No Priority semantic

option, all transitions of a model have the same priority. The No Priority semantic option could

introduce undesired non-determinism because if more than one transitions are enabled at a snap-

shot, any of them can be taken. The No Priority semantic option is useful when a modeller is

interested in using the hierarchy tree of a model only as a means to distinguish between the gen-

eral and the specialized elements of the behaviour of a system, by using high-level and low-level

control states of the model, respectively, without giving neither element of the behaviour a higher

priority than the other.

The ExplicitPriority priority option explicitly assigns priority to the transitions of a model (e.g.,

by assigning numbers to transitions and giving a greater number a higher priority [75]).

The Negation of Triggers option is not an independent way to assign priority, but usesthe

72

Table 3.10: Priority semantic options.
Options Definition Characteristics Examples

Hierarchical The source and destination
control states of transitions
determine priority.

(+) Simplicity
(-) Incomplete prior-
itization

Scope-Parent
in Statem-
ate [43] and
Source-Child in
Rhapsody [42]

Explicit
Priority

Each transition is given an ex-
plicit, relative priority. (+) Exhaustive pri-

oritization
(-) Tedious to use

Used in [75]

Negation of

Triggers
A transition is given higher
priority than another by
strengthening the event trig-
ger of the second transition
such that it is not enabled
when the first transition is
enabled.

(+) Exhaustive pri-
oritization
(+) No additional
syntax
(-) Tedious to use

statecharts [86],
Esterel [14], and
Argos [68]

No Priority All transitions have equal hi-
erarchical priority. (+) Avoid unin-

tended priority
(-) Non-determinism

statecharts [41]

73

notion of “negation” to assign priorities:t1 can be assigned a higher priority thant2 by conjoining

the negation of one of the positive events in the trigger oft2 with the events in the trigger oft1.

Exhaustiveness vs. simplicity: The Hierarchical option can be easily understood by a mod-

eller, but may render many transitions as priority incomparable. The Explicit Priority option

provides greater control over specifying the relative priority of a set of transitions, but can be

tedious to use. For example, a wrong relative priority for a pair of transitions can be deduced

transitively, although a modeller may not have been aware ofsuch an indirect, transitive prior-

itization in her/his model. In the Negation of Triggers and Explicit Priority options, it can

be difficult to identify the pair of transitions where it is necessary to assign a relative priority

because whether two transitions are both enabled or not in a small step depends on the source

snapshot, and not merely on the syntax of a model. But in principle, it is possible to specify a

priority scheme for a model exhaustively.

Combination of priority semantics: It is possible to use more than one priority semantics in

the semantics of a BSML, as shown in the feature diagram in Figure 3.2. In such a BSML, if two

transitions are not comparable according to the first priority semantics, then they are compared

according to the second semantics, and so on. By the definition of enabledness, if the Negation

of Triggers is used in a BSML, its semantics overrides the other prioritysemantics.

Example 18 In Example 6, on page 44, if theSingle concurrency and theScope-Child priority

semantics are chosen together, then the model always executes〈{t1}〉 as its big step, allowing the

call to go through.

Example 19 In the model in Figure 3.5, on page 38,t2 is assigned a higher priority thant1 by

conjoining the original event trigger oft1, dial(d), with the negation of the event trigger oft2,

dial(d)∧ redial, resulting int1 having the event triggerdial(d)∧ ¬redial. The effect is thatt2 will

be chosen when theredialevent occurs instead oft1.

Example 20 In Example 11, on page 58, if transitiont6 is given a higher priority thant2 explic-

itly, then the choice of theWeak Synchronous Event semantic option always yields a correct

behaviour (i.e., the door is not opened when the temperatureis above 40°C). Similarly, in Ex-

ample 14, if transitiont9 is given a higher priority thant7 explicitly, then the choice of theWeak

Synchronous Variable semantic option always yields a correct behaviour.

74

Remainder of thesis: In the remainder of the thesis, for the sake of brevity, only the Scope-

Parent and Scope-Child hierarchical priority semantics are considered. However,the semantics

of other Hierarchical priority semantics are very similar to these two. Also, the Explicit Pri-

ority semantics, which is not a common priority semantics, is not considered in the remainder

of the thesis, except in Section 7.3.3, where the feasibility of formalizing this semantics is dis-

cussed. A formalization of the Explicit Priority semantics can be found in template semantics

[75, 74].

3.9 Combo-Step Maximality

The combo-step maximality semantics specifies the extent ofa contiguous segment of a big step

where computation is carried out based on the statuses of events and/or values of the variables at

the beginning of the segment. As specified in Figure 3.3, the combo-step maximality semantics

is relevant for a BSML semantics only if at least one of thecombo-step semantic options, namely,

Present in Next Combo Step, GC Combo Step, or RHS Combo Step, is chosen in the semantics.

These options describe how the statuses of events and valuesof variables change (or not) within a

combo step. For example, if a BSML uses the Present in Next Combo Step and GC Combo Step

options, then during a combo step (other than the first combo step of the big step) the statuses of

events depend on the generated events of the previous combo step, and the values of variables in

GC of transitions depend on the assignments performed in theprevious combo step.

Table 3.11 shows the three semantic options for the combo-step maximality semantic aspect.

These options are similar to the three semantic options for the big-step maximality semantics, but

specify the scope of a combo step, instead of a big step. In theCombo Syntactic option, a BSML

allows a modeller to designate a basic control state of a model as acombo stablecontrol state.

During a combo step, once a transitiont that enters a combo stable control state is executed, no

other transition whose arena overlaps with the arena oft can be taken during that combo step.

In the Combo Take One option, once a transitiont is executed during a combo step, no other

transition whose arena overlaps with the arena oft can be executed during that combo step. As

such, eachOr control state can contribute a maximum of one transition to acombo step. The

Combo Take Many option allows a sequence of small steps to continue executing until there are

no more enabled transitions to be executed. In practice, theBSMLs that use the Combo Take

One option for the combo step maximality semantics use the Take Many option for the big-step

75

Table 3.11: Combo-step maximality semantic options.
Options Definition Characteristics Examples

Combo Syntactic No two transitions with
overlapping arenas
that enter designated
“combo stable” control
states can be taken in a
same combo step.

(+) Syntactic scope for
combo steps
(+) SequentialOr transitions
in a combo step
(-) Non-terminating combo
steps

N/A

Combo Take One No two transitions with
overlapping arenas can
be taken in a same
combo step.

(+) Terminating combo steps
(+) Unclear, non-syntactic
scope for combo steps

RSML [63]
and State-
mate [43]

Combo Take
Many

No constraint on transi-
tions that can be taken
in a combo step.

(+) SequentialOr transitions
in a combo step
(-) Unclear, non-syntactic
scope for combo steps
(-) Non-terminating combo
steps

N/A

maximality semantics (e.g., RSML [63] and Statemate [43]).As specified in Figure 3.3, the

Combo Take Many combo-step maximality semantics cannot be chosen togetherwith the Take

One big-step maximality semantics, because a combo step cannotinclude more small steps than

its big step. The same advantages and disadvantages as the ones for the semantic options of the

big-step maximality semantic aspect are relevant for the corresponding semantic options of the

combo-step maximality semantic aspect.

Scope of a combo step: In the Combo Syntactic semantic option, the end of a combo step can

be traced syntactically, which can be helpful for constructing and understanding a model. The

scope of a combo step when the Combo Take One or the Combo Take Many is chosen is more

difficult to determine. For example, if the Combo TakeMany combo-step maximality semantics,

along with the Present in Next Combo Step and GC Combo Step semantic options, are chosen,

76

S1

S2

S3

t3: swapa/a:=b;

ŝwapa

t1: swaptwice/a:=b;

S wap

A

t2: swaptwice/b:=a;

S4

S5

S6

t4: swapb/b:=a;

ŝwapb

B

Figure 3.19: Swappinga andb twice, using combo steps.

then a combo step of a big step continues until there are no more transitions that are enabled

with respect to the generated events and the assignments of the previous combo step. In such a

semantics, it is far from clear what the possible combo steps, and thus big steps, of a model are,

based on mere review of the syntax of the model.

Example 21 The model in Figure 3.19 is meant to swap the values of variablesa and b twice

during a big step, maintaining their original values. Let uschoose theCombo Take One option

for the combo step maximality semantics, theTake Many option for the big-step maximality se-

mantics, theSingle concurrency semantics, and the semantics that the statusesof events and the

values of variables are fixed during a combo step (i.e., theRHS Combo Step, and thePresent in

Next Combo Step semantic options). Upon receiving the environmental inputeventswaptwice,

the model executes transitionst1 and t2, at which point the first combo step concludes. The sec-

ond combo step starts by first considering the effects of the transitions of the first combo step,

i.e., the effect of swapping the values ofa andb and the effect of generating eventsswapa and

swapb, and then executing transitionst3 and t4. At the end of the second combo step the big

step concludes and the values ofa andb are the same as their values at the beginning of the big

step. If the effect of the assignments of the transitions are not hidden fromone another during a

combo step, the correct behaviour cannot be achieved. For example, depending on whethert1 or

t2 is executed first, bothaandb are assigned the initial value ofb or a, respectively.

77

Choosing theTake Many big-step maximality semantics, theMany concurrency semantics,

the Present in Next Combo Step event lifeline semantics (or thePresent in Remainder event

lifeline semantics), and theRHS Small Step assignment memory protocol, also yields the correct

behaviour. While such an equivalence of behaviour holds forsome models, it does not always

hold. For example, if there is a possibility for race conditions (e.g., in Example 22) or if it is

important whether a model can reach certain configuration ofcontrol states or not, then it is not

possible to replace theSingle concurrency semantics with theMany concurrency semantics.

Example 22 The model in Figure 3.20 shows a simple model of a system that controls the op-

eration of a chemical plant.10 The operation of the plant relies on two chemical substancesA

andB. There are two processes, shown as two Or control statesProcess1 andProcess2, which

can independently increase the amounts of substancesA and B by one unit or two units, re-

spectively. The two processes may simultaneously request for increase; i.e., environmental input

eventsinc oneand inc two might be received at the same big step. Variablesa andb represent

the amount of requested increase for substanceA and substanceB, respectively. Environmen-

tal output eventstart process(a, b) instructs a physical component of the plant to increase the

amounts of substanceA and B, by amountsa and b, respectively. Internal eventprocessis

meant to instruct theControllerto increase the amounts of the substances. Environmental input

eventendprocesssignifies that the requested amounts of the substances have been successfully

increased by the physical component of the plant, at which point the system can process new

requests.

Consider the snapshot where the model resides in its defaultcontrol states,inc one and

inc two are received, andaandb are zero. The correct behaviour is to increase the amount ofA

andB by three units. Let us choose theCombo TakeOne option for the combo step maximality se-

mantics, theTake One option for the big-step maximality semantics, and theSingle concurrency

semantics. The only pair of semantic options that yield a correct behaviour are, thePresent in

Next Combo Step for the event lifeline semantics and theRHS Small Step semantic option for

the assignment memory protocol semantics, which produce the following two correct big steps:

〈{t1}, {t3}, {t5}〉 and〈{t3}, {t1}, {t5}〉. If, for example, thePresent in Next Combo Step event lifeline

semantics is chosen together with theRHS Combo Step assignment memory protocol, the same

big steps as before are produced, but the former big step increases the amounts ofA andB by

10This example is inspired by the motivating example in [2], where sequence diagrams are used for modelling an
aspect of the operation of a nuclear power plant.

78

Plant

Wait 2

Controller

Idle Wait

Idle 2Idle 1 Wait 1

t2: end process

Process1 Process2

t5: procesŝstart process(a, b)

t6: end process/a:=0; b:=0;

t1: inc onê process
/a:=a+1; b:=b+1;

t4: end process

/a:=a+2; b:=b+2;
t3: inc twô process

Figure 3.20: Controlling the operation of a chemical plant.

two units only, whereas the latter big step increases the amounts ofA andB by one unit only. If

thePresent in Remainder event lifeline semantics is chosen together with theRHS Small Step

assignment memory protocol, which means that there is no need to choose any semantic option

for the combo-step maximality semantic aspect, the additional big step〈{t1}, {t5}, {t3}〉 is possible,

which ignores the increase requested byProcess2.

Example 23 In Example 7, on page 51, some possible semantics to make the counter in Ex-

ample 3 to behave correctly were enumerated. Another possible semantics is a semantics that

subscribes to theCombo Take One combo-step maximality semantics, theTake One big-step

maximality semantics, theSingle concurrency semantics, and thePresent in Next Combo Step

event lifeline semantics.

Example 24 Another way to maintain the invariant in Example 15, on page 69, is to choose

the Combo Take One combo-step maximality semantics, theTake Many big-step maximality

semantics, and theRHS Combo Step assignment memory protocol. The execution of the first

combo step,{t1}, {t3}, results ina= 9 andb = 4, and the execution of the second combo step,{t2},

{t4}, results ina= 27andb = 22. The order of the execution of{t1} and{t3}, and,{t2} and{t4}, do

not affect the end result. If theCombo Take Many combo-step maximality semantics is chosen,

then the invariant would be maintained, but the big step concludes witha= 21 andb = 16.

79

3.10 Semantic Side Effects

In this section, a fewside effectsthat arise when a group of semantic options are chosen together

are described. Also, it is explained how these side effects can be avoided. The choice of a group

of semantic options has a side effect when it causes a semantic complication that is not due to the

original design of any of the semantic options. A side effect can sometimes be tolerated because

the benefit of having a set of semantic options in a BSML outweighs their caused complication.

3.10.1 Complicated Event Lifeline Semantics

Choosing the TakeOne big-step maximality semantics when the Present inWhole event lifeline

semantics is used in a BSML semantics, achieves a less complicated semantics, as is done in

Argos [68]. The Take One semantic option introduces less complication compared to the other

big-step maximality semantics because the status of an event in a big step can be identified by

considering at most one transition of each of the non-overlapping arenas of a model. Similarly,

I recommend to choose the Take One semantic option, when choosing the Strong Synchronous

Event semantic option for interface events.

3.10.2 Cyclic Evaluation Orders

To avoid a “cyclic evaluation order” when using thenew small operator, as described in Sec-

tion 3.6, a conservative well-formedness criterion can disallow small steps whose assignments

create cyclic evaluation orders. Such a well-formedness criteria depends on the choice of the se-

mantic options for theSmall-Step Consistency andPreemption semantic aspects. For example,

consider a BSML that subscribes to the Arena Orthogonal small-step consistency semantics

and the Preemptive preemption semantics. For such a semantics, a conservativewell-formedness

condition to avoid a cyclic evaluation order is to require that, for every pair of orthogonal control

statesS1 andS2, if the arena oft is S1, or a descendent ofS1, andt usesnew small(u) in the

RHS of its assignmenta1 and assigns a value to variablev in assignmenta2, then there is not′

whose arena isS2, or a descendent ofS2, and usesnew small(v) in the RHS of its assignment

a′1, together with assigning a value tou in its assignmenta′2.

80

3.10.3 Ambiguous Dataflow

An ambiguity arises for a dataflow order if a variable is prefixed by thenew operator but it is

assigned values more than once during a big step. A sufficient, but not necessary, condition for

an unambiguous Dataflow order of small-steps is to require the Take One big-step maximality

semantics with each variable assigned a value only by the transitions that have the same arena, as

is done in SCR [46, 47] and reactive modules [3]. Similarly, the Take One semantic option can

be chosen together with the GC Strong Synchronous Variable or the RHS Strong Synchronous

Variable semantic options for interface variables, to avoid ambiguity in obtaining the value of

an interface variable.

3.10.4 Complicated Explicit Ordering

In the ExplicitOrdering semantic option, when the small steps of a big step are ordered accord-

ing to the order of the arenas of the transitions of the big step, being able to take two transitions

with the same arena in the same big step causes complication in defining the semantics. For ex-

ample, if the TakeMany big-step maximality semantics is chosen, a complication arises because

a big step may consist of several rounds of small steps, some of the small steps belonging to

the same arena. To avoid a complicated semantics, the Take One big-step maximality semantics

could be required when the Explicit Ordering order of small steps semantics is chosen.

3.10.5 Partial Explicit Ordering

Frequently, the Single concurrency semantics is chosen with the Explicit Ordering order of

small-steps semantics when the Explicit Ordering ordering allows only one transition to be

taken in each small step. However, if the ordering is partial, or hierarchically-based, then the

Many concurrency semantics can also be used.

3.10.6 Inconsistent Preemption and Priority Semantics

When the Preemptive preemption semantics is chosen, the choice of the priority semantics deter-

mines whether the interrupt transition has higher or lower priority than non-interrupt transitions.

81

For example, giving the highest priority to a transition whose destination control state is the low-

est in the composition tree, i.e., the choice of the Destination-Child semantics, has the effect of

giving interrupt transitiont in Figure 2.2(b) a higher priority thant′, which is an intuitive, de-

sired behaviour. Similarly, the Scope-Parent priority semantics gives transitiont in Figure 2.2(a)

a higher priority than transitiont′.

3.10.7 Conflicting Maximality

The choice of the Syntactic semantic option for the big-step maximality semantics together with

the choice of the Combo Syntactic semantic option for the combo-step maximality semantic

aspect means that a small step may move a model to a snapshot where the model resides in a

pair of orthogonal control states, one being aStablecontrol state and the other aCombo Stable

control state. In such a snapshot, it is unclear whether the current combo step has concluded, or

not. Alternatively, choosing the TakeMany semantic option for the big-step maximality semantic

aspect and the Combo Syntactic semantic option for the combo-step maximality semantic aspect

avoids this problem.

3.11 Validation: Specifying the Semantics of BSMLs

In the semantic framework in this chapter, a BSML is described by, first, describing how its

syntax can be translated to the normal-form syntax, and then, enumerating its choice of semantic

options. The syntactic translation to the normal-form syntax is straightforward for most BSMLs,

as briefly discussed in Section 2.3. Table 3.12 shows the specification of the semantics of some of

the BSMLs that were considered throughout the chapter. Thistable validates that the semantics

of a wide range of languages can be described by enumerating the constituent semantic options

of each. Chapter 4 complements this validation by formalizing most of the semantic options in

my big-step semantic deconstruction.

For the sake of brevity, theExternal Output Events semantic aspect is not included in Ta-

ble 3.12. Also, some aspects have been merged; e.g., theEnabledness Memory Protocol for

Internal Variables in GC merged withInternal Variables in RHS semantic aspects.

82

Table 3.12: Example BSMLs and their semantic options. ([45]: Harel statecharts, [86]: Pnueli
and Shalev statecharts, [63]: RSML, [43]: Statemate, [14]:Esterel, [68]: Argos, [46]: SCR, and
[3]: reactive modules.)

Semantic Aspects Semantic Options [45] [86] [63] [43] [14] [68] [46] [3]

Big-Step Maximality

Syntactic !
Take One ! ! ! ! !
Take Many ! !

Concurrency
Single ! ! ! ! !
Many ! ! !

Small-Step Consistency
Source/Destination Orthogonal

Arena Orthogonal ! ! !
Preemption

Non-Preemptive ! !
Preemptive

(Internal) Event Lifeline

Present inWhole ! !
Present in Remainder ! !
Present in Next Combo Step ! !
Present in Next Small Step

Present in Same

Environmental Input

Events

Syntactic Input Events ! ! !
Received Events as Env. ! ! !
Hybrid Input Event

(Interface) Event Lifeline

Strong Synchronous Event

Weak Synchronous Event

Asynchronous Event !
(Internal Variables)

Enabledness Memory

Protocol

GC/RHS Big Step ! !
GC/RHS Combo Step !
GC/RHS Small Step ! ! ! !

(Interface Variables)

Memory Protocol

GC/RHS Strong Synch. Variable !
GC/RHS Weak Synch. Variable

GC/RHS Asynch. Variable

Combo-Step Maximality

Combo Syntactic

Combo Take One ! !
Combo Take Many

Order of Small Steps

None ! ! ! ! !
Explicit Ordering

Dataflow ! ! !
Priority

Hierarchical !
Explicit Priority

Negation of Triggers ! ! ! ! ! ! !
83

3.12 Related Work: Semantic Categorization and

Comparison

Compared to the related work, my deconstruction in this chapter covers a more comprehensive

class of BSMLs and range of BSML semantics. Relative to previous comparative studies of

different subsets of BSMLs (e.g., statecharts variants [99, 50], Synchronous languages [40], Es-

terel variants [16, 93], and UML StateMachines [92]), my deconstruction isolates the essential

semantic aspects in a language-independent manner and in terms of the big step as a whole.

Parts of my big-step semantic deconstruction overlap with the seminal comparison of state-

charts variants by von der Beeck [99]. The difference here is that: (i) I consider a broader range

of languages, in addition to statecharts; (ii) the big-stepsemantic deconstruction presents a de-

composition of BSML semantics into semantic aspects and their corresponding semantic options

that lend itself to formalization, as opposed to the comparison criteria in [99], which does not

have a similar structure: it consists of a mixture of syntactic, semantic, and semantic-definition

method criteria; and (iii) the big-step semantic deconstruction considers additional semantic con-

cepts that do not have counterparts in [99]. For example, theSmall-Step Consistency semantic

aspect, the Present in Next Small Step and the Present in Next Combo Step semantic option of

theEvent Lifeline semantic aspect, the enumeration of the semantic options oftheEnabledness

Memory Protocol andAssignment Memory Protocol semantic aspects, etc. are not considered

in [99].

Maggiolo-Schettini, Adriano Peron and Simone Tini consider three semantic variations of

events according to the semantics of statecharts by Pnueli and Shalev [86], Maggiolo-Schettini,

Adriano Peron and Simone Tini [66], and Philips and Scholz [82] in a structural operational

semantics (SOS) framework [67]. They consider a common syntax, in the form ofstatecharts

terms, adopted from the syntax proposed by Uselton and Smolka [95]. This syntax resembles

the compositional syntax of process algebras; it does not support variables and does not allow

interrupt transitions whose source and destinations have different parents: The source and des-

tination control states of a transition “must be siblings inan or-state.”[95] This common syntax

enables them to study and compare each of these event semantics based on how different sim-

ulation relations in process algebras, e.g., ready simulation [9], are or are not a congruent with

respect to composition operators in the syntax. In this dissertation, the aforementioned event

semantics are considered in Section 3.4, in the context of our normal-form syntax, which is more

84

expressive than the one in [67]. Our normal-form syntax, however, does not lend itself to the

analysis of the kind of congruence and pre-congruence properties considered in [67], because it

is not compositional.

Huizing and Gerth [50] compare simple BSMLs that have only events, covering most of

the event lifeline semantic options and the observability of events among components. My de-

construction describes these options more concisely and places them in the context of other

semantics aspects for BSMLs.

Comparable to theparametersandparameter valuesin template semantics [75, 76, 74], here

I have introduced semantic aspects and semantic options. Template semantics is aimed at imple-

mentation parameters that all describe variations of smallsteps semantics. Because I consider

a big step as a whole, my semantic deconstruction is presented at a higher level of abstrac-

tion, with more understandable variation points; i.e., eight semantic aspects vs. 22 parameters

in template semantics. Furthermore, additional semantic aspects, such as theConcurrency and

Consistency, External Input Events, and theCombo-Step Maximality semantic aspects, are

considered here, which are not present in template semantics. Also, for some common semantic

aspects, additional semantic options are introduced; e.g., in theEnabledness Memory Protocol,

the new semantic option Present in Next Combo Step is introduced.

3.13 Summary

This chapter presented the big-step semantic deconstruction framework for the family of BSMLs.

The framework consists of eight semantics aspects and an enumeration of the common semantic

options of each of the semantic aspects. A BSML semantics is described in this framework by

enumerating its semantic options. Table 3.12, on page 83, states the semantic variations of a

set of common BSMLs in my framework. Furthermore, the chapter presented an analysis of

the comparative advantages and disadvantages of the semantics options of each semantic aspect,

together with many example models that describe each semantic option. Some combinations of

the semantic options create new BSML semantics not found in the literature. Lastly, the chapter

enumerated a few combinations of the semantic options that create BSML semantics that suffer

from side effects. These side effects can make the specification and comprehension of a BSML

semantics difficult.

85

Chapter 4

Semantic Formalization

“Frege ridiculed the formalist conception of mathematics by saying that

the formalists confused the unimportant thing, the sign, with the

important, the meaning.” . . . “Frege’s idea could be expressed thus: the

propositions of mathematics if they were just complexes of dashes, would

be dead and utterly uninteresting, where as they obviously have a kind of

life.” . . . “But if we had to name anything which is the life of the sign,

we should have to say it was itsuse.” [100, p.89–90]

Ludwig Wittgenstein

This chapter presents a formal, operationalsemantic definition schemafor my big-step semantic

deconstruction framework for BSMLs. This schema is parametric with respect to the BSML

semantic aspects. A particular BSML semantic definition is obtained by instantiating the pa-

rameters of the semantic definition schema. As such, a semantic definition produced in this

framework is “prescriptive” [5, 4]: The formalization of the semantic options of a semantics can

be traced clearly in its semantic definition.

The formalization of the parameters covers most of the semantic options described in Chap-

ter 3. The few semantic variations that are not covered are transition-aware semantics. These

convolute the role of structural and enabledness semantic aspects. The difficulties of formalizing

these semantics prescriptively are discussed.

The remainder of this chapter is organized as follows. Section 4.1 introduces the parametric

semantic definition schema together with the semantic notation that are used to formalize the

86

...

......

...I

Small Steps

Big Step

t2

tm
sp′

t1

spn−2sp1sp spn−1

T1 Tn−1 Tn

︸︷︷︸︸︷︷︸

T

Combo Steps ︸ ︷︷ ︸ ︸ ︷︷ ︸

︸︷︷︸

︸ ︷︷ ︸

Figure 4.1: Steps.

big-step semantic deconstruction. Section 4.2 presents the syntactic notation that formalizes the

syntactic concepts presented in Chapter 3. Section 4.3 formally describes how a BSML model

moves from one configuration, i.e., one set of control states, to another, upon the execution

of a small step. This semantics is common to all BSMLs. Sections 4.4 and 4.5 present the

formalization of the structural and enabledness parameters of the semantic definition schema,

respectively. Section 4.6 considers the related work.

4.1 Overview of Semantic Definition Schema

This section presents an overview of my semantic definition method by describing my semantic

definition schema and its parameters. The values of the parameters are described in the subse-

quent sections.

As depicted in Figure 4.1, copied here from page 24 for convenience, a big step is an alter-

nating sequence of snapshots and small steps in reaction to an environmental input. An environ-

mental input, which is typically denoted byI , as in Figure 4.1, consists of a set of environmental

input events and a set of variable assignments.

Figure 4.2 shows the parametricsemantic definition schemathat is used to define the seman-

tics of a BSML. The highest level predicate of the semantic definition schema isNBig, in line 1;

it characterizes all of the big steps of a model. PredicateNBig is a ternary relation consisting of

tuples each of which is a big step of the model: snapshotsp0 is the source snapshot of the big

step; I is an environmental input; and snapshotsp is the destination snapshot of the big step,

after a sequence of small steps are executed. A snapshot of a BSML model consists of a set of

snapshot elements that together represent a moment in the execution of the model. A snapshot

87

1. NBig(sp0, I , sp′) ≡ reset(sp0, I , sp) ∧ (∃k ≥ 0 · Nk(sp, sp′))
∧ executable(root, sp′) = ∅

2. reset(sp0, I , sp) ≡
∧

1≤i≤n

reset eli(sp0, I , sp)

3. N0(sp, sp′) ≡ sp= sp′

4. Nk+1(sp, sp′) ≡ ∃τ, sp′′ · NS mall(sp, τ, sp′′) ∧ Nk(sp′′, sp′)
5. NS mall(sp, τ, sp′) ≡

∧

1≤i≤n

next eli(sp, τ, sp′) ∧ τ ∈ executable(root, sp)

Figure 4.2: Semantic definition schema.

element is used to model an enabledness semantic aspect of the BSML. It is defined via its type,

which permits to create a set of elements of that type, and three predicates that specify how it

changes. Thereset predicate specifies the effect of receiving an environmental input on the

snapshot element; theen predicate specifies whether a transition is enabled with respect to the

value of snapshot element in a certain snapshot; and thenext predicate specifies how the value

of snapshot element changes when a small step is executed. The snapshot elements that are used

in the formalization of the semantics of a BSML depend on the enabledness semantic options

that the BSML uses. Two BSMLs that subscribe to the same enabledness semantic option use

the same corresponding snapshot elements for the semantic option. The formal definition of

snapshots and snapshot elements are presented in Section 4.1.1.

In Figure 4.2, when an environmental inputI is received at snapshotsp0 (via predicate

“ reset” on line 2), k small steps are executed (via predicateN on lines 3 and 4), and the big

step concludes at snapshotsp′, when there are no further small steps to be taken, i.e., when

executable(root, sp′) = ∅. The term “executable(root, sp)” specifies the set ofpotential small

stepsof the model at snapshotsp that each can beexecutedas the next small step. The value

of “executable(root, sp)” not only depends on theen predicates of the snapshot elements of the

BSML, but also the structural semantic aspects of the BSML. The resetpredicate in line 2, is

the conjunction of thereset predicates of the snapshot elements of the BSML semantics; it

specifies the effect of receiving the environmental inputI for the set ofn snapshot elements of

the BSML. Line 5 specifies the operation of a small step through the predicateNsmall. Predicate

Nsmall is the conjunction of thenext predicates of the snapshot elements of the BSML semantics.

The effect of executing a small step is captured in the destination snapshot of the small step. The

88

· · ·en el1 en el2 en eln

en

Vasn

Parameter
Structural Uses

Predicate

Legend

Parameter
Enabledness Uses

Value

N NS mall

NBig

reset ···

···

reset el1

reset el2

reset eln

next el1

next el2

next eln

Π

P

�‖ en trs

C

executable

Figure 4.3: The structure of the semantic definition schema.

Nsmall predicates are chained together via theN relation to create a sequence of small steps, as

shown in lines 3 and 4.

Figure 4.3 depicts the constituent predicates of the semantic definition schema in Figure 4.2.

The predicates that are parameters, i.e., their definitionsvary in different BSML semantics, are

surrounded by a box. A rounded box corresponds to anenabledness parameter, which in turn

corresponds to an enabledness semantic aspect. A solid box represents astructural parameter,

which in turn corresponds to a structural semantic aspect. (Recall that semantic aspects are

partitioned into structural and enabledness semantic aspects, as shown in Figure 3.2, on page 32.)

A value for an enabledness parameter is a set of snapshot elements, each of which is characterized

by a type, and areset, anen, and anext predicate. In Figure 4.3,n snapshot elements, namely,

el1, el2, · · · , eln, are shown together with their corresponding predicates. Avalue for a structural

parameter is one of the following two kinds of values: (i) either it is a predicate that determines

which enabled transitions can be included together in the same small step, in the case of the

formalization of theConcurrency and Consistency semantic aspect; (ii) or it specifies a certain

way that the hierarchy tree of a model should be traversed when creating a small step, in the case

of the formalization of thePriority semantic aspect.

In Figure 4.3, a solid arrow specifies that the predicate in the source of the arrow uses the

89

predicate in the destination of the arrow (the destination of a solid arrow must be a predicate).

A dashed arrow is different from a solid arrow in that the destination of a dashed arrow is not a

predicate: In the case of dynamic parameter “Vasn”, the parameter refers to an already-defined

snapshot element that maintains the up-to-date values of the variables of a model (one ofeli ’s,

1 ≤ i≤ n, snapshot elements); in the case of structural parameter “Π”, the parameter refers to the

name of the attribute grammar that is used to compute the potential small steps.

Lastly, in Figure 4.3, functionen trs returns the set of enabled transitions in a set of given

transitions; it uses predicateen, which determines whether a single transition is enabled ornot.

These functions are described in Section 4.1.2.

4.1.1 Snapshots and Snapshot Elements

This section presents some notation for defining and accessing snapshots and snapshot elements.

A snapshot of a model is a valuation of the snapshot elements of the model. A BSML seman-

tics uses a set of snapshot elements that are determined by the constituent enabledness semantic

options of the BSML. If two BSMLs subscribe to the same semantic option of an enabledness

semantic aspect, then they use the same snapshot elements toformalize that semantic option.

This approach is as opposed to template semantics [75], where different semantic options could

use the same “snapshot element”, but with different parameters; cf., Section 4.6 for more de-

tail. Each snapshot element represents an aspect of the behaviour of a model. For example, a

BSML that uses variables has a snapshot element that keeps track of the values of variables by

maintaining a set of tuples, each of which consisting of a variable name and its current value.

The following conventions are used in the formalization of snapshots and snapshot elements.

The identifiersp itself, or spwith a superscript, is used as the name of a snapshot; e.g.,spand

sp′. The name of a snapshot element always uses a subscript. To access a snapshot element in a

snapshot, the snapshot element name is annotated with the superscript of the snapshot; e.g.,Sc

andS′c access the snapshot elementSc in snapshotspand snapshotsp′, respectively.

A snapshot elementeli is characterized by its type, and three predicates:

i reset eli(sp0, I , sp), which specifies how the value ofeli changes at the beginning of a big

step, at a snapshot,sp0, when an environmental input,I , is received, to result in snapshot

sp;

90

ii next eli(sp, τ, sp′), which specifies how the value ofeli at a snapshot,sp, is changed when

an small step,τ, is executed, to result in snapshotsp′; and

iii en eli(t, sp), which specifies the role ofeli in determining a transition,t, as enabled at a

snapshot,sp.

The set of all snapshot elements that are used by a BSML semantics is denoted bySpEl =

{el1, el2, · · · , eln}.

In the above predicates for snapshot elementeli, snapshotssp0, sp, andsp′ can be replaced

by the snapshot elements that each predicate needs at each ofthese snapshots. However, I chose

to pass an entire snapshot to the predicates to achieve a uniformity in dealing with the predicates

of different snapshot elements; e.g., when conjoining theen predicates of a set of snapshot

elements.

The replace operator, ⊕, replaces the value of snapshot element(s) in a snapshot with a new

value of the same type. For example,sp′ ⊕ {el1, el2, · · · , elm} replacesel′1, el′2, · · · , andel′m with

valuesel1, el2 , · · · , andelm, respectively.

4.1.2 Enabledness of a Transition

The enabledness of a single transition of a model is determined by the enabledness predicates

of the snapshot elements that are used in the semantics of theBSML that the model is specified

in. The enabledness of a transition at a snapshot does not guarantee its execution, because, for

example, an enabled transition with a higher priority can replace it. The following predicate

specifies whether a transition,t, is enabledat a snapshot,sp,

en(t, sp) ≡
∧

1≤i≤n

en eli(t, sp).

Intuitively, transitiont is enabled atspif its source control state is in the set of current control

states; its guard condition is satisfied; the events in its trigger that are in positive form are present;

the events in its trigger that are in negated form are absent;and all other enabledness criteria

relevant for a single transition, such as big-step/combo-step maximality criteria are satisfied.

91

Table 4.1: Syntactic notation for control states in BSMLs.
Notation Description

children(s) The set of control states that arechildrenof s in the hierarchy tree.
children+(s) The set of control states that aredescendentsof s in the hierarchy tree

either directly or by transitivity.
children∗(s) children∗(s) = children+(s) ∪ {s}.
de f ault(s) If s is anOr control state,de f ault(s) is thedefaultcontrol state ofs, oth-

erwise it is not defined.
bigstable(s) If s is a stable control state,bigstable(s) is true, otherwise it isf alse.
combostable(s) If s is a combo-stable control state,combostable(s) is true, otherwise it is

f alse.
lca(s, s′) The least common ancestorof s and s′ is the lowest control state in the

hierarchy tree such thats, s′ ∈ children∗(lca(s, s′)).
s⊥ s′ Control statess ands′ areorthogonal, s ⊥ s′, if neither of s ands′ is an

ancestor of the other andlca(s, s′) is anAndcontrol state.
overlap(s, s′) Control statess ands′ areoverlapping, overlap(s, s′), if s ∈ children∗(s′)

or s′ ∈ children∗(s).

Given a set of transitions,transitions, and a snapshot,sp, functionen trs specifies all of the

transitions in it that are enabled. Formally,

en trs(transitions, sp) ≡ { t : transitions| en(t, sp) }.

4.2 Syntactic Notation

Tables 4.1 and 4.2 present the syntactic functions and relations defined over control states and

transitions of a BSML model, respectively. Most of these definitions were discussed informally

in Chapter 2. Some of these definitions are adopted from Pnueli and Shalev’s work [85, 86].

4.3 The Snapshot Element for Control States

This section presents the formalization of the snapshot element that maintains the current set of

control states that a model resides in at each point of execution. This snapshot element is used

92

Table 4.2: Syntactic notation for transitions in BSMLs.
Notation Description

src(t)/dest(t) Thesource/destinationcontrol state oft.
gc(t) The guard conditionof t, which is a boolean expression over the set of

variables of a model.
asn(t) Theset of assignmentsof t, which is a set of assignments over the set of

variables of a model.
lhs(a)/rhs(a) The left hand side/right hand sideof assignmenta.
trig(t) Thetrigger of t, which is a set of events and negations of events.
pos trig(t) The set of events used intrig(t) in positive form.
neg trig(t) The set of events used intrig(t) in negation form.
scope(t) The scope of transition t is the lowest control state such that:

src(t), dest(t) ∈ children+(scope(t))
arena(t) The arena of transition t is the lowestOr control state such that:

src(t), dest(t) ∈ children+(arena(t))
t ⊥ t′ Transitionst andt′ areorthogonal, t ⊥ t′, if src(t) ⊥ src(t′) anddest(t) ⊥

dest(t′).
t t′ Transitionst is aninterrupt for t′, t t′, if src(t)⊥ src(t′) and:

either (dest(t′)⊥ src(t)) ∧ (dest(t) 6⊥ src(t′)) ∧ (dest(t) 6⊥ src(t)), meaning
thatt exits the scope oft′, as shown in Figure 2.2(a), on page 20;

or (dest(t′) 6⊥ src(t)) ∧ (dest(t) 6⊥ src(t′)) ∧ (dest(t) 6⊥ src(t)) ∧ (dest(t′) 6⊥
src(t′)) ∧ (dest(t) ∈ children+(dest(t′)), meaning that the source control
states oft and t′ have differentAnd ancestors than their destination con-
trol states, while the destination control state oft is a descendant of the
destination control state oft′, as shown in Figure 2.2(b), on page 20.

interrupted(τ) For a set of transitionsτ, its set ofinterrupted transitions, interrupt(τ) ⊂ τ,
is defined as:interrupted(τ) = { t′ ∈ τ| ∃t ∈ τ · t t′}.

If τ is the set of transitions of a small step, then the destination control
states of the transitions ininterrupted(τ) do not have any roles in deter-
mining the control states that the model would reside after executingτ.

93

by all BSML semantics.

Snapshot elementSc, specified below, maintains the current control states thata model cur-

rently resides in. The type ofSc is a set of control states. A BSML model uses at least one

control state, thus all BSMLs use the snapshot elementSc. Initially, a BSML model resides in

the default control state of its root control state. ThusSc is initially populated withde f ault(root)

and those descendant control states of it such that if the model resides in anOr control state, it

resides in exactly one of its children, which is by default its “default” child; and if the model

resides in anAndcontrol state, it resides in all of its children.

Next, first, snapshot elementSc is formally described, followed by a discussion about the

correctness of its formalization.

reset Sc(sp0, I , sp) ≡ Sc = sp0.Sc

next Sc(sp, τ, sp′) ≡ S′c = [Sc − (exited(τ,Sc) ∪ pot entering(τ))] ∪

entered(τ − interrupted(τ))

en Sc(t, sp) ≡ src(t) ∈ Sc

In predicatereset Sc(sp0, I , sp), snapshotsp0 is the snapshot at which environmental input

I is received, while snapshotspis the snapshot that captures the effect of receivingI . In predicate

next Sc(sp, τ, sp′), snapshotspandsp′ are the source snapshot and the destination snapshot of

small stepτ; snapshotsp′ captures the effect of executingτ. In predicateen Sc(t, sp), snapshot

sp is the snapshot that the enabledness of a transition is evaluated against to determine whether

its source control state belongs to the current configuration, allowing the transition to be included

in a potential small step.

Predicatenext Sc(sp, τ, sp′) uses functionsexited, pot entering, enteredto determine the

set of control states that small stepτ exits, could potentially enter, andentersupon its execution,

respectively. To define these functions, first, auxiliary functionsss(t) andds(t) need to be defined.

Thesource scopeof a transition,t, denoted byss(t), specifies the highest control state thatt

exits upon execution. Formally,

ss(t) =



If src(t) ∈ children+(dest(t)) ss(t) = dest(t),

Else Ifdest(t) ∈ children∗(src(t)) ss(t) = src(t),

Else ss(t) = s, such thats is the highest control

state such thatsrc(t) ∈ children∗(s) and

dest(t) < children∗(s)

94

B
M N

M11 N11
t′

N2M2
N22M12 t

N1M1

N21

Figure 4.4: A model with interrupting transitions.

Similarly, thedestination scopeof t, denoted byds(t), specifies the highest control state that

t enters upon execution. Formally,

ds(t) =



If dest(t) ∈ children+(src(t)) ds(t) = src(t),

Else If src(t) ∈ children∗(dest(t)) ds(t) = dest(t),

Else ds(t) = s, such thats is the highest control

state such thatdest(t) ∈ children∗(s) and

src(t) < children∗(s)

Theset of exited control statesof transitiont at a snapshot,sp, is then defined asexited(t,Sc) =

children∗(ss(t)) ∩ Sc, which specifies the set of control states that the model exits upon the exe-

cution oft at snapshotsp. For a set of transitions,τ, exited(τ,Sc) denotes
⋃

t∈τ exited(t,Sc).

Example 25 In the model in Figure 4.4,

ss(t) = {M},

ss(t′) = {M},

exited(t, {M,M1,M2,M11,M12}) = {M,M1,M2,M11,M12},

exited(t′, {M,M1,M2,M11,M12}) = {M,M1,M2,M11,M12}, and

exited({t, t′}, {M,M1,M2,M11,M12}) = {M,M1,M2,M11,M12}.

Theset of potentially entering control statesof a transition,t, is defined aspot entering(t) =

children∗(ds(t)), and specifies the set of control states that the model might enter; this set is

computed independently of snapshotsp.

95

Theset of entered control statesof a transition,t, denoted byentered(t), specifies the set of

control states that the model enters upon the execution of transitiont. The computation of this

set, however, depends on the value of the current snapshotsp.

The set of control statesentered(t) is defined through the following two conditions. A control

statesbelongs toentered(t) if one of the following conditions holds.

Condition 1: This condition deals with the case when the destination control state of transition

t is nested in a compound control stateds(t).

A control states belongs toentered(t) if s ∈ pot entering(t) and one of the following three

conditions holds,

i dest(t) ∈ children∗(s); or

[Ancestors of dest(t) that belong to ds(t) also belong to entered(t).]

ii there exists a control states′ ∈ (entered(t) ∩ pot entering(t)) such that,

(a) eithers′ is anAndcontrol state ands ∈ children(s′), or s′ is anOr control state and

s= de f ault(s′), and

(b) lca(s, dest(t)) is not anOr control state; or

[There is already an s′ in entered(t), thus the appropriate children of s′ that none of them

is a descendant of dest(t) should also belong to entered(t) so that the model enters a

consistent set of control states.]

iii there exists a control states′ ∈ (entered(t) ∩ pot entering(t)) such that,

(a) eithers′ is anAndcontrol state ands ∈ children(s′), or s′ is anOr control state and

s= de f ault(s′), and

(b) s′ ∈ children∗(dest(t));

[There is already an s′ in entered(t), thus the appropriate children of s′ that each is either

dest(t) or a descendent of dest(t) should also belong to entered(t) so that the model enters

a consistent set of control states.]

96

Condition 2: This condition deals with the cases whenscope(t) is anAndcontrol state, which

requires the control states inss(t) to be not only exited but also entered.

A control states belongs toentered(t), if scope(t) is an And control state,s ∈ C, where

C = children∗(ss(t)), and one of the following two conditions holds,

i s is the highest control state inss(t); or

[Such an s is included as part of the next configuration because the execution of t does not

leave the And control state scope(t).]

ii there exists a control states′ ∈ (entered(t) ∩ C) such that eithers′ is anAndcontrol state

ands ∈ children(s′), or s′ is anOr control state ands= de f ault(s′).

[Since ss(t) is included in entered(t) so its appropriate children should be so that the model

enters a consistent set of control states.]

For a set of transitions,τ, pot entering(τ) and entered(τ) denote
⋃

t∈τ pot entering(t) and
⋃

t∈τ entered(t), respectively.

Example 26 In the model in Figure 4.4,

ds(t) = {N},

ds(t′) = {N},

pot entering(t) = {N,N1,N2,N11,N21,N22},

pot entering(t′) = {N,N1,N2,N11,N21,N22},

entered(t) = {N,N1,N2,N11,N22}, and

entered(t′) = {N,N1,N2,N11,N21}.

If the configuration where Sc = {B,M,M1,M2,M11,M12} is considered, when transitiont,

which is an interrupt for transitiont′, is executed together with transitiont′, the new value of

snapshot element Sc is computed as follows, according to the definition of thenext Sc parame-

ter:

S′c = Sc − [exited({t, t′},Sc) ∪ pot entering({t, t′})] ∪ entered({t, t′} − {t′})]

= {B,M,M1,M2,M11,M12} − [{M,M1,M2,M11,M12} ∪ {N,N1,N2,N11,N21,N22}] ∪

{N,N1,N2,N11,N22}

= {B,N,N1,N2,N11,N22}.

97

The next example demonstrates a model in which condition 2 oftheenteredfunction, which

deals with theenteredfunction for a transition whose scope is anAnd control state, is used.

When the scope of a transition,t, is anAndcontrol state, the control states inss(t) are not only

exited, but also, are entered, so that the default control states of theOr control states inss(t)

are entered. Furthermore, the set of potential entering control statespot entering(t) needs to

be removed first, becauset may enter a child of anOr control state other than the one that it

currently resides in.

Example 27 If the model in Figure 4.5, which is copied from the model in Figure 3.8 on page

99, resides in configuration, Sc = {Counter,Bit1,Bit2,Status,Bit11,Bit22,Counting}, then

ss(t4) = {Bit2},

ds(t4) = {Status},

exited(t4, sp) = {Bit2,Bit22},

pot entering(t4) = {Status,Counting,Max}, and

entered(t4) = {Status,Max,Bit2,Bit21}.

Executingt4 would then result in a new value for Sc:

S′c = Sc − [exited({t4},Sc) ∪ pot entering({t4})] ∪ entered({t4})

= {Counter,Bit1,Bit2,Status,Bit11,Bit22,Counting} −

[{Bit2,Bit22} ∪ {Status,Counting,Max}] ∪

{Status,Max,Bit2,Bit21}

= {Counter,Bit1,Bit2,Status,Bit11,Bit21,Max}.

Proposition 4.1 For any BSML model, at any of its snapshots, the set of controlstates in snap-

shot element Sc always includes avalid set of control states, where a valid set of control states is

defined as a set that: includes the root control state of the model; if an And control state belongs

to the set, then all of its children belong to the set; and if anOr control state belongs to the set,

then exactly one of its children belongs to the set.

Proof Idea. When the model is in its initial state, the above claim holds by the definition of the

initialization of a BSML model.

The root control state always belongs toSc because by the definition of thenext Sc relation,

copied below for convenience,

98

Counter

Bit1

Bit11

Bit12

t2: tk0 t̂k1

t1: tk0

Bit2

Bit21

Bit22

t3: tk1

Status

Counting

Max

t5: reset

t4: tk1 d̂one

Figure 4.5: The revised two-bit counter, copied from page 43.

next Sc(sp, τ, sp′) ≡ S′c = Sc − [exited(τ,Sc) ∪ pot entering(τ)] ∪

entered(τ − interrupted(τ)),

the root control state can be removed fromSc only if there is a small step,τ, such that the set of

control states “exited(τ,Sc) ∪ pot entering(τ)” includes the root control state; however, this is a

contradiction because it is not possible for the root control state to be entered or exited.

Also, by the definition of thenext Sc relation, if anAnd or anOr control state is removed

from Sc, all its children are also removed because of the definitionsof theexitedandpot entering

functions. Similarly, if anAnd control state is added toSc, all its children are also added toSc

because of the items iia, iiia, and ii in the definition of function entered; and if anOr control is

added toSc, exactly one of its children is added toSc, again, because of the items iia, iiia, and ii

in the definition of functionentered, and also because of item that would add the destination of

a transition,t, to Sc, if dest(t) is a child of anOr control state. Therefore, since anAndor anOr

control state is added consistently toSc, Sc always consists of a set of valid control states.�

4.4 Structural Parameters

This section presents the structural parameters and their possible values. Each of the structural

semantic (sub)aspectsConcurrency, Small-Step Consistency, Preemption, andPriority corre-

sponds to a structural parameter, which affects the definition of predicateexecutable(root, sp) in

the semantic definition schema in Figure 4.2. Figure 4.6 is the same as the feature diagram in

Figure 3.2, on page 32, except that it excludes thePriority semantic options that are not included

99

in my formalization, as described in Section 3.8. The excluded priority semantics use Source or

Destination of control states as the basis of a priority semantics, instead of Scope.

This section is organized into three subsections that each describes one of the hierarchical

Priority semantics. In my semantics formalization, the choice of thehierarchical priority seman-

tics in a BSML affects the parsing mechanism used for formalizing the semantics of the BSML.

As such, the structural parameter for thePriority semantic aspect consists in: (i) determining the

parsing mechanism of a BSML, and (ii) specifying the mechanism by which the set of potential

small steps of a model are computed. Section 4.4.4 discusseshow the formal semantics presented

in this chapter can be generalized to include other prioritysemantic options.

The BNF in Figure 4.7 represents anabstract syntax[69] for BSMLs.This syntax is different

from the BNF in Figure 2.3, on page 21, in that it does not include all the derivations rules there,

and furthermore, it associates the transitions of a model with their scopes, as opposed to having a

separate set of derivation rules for transitions, as the BNFin Figure 2.3. Thus, this representation

of BSML syntax is suitable for the specification of the hierarchical priority semantic options

that are based on the scope of transitions: i.e., the Scope-Child and the Scope-Parent semantic

options.

4.4.1 Scope-Parent Priority Semantics

Figure 4.8 shows an attribute-grammar–like formalism thatcomputes the set of potential small

steps of a model at snapshotsp according to the Scope-Parent in attributeexP(root, sp); i.e.,

the value ofexecutable(root, sp) in the semantic definition schema in Figure 4.2 is the value of

exP(root, sp) in the hierarchical computation in Figure 4.8. The structural parameterΠ, shown

in Figure 4.3, denotes the name of the attribute in the attribute grammar whose value in the root

control state is the set of potential small steps; in case of the Scope-Parent priority semantics,

the value ofΠ is exP.

In the specification of the attributes in Figure 4.8, if a non-terminal symbol is used in both

sides of a rule, such as in rule 3, I use the subscripts “0” and “1” to refer to the instance of the

symbol on the left-hand–side and the instance of the symbol on the right-hand–side of the rule,

respectively. For example, in line 3c, “states-o1” refers to the right-hand–side of the rule whereas

“states-o0” refers to the left-hand–side of the rule. Therefore, line 3c means that the value of the

exP attribute for the non-terminal in the left-hand–side is equal to the value of theexP attribute

100

Event Options

B
S

M
L

S
em

an
tic

s

Event Options

Event Options

Legend

"Exclusive Or" Branch...
... "And" Branch

"Optional" Feature

External Events

External Output
Interface Events

External InputEvent Lifeline

Strong Synchronous Event

Weak Synchronous Event

Asynchronous Event

Interface Variables

RHS Big Step

RHS Small Step

GC Big Step

GC Combo Step

GC Weak Synchronous Variable

GC Asynchronous Variable

RHS Combo Step

GC Strong Synchronous Variable

RHS Strong Synchronous Variable

RHS Weak Synchronous Variable

RHS Asynchronous Variable

Enabledness Memory

(Internal) Events

Source/Destination Orthogonal

Small-Step Consistency

Big-Step Maximality

Assignment Memory

Interface Variables

(Internal) Variables

Concurrency and
Consistency

Events

Events

Concurrency
as Environmental

ArenaOrthogonal

Many

Present inWhole

Next Combo Step

Remainder

Present in

Present in

Present in

(Internal) Variables

Next Small Step

Generated Events

Generated Events

Last Small Step

Single

Preemptive

Non-Preemptive

Syntactic

Take One

Take Many

Received Events

Input Events

Syntactic

Hybrid Input

Events

Syntactic

Output Events

Last Combo Step

Hybrid Output

Events
GC Small Step

Preemption

Order of Small Steps

Negation of

Triggers

Priority

Combo Take Many

Combo Syntactic

Combo Take One

Dataflow

None

Combo-Step Maximality

Section 4.4

Section 4.4

Section 4.4

Section 4.4

Section 4.5.2

Section 4.5.2

Section 4.5.2

Section 4.5.2

Protocol – Section 4.5.3

in GC – Section 4.5.3

in GC – Section 4.5.3

Protocol – Section 4.5.4

in RHS – Section 4.5.4

in RHS – Section 4.5.4

Section 4.5.5

Section 4.4

– Section 4.5.6

Explicit Ordering

Present in Same

Scope-Child

Scope-Parent

Section 4.5.1

Figure 4.6: BSML semantic aspects and options: Solid boxes are the structural semantic aspects,
while rounded boxes are the enabledness semantic aspects.

101

〈root〉 ::= 〈Orstate〉
〈Orstate〉 ::= Or 〈states-o〉 〈transitions〉
〈states-o〉 ::= 〈states-o〉 〈state〉 | 〈state〉
〈Andstate〉 ::= And 〈states-a〉 〈transitions〉
〈states-a〉 ::= 〈states-a〉 〈state〉 | 〈state〉
〈Basicstate〉 ::= Basic
〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉

Figure 4.7: The abstract syntax for BSML syntax based on the scope of transitions.

for the non-terminal in the right-hand–side unioned by the value ofexP attribute for control state

state.

The computation in Figure 4.8 uses two classes of attributes, top andexP, for the non-terminal

elements of a BSML model. Thetop attributes areinheritedattributes, while theexP attributes

aresynthesizedattributes [59]. To enforce that a transition with a high scope has a high priority, a

control state, through itstop attribute, passes the possible combinations of the enabledtransitions

that can be executed from the higher scope in the hierarchy tree to its children control states. The

exP attributes collect the set of high-priority transitions ina bottom-up manner, starting from the

Basiccontrol states, to compute theexP(root, sp), which is the set of potential small steps of the

model at snapshotsp. The computation of both thetop attributes and theexP attributes follow

the structural semantic options of the BSML. Next, the rolesof structural parameters and their

values in computing the attributes of control states in Figure 4.8 are described.

The binary,concurrencyoperator,‖, used in line 6c is responsible for collecting the con-

tribution of the children of anAnd control state to the set of potential small steps, using their

correspondingexP attributes. If the Single concurrency semantics is chosen, then the concur-

rency operator specifies that either its first operand or its second operand can be chosen to be

the next small step. If the Many concurrency semantics is chosen, then the concurrency operator

combines the set of sets of transitions in one of its operand with the set of sets of transitions

in its other operand to create a new set of sets of transitions. The first part of Table 4.3 is the

formalization of the values of the structural parameters‖. The operands of the‖ operator are

written in a special font to denote that each is of type set of sets of transitions.

For the‖ operator to work correctly, the computation of thetop attributes must consider

that whether the Single or the Many concurrency semantics is chosen in a semantics, so that

in the latter case only singleton sets of high-priority transitions are passed down the hierarchy

102

1. 〈root〉 ::= 〈Orstate〉
a. top(Orstate, sp) = ∅

b. exP(root, sp) = exP(Orstate, sp)
2. 〈Orstate〉 ::= Or 〈states-o〉 〈transitions〉
a. top(states-o, sp) = top(Orstate, sp)� en trs(transitions, sp)
b. exP(Orstate, sp) = exP(states-o, sp)

3. 〈states-o〉 ::= 〈states-o〉 〈state〉
a. top(states-o1, sp) = top(states-o0, sp)
b. top(state, sp) = top(states-o0, sp)
c. exP(states-o0, sp) = exP(states-o1, sp) ∪ exP(state, sp)

4. 〈states-o〉 ::= 〈state〉
a. top(state, sp) = top(states-o, sp)
b. exP(states-o, sp) = exP(state, sp)

5. 〈Andstate〉 ::= And 〈states-a〉 〈transitions〉
a. top(states-a, sp) = top(Andstate, sp)� en trs(transitions, sp)
b. exP(Andstate, sp) = exP(states-a, sp)

6. 〈states-a〉 ::= 〈states-a〉 〈state〉
a. top(states-a1, sp) = top(states-a0, sp)
b. top(state, sp) = top(states-a0, sp)
c. exP(states-a0, sp) = exP(states-a1, sp) ‖ exP(state, sp)

7. 〈states-a〉 ::= 〈state〉
a. top(state, sp) = top(states-a, sp)
b. exP(states-a, sp) = exP(state, sp)

8. 〈Basicstate〉 ::= Basic
a. exP(Basicstate, sp) = top(Basicstate, sp)

9. 〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉
a. top(Orstate, sp) = top(state, sp)
b. top(Andstate, sp) = top(state, sp)
c. top(Basicstate, sp) = top(state, sp)
d. exP(state, sp) = exP(Orstate, sp), exP(Andstate, sp),

exP(Basicstate, sp)

10. T� T′ = { (T1∪T′′)| T1 ∈ T ∧ T′′ ⊆ T′∧

(∀t′ : (T1 ∪ T′) · t′ ∈ (T′−T′′)⇔ ∃t ∈ (T1 ∪ T′′) · ¬C(t′, t) ∧ ¬P(t′, t)) }

Figure 4.8: Computing potential small steps in the Scope-Parent priority semantics.

103

Table 4.3: Structural parameters forConcurrency, Small-Step Consistency, andPreemption
semantic aspects.

Semantic Option Parameter Value

Concurrency
Single T ‖ T′ = T ∪ T′

Many T ‖ T′ = {T1 ∪ T′1| T1 ∈ T ∧ T′1 ∈ T
′}

Small-Step Consistency [C(t, t′) ≡ f alse, when Single concurrency semantics.]
Arena Orthogonal C(t, t′) ≡ arena(t) ⊥ arena(t′)
Source/Destination Orthogonal C(t, t′) ≡ t ⊥ t′

Preemption [P(t, t′) ≡ f alse, when Single concurrency semantics.]
Non-Preemptive P(t, t′) ≡ (t t′) ∨ (t′ t)
Preemptive P(t, t′) ≡ f alse

tree and in the former case the high-priority transitions are combined as they are passed down

the hierarchy tree. The structural parameters,C and P, which correspond to theSmall-Step

Consistency and thePreemption semantic aspects, respectively, enforce the above semantics.

These parameters, formalized in the middle and the bottom parts of Table 4.3, respectively, by

being false when the Single concurrency semantics is chosen, ensure that no two transitions are

allowed to be combined together.

The mergeoperator,�, defined in line 10 of Figure 4.8, and used in lines 2a and 5a uses

predicatesC andP to combine a set of sets of transitions, denoted by parameterT, with a set

of enabled transitions, denoted byT′, to compute thetop attributes of compound control states.

ParameterT is in a special font because its type is set of sets of transitions, as opposed to set

of transitions, asT′ is. Each set of transitions inT is combined with a subset ofT′ to create a

new maximal set of transitions. The result is maximal because of the if-only-if predicate in the

definition: A transition,t′, is not included in the merge result iff there is a transition,t, that is

already included in the merge result, andt andt′ can neither be included together according to

the small-step consistency semantics (parameterC) nor according to the preemption semantics

of the BSML (parameterP).

In the bottom-up computation of theexP attributes, there is no need to check for the small-

step consistency and preemption semantic constraints because these have already been checked

in the top-down traverse. Line 9d uses “,” to represent threeseparate equalities, each of which

104

corresponds to one of the right-hand-side alternatives in line 9.

The formalization of the parameter values for the‖, C andP structural parameters follow

their English descriptions in Section 3.3.

Example 28 Figure 4.9 shows a BSML model, with its root control state shown explicitly. If

the model resides in snapshot sp, where Sc = {root,M,A,A1,A11,A2,A21}, and the BSML sub-

scribes to theMany, Source/Destination Orthogonal, and Non-Preemptive concurrency and

consistency semantics, together with theScope-Parent priority semantics, then Table 4.4 shows

the values ofexP andtop attributes for each control state of the model at snapshot sp. The value

of exP for root control state determines the set of potential smallsteps of the model.

A

A1

A11 A12

A21 A22

A2

B

B1

B2

t1

M

root

t2

t3
B21

B11

Figure 4.9: Computation of potential small steps for an example BSML model.

Table 4.4: The values of attributes for the model in Figure 4.9, according to the Scope-Parent
priority semantics.

Control State top exP Control State top exP

root ∅ {{t1, t2}} A21 {{t1, t2}} {{t1, t2}}
M {{t1, t2}} {{t1, t2}} A22 {{t1, t2}} {{t1, t2}}
A {{t1, t2}} {{t1, t2}} B {{t1, t2}} {{t1, t2}}
A1 {{t1, t2}} {{t1, t2}} B1 {{t1, t2}} {{t1, t2}}
A11 {{t1, t2}} {{t1, t2}} B11 {{t1, t2}} {{t1, t2}}
A12 {{t1, t2}} {{t1, t2}} B2 {{t1, t2}} {{t1, t2}}
A2 {{t1, t2}} {{t1, t2}} B21 {{t1, t2}} {{t1, t2}}

105

Transitiont3 does not have a chance to be a member of a potential small step because it has a

lower priority than transitiont2. The reason is that, according to the computation in Figure 4.8,

to compute attribute “top([A2], sp)” using line 4a, where a pair of square bracket “[]” is used

to distinguish the syntactic part of an expression, the value of “top([A 1,A2], sp)”, using line 5a,

should be computed:

top([A1,A2], sp) = top([And A1,A2], sp)� en trs({t3}, sp),

= {{t1, t2}}� {t3},

= {{t1, t2}},

which does not allowt3 to be added to set{t1, t2} because the small-step consistency would be

violated.

4.4.2 Scope-Child Priority Semantics

Figure 4.10 presents the hierarchical computation of the set of potential small steps according to

the Scope-Child. Here only one attribute is necessary, which is computed in abottom-up manner.

The value ofΠ is exC. The merge operator remains the same as in Figure 4.8. Line 9auses “,”

to represent three separate equalities, each of which corresponds to one of the right-hand-side

alternatives in line 9.

Example 29 Let us consider the model in Figure 4.9 in Example 28 again, but this time with the

Scope-Child priority semantics, instead of theScope-Parent priority semantics. Table 4.5 shows

the values ofexC for each control state of the model at snapshot sp. The value of exC for root

control state determines the set of potential small steps ofthe model.

Transitiont2 does not have a chance to be a member of a potential small step because it has

a lower priority than transitiont3. The reason is that, according to the computation in Figure

4.10, the value of “exC([M , {t1, t2}], sp)” is computed as follows:

exC([M , {t1, t2}], sp) = exC([A ,B], sp)� en trs({t1, t2}, sp),

= {{t3}}� {t1, t2},

= {{t1, t3}},

which does not allowt2 to be added to the potential small step because its source is the same as

t2 and it is also not an interrupt fort3; t1, however, is added because it is an interrupt fort3.

106

1. 〈root〉 ::= 〈Orstate〉
a. exC(root, sp) = exC(Orstate, sp)

2. 〈Orstate〉 ::= Or 〈states-o〉 〈transitions〉
a. exC(Orstate, sp) = exC(states-o, sp)� en trs(transitions, sp)

3. 〈states-o〉 ::= 〈states-o〉 〈state〉
a. exC(states-o0, sp) = exC(states-o1, sp) ∪ exC(state, sp)

4. 〈states-o〉 ::= 〈state〉
a. exC(states-o, sp) = exC(state, sp)

5. 〈Andstate〉 ::= And 〈states-a〉 〈transitions〉
a. exC(Andstate, sp) = exC(states-a, sp)� en trs(transitions, sp)

6. 〈states-a〉 ::= 〈states-a〉 〈state〉
a. exC(states-a0, sp) = exC(states-a1, sp) ‖ exC(state, sp)

7. 〈states-a〉 ::= 〈state〉
a. exC(states-a, sp) = exC(state, sp)

8. 〈Basicstate〉 ::= Basic
a. exC(Basicstate, sp) = ∅

9. 〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉
a. exC(state, sp) = exC(Orstate, sp), exC(Andstate, sp),

exC(Basicstate, sp)

10. T� T′ = { (T1∪T′′)| T1 ∈ T ∧ T′′ ⊆ T′∧

(∀t′ : (T1 ∪ T′) · t′ ∈ (T′−T′′)⇔ ∃t ∈ (T1 ∪ T′′) · ¬C(t′, t) ∧ ¬P(t′, t)) }

Figure 4.10: Computing potential small steps in the Scope-Child priority semantics.

107

Table 4.5: The values of attributes for the model in Figure 4.9, according to the Scope-Child
priority semantics.

Control State exC Control State exC

root {{t1, t3}} A21 ∅

M {{t1, t3}} A22 ∅

A {{t3}} B ∅

A1 ∅ B1 ∅

A11 ∅ B11 ∅

A12 ∅ B2 ∅

A2 {{t3}} B21 ∅

4.4.3 No Priority Semantics

To specify the semantics that no hierarchical semantics is chosen, i.e., the No Priority, a similar

computation to the one in Figure 4.10 can be used, except thatthe merge operator is defined as,

T� T′ = { (T1 − T′1) ∪ T′′| T1 ∈ T ∧ T′1 ⊆ T1 ∧ T′′ ⊆ T′ ∧

(∀t′ : (T1 ∪ T′) · t′ ∈ (T′−T′′)⇔ ∃t ∈ (T1−T′1 ∪ T′′) · ¬C(t′, t) ∧ ¬P(t′, t)) ∧

(∀t : (T1 ∪ T′) · t ∈ T′1 ⇔ ∃t
′ ∈ T′′ · ¬C(t, t′) ∧ ¬P(t, t′)) }.

The above merge operator is different from the one used for the Scope-Parent and Scope-

Child semantic options because all combinations of merging should be considered, instead of

giving precedence to transitions with higher or lower scopes, as in the Scope-Parent and Scope-

Child semantic options, respectively. Thus, the merge operator should perform two tasks. First,

a maximum set of enabled transitions at the current control state should be added to each of

the sets of set of transitions received from the children of the control state, in a manner that

the concurrency and consistency semantics of the BSML are not violated. Second, the enabled

transitions at the current control state should be considered to replace the transitions in each of

the sets of set of transitions received from the children of the control state, again in a manner that

the result is maximal: no more transitions can be added without violating one of the concurrency

and consistency semantics of the BSML. The above two tasks are embodied in the definition of

merge operator above. The second and the third lines in the definition of the merge operator

above enforce the maximality of the resulting merge.

108

Example 30 Let us consider the model in Figure 4.9 one last time, this time with theNo Priority

semantics. Table 4.6 shows the values ofex, which determine the set of potential small steps for

theNo Priority semantics, for each control state of the model at snapshot sp.

Table 4.6: The values of attributes for the model in Figure 4.9, according to the No Priority
semantics.

Control State ex Control State ex
root {{t1, t3}, {t1, t2}} A21 ∅

M {{t1, t3}, {t1, t2}} A22 ∅

A {{t3}} B ∅

A1 ∅ B1 ∅

A11 ∅ B11 ∅

A12 ∅ B2 ∅

A2 {{t3}} B21 ∅

Transitiont2 has a chance to be a member of a potential small step because itcan replace

transition t3. The reason is that, according to the merge operator in Section 4.4.3, the value of

“ ex([M , {t1, t2}], sp)” is computed as follows:

ex([M , {t1, t2}], sp) = ex([A ,B], sp)� en trs({t1, t2}, sp),

= {{t3}}� {t1, t2},

= {{t1, t2}, {t1, t3}}.

4.4.4 Other Priority Semantics

Other hierarchical semantic options can be defined similar to the Scope-Parent and Scope-Child

semantics, but using different parsing mechanisms. For example, to formalize the semantics of

Source-Parent and Source-Child priority semantics, mentioned in Section 3.8, the set of tran-

sitions in “transitions” in the BNF in figure 4.7, should be the transitions whose source control

states are the control state that “transitions” is associated with. The formalization of the Explicit

priority semantics is not hierarchical, and is independentof a parsing mechanism. The decision

that whether a potential small step,T, has a higher priority than another potential small step,T′,

can be only made when the two sets are entirely computed:T has a higher priority thanT′ if

109

there is a transition inT that has a higher priority than all transitions inT′.1 The formalization

of the Negation of Triggers semantics is manifested in the formalization of the enabledness of a

single transition, as was described at the end of Section 4.1.2.

4.5 Enabledness Parameters

In this section, the formalization of the semantic options of the enabledness semantic aspects is

described.

Some of the semantic options of the enabledness semantic aspects are out of the scope of the

formalization in this dissertation. These semantic options are transition-aware semantic options.

The feature diagram in Figure 4.11 is the same as the feature diagram in Figure 4.6, except

that the transition-aware semantic options are signified bya “H” on their righthand sides. The

Whole event lifeline semantics is an example of a transition-aware semantic option. To determine

whether a transition,t, whose trigger includes a negated event, is enabled in a big step, it should

be ensured that the negated event is not generated by any of the transitions of the big step, even

the transitions that are executed aftert is executed. The formalization of the transition-aware

semantic options require, at each snapshot, being able to determine the enabledness and/or effect

of the execution of other transitions in the immediate or future small steps. A transition-aware

semantic option convolutes the role of enabledness semantic aspects, which are supposed to be

formalized by only using snapshot elements, and the role of structural semantic aspects, which

use predicates over the transitions of models.

A semantic option of an enabledness semantic aspect is formalized by a set of snapshot

elements. For each semantic option, I introduce snapshot elements of varying names. I use the

following naming convention for these snapshot elements: When formalizing an enabledness

semantic option, the name of the semantic option, or its abbreviation, is used in the name of one

of the snapshot elements that formalize the semantics. For example,ERemainder is the snapshot

element that models the Present In Remainder event lifeline semantics. Also, by convention, if

the enabledness predicate of a snapshot element is not specified, it means it is equivalent to true.

For each of the semantic aspectsEvent Lifeline, Enabledness Memory Protocol, andAs-

1In Section 7.2, where the semantic definition of synchronizing big-step modelling languages (SBSMLs) is
described, it is shown how the semantics of the Explicit priority semantics can be also formalized using a similar
semantic definition schema as the one for the synchronizing big-step modelling languages.

110

Event Options

B
S

M
L

S
em

an
tic

s

Event Options

Event Options

Legend

"Exclusive Or" Branch...
... "And" Branch

"Optional" Feature

External Events

External Output
Interface Events

External InputEvent Lifeline

Strong Synchronous Event

Weak Synchronous Event

Asynchronous Event

Interface Variables

RHS Big Step

RHS Small Step

GC Big Step

GC Combo Step

GC Weak Synchronous Variable

GC Asynchronous Variable

RHS Combo Step

GC Strong Synchronous Variable

RHS Strong Synchronous Variable

RHS Weak Synchronous Variable

RHS Asynchronous Variable

Enabledness Memory

(Internal) Events

Source/Destination Orthogonal

Small-Step Consistency

Big-Step Maximality

Assignment Memory

Interface Variables

(Internal) Variables

Concurrency and
Consistency

Events

Events

Concurrency
as Environmental

ArenaOrthogonal

Many

Present inWhole

Next Combo Step

Remainder

Present in Same

Present in

Present in

Present in

(Internal) Variables

Next Small Step

Generated Events

Generated Events

Last Small Step

Single

Preemptive

Non-Preemptive

Syntactic

Take One

Take Many

Received Events

Input Events

Syntactic

Hybrid Input

Events

Syntactic

Output Events

Last Combo Step

Hybrid Output

Events
GC Small Step

Preemption

Order of Small Steps

Negation of

Triggers

Priority

Combo Take Many

Combo Syntactic

Combo Take One

Dataflow

None

Combo-Step Maximality

H
H

H
H

H

Section 4.4

Section 4.4

Section 4.4

Section 4.4

Section 4.5.2

Section 4.5.2

Section 4.5.2

Section 4.5.2

Protocol – Section 4.5.3

in GC – Section 4.5.3

in GC – Section 4.5.3

Protocol – Section 4.5.4

in RHS – Section 4.5.4

in RHS – Section 4.5.4

Section 4.5.5

Section 4.4

– Section 4.5.6

Explicit Ordering

Section 4.5.1

Scope-Parent

Scop-Child

Figure 4.11: Transition-aware semantic options are signified by a “H” next to them. As in
Figure 4.6, the boxes with bold, solid frames represent the structural semantic aspects.

111

signment Memory Protocol, first, the formalization of their semantic options for the inter-

nal events/variables is presented, followed by the formalization of the external and interface

events/variables.

4.5.1 Big-Step Maximality

The semantics of each of the Syntactic and TakeOne semantic options is specified by a snapshot

element. The TakeMany semantic option does not introduce any snapshot elements.

Syntactic

During a big step, snapshot elementMSyntactic collects the control states such that each is either

the arena or a descendant of the arena of an executed transition that enters a stable control state.

Predicateen MSyntactic(t, sp) determines whether a transition,t′, has already been executed during

the big step that has entered a stable control state,s′, such thatarena(t) ∈ children∗(arena(t′)),

in which caset cannot be taken in the current big step.

reset MSyntactic(sp0, I , sp) ≡ MSyntactic = ∅

next MSyntactic(sp, τ, sp′) ≡ M′
Syntactic = MSyntactic ∪⋃
t∈τ{s | s ∈ children∗(arena(t)) ∧ bigstable(dest(t))}

en MSyntactic(t, sp) ≡ arena(t) < MSyntactic

Take One

During a big step, snapshotMTake One collects the control states such that each is either the

arena or the child of the arena of an executed transition. Predicateen MTake One(t, sp) deter-

mines whether a transition,t′, has already been executed during the big step such thatarena(t) ∈

children∗(arena(t′)), in which caset cannot be taken in the current big step.

reset MTake One(sp0, I , sp) ≡ MTake One = ∅

next MTake One(sp, τ, sp′) ≡ M′
Take One = MTake One ∪⋃
t∈τ{s | s ∈ children∗(arena(t))}

en MTake One(t, sp) ≡ arena(t) < MTake One

112

4.5.2 Event Lifeline

This section presents the formalization of the event lifeline semantics for internal events, fol-

lowed by examples of the formalization of external and interface events. The snapshot elements

used in this section are all of type set of events. First, somenotation for the formalization of the

notion of combo step are presented.

The semantics of the Present in Same event lifeline semantics can be formalized using a

synchronization capability, as will be described in Chapter 6.

Combo-Step Semantics

A combo-step semantic option, or acombo-step semantics, is an event lifeline or memory proto-

col semantic option whose semantics determines the scope ofthe combo-steps of a model; e.g.,

the Present In Next Combo Step event lifeline semantics. In formalizing a combo-step seman-

tics, the last small step of a combo step must be identified so that the values of the necessary

snapshot elements are adjusted at the end of the combo step. For example, in the Present In

Next Combo Step event lifeline semantics, at the end of each combo step, the statuses of events

are adjusted by setting them to the collected events during the current combo step. To identify

the last small step of a combo step, however, all semantic options that are combo-step semantics

must be known because otherwise it is not possible to determine whether there is any transition

enabled at the destination snapshot of the small step. This task can be achieved by identifying

the snapshot elements that must be adjusted at the end of combo steps. The set of all snapshot

elements used in the formalization of the combo-step semantic options of a BSML semantics are

its combo-step snapshot elements, denoted byCs. As such, the formalization of a combo-step

semantics requires knowledge about the formalization of other enabledness semantic aspects,

and thus indirectly depends on them. The formalizations of the combo-step semantics are the

only cases that introduce such cross-cuttings in the formalization.

Present In Remainder

The snapshot elementERemainder collects the set of generated events of a big step. At the beginning

of each big step,ERemainder is initialized to the set of environmental input events received from the

environment. A transition is enabled according toERemainder, if the positive literals in its trigger

are inERemainder, but not its negated literals.

113

reset ERemainder(sp0, I , sp) ≡ ERemainder = I .events

next ERemainder(sp, τ, sp′) ≡ E′Remainder = ERemainder ∪ gen(τ)

en ERemainder(t, sp) ≡ (pos trig(t) ⊆ ERemainder) ∧

(neg trig(t) ∩ ERemainder = ∅)

Functiongen(τ) denotes
⋃

t∈τ gen(t).

If the variation of global consistency semantics in an operational way [66], as discussed on

page 49, is desired, then the following snapshot element is also needed.

reset EGlobalConsistency(sp0, I , sp) ≡ EGlobalConsistency= ∅

next EGlobalConsistency(sp, τ, sp′) ≡ E′GlobalConsistency= EGlobalConsistency∪ neg trig(τ)

en EGlobalConsistency(t, sp) ≡ gen(t) ∩ EGlobalConsistency= ∅

Functionneg trig(τ) denotes
⋃

t∈τ neg trig(t).

Present In Next Combo Step

Two snapshot elements are used to model the Present In Next Combo Step semantics. Snapshot

elementECollect collects the generated events during a combo step, to make them available in the

next combo step. Snapshot elementENext C.S. is the set of generated events collected from the

previous combo step that are considered as present in the current combo step. Snapshot element

ECollect has no role in the enabledness of a transition. When the Present In Next Combo Step

semantic option is chosen,{ENext C.S.,ECollect} ⊆ Cs, whereCs is the set of combo-step snapshot

elements, as described earlier in this section.

114

reset ENext C.S.(sp0, I , sp) ≡ ENext C.S.= I .events

next ENext C.S.(sp, τ, sp′) ≡ E′Next C.S.= if EndC then

ECollect∪ gen(τ)

else

ENext C.S.

en ENext C.S.(t, sp) ≡ (pos trig(t) ⊆ ENext C.S.) ∧

(neg trig(t) ∩ ENext C.S.= ∅)

reset ECollect(sp0, I , sp) ≡ Ecollect = ∅

next ECollect(sp, τ, sp′) ≡ E′collect = if EndC then

∅

else

ECollect∪ gen(τ)

And, EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)).

TheEndCpredicate above identifies the last small step of a combo step. Its definition relies on

the set of combo-step snapshot elements,Cs, which is the set of snapshot elements that specify

the notion of combo step in a semantics. The replace operator“⊕”, described in Section 4.1.1,

modifies a snapshot in the first operand, by replacing those ofits snapshot elements that each has

a corresponding new value in the second operand.

Present In Next Small Step

Snapshot elementENext S.S. is equal to the set of generated events in the previous small step,

except at the beginning of a big step whenENext S.S. is equal to the set of environmental input

events.

reset ENext S.S.(sp0, I , sp) ≡ ENext S.S.= I .events

next ENext S.S.(sp, τ, sp′) ≡ E′Next Small Step = gen(τ)

en ENext S.S.(t, sp) ≡ (pos trig(t) ⊆ ENext S.S.) ∧

(neg trig(t) ∩ ENext S.S.= ∅)

115

Transition-Aware Event Lifeline Semantics

The non-operational, globally-consistent variation of the Present in Remainder semantics [86],

as well as the Whole semantics, are transition-aware semantic options becausein order for the

negation of an event to trigger a transition there should be aguarantee that it is not generated by

any of the transitions that can generate it. Similarly, in a snapshot, an event should be sensed

as present if it is generated by a transition in a future smallstep. Thus, transitions need to be

awareof each others’ executions in a structural way to accommodate the above scenarios. The

Present in Same semantic option is also transition-aware, but can be definedthrough a notion

of synchronization, as described in Chapter 6. Unlike the Present in Same semantic option,

however, the non-operational, globally-consistent variation of Present in Remainder and the

Whole semantics cannot be modelled by synchronization, because synchronization is relevant

for the transitions within one single small step, whereas the lifeline of the events in these two

semantic options is beyond a single small step.

External Events

In the above formalization of the Present In Remainder, Present In Next Combo Step, and

Present In Next Small Step event lifeline semantics, a non-distinguishing BSML is assumed:

The input, internal, and output events are not distinguished syntactically, as described 3.4.1. Such

a formalization means that the same semantics are considered for internal events and the events

received and sent to the environment. For example, in the Present In Next Small Step semantic

option, the environmental input events received from the environment, i.e.,I .events, persist for

one small step. As shown in the feature diagram in Figurer 4.11, regardless of a BSML being

non-distinguishing or distinguishing, the input and output events can have semantic options of

their own, independent of the internal events. Next, two examples of formalizing the semantics

of external events, one for distinguishing BSMLs and one fornon-distinguishing BSMLs, are

presented.

Syntactic Input Events The Syntactic Input Events semantic options is a semantic option for

external input events for a distinguishing BSML: External events of a model are distinguished

syntactically from the internal events. The following formalization assigns a Present In Remain-

der-like semantics to the environmental input events of a modeland the Present In Next Combo

116

Step semantics to the internal and output events of the model. In the following formalization, the

environmental input events of a model are denoted byEnv.

reset ENext C.S.[SIE](sp0, I , sp) ≡ ENext C.S.[SIE]= ∅

next ENext C.S.[SIE](sp, τ, sp′) ≡ E′Next C.S.[SIE]= if EndC then

ECollect∪ gen(τ)

else

ENext C.S.[SIE]

en ENext C.S.[SIE](t, sp) ≡ ((pos trig(t) − Env) ⊆ ENext C.S.[SIE]) ∧

((neg trig(t) − Env) ∩ ENext C.S.[SIE]= ∅)

reset ECollect(sp0, I , sp) ≡ Ecollect = ∅

next ECollect(sp, τ, sp′) ≡ E′collect = if EndC then

∅

else

ECollect∪ gen(τ)

And, EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)).

reset ERemainder[Env](sp0, I , sp) ≡ ERemainder[Env] = Env

next ERemainder[Env](sp, τ, sp′) ≡ E′Remainder[Env] = ERemainder[Env]

en ERemainder[Env](t, sp) ≡ ((pos trig(t) ∩ Env) ⊆ ERemainder[Env]) ∧

((neg trig(t) ∩ Env) ∩ ERemainder[Env] = ∅)

In the above formalization, it should be the case thatI .events⊆ Env. Snapshot elementECollect

is exactly the same as in Section 4.5.2. Snapshot elementENext C.S.[SIE] is different from snapshot

elementENext C.S. in that its “en” predicate checks only for presence and absence of internal

events. (SIE stands for “Syntactic Input Events”. Similar abbreviations are used in the following

formalizations.)

Hybrid Input Events

In the Hybrid InputEvents semantic option, which is relevant for non-distinguishingBSMLs,

an event that is received at the beginning of a big step is treated as an environmental input event

only if it is a genuine input of a model, meaning that it is not generated by any transition in the

117

model. The following formalization assigns a Present In Remainder-like semantics to the gen-

uine input events and the Present In Next Small Step semantics to internal and output events.

In the formalization, the set of genuine events of a model aredenoted byGenuine.

reset ENext S.S.[HIE](sp0, I , sp) ≡ ENext S.S.[HIE] = I .events−Genuine

next ENext S.S.[HIE](sp, τ, sp′) ≡ E′Next S.S.[HIE] = gen(τ)

en ENext S.S.[HIE](t, sp) ≡ ((pos trig(t) −Genuine) ⊆ ENext S.S.[HIE]) ∧

((neg trig(t) −Genuine) ∩ ENext S.S.[HIE] = ∅)

reset ERemainder[G](sp0, I , sp) ≡ ERemainder[G] = I .events∩Genuine

next ERemainder[G](sp, τ, sp′) ≡ E′Remainder[G] = ERemainder[G]

en ERemainder[G](t, sp) ≡ ((pos trig(t) ∩Genuine) ⊆ ERemainder[G]) ∧

((neg trig(t) ∩Genuine) ∩ ERemainder[G] = ∅)

In the above formalization,I .eventsmight include received input events other than the ones in

Genuine, which are treated according to the event lifeline semantics of internal events.

Interface Events

The following snapshot elements together specify a Present In Remainder-like semantics for

input events according to the Hybrid Input Events semantics, the Present In Next Small Step

semantics for internal events, and the Asynchronous Events semantics for interface events. The

set of genuine and interface events of a model are denoted byGenuineand Inter f ace, respec-

tively.

118

reset ENext S.S.[HIE-ASYN](sp0, I , sp) ≡ ENext S.S.[HIE-ASYN] = I .events−Genuine

next ENext S.S.[HIE-ASYN](sp, τ, sp′) ≡ E′Next S.S.[HIE-ASYN] = gen(τ) − Inter f ace

en ENext S.S.[HIE-ASYN](t, sp) ≡ (pos trig(t) −Genuine− Inter f ace)

⊆ ENext S.S.[HIE-ASYN]∧

(neg trig(t) −Genuine− Inter f ace) ∩

ENext S.S.[HIE-ASYN] = ∅

reset ERemainder[G](sp0, I , sp) ≡ ERemainder[G] = I .events∩Genuine

next ERemainder[G](sp, τ, sp′) ≡ E′Remainder[G] = ERemainder[G]

en ERemainder[G](t, sp) ≡ ((pos trig(t) ∩Genuine) ⊆ ERemainder[G]) ∧

((neg trig(t) ∩Genuine) ∩ ERemainder[G] = ∅)

reset EAsynchronous Events(sp0, I , sp) ≡ EAsynchronous Events = sp0.ECollAsyn

next EAsynchronous Events(sp, τ, sp′) ≡ E′Asynchronous Events = EAsynchronous Events

en EAsynchronous Events(t, sp) ≡ ((pos trig(t) −Genuine) ∩ Inter f ace) ⊆

EAsynchronous Events ∧

((neg trig(t) −Genuine) ∩ Inter f ace) ∩

EAsynchronous Events = ∅

reset ECollAsyn(sp0, I , sp) ≡ ECollAsyn= ∅

next ECollAsyn(sp, τ, sp′) ≡ E′CollAsyn= ECollAsyn∪ (gen(τ) ∩ Inter f ace)

In the above formalization, it is assumed thatI .eventsmight include received input events other

than the ones inGenuine, which are treated according to the event lifeline semantics of internal

events. Snapshot elementERemainder[G] is defined the same as in Section 4.5.2. Snapshot element

ECollAsyn collects the generated interface events of a big step to be used in the next big step, by

EAsynchronous Events.

Similar to the transition-aware semantic options of internal events, discussed in Section

4.5.2, on page 116, the Strong Synchronous Event lifeline semantics for interface events is

a transition-aware semantic option.

119

4.5.3 Enabledness Memory Protocol

This section presents the formalization of the semantic options for theEnabledness Memory

Protocol. First, the formalization of the memory protocols for internal variables is presented,

followed by examples of formalizing the semantic options ofinterface variables.

The snapshot elements used in the formalization ofEnabledness Memory Protocols need

to know about the snapshot element that keeps track of valuesof variables according to the

Assignment Memory Protocol, denoted byVasn, in order to adjust the values of variables in the

snapshot element that the GC of transitions are checked against. At the beginning of a big step

and before a small step is executed, the snapshot element that Vasn refers to is used to initialize

the snapshot elements that models an enabledness memory protocol. In Section 4.5.4, as part of

the formalization of the semantics of assignment memory protocols, the value ofVasn for each

of the assignment memory protocols is specified.

Before presenting the formalization of the enabledness memory protocols, some notation for

formalizing a notion of store are presented.

A storeis a set of〈 variable, value〉 pairs. It is a total function from the set of variables of a

model to their values. The type of all of the snapshot elements used in this section is store.

Theoverride operator, ⊎, replaces some pairs of a store with new pairs whose first element

are the same as the replaced ones. For example,x1 ⊎ {(var1, val1), (var2, val2), · · · , (varn, valn)}

replaces the values of variablesvar1, var2, · · · , andvarn in storex1 with valuesval1, val2, · · · ,

andvaln, respectively.

A variable expressionis an arithmetic or boolean expression over the variables ofa BSML

model, possibly with some variables being prefixed with a variable operator. All variable ex-

pressions are assumed to bewell-typed: i.e., the operand of operators are of the expected types.

Furthermore, it is assumed that the subexpressions of an expression are unambiguously parsed,

which can be interpreted as the subexpressions of all expressions being parenthesized. Function

evaluate, formalized below, receives two explicit inputs, an expression and a store, and returns

the evaluation of the expression with respect to the store. If an expression uses a variable oper-

ator, then its evaluation needs extra stores each of which keeps track of the values of variables

120

according to the semantics of the operator. Formally,

evaluate((exp1 ∗ exp2),V) = evaluate(exp1,V) ⊛ evaluate(exp1,V),

evaluate(v,V) ≡ V(v),

evaluate(pre(v),V) = VRHS B.S.(v),

evaluate(cur(v),V) = VRHS S.S.(v),

evaluate(new(v),V) = VRHS S.S.(v),

where∗ is the syntax for an arithmetic or a boolean operator and⊛ is an operator representing

the semantics of∗. For example, if∗ is addition over integers variables, then⊛ represents the

semantics of addition over integer values. Snapshot elements VRHS B.S.andVRHS S.S., used for the

formalization of the RHS Big Step and the RHS Small Step semantic options, are defined in

Section 4.5.4, where the formalization of assignment memory protocols are presented.

The execution of a small step of a model includes capturing the effects of the assignments of

the transitions of the small step and storing them in the destination snapshot of the small step.

Using theevaluatefunction, the semantics of assignment in a BSML can be defined. Relation

assign, formalized below, has four parameters: a set of assignments, A, the snapshot element

that captures the effects of assignments so far in computation,V1, the snapshot element that the

RHS of assignments are evaluated against,V2, and the snapshot element that captures the effects

of executingA, V3. Snapshot elementsV1, V2, andV3 are all stores and are defined over all

variables of a model; i.e., the size of each store is the size of the set of the variables of the model.

In the absence of any race condition, relationassignis a function that receivesA, V1, andV2, and

determinesV3 deterministically. If race condition is possible, i.e., ifit is possible that more than

one assignments inA assign values to a variable, theassignis not a function, because it chooses

one of the values assigned to the variable non-deterministically. Formally,

assign(A,V1,V2,V3) ≡ [∀(v, val) ∈ V1 · v < lhs(A)⇒ (v, val) ∈ V3] ∧

[∀v ∈ lhs(A) · ∃a ∈ A · (v = lhs(a)) ∧

(val = evaluate(rhs(a),V2)) ∧ (v, val) ∈ V3],

wherelhs(A) =
⋃

a∈A lhs(a).

The “new small” variable operator leads to a transition-aware semantics,even in the absence

of cyclic evaluation order as described in Section 3.6. The problem is that in the presence of a

“new small(v)” in the GC of a transition,t, whethert is enabled or not depends on whetherv is

121

assigned a value by another transition,t′, which may or may not be enabled or executed in the

current small step.

GC Big Step

Snapshot elementVGC B.S., throughout a big step, maintains the values of the variables of a model

the same as at the beginning of the big step. As described earlier, the snapshot element that

Vasn refers to provides the values of variables at the beginning of a big step according to the

Assignment Memory Protocol.

reset VGC B.S.(sp0, I , sp) ≡ VGC B.S.= Vasn

next VGC B.S.(sp, τ, sp′) ≡ V′GC B.S.= VGC B.S.

en VGC B.S.(t, sp) ≡ evaluate(gc(t),VGC B.S.)

GC Combo Step

Snapshot elementVGC C.S. is a store for the variables of a model that maintains the samevalues

for the variables during a combo step. At the beginning of each combo step (including the first

combo step), the values of variables according to the assignment memory protocol of the BSML,

which are stored in the snapshot element thatVasn refers to, are assigned toVGC C.S.. When a

small step is executed, using predicateEndC, it is checked whether the current combo step ends,

in which case the value ofVGC C.S.is updated. The definition ofEndCis the same as the definition

of EndCused in the formalization of the Present In Next Combo Step event lifeline semantics.

When the GC Combo Step semantic option is chosen, thenVGC C.S.∈ Cs.

reset VGC C.S.(sp0, I , sp) ≡ VGC C.S.= Vasn

next VGC C.S.(sp, τ, sp′) ≡ V′GC C.S.= if EndC then

V′Uptodate

else

VGC C.S.

en VGC C.S.(t, sp) ≡ evaluate(gc(t),VGC C.S.)

And, EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)).

reset VUptodate(sp0, I , sp) ≡ Vasn

next VUptodate(sp, τ, sp′) ≡ assign(
⋃

t∈τ asn(t),VUptodate,Vasn,V′Uptodate)

122

GC Small Step

Snapshot elementVGC S.S. is a store for the variables of a model that maintains the up-to-date

values for the variables during a big step. At the beginning of each big step, the values of

variables according to the assignment memory protocol of the BSML, which are stored in the

snapshot element thatVasn refers to, are assigned toVGC S.S..

reset VGC S.S.(sp0, I , sp) ≡ VGC S.S.= Vasn

next VGC S.S.(sp, τ, sp′) ≡ assign(
⋃

t∈τ asn(t),VGC S.S.,Vasn,V′GC S.S.)

en VGC S.S.(t, sp) ≡ evaluate(gc(t),VGC S.S.)

Interface Variables in GC

The following snapshot elements together specify the GC Small Step semantics for internal vari-

ables and the GC Asynchronous Variable semantics for interface variables. The set of interface

variables of a model that are used in guard condition of transitions are denoted byIntVarsGC.

SetA determines the set of assignments to the interface variables. Similar to internal variables,

in order to specify the values of interface variables at the beginning of a big step, the snapshot el-

ement that maintains the values of variables according to the assignment memory protocol must

be known; this snapshot element is denoted asVasnInt. Snapshot elementVGC S.S.[Asynch] speci-

fies the enabledness memory protocol of internal variables,whereas theVGC A.V. determines the

enabledness memory protocol of interface variables.

reset VGC S.S.[Asynch](sp0, I , sp) ≡ VGC S.S.[Asynch] = Vasn

next VGC S.S.[Asynch](sp, τ, sp′) ≡ assign(A,VGC S.S.[Asynch], (Vasn∪VasnInt),V′GC S.S.[Asynch])

en VGC S.S.[Asynch](t, sp) ≡ evaluate(gc(t), (VGC S.S.[Asynch] ∪ VGC A.V.))

And, A = {a| ∃t ∈ τ · a ∈ asn(t) ∧ lhs(a) < IntVarsGC}.

reset VGC A.V.(sp0, I , sp) ≡ VGC A.V. = VasnInt

next VGC A.V.(sp, τ, sp′) ≡ V′GC A.V. = VGC A.V.

Similar to the Strong Synchronous Event for interface events, the GC Strong Synchronous

Variable enabledness memory protocol for interface variables is a transition-aware semantics:

The value of a variable assigned later in a big step should be sensed by a snapshot earlier in the

big step, so that it can enable transitions according to thatvalue, rather than a stale value.

123

4.5.4 Assignment Memory Protocol

This section presents the formalization of the semantic options for theAssignment Memory

Protocol semantic aspect. First, the formalization of the memory protocols for internal variables

is presented, followed by examples of formalizing the semantic options of interface variables.

RHS Big Step

Snapshot elementVRHS B.S.maintains the values of the variables the same throughout a big step,

and is used to evaluate the RHS of assignments according to the RHS Big Step semantics.

Snapshot elementVCurrent keeps track of the values of variables, as assignments are carried out

through a big step, to deliver these new values to the next bigstep. It is initialized withVRHS B.S.,

which, in turn, is initialized by “V0
Current⊎ I .asns”. When the RHS Big Step semantics is chosen,

Vasn= VRHS B.S..

reset VRHS B.S.(sp0, I , sp) ≡ VRHS B.S.= V0
Current⊎ I .asns

next VRHS B.S.(sp, τ, sp′) ≡ V′RHS B.S.= VRHS B.S.

reset VCurrent(sp0, I , sp) ≡ VCurrent = VRHS B.S.

next VCurrent(sp, τ, sp′) ≡ assign(
⋃

t∈τ asn(t),VCurrent,VRHS B.S.,V′Current)

RHS Combo Step

Snapshot elementVRHS C.S.maintains the values of the variables the same during a combostep,

which can be used to evaluate the RHS of assignments according to the values of variables

at the beginning of the current combo step. When the RHS Combo Step semantics is chosen,

Vasn= VRHS C.S.andVRHS C.S.∈ Cs. The definition ofEndCis the same as the definition ofEndC

used in the formalization of Present In Next Combo Step event lifeline semantics.

124

reset VRHS C.S.(sp0, I , sp) ≡ VRHS C.S.= VCurCombo

next VRHS C.S.(sp, τ, sp′) ≡ V′RHS C.S.= if EndC then

V′CurCombo

else

VRHS C.S.

And, EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)).

reset VCurCombo(sp0, I , sp) ≡ V0
CurCombo⊎ I .asns

next VCurCombo(sp, τ, sp′) ≡ assign(
⋃

t∈τ asn(t),VCurCombo,VRHS C.S.,V′CurCombo)

RHS Small Step

Snapshot elementVRHS S.S.keeps track of up-to-date values of variables, which can be used to

evaluate the RHS of assignments according to the up-to-datevalues of variables. When the RHS

Small Step semantics is chosen,Vasn= VRHS S.S..

reset VRHS S.S.(sp0, I , sp) ≡ VRHS S.S.= V0
RHS S.S.⊎ I .asns

next VRHS S.S.(sp, τ, sp′) ≡ assign(
⋃

t∈τ asn(t),VRHS S.S.,VRHS S.S.,V′RHS S.S.)

Interface Variables in RHS

The following snapshot elements together specify the GC Small Step semantics for variables in

GC of transitions, the RHS Small Step semantics for internal variables in RHS of assignment,

the GC Weak Synchronous Variable semantics for interface variables in GC of transitions, and

the RHS Asynchronous Variable semantics for interface variables in RHS of assignments. The

set of interface variables of a model that are used in the GC and RHS of assignments of tran-

sitions are denoted asIntVarsGCand IntVarsRHS, respectively. SetsA andB determine the

set of assignments to the non-interface and interface variables, respectively. Snapshot elements

VGC S.S.[NonInterface] andVRHS S.S.[NonInterface] specify the enabledness and assignment memory pro-

tocols of internal variables, respectively. Snapshot elementsVGC W.S.V. andVRHS A.V. specify the

enabledness and assignment memory protocols of interface variables, respectively. In this se-

mantics,Vasn= VRHS S.S.[NonInterface] andVasnInt = VRHS A.V..

125

reset VGC S.S.[NonInterface](sp0, I , sp) ≡ VGC S.S.[NonInterface] = Vasn

next VGC S.S.[NonInterface](sp, τ, sp′) ≡ assign(A,VGC S.S.[NonInterface],

(Vasn∪VasnInt),

V′GC S.S.[NonInterface])

en VGC S.S.[NonInterface](t, sp) ≡ evaluate(gc(t),VGC S.S.[NonInterface] ∪ VGC W.S.V.)

reset VRHS S.S.[NonInterface](sp0, I , sp) ≡ VRHS S.S.[NonInterface] = V0
RHS S.S.[NonInterface] ⊎ I .asns

next VRHS S.S.[NonInterface](sp, τ, sp′) ≡ assign(A,VRHS S.S.[NonInterface], (Vasn∪VasnInt),

V′RHS S.S.[NonInterface])

And, A = {a| ∃t ∈ τ · a ∈ asn(t) ∧ lhs(a) < (IntVarsGC∪ IntVarsRHS)}.

reset VGC W.S.V.(sp0, I , sp) ≡ VGC W.S.V.= VasnInt

next VGC W.S.V.(sp, τ, sp′) ≡ assign(B,VGC W.S.V., (VasnInt∪Vasn),V′GC W.S.V.)

reset VRHS A.V.(sp0, I , sp) ≡ VRHS A.V. = V0
RHS A.V.⊎ I .asns

next VRHS A.V.(sp, τ, sp′) ≡ assign(B,VRHS A.V., (VasnInt∪Vasn),V′RHS A.V.)

And, B = {a | ∃t ∈ τ · a ∈ asn(t) ∧ lhs(a) ∈ (IntVarsGC∪ IntVarsRHS)}.

The RHS StrongSynchronousVariable assignment memory protocol for interface variables,

similar to the GC Strong Synchronous Variable enabledness memory protocol for interface

variables, is a transition-aware semantics: The value of a variable assigned later in a big step

should be sensed by a snapshot earlier in the big step, so thatthe evaluation of the RHS of an

assignment is done using the new value.

4.5.5 Order of Small Steps

This section presents the formalization of the ExplicitOrdering and Dataflow semantic options.

The None semantic option does not require any snapshot elements.

126

ExplicitOrdering

The Explicit Ordering order of small steps is relevant for the transitions within the scope of an

Andcontrol state. The execution of transitions whose scopes are within anAndcontrol state are

ordered according to their graphical order. As discussed inSection 3.10, the Explicit Ordering

semantic option should be chosen together with the Single concurrency semantics and the Take

One big-step maximality semantics, otherwise, the notion of ordering according to a graphical

order of control states does not make sense. In the formalization below, it is assumed that the

Single and the Take One semantic options are chosen together with the Explicit Ordering se-

mantic option in a BSML semantics, as it is the case in Stateflow [22], which subscribes to the

Explicit Ordering semantics. Before presenting the formal semantics of the Explicit Ordering

semantic option, some notation are introduced.

For eachAnd control state,s, thegraphical orderof its compound children is denoted by

go(s), which is a sequence of control states,〈s1, · · · , sm〉. If the scope of a transition,t, is nested

inside more than oneAnd control states, then it will be ordered by all thoseAnd control states.

A transition,t1, graphically precedesanother transition,t2, if according to theAndcontrol states

that order the two transitionst1 must execute beforet2. Because of the Single and the Take

One semantic options, however, such two transitions need to be compared only according to the

graphical order of the lowestAndcontrol state that is an ancestor of the scopes of both transitions.

For a transition,t, its graphical predecessors, denoted bygpre(t), is the set of all transitionst′

that graphically precedet.

Snapshot elementOExplicit declares a transition,t, as enabled if it is its turn to be executed

according to the graphical order of theAndcontrol states it belongs to; i.e., either the graphical

predecessors oft have been executed already, or they are not enabled. The typeof snapshot

elementOExplicit is a set of transitions each of which specifies whether a transition of the model,

discarding the Explicit Ordering semantics, is enabled or not. The set of snapshot elements ofa

BSML is denoted bySpEl= {el1, el2, · · · , eln}.

reset OExplicit(sp0, I , sp) ≡ OExplicit = {t |
∧

1≤i≤n
eli,OExplicit

en eli(t, sp)}

next OExplicit(sp, τ, sp′) ≡ O′Explicit = {t |
∧

1≤i≤n
eli,OExplicit

en eli(t, sp′)}

en OExplicit(t,OExplicit) ≡ OExplicit ∩ gpre(t) = ∅

127

The en OExplicit predicate checks whether any of the graphic predecessors ofa transition are

enabled. If a graphical predecessor transition of the transition has already been executed, it

cannot be enabled at the current snapshot, because of the Take One semantics.

The above formalization would work only if the definitions ofthe snapshot elements inCs

are adjusted so that they do not refer to snapshotO′Explicit in their “next” predicates. Instead, for

example, these definitions could refer to the value of snapshot elementOExplicit at sp, instead of

sp′, or entirely discard the role of snapshot elementOExplicit. Both solutions are fine since the

Explicit Ordering semantic option has no role in determining the end of a big step or a combo

step; instead, when there are enabled transitions to be executed, it orders them.

Dataflow

Snapshot elementODataflow declares a transition,t, as enabled if all variables inpre f ix new(t)

are assigned values during the current big step, wherepre f ix new(t) returns the set of variables

prefixed bynew that are used ingc(t) or in the RHS of an assignment inasn(t).

reset ODataflow(sp0, I , sp) ≡ ODataflow = ∅

next ODataflow(sp, τ, sp′) ≡ O′Dataflow =
⋃

t∈τ
⋃

a∈asn(t) lhs(a) ∪ODataflow

en ODataflow(t, sp) ≡ pre f ix new(t) −ODataflow = ∅

4.5.6 Combo-Step Maximality

The formalization of the semantic options of theCombo-Step Maximality semantics is related

to the formalization of the combo-step semantics, as described in Section 4.5.2. As such, the

snapshot elements involved in formalizing theCombo-Step Maximality semantics belong to the

combo-step snapshot elementsCs. The predicateEndCused in this section, which determines

the end of a combo step, is the same as in the formalization of other combo-step semantics.

Similar to theTake Many big-step maximality semantics, the Combo TakeMany semantic option

does not introduce any snapshot elements.

Combo Syntactic

During a combo step, snapshotCCombo Syntactic collects the control states that each is the arena

or a child of the arena of a transition that enters a combo stable control state. The predicate

128

en CCombo Syntactic(t, sp) determines whether a transition,r, has already been executed during the

combo step that has entered a combo stable control state,ssuch thatarena(t) ∈ children∗(arena(r),

in which caset cannot be taken in the current big step. When the Combo Syntactic semantic op-

tion is chosenCCombo Syntactic,CArenaCollectS yn∈ Cs.

reset CCombo Syntactic(sp0, I , sp) ≡ CCombo Syntactic = ∅

next CCombo Syntactic(sp, τ, sp′) ≡ C′Combo Syntactic = if EndC then

CArenaCollectS yn∪ A

else

CCombo Syntactic

en CCombo Syntactic(t, sp) ≡ arena(t) < CCombo Syntactic

reset CArenaCollectS yn(sp0, I , sp) ≡ CArenaCollectS yn= ∅

next CArenaCollectS yn(sp, τ, sp′) ≡ C′ArenaCollectS yn= if EndC then

∅

else

CArenaCollectS yn∪ A

And, A =
⋃

t∈τ{s | s ∈ children∗(arena(t)) ∧ combostable(dest(t))}, and

EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)) .

Combo Take One

During a big step, snapshotMCombo Take One collects the control states that each is the arena or

the child of the arena an executed transition. The predicateen MCombo Take One(t, sp) determines

whether a transition,r, has already been executed during the big step such thatarena(t) ∈

children∗(arena(r), in which caset cannot be taken in the current big step. When the Combo

Take One semantic option is chosenCCombo Take One,CArenaCollectOne∈ Cs.

129

reset CCombo Take One(sp0, I , sp) ≡ CCombo Take One = ∅

next CCombo Take One(sp, τ, sp′) ≡ C′Combo Take One = if EndC then

CArenaCollectOne∪ B

else

CCombo Take One

en CCombo Take One(t, sp) ≡ arena(t) < CCombo Take One

reset CArenaCollectOne(sp0, I , sp) ≡ CArenaCollectOne= ∅

next CArenaCollectOne(sp, τ, sp′) ≡ C′ArenaCollectOne= if EndC then

∅

else

CArenaCollectOne∪ B

And, B =
⋃

t∈τ{s | s ∈ children∗(arena(t))}, and

EndC≡ (∄τ′ · τ′ ∈ executable(root, sp′ ⊕Cs)).

The Structure of a BSML Semantics A complete BSML semantics can be instantiated by

choosing the desired semantic options of the semantic aspects of interest. The chosen semantic

options of the structural semantic aspects of the BSML semantics determine a parsing mecha-

nism (when a hierarchical semantic option is chosen), together with values for the corresponding

predicates of structural parameters. The chosen semantic options of the enabledness semantic

aspects determine a set of snapshot elements that implementthose semantic options.

4.6 Related Work: Semantic Formalization Methods

My semantic formalization is influenced by the formalization in template semantics [75, 74]. In

particular, (i) lines 1-5 in Figure 4.2 are adopted from the definition of macro stepin template

semantics; and (ii) the notion of snapshot elements in template semantics is adapted to model

the enabledness parameters of BSML semantics. In template semantics, a snapshot element has

a type and a set of threeparameters, reset, next, andenabled, which can be instantiated with a

value, from a pre-determined, extensible set of values. There area fixed, but extensible, number

of snapshot elements that can be instantiated to obtain a semantics. While the snapshot elements

130

in template semantics are the semantic variation points by themselves, in my framework, the

semantic variation points are semantic aspects and semantic options; snapshot elements are a

mechanism to formalize these semantic variations. A semantic option may require multiple

snapshot elements for its formalization.

Template semantics has a notion of composition operator, which I do not need, because:

first, some of the characteristics of the composition operators can be modelled using different

structural semantic options; and second, as Chapter 6 will describe, the semantics of many com-

position operators can be specified using the synchronization mechanism introduced in Chap-

ter 6. I also introduce the notion of combo step, which was notconsidered in template semantics.

The main divergence in my semantic definition framework fromtemplate semantics is that my

proposed framework produces a semantic definition whose elements corresponds to the seman-

tic aspects and the semantic options. To the best of my knowledge, the approach presented in

formalizing the semantic aspects of the deconstruction is the first one that defines disjoint pa-

rameters in a manner that matches the factoring into the structural semantic aspects from the

high-level big-step semantic deconstruction.

My work is comparable withtool-support generator frameworks(TGFs), which by accept-

ing the definition of a notation, including its semantics, asinput, generate tool support, such

as model checking and simulation capability, as output [81,24, 25, 28, 65, 6, 38]. TGFs dif-

fer in thesemantic input formats(SIF) they use, and the procedure by which they obtain tool

support for a notation. An SIF, by its function, is a semanticdefinition language, and thus can

be potentially compared with our semantic definition framework. Some TGFs adopt an existing

formalism as their SIF; for example, higher-order logic [24, 25], structural operational seman-

tics [28], graph grammars [6], and forwarding attribute grammars [38]; others devise their own

SIFs; for example,execution rules[81], which defines a semantics via itsenabling, matching,

andfiring rules, and template semantics [65], which defines a semantics by instantiating values

for semantic parametersand choosing or defining a set ofcomposition operators. While TGFs

strive for flexibility and extensibility, to accommodate new notations, I have strived to create a

systematic semantic definition framework that clearly defines a BSML semantics.

A precise comparison of my semantic definition framework with the SIF of a TGF requires

knowledge about the range of semantics that the SIF can express, or is meant to express. How-

ever, the range of semantics that an SIF can express is usually left as unspecified, or under-

specified. I think that this is not accidental, and is a resultof ambiguity about the domain of

notations that a TGF is designed for. I argue that for a familyof notations, a task similar to what

131

I undertook for BSMLs should precede the attempt to develop aTGF for them. Otherwise, it

is not possible to determine the range of the family of notations that the TGF supports, unless a

TGF aims for universality. Furthermore, the users of the TGFcannot fully benefit from it, unless

they independently discover the expressiveness of the SIF of the TGF. However, discovering this

is not straightforward: SIFs are designed with flexibility and extensibility goals in mind, rather

than systematicness and clarity.

The mere choice of a SIF will not likely address the difficulty of reconciling the flexibility

and extensibility of a TGF with the systematicness and clarity of its SIF, as described above.

For example, choosing a general SIF, such as structural operational semantics [28] or forwarding

attribute grammars [38], might seem a good idea because it provides a certain level of system-

aticness and clarity, and hopefully flexibility and extensibility would follow. But I observe that

researchers either report about supporting a limited set ofnotations (e.g., variations of “Lotos

subset”, without variables [28]), or report about difficulties with extensibility (e.g., difficulty in

modelling the semantics of “events”, because the semantic definition is “not trivial” and becomes

“verbose” [38]). Conversely, devising a specific SIF, such as “execution rules” [81] and “tem-

plate semantics” [65], might seem a good idea because it provides flexibility and extensibility,

and hopefully systematicness and clarity would follow. ButI observe that the flexibility and

extensibility in such a framework is with respect to its SIF,and does not necessarily translate

to clarity and/or systematicness for users. As an example, the ability to define a semantics that

is a mixture of the semantics of statecharts and Petri nets inan extensible way [81], does not

necessarily mean that a user of the TGF would perceive its SIFas systematic, and a resulting

semantics as clear.

Thedynamicsemantic concepts in the graph-transformational semanticdefinition approach

for UML statecharts by Varró [98] is similar to the notions of enabledness semantic aspects

and enabledness parameters in my semantic definition schema. Varró’s approach, however, is

only considered for one language with a simple syntax that supports a simple kind of control

states and asynchronous events. Thestaticsemantic concepts in his approach are comparable to

the syntactic helper functions in Table 4.1 and Table 4.2. His graph-transformational semantic

definition approach can be considered as a prescriptive semantic definition method, because each

of the dynamic and static semantic concepts correspond to distinct graph transformation rules.

However, this method is applied to a single semantics, and thus the scope of the languages that

it can support is not clear. In particular, in the presence ofvariables and our structural semantic

aspects, it would be interesting to investigate whether these rules can be extended to cover a

132

range of different semantics, and yet maintain a prescriptive semantic definition method.

My semantic definition framework shares the same goals as other general semantic definition

methods that advocate clarity and systematicness [73, 49].In action semantics[73], a semantic

definition can be organized as a hierarchy ofmodulesandsub-modules. Furthermore, concep-

tually, a semantic definition can be decomposed across two axes: types of information, which

distinguish betweentransient, scoped, stable, andpermanentdata; andfacets of actions, which

distinguish betweenbasic, functional, declarative, imperative, andcommunicativeprocessing

modes, each of which is designated to process a specifictype of information. Similar to ac-

tion semantics, my definition framework ismodular in that a semantics can be incrementally

defined by specifying its different aspects. Theunifying theory of programmingaims for the

vision of the unification of different paradigms of programming languages and their semantics,

which “can be described at different levels of abstraction” [49]. A notion oftheorydescribes an

aspect of computation, such as non-determinism or recursion. A theory is described in terms of

its alphabets, signatures, relations, functions, and axioms. More primitive theories arerefined

to derive more specific ones. The link between different theories can be defined throughlinking

theories. The unifying theory of programming is a general vision to understand the different

paradigms of computation and their relationships, rather than a particular method for semantic

definition. My proposed semantic definition framework is consistent with the vision of a unify-

ing theory of programming in that it introduces semantic aspects that lend themselves to the kind

of analysis advocated in the unifying theory of programming. Also, at a high level, perhaps, the

basic BSML semantics could be considered as a theory, which can be related to various BSML

semantics through the semantic aspects/options linkings.

Lastly, my work is comparable to that of Huizing and Gerth [50]. Huizing and Gerth cat-

egorize and specify the semantics of simple BSMLs that only have events. In comparison, my

semantic definition framework considers a more advanced normal-form syntax, resulting in con-

sidering a wide range of semantic aspects and options, in addition to the event lifeline semantics.

4.7 Summary

This chapter introduced a formal semantic definition methodthat uniformly formalizes most of

the BSML semantics of the big-step semantic deconstruction. This semantic definition method is

bases on a semantic definition schema that is parametric withrespect to the semantic aspects of

133

the big-step semantic deconstruction. A semantic definition of a BSML produced in this method

is prescriptive in that the manifestation of the constituent semantic options of the BSML, accord-

ing to the big-step semantic deconstruction, can be clearlyidentified in the semantic definition.

The semantic definition schema can define most of the BSML semantics of the big-step semantic

deconstruction, except those that are transition aware. Ina transition-aware semantics, the en-

abledness of a transition depends on the execution of the semantics in the current or future small

steps.

134

Chapter 5

Semantic Quality Attributes of BSMLs

“Languages differ essentially in what theymustconvey and not in what

theymayconvey.” [53, p.141]

Roman Jakobson

While a BSML provides a modeller with the convenience of describing the reaction of a system to

an environmental input as the execution of a set of transitions, facilitating the decomposition of a

model into concurrent components, it also introduces the complexity of dealing with the semantic

intricacies related to theordering of these transitions. In this chapter, threesemantic quality

attributesfor BSMLs are introduced, each of which identifies a desirable semantic characteristic

for BSML semantics that exempts a modeller from worrying about some of the complications of

ordering in the sequence of the small steps of a big step.

For each semantic quality attribute, the necessary and sufficient constraints over the choices

of the BSML semantic options are specified so that the resulting semantics each has the semantic

quality attribute. As opposed to the advantages and disadvantages of each semantic option, which

were discussed in Chapter 3, the characterization of a semantic quality attribute is a cross-cutting

concern over different semantic aspects.

The remainder of this chapter is organized as follows. Section 5.1 presents the terminology

that is used throughout the chapter. Section 5.2 formally presents the three semantic quality

attributes for BSMLs, together with examples that describethe role of each semantic quality

attribute. Section 5.3 specifies the set of BSML semantics that satisfy each of the semantic quality

135

attributes, together with proofs of the correctness of eachspecification. Section 5.4 describes

how a semantic quality attribute can be achieved through thechoice of a set of semantic options

together with a set of syntactic well-formedness criteria in a language. Section 5.5 discusses

related work.

5.1 Quantification over Big Steps

This section describes terminology to quantify over the setof big steps of a BSML model and

to declaratively access parts of a big step. This terminology facilitates the specification of the

semantic quality attributes, as well as the proofs of the correctness of the characterization of the

semantic quality attributes.

Figure 5.1, similar to Figure 4.1, on page 87, depicts the structure of a big step: After re-

ceiving an environmental input,I , k small steps are executed to arrive at snapshotspk+1. In this

section, a big step is represented formally as a tuple,〈b, length, b′〉, whereb is thebeginning

snapshot of the big step,lengthis the number of small steps in the big step, andb′ is the destina-

tion snapshot of the big step, as usual. As an example, for thebig step in Figure 5.1,T.b = sp1,

T.length= k, andT.b′ = spk+1, where the operator “.” is used to access an element of a tuple.

Compared to the formal semantics in Chapter 4, the formal representation of a big step used in

this chapter adopts two different conventions. First, unlike in Figure 4.1, the beginning snapshot

of a big step includes the effect of receiving the environmental input of the big step, as opposed

to the “source” snapshot of the big step in the previous chapter, which needs to be “reset” with

environmental inputs. And second, unlike the formal semantics of combo-step semantics in

Chapter 4, here it is assumed that once a combo step ends, it istransitioned explicitly to a new

snapshot that is the start of the new combo step. This approach is as opposed to the formal

semantics of combo-steps in the previous chapter where upondetecting the last small step of

a combo step, by using predicateEndC, the adjustments to start the new combo step happens

together with the execution of the last small step of the current combo step. The above two

conventions are adopted to simplify the formalization and the presentation of semantic quality

attributes. It is straightforward to rephrase and re-formalize the content of this chapter if these

conventions are not assumed.

The set of potential small steps of a model at a snapshotspis denoted byexecutable(root, sp),

as usual. For the sake of brevity, I write “executable(sp)” instead of “executable(root, sp)”

136

...

I

el1

el2

eln

el1

el2

eln

el1

el2

eln

el1

el2

eln

· · ·

el1

el2

eln

T

τ1

sp1

τ1 ∈ executable(sp1)

sp2 spk−1

τk−1 ∈ executable(spk−1)

spk spk+1

τk−1 τk

p
o
te

n
tia

l(s
p k
+

1)
=
∅

τk ∈ executable(spk)

Figure 5.1: Big stepT = 〈sp1, k, spk+1〉.

because the first parameter of this function is not relevant to the formalization presented in this

chapter. Theith small step of a big step,T, where 1≤ i ≤ T.length, is denoted byT i. Each

small step itself is represented as a tuple,〈s, τ, s′〉, wheres ands′ are the source and destination

snapshots of the small step, respectively, andτ is the set of transitions that are executed by

the small step. For example, the destination snapshot of thei th small step of big stepT is

obtained byT i .s′. For all T i, 1 ≤ i ≤ T.length, T i .τ ∈ executable(T i .s). Also, T j .s′ = T j+1.s

for 1 ≤ j < T.length. For a BSML modelM, the set of all its possible big steps is denoted

as bigsteps(M). This set includes all big steps in response to all environmental inputs at all

possible snapshots. As usual, in examples, a big step is referred to by the sequence of the sets of

transitions of its small steps, which is surrounded by a “〈 〉” pair.

The set of big steps at a snapshot is determined by the eight semantic aspects of BSMLs, as

described in Figure 5.2. Recall that in the previous chapters these aspects were partitioned into

two categories:

• Enabledness semantic aspects deal with the semantics of howa single transition can be

included in a big step and what the effect of its execution; and

• Structural semantic aspects deal with how a set of enabled transitions can be taken together

in a small step.

To describe the semantic quality attributes, the set of enabledness semantic aspects are parti-

tioned further into two subcategories:

• Transition-basedsemantic aspects, which determine how the semantics of a BSML uses

137

Determine Transitions

Determine Transitions

Yes

Maximal Combo Step?

Maximal Big Step?

No

No

Determine the Maximal,

Consistent Sets of

Enabled Transitions

Choose One High Priority

Environmental Inputs

Start of Big−step:

Enabled by Events

Enabled by Variables

Determine Transitions that
Satisfy Ordering Constraints

Evaluate Variables in the

Yes

End of Big−step:

Environmental Outputs

Initialization with

Deliver the

Set of Transitions

Structural semantic aspects

Coordinative semantic aspects

Transition−based semantic aspects

(Combo-Step Maximality

(Big-Step Maximality

– Section 3.9)

– Section 3.6)

(Concurrency and

(Priority – Section 3.8)

Consistency – Section 3.3)

(Assignment Memory Protocol

Protocol – Section 3.5)

(Order of Small Steps
– Section 3.7)

– Section 3.2)

RHS of Assignments

(Enabledness Memory

Legend

(Event Lifeline – Section 3.4)

Figure 5.2: Operation of a big step through its structural, transition-based, and coordinative
semantic aspects.

the modelling constructs of the language, namely its variables, events, and control states;

and

• Coordinativesemantic aspects, which determine how the execution of the transitions of a

big step of a model are ordered and grouped across a big step.

From a modelling point of view, a transition-based semanticaspect is different from a co-

ordinative semantic aspect in that the corresponding snapshot elements of a transition-based

semantic option maintain information about the values of the syntactic elements of the transi-

tions, whereas the corresponding snapshot elements of a coordinative semantic option maintain

information about the history of the execution of the transitions in a big step.

The flowchart in Figure 5.2 is similar to the one in Figure 3.1,on page 30, except that it shows

the partitioning of aspects into these categories. The stages of the flowchart with clear elements

138

represent the structural semantic aspects of the operationof a big step; the other stages represent

the enabledness semantic aspects of the operation of a big step. The light gray elements of the

flowchart represent the transition-based, enabledness semantic aspects of the operation of a big

step. The dark gray elements of the flowchart represent the coordinative, enabledness semantic

aspects of the operation of a big step. TheEvent Lifeline, Enabledness Memory Protocol,

andAssignment Memory Protocol semantic aspects are transition-based semantic aspects. The

Big-Step Maximality, Combo-Step Maximality, andOrder of Small Steps semantic aspects are

coordinative semantic aspects. As an example, theEvent Lifeline semantic aspect is a transition-

based semantic aspect in that it determines how a generated event of a transition, i.e., a syntactic

element of a transition of a model, triggers the transitionsof the model, while theBig-Step

Maximality semantic aspect is a coordinative semantic aspect in that itdetermines the limit on

the number of transitions in a big step.

With this partitioning, the definition of the enabledness ofa transition, from Section 4.1.2, on

page 91, is divided into two parts, one for each set of enabledness semantic aspects,

en(t, sp) ≡ ready(t, sp) ∧ fireable(t, sp),

ready(t, sp) ≡
∧

x∈TransitionBased (SpEl)

en x(t, sp), and

fireable(t, sp) ≡
∧

x∈Coordinative (SpEl)

en x(t, sp),

whereSpEl, as before, is the set of snapshot elements used in the semantics of a BSML, and

TransitionBased (SpEl) andCoordinative(SpEl) are the sets oftransition-basedandcoordinative

snapshot elements that are used in the definition of the transition-based and the coordinative

semantic aspects, respectively. By definition, the snapshot element that maintains the current set

of control states that a model resides in, i.e., snapshot elementSc described on page 92, belongs

to TransitionBased (SpEl).

For a transition,t, at a snapshotsp, if ready(t, sp) is true, it is called aready transition,

and otherwise anunreadytransition. Similarly, if fireable(t, sp) is true, t is called afireable

transition, and otherwise anunfireabletransition. If bothready(t, sp) and fireable(t, sp) are true,

t is called an enabled transition, as usual.

A transition, t, at a snapshot,sp, is calledexecutable, denoted byexecutable(t, sp), if it

139

belongs to at least one potential small step in that snapshot. Formally,

executable(t, sp) ≡ ∃τ ∈ executable(sp) ∧ t ∈ τ.

Figure 5.3, which depicts the structure of a semantic definition schema from the previous chapter,

is the same as the one in Figure 4.3, on page 89, except that it is annotated to show the partitioning

of the parameters of the formal semantic definition schema. Functionen trs, described in Section

4.1.2, receives a set of transitions and uses predicateen to return the set of enabled transitions in

the set. By definition, in Chapter 4, and as can be traced in thefigure, if executable(t, sp) is true,

so isready(t, sp) and fireable(t, sp); i.e.,

executable(t, sp)⇒ ready(t, sp) ∧ fireable(t, sp), (5.1)

but, in general, not vice versa, because of thePriority semantic aspect, which corresponds to the

“Π” parameter. A transition might be ready and fireable, but have a lower priority compared to

another transition that can replace it in all potential small steps. The three sub-aspects of the

Concurrency and Consistency semantic aspect, which correspond to parameters “‖”, “ C”, and

“P’, each has a role in determining the set of potential small steps, by combining a set of ready,

fireable transitions into a small step. However, these semantic sub-aspects do not have any role

in determining whether a ready, fireable transition is executable or not: The priority semantics

eventually determines that. If the No Priority priority semantics is chosen, however, i.e., if

neither the Scope-Parent nor the Scope-Child semantics is chosen, then

executable(t, sp)⇔ ready(t, sp) ∧ fireable(t, sp), (5.2)

which means that if a transition is both ready and fireable it belongs to at least one potential small

step, and vice versa.

If a transition is not executable, it is calledunexecutable.

Lastly, a transition,t, is priority-ready, at a snapshot,sp, denoted by,priority ready(t, sp),

if: (i) t is ready, and (ii) discounting the coordinative semantic aspects,t would belong to a

potential small step. By definition, ifpriority ready(t, sp) is true, thenexecutable(t, sp) is true

only if f ireable(t, sp) is also true. Conversely, by the definition of an executabletransition, if

executable(t, sp) is true, it should be the case that bothpriority ready(t, sp) and f ireable(t, sp)

are true. Formally,

140

Transition−Based
(Readiness)

Coordinative
(Fireability)

Coordinative Coordinative

Transition−Based Transition−Based

· · ·en el1 en el2 en eln

en

Vasn

Parameter
Structural Uses

Predicate

Legend

Parameter
Enabledness Uses

Value

N NS mall

NBig

reset ···

···

reset el1

reset el2

reset eln

next el2

Π

P

�‖ en trs

C

executable

next el1

next eln

Figure 5.3: The structure of a semantic definition schema, from Chapter 4.

141

executable(t, sp)⇔ priority ready(t, sp) ∧ f ireable(t, sp). (5.3)

Predicate 5.3, as opposed to predicate 5.2, which is true forall BSML semantics without a hier-

archial priority semantics, is true for all BSML semantics regardless of their priority semantics.

Table 5.1 summarizes the terminology presented so far in this section.

Table 5.1: Summary of terminology for semantic aspects.
Structural semantic aspectsdeal with how a set of transitions can be executed together to
form a small step.

Transition-based, enabledness semantic aspectsdeal with how a BSML uses the syntac-
tic elements of a transition.
TransitionBased (SpEl) The set of snapshot elements that model the transition-based, en-

abledness semantic aspects of a BSML.
ready(t, sp) Transitiont is ready atsp, and can be taken according to the snap-

shot elements inTransitionBased (SpEl).

Coordinative, enabledness semantic aspectsdeal with how the execution of transitions
are coordinated across a big step.
Coordinative (SpEl) The set of snapshot elements that model the coordinative, enabled-

ness semantic aspects of a BSML.
f ireable(t, sp) Transition t is fireable atsp, and can be taken according to the

snapshot elements inCoordinative(SpEl).

Enabledness
en(t, sp) Transitiont is enabled atsp if and only if both ready(t, sp) and

fireable(t, sp) are true.

Executability
executable(t, sp) Transitiont is executable atsp: it is enabled and has a high priority.

Priority Readiness
priority ready(t, sp) Transitiont is priority-ready atsp, if t is ready and discounting the

coordinative semantic aspects, it would be executable.

5.1.1 Priority-Related Definitions

This section presents notation for comparing the priority of transitions as well as the priority of

sets of transitions. Two transitions,t andt′, arepriority comparable, if they can be compared with

142

respect to the priority ordering of the semantics, in which case their priorities can be compared

by prefixing the name of each transition withpri and using the normal comparison operators

“>”, “ <”, and=. If two transitions are not comparable, they are calledpriority incomparable,

which can be expressed using the “<>” operator.

When the Scope-Parent priority semantics is used in an SBSML,pri(t) > pri(t′), pri(t) <

pri(t′), andpri(t) = pri(t′) mean, respectively, that the scope oft is higher, lower, or the same as

the scope oft′ in the hierarchy tree. If the scopes oft andt′ are not comparable (i.e., they belong

to different branches of the hierarchy tree), thenpri(t) <> pri(t′). Similar definitions for the

Scope-Child priority semantics can be defined, by swapping the descriptions of the comparison

operators “<” and “>”.

When the Negation of Triggers priority semantics is used in a BSML,pri(t) > pri(t′),

pri(t) < pri(t′), and pri(t) = pri(t′) mean that the trigger oft′ is conjoined with some of the

positive literals in the trigger oft, the trigger oft is conjoined with some of the positive literals

in the trigger oft′, and neither of the transitions has any of the positive literals of the trigger

of the other in its trigger in the negated form, respectively. If both t and t′ have some of the

positive literals of one another’s triggers in the negated form in their triggers, they are priority

incomparable; i.e.,pri(t) <> pri(t′).

In this chapter, as discussed in Section 3.8, only the Scope-Parent, the Scope-Child, and the

Negation of Triggers priority semantics are considered. If a BSML semantics subscribes both

to a hierarchical priority semantics and the Negation of Triggers priority semantics, then the

Negation of Triggers priority semantics overrides the hierarchical priority semantics: First,t

and t′ are compared according to the Negation of Triggers priority semantics; if they have an

equal priority or they are not priority comparable, then thehierarchical semantics is used as the

secondary criterion to compare their priorities.

Priority Comparison Between Sets of Transitions. For two sets of transitionsT andT′, the

operands “⋗”, “ ⋖”, and “�” compare the priority of the transitions of the two sets. Thefollowing

definitions formalize these operators:

T ⋗ T′ ≡ (∃t ∈ T · ∃t′ ∈ T′ · pri(t) > pri(t′)) ∧ ¬(∃t′ ∈ T′ · ∃t ∈ T · pri(t′) > pri(t)),

T ⋖ T′ ≡ (∃t ∈ T · ∃t′ ∈ T′ · pri(t) < pri(t′)) ∧ ¬(∃t′ ∈ T′ · ∃t ∈ T · pri(t′) < pri(t)), and

T � T′ ≡ ¬(T ⋖ T′) ∧ ¬(T ⋗ T′).

143

If T⋗T′, T⋖T′, orT � T′, it is said thatT has ahigher priority, lower priority, orequal priority,

respectively, compared toT′. Intuitively, T � T′, if it is not the case thatT has a transition that

has a higher priority than a transition inT′ without T′ having such a transition, and also not

vice versa. As opposed to the comparison of the priority of individual transitions, two sets of

transitions are always “priority comparable”.

By definition, all potential small steps at a snapshot of a BSML model that uses a hierarchical

priority semantics have an equal priority. This is because of the formal semantics of the Scope-

Parent and Scope-Child semantic options, specified in Figure 4.8, on page 103, and Figure 4.10,

on page 107, respectively, which, by definition, each gives aprecedence to include a higher-

priority transition than a lower-priority transition in a small step.

5.2 Semantic Quality Attributes for BSMLs

In this section, the three semantic quality attributes for BSMLs are introduced. Thenon-cancelling

semantic quality attribute guarantees that if a transitionbecomes executable during a big step, it

does not become mistakenly disabled. Thepriority consistencysemantic quality attribute guar-

antees that higher-priority transitions are chosen over lower-priority transitions. Thedeterminacy

semantic quality attribute guarantees that all possible orders of small steps in a big step have the

same result. Various modelling examples are presented thatexhibit the presence and the absence

of each semantic quality attribute.

5.2.1 Non-Cancelling

In a non-cancellingBSML semantics, once a transition of a model becomes executable in a

big step, it remains executable during the big step, unless:it is taken by the next small step, it

remains priority-ready unless it becomes unfireable, or itsscope is entered or exited by a taken

transition in the next small step. The second case requires that if a transition becomes executable,

it cannot become unexecutable unless it also becomes unfireable. A BSML semantics that is not

non-cancelling iscancelling. A non-cancelling BSML semantics is useful since it exemptsa

modeller from worrying about an enabled transition of interest mistakenly becoming disabled.

144

EF1

EF2

S1

S2

F1

F2

ES1

ES2

t1: smoke
ê s on

{̂siren on,
lights on}

t5: e s on
t6: e s of f
{̂siren of f,
lights of f}

{̂siren on,
t7: e f on

lights on,
valve open}

t8: e f of f
{̂siren of f,

valve close}
lights of f

AlarmS ystem

SmokeDetector EmergencyFire

ê s of f

FireDetector

ê f on

EmergencySmoke

ê f of f

t2: reset

t3: heat

t4: reset

Figure 5.4: A fire alarm system.

Example 31 Figure 5.4 shows a model of a fire alarm system. The system performs two tasks:

(i) when it detects smoke, it turns on the emergency lights and the danger sirens; and (ii) when

it detects excessive heat, in addition to the actions in (i),it opens the valves of the extinguish-

ing fountains. The model consists of four Or control states.Control statesSmokeDetectorand

FireDetectormodel the interaction of the system with the smoke and fire detection devices, re-

spectively. Control statesEmergencySmokeand EmergencyFirecontrol the operation of the

emergency devices. The environmental input eventssmokeand heatspecify the detection of

smoke and excess heat. The output eventssirenon, lights on, andvalve openturn on the danger

sirens on, turn on the emergency lights, and open the valves of the extinguishing fountains, re-

spectively. The output eventssirenoff, lights off, andvalve closedo the opposites. The internal

eventse s on (emergency smoke on) ande f on (emergency fire on) activate the emergency op-

erations of theEmergencySmokeandEmergencyFire, respectively. The internal eventse s off

ande f off do the opposites upon receivingreset.

When the model resides in its default control states,{S1,F1,ES1,EF1}, and both environmen-

tal input eventssmokeandheatare present, if theSingle concurrency semantics and thePresent

In Next Small Step event lifeline semantics are chosen, then only the following two big steps

carry out the intended behaviour of the system (i.e., turning on the danger sirens and the flashing

lights, and opening the extinguishing valves):〈t1, t5, t3, t7〉 and 〈t3, t7, t1, t5〉.1 Additionally, the

model can create an incorrect big step,〈t3, t1, t5〉, in which transitiont7, which opens the extin-

guishing valves, is not executed becausee f on persists only one small step and is absent after

t1 is executed. The last possible big step,〈t1, t7, t3〉, although it does not execute transitiont5,

1The system behaves correctly even if the output events sirenon and lightson are generated more than once.

145

luckily behaves correctly because gen(t5) ⊂ gen(t7). This semantics, which is cancelling, would

have been a suitable semantics only ifsmokeandheatcould not be received together.

If theMany concurrency semantics is chosen instead of theSingle concurrency semantics, the

resulting BSML semantics is non-cancelling. The only possible big step would be〈{t1, t3}, {t5, t7}〉,

which carries out the intended behaviour of the system.

Definition 5.1 A BSML semantics isnon-cancellingif for any BSML model, M,

∀T ∈ bigsteps(M) · ∀i (1 ≤ i < T.length) · ∀t · executable(t,T i.s)⇒

(t ∈ T i .τ) ∨ (f ireable(t,T i.s′)⇒ priority ready(t,T i.s′)) ∨ (∃t′ ∈ T i.τ · con f lict(t, t′)),

where
con f lict(t, t′) ≡ [src(t) ∈ exited(t′) ∨ src(t) ∈ entered(t′)] ∨

[dest(t) ∈ exited(t′) ∨ dest(t) ∈ entered(t′)].

The above predicate requires that if a transition, t, is executable in the source snapshot of a small

step, Ti, (i.e., it is in a potential small step at Ti .s): it is either taken in Ti .τ (the first disjunct), or

if it is still fireable in s′, it is also priority-ready in s′ (the second disjunct), or there is a transition

t′ ∈ T i .τ that cannot possibly be taken together with t (the third disjunct).

Two explanations about Definition 5.1 are in order.

First, the second disjunct, i.e., “f ireable(t,T i.s′) ⇒ priority ready(t,T i.s′)”, cannot be re-

placed with “executable(t,T i.s′)”. This is because if an executable transition,t, in a big step

becomes unfireable, that transition is not of interest in that big step any more. Therefore,

the second disjunct requires only a transition to remain executable if it is still fireable. (Note

that if both f ireable(t,T i.s′) and priority ready(t,T i.s′) are true, according to predicate 5.3,

on page 142,executable(t,T i.s′) is also true. Thus, the second disjunct can be replaced with

“ f ireable(t,T i.s′)⇒ executable(t,T i .s′)”.)

Second, the third disjunct recognizes the case that an executable transition,t, cannot be taken

together with a transition,t′ in the same small step. Such at′ either enters, exits, or both enters

and exits control statesrc(t) or control statedest(t), whereenteredand exited functions are

defined on page 92. In such a case, it is natural to consider theexecutability oft anew. An

example of such at′ is a self transition wheresrc(t′) = dest(t′) = src(t). The execution of such

a t′ could maket disabled, and the third disjunct exemptst to remain enabled after such at′ is

146

E1

E3E2

F1

F2

t1: smoke
ê s on

S1

S2

{̂siren on,
lights on}

t5: (e s on∧ ¬e f on)

t6: e s of f
{̂siren of f,
lights of f}

{̂siren on,
t7: e f on

lights on,
valveopen}

t8: e f of f
{̂siren of f,

valve close}
lights of f

EmergencySmokeDetector FireDetector

ê f on

ê f of f

AlarmSystemImproved

ê s of f
t2: reset

t3: heat

t4: reset

Figure 5.5: An improved fire alarm system, compared to the onein Figure 5.4.

executed. Other examples of such at′ are a transition wheresrc(t) = src(t′), a transition where

src(t) = dest(t′), and a transition wheredest(t) = src(t′). Again,t cannot be taken together with

neither of these transitions, while its source control state is exited, in the first case, its source

control state is entered, in the second case, and its destination control state is entered in the third

case. (In the last case, the source and the destination oft′ are children of two orthogonal control

state, otherwiset could not have been executable in the first place.)

5.2.2 Priority Consistency

In a priority-consistentBSML semantics, higher-priority transitions must be chosen to execute

over lower-priority transitions. The set of big steps of themodel cannot include two big steps,

T andT′, whereT includes transitions that are all of lower or incomparable priority thanT′. A

semantics that is not priority consistent ispriority inconsistent.

Example 32 The model in Figure 5.5 is similar to the model in Figure 5.4 except that control

statesEmergencySmokeandEmergencyFirein Figure 5.4 are represented by only one control

state in Figure 5.5, namely, theEmergencycontrol state. The new model, as opposed to the

model in Figure 5.4, generates at most one instance of each ofthesirenon, lights on, siren off,

and lights off events during a big step, to avoid any damage to the emergencydevices.

When the model resides in its default control states,{S1,F1,E1}, and both environmental input

eventssmokeandheatare present, the intended behaviour of the system is that thedanger sirens

and the flashing lights should be turned on and the extinguishing valves should be opened; i.e.,

t7 should be executed and nott5. Transitiont7 has a higher priority thant5 according to the

147

Negation of Triggers priority semantics because trig(t5) consists ofe s on plus the negation of

trig(t7). If a BSML semantics is chosen that subscribes to theSingle concurrency semantics and

thePresent In Remainder event lifeline semantics, then only the following three bigsteps carry

out the intended behaviour of the system:〈t1, t3, t7〉, 〈t3, t7, t1〉 , 〈t3, t1, t7〉. Additionally, the model

can create an incorrect big step,〈t1, t5, t3〉, in which transitiont7, which opens the extinguishing

valves, is not executed becauset5 is executed beforet3. This semantics is priority inconsistent

becauset7, which has a higher priority thant5, is not included in all big steps.

If eventse f on, e f off, e s on, ande s off are interface events and follow theAsynchronous

Event semantics for interface events, the resulting BSML semantic would be priority consistent.

Two big steps are possible:〈t1, t3〉 and〈t3, t1〉, each of which can be taken non-deterministically.

The execution of the second big step,〈t7〉, carries out the intended behaviour of the system.

Definition 5.2 A semantics ispriority consistentif for any BSML model M,

∀T1,T2 ∈ bigsteps(M) · (T1.b = T2.b)⇒

(
⋃

1≤i1≤T1.lengthT i1
1 .τ) � (

⋃
1≤i2≤T2.lengthT i2

2 .τ),

Where “�” operand, defined in Section 5.1.1, requires that it is not the case that T1 executes a

transition that has a higher priority than a transition in T2 without T2 having such a transition,

and also not vice versa.

A big step may include the execution of the same transition more than once, but it suffices to

consider one representative of them (i.e., no need to use multisets). The relative priority of two

transitions is independent of the number of times they are executed.

5.2.3 Determinacy

In adeterminateBSML semantics, in response to the same environmental input, if two big steps

of a BSML model execute the same (multi) set of transitions indifferent orders, their destination

snapshots areequivalent. An equivalence relation, denoted by “≡”, can be defined with respect

to any subset of the snapshot elements, but it is usually defined over the corresponding snapshot

elements of the transition-based semantic aspects. A BSML semantics that is not determinate is

non-determinate.

148

C1 S1 M1 H1

Hour

mod 24

t4: /hour := (hour+!(c))

Timer

mod 36000

Counter

mod 60

Second Minute

t1: tick/c := (c+ 1) t2: /sec:= (sec+!(c mod 10))

mod 60

t3: /min := (min+!(c mod 600))

Figure 5.6: A timer.

Example 33 The model in Figure 5.6 is a clock that keeps track of the current time by using the

frequency of a timer signaltick, which is received as an environmental input event every 10th of

a second. The variablessec, min, andhourrepresent the second, minute and hour of the current

time, respectively. There are three control states that update these variables, using the number

of times the signaltick is received, which is maintained by variablec. Initially, all variables are

0. The unary operator “!” returns 0 if its operand is a non-zero integer and 1 otherwise. The

binary operator “mod” returns the remainder of the division of the first operand bythe second

one. Every hour, i.e., when signaltick is received 36000 times, variablec is reset to 0.

At the snapshot where the environmental input eventtick is received,c=35999, sec=59,

min=59, andhour=18, the expected behaviour of the system after executing a big step is to reach

the snapshot wherec=0, sec=0, min=0, andhour=19. If the BSML semantics that subscribes

to the Single concurrency semantics, theTake One big-step maximality semantics, theRHS

Small Step assignment memory protocol is chosen, 24 big steps are possible, by permutating the

order of the executiont1, t2, t3, and t4. However, only those big steps that start witht1, such as

〈t1, t2, t3, t4〉, yield the expected behaviour. For example, executing〈t2, t1, t3, t4〉 results inc=0,

sec=59, min=0, andhour=19.

Example 34 Let us consider the model in Fig. 5.6, so that:

t1 : tick/c := ((c+ 1) mod 36001)+ (!(c mod 36000)) and

t4 : hour := (hour+ (c mod 36000)) mod 24

In this new model: first,t1 resetsc to 1, instead of resetting it to 0, and also, whenc is 36000,

instead of whenc is 35999; and second,t4 incrementshour whenc is 36000, instead of when

whenc is 0.

149

In the new model, similar to Example 33, the snapshot where the environmental input event

tick is received,c = 35999, sec= 59, min = 59, and hour= 18 is considered. However, this

time, instead of theRHS Small Step assignment memory protocol, theRHS Big Step assignment

memory protocol is chosen. Again, there are 24 big steps possible, but this time all of them

behave similarly, reaching the snapshot wherec= 36000, sec= 59, min= 59, andhour= 18. In

the next big step, whentick is received, again 24 big steps are possible, all of which reach the

snapshot wherec= 1, sec= 0, min= 0, andhour= 19. Using this determinate semantics, the

model behaves correctly if variablec is initialized with value 1, instead of 0 as in Example 33.

Definition 5.3 A BSML semantics isdeterminateif for any model, M,

∀T1,T2 ∈ bigsteps(M) · [(T1.b = T2.b) ∧ (
⊎

1≤i1≤T1.lengthT i1
1 .τ =

⊎
1≤i2≤T2.lengthT i2

2 .τ)] ⇒

T1.b′ ≡ T2.b′,

where “
⊎

” is the multiset sum operator. Each of the two multiset sum terms collects the transi-

tions of the small steps of one of the two big steps in the predicate. A transition may be executed

more than once, by different small steps of a big step. Determinacy is relevant for two big steps

only if the multisets representing their transitions are the same.

To have determinacy, a BSML must allow onlysingle assignmentmodels.

Definition 5.4 A big step,T, is single assignmentif there are no two transitions in the big step

that assign values to the same variable. Formally,

∀t1, t2 ∈ (
⊎

1≤i≤T1.lengthT i.τ) · ∀a1 ∈ asn(t1) · ∀a2 ∈ asn(t2) · t1) t2⇒ lhs(a1) , lhs(a2),

where “)” is the multiset inequality operator. Note that if t1 and t2 refer to the execution of the

same transition in two different small step, then t1) t2.

A BSML model, M, issingle assignmentif all big steps T∈ bigsteps(M) are single assign-

ment.

A crude condition to guarantee single assignment models is to require that: (i) only one

transition of a model assigns a value to each variable; and (ii) no two transitions with overlap-

ping arenas are executed in different small steps of a big step (i.e., the Take One maximality

semantics), there by ensuring that a transition is not executed more than once in a big step.

150

5.3 Semantic Instantiation for Quality Attributes

In this section, for each of the three semantic quality attributes, all possible combinations of the

semantic options that satisfy the semantic quality attribute are enumerated. (I do not include

transition-aware semantic options because, as was discussed in 4.5, these semantic options con-

volute the role of structural and transition-based semantic aspects.2 Thus, these semantics were

not formalized in Chapter 4.)

Figure 5.7 once again shows the deconstruction of BSML semantics into structural and en-

abledness semantic aspects, but this time with the transition-based and coordinative semantic

aspects distinguished by a “Transition −Based ” and a “Coordinative ” on top of them, respectively.

The transition-aware semantic options are not included in this feature diagram.

In the formalization for the semantic instantiation of the semantic quality attributes, the name

of a semantic option is used as a proposition that specifies all BSML semantics that support the

semantic option. For example, “Present In Next Small Step”, as a proposition, specifies the set

of all BSML semantics that subscribe to the Present InNext Small Step event lifeline semantics.

The fact that only one semantic option of a semantic aspect can be chosen in a BSML semantics

is implicit in the formalization. The only exception is thatin the Priority semantic aspect, the

Negation of Trigger semantics option can be chosen together with one of the Scope-Child or the

Scope-Parent semantic options.

The logical connectives, such as conjunction, “∧”, are used to create a predicate that specifies

a set of BSML semantics. For example, the predicate “Present In Next Small Step∧Take One”

specifies all BSML semantics that subscribe to the Present In Next Small Step event lifeline

semanticsand the Take One big-step maximality semantics. The negation of a proposition has

the usual meaning: prefixing the name of a semantic option is apredicate that specifies the set

of all BSML semantics that donot subscribe to that semantic option. For example, the predicate

“¬Take One ⇒ Source/Destination Orthogonal” specifies all BSML semantics that each, if

it does not subscribe to the Take One big-step maximality semantics, then it subscribes to the

Source/Destination Orthogonal small-step consistency semantics.

If a BSML does not support the related syntax for the corresponding semantic option of

a proposition, the semantics of that BSML is not included in the set of BSML semantics that

2Note that the difference between the term “transition-based” semantic aspects (cf., the discussion on page 138)
and the term “transition-aware” semantic options (cf., thediscussion on page 110).

151

Event Options

B
S

M
L

S
em

an
tic

s

Event Options

Legend

"Exclusive Or" Branch...
... "And" Branch

"Optional" Feature

Event Options

External Events

External Output
Interface Events

External InputEvent Lifeline

Weak Synchronous Event

Asynchronous Event

RHS Big Step

RHS Small Step

GC Big Step

GC Combo Step

GC Weak Synchronous Variable

GC Asynchronous Variable

RHS Combo Step

RHS Weak Synchronous Variable

RHS Asynchronous Variable

Enabledness Memory

(Internal) Events

Source/Destination Orthogonal

Small-Step Consistency

Big-Step Maximality

Assignment Memory

Interface Variables

(Internal) Variables

Concurrency and
Consistency

Events

Events

Concurrency
as Environmental

ArenaOrthogonal

Many

Next Combo Step

Remainder

Present in

Present in

Present in

(Internal) Variables

Next Small Step

Generated Events

Generated Events
Last Small Step

Single

Preemptive

Non-Preemptive

Syntactic

Take One

Take Many

Received Events

Input Events
Syntactic

Hybrid Input
Events

Syntactic
Output Events

Last Combo Step

Hybrid Output
Events

GC Small Step

Preemption

Order of Small Steps

Negation of
Triggers

Priority

Combo Take Many

Combo Syntactic

Combo Take One

Dataflow

None

Combo-Step Maximality

Section 4.4

Section 4.4

Section 4.4

Section 4.4

Section 4.5.2

Section 4.5.2

Section 4.5.2

Section 4.5.2

in GC – Section 4.5.3

Protocol – Section 4.5.4

in RHS – Section 4.5.4

in RHS – Section 4.5.4

Section 4.5.5

Section 4.4

– Section 4.5.6

Explicit Ordering

Coordinative

Transition −Based

Transition −Based

Transition −Based

Coordinative

Coordinative

Protocol – Section 4.5.3

Scope-Parent

Scope-Child

Section 4.5.1

in GC – Section 4.5.3
Interface Variables

Figure 5.7: Solid boxes and rounded boxes are structural andenabledness semantic aspects,
respectively. A transition-based and a coordinative enabledness semantic aspect are shown by a
“Transition −Based ” and a “Coordinative ” on top of them, respectively.

152

the proposition represents. For example, proposition “Present In Next Small Step” does not

include the semantics of a BSML that does not support theEvents syntax. The syntactic fea-

ture of BSMLs were presented in Chapter 2, on page 21. Using a negation prefix before a

syntactic feature specifies the set of all BSMLs that do not support that syntax. For example,

“¬Event Triggers” specifies the set of all BSML semantics that do not support event triggers in

transitions.

As specified in the dependencies in Figure 3.3, on page 34, thechoice of a semantic option

of a semantic aspect for a language could depend on the syntactic features used in the language.

For example, according to the first dependency in Figure 3.3,i.e., “Events⇔ Event Lifeline”,

the semantic options of theEvent Lifeline semantic aspect can be chosen in a language only if

theEventssyntactic feature is also chosen, and vice versa. All of the dependencies in Figure 3.3

are implicitly conjoined with any predicate specified in this section. In this section, the syntactic

features are used only in a negated form and only to preclude their corresponding semantic

aspects from a predicate and not to enforce a well-formedness criterion.

To avoid long predicates, if neither the name of any of the semantic options of a semantic

aspect nor the name of the corresponding syntactic feature of the semantic aspect in the negated

form are used in a predicate, the predicate admits any BSML semantics that satisfies the explicit

constraints of the predicate, and additionally, (i) eithersubscribes to one of the semantic options

of the semantic aspect, or (ii) does not support the corresponding syntactic feature of the semantic

aspect. As an example, the predicate “Present In Next Small Step ∧ Take One” refers to all

BSML semantics that each subscribes to the Present In Next Small Step event lifeline semantics

and the TakeOne big-step maximality semantics, and, for example, to eitherone of the semantic

options of theEnabledness Memory Protocol semantic aspect, or provide no syntax for GC in

transitions.

Next, for each of the semantic quality attributes, initially, the semantic specification of all

BSMLs that subscribe to it are presented, without considering the role of external and interface

events and variables. Each of these specifications is then extended by considering the role of

external and interface events and variables.

5.3.1 Non-Cancelling Semantics

Recall from Definition 5.1 that in a non-cancelling BSML semantics, an executable transition,t,

does not become disabled or low-priority, unless it is takenor has conflict with another transition,

153

t′, in the immediate small step. Formally, a BSML semantics is non-cancelling if for any BSML

model,M,

∀T ∈ bigsteps(M) · ∀i (1 ≤ i < T.length) · ∀t · executable(t,T i.s)⇒

(t ∈ T i .τ) ∨ (f ireable(t,T i.s′)⇒ priority ready(t,T i.s′)) ∨ (∃t′ ∈ T i.τ · con f lict(t, t′)).

The first disjunct in the above predicate states that such at is taken by the immediate small step.

The challenge, however, is to achieve a non-cancelling BSMLsemantics when dealing with the

cases thatt is not taken by the small step, for example, because of non-determinism. In these

cases, at least one of the two remaining disjuncts in the above predicate must be true to achieve

a non-cancelling semantics.

This section presents necessary and sufficient constraints over the choices of the semantic

options of a BSML that guarantee that if the first disjunct above is not true for an executable

transition, at least one of the other two disjuncts is true. These constraints are organized into

two sets. The first set corresponds to the BSML semantics thatachieve a non-cancelling BSML

semantics because the execution of a transitiont′ cannot possibly make an executable transition

t disabled or low priority. The second set corresponds to the BSML semantics that achieve a

non-cancelling BSML semantics by forcing such at andt′ to be executed together in the same

small step, unless there is a conflict between them. The first and the second sets of constraints

above correspond to the second and the third disjuncts in thepredicate above, respectively.

Next, a formal specification of these two sets of constraintsare presented. Initially, for the

sake of clarity, the roles of the external and interface events and variables are not considered.

For BSMLs that do not support external and interface events and variables, the disjunction of

the following two predicates determine the class of non-cancelling BSML semantics:

NSteady ≡ Big Semantics∨ComboSemantics,

NMaximizer ≡ Many ∧

[¬(Take One ∨ Combo Take One)⇒ Source/Destination Orthogonal] ∧

[(¬(Take One ∨ Combo Take One) ∧ No Priority)⇒ Non-Preemptive],

154

where,

Big Semantics ≡ [(GC Big Step ∨ ¬Guard Conditions) ∧ ¬Event Triggers] ∧

[(Take One ∨ No Priority) ∧ ¬Dataflow], and

ComboSemantics ≡ [(¬GC Small Step ∨ ¬Guard Conditions) ∧

(P.I. Next Combo Step ∨ ¬Event Triggers)] ∧

[(Combo Take One ∨ No Priority)].

For the sake of brevity, instead of prefix “Present In”, “P.I.” is used in the formalization above,

and in the rest of this chapter. These predicates do not referto the semantic options of the

Assignment Memory Protocol semantic aspect because these semantic options, as will be shown

later in the section, do not have any effect on determining a BSML semantics as non-cancelling.

PredicatesNSteadyandNMaximizer correspond to the second and third disjunct in Definition 5.1,

respectively. PredicateNSteady ensures that if an executable transition is not taken in the immedi-

ate small step, it does not become unready or low priority unless it also becomes unfireable, as

required in the second disjunct. PredicateBig Semanticscorresponds to the semantics in which

the statuses of events and the values of variables remain thesame, thus an executable transition

remains ready and high priority. PredicateComboSemanticscorresponds to similar semantics,

but in the context of combo steps. PredicatesBig SemanticsandComboSemanticscharacterize

mainly disjoint sets of BSML semantics. PredicateNMaximizer specifies the necessary constraints

on the choices of the semantic options of theConcurrency and Consistency semantic aspects

to ensure that as many executable transitions asnecessaryare taken together in a small step: The

second and third conjuncts of theNMaximizer predicate only require the more inclusive semantic

options of the small-step consistency and preemption semantic aspects, respectively, if not re-

quiring these semantic options can leave an executable transition unready or low priority, but

still fireable at the destination snapshot of the small step.PredicateNMaximizer does not enforce a

constraint over the choices of the semantic options for the small-step consistency or preemption

semantic aspect if the second disjunct of Definition 5.1 is guaranteed to be true. These will be

discussed in more detail in the examples and the proofs laterin the section.

The two examples below show how the above predicates are evaluated for a BSML. If a

BSML semantics subscribes to the GC Small Step enabledness memory protocol, the P.I. Next

Combo Step event lifeline semantics, the Take One big-step maximality semantics, the Combo

Take One combo-step maximality semantics, and the Many concurrency semantics, then predi-

155

cateNMaximizer will be true, and thus the BSML has a non-cancelling semantics. Note that only

the Many semantic option is necessary to achieve a non-cancelling BSML semantics, according

to theNMaximizer predicate, but not the Source/Destination Orthogonal or the Non-Preemptive

semantic options. The reason that these semantic options are not necessary is that the Combo

Take One combo-step maximality semantics ensures that any executable transition that is left

out of the small step, becomes unfireable at the destination of small step, satisfying the second

disjunct of Definition 5.1. An example of a BSML semantics that is non-cancelling through sat-

isfying the predicateNSteady is a BSML semantics that subscribes to the GC Big Step enabledness

memory protocol, the Take Many big-step maximality semantics, and the No Priority seman-

tics, and does not support events in triggers of transitions, i.e., “¬Event Triggers” is true. In this

semantics, an executable transition never becomes unreadyor low priority.

Example 35 Figure 5.8 shows examples of how if the constituent semanticoptions of a BSML

violate predicateNSteady ∨ NMaximizer , a cancelling behaviour results. For all three models in

Figure 5.8, they reside in their default control states; environmental input eventi is present in the

second and the third model; andx=y=0 in the third model.

In the BSML model in Figure 5.8(a), if the BSML is a non-combo–step semantics that sub-

scribes to theSingle concurrency semantics, theTake Many maximality semantics, and the

Scope-Parent priority semantics, transitiont1 andt3 are initially executable, but if the first small

step executest2, t4 becomes executable andt1 and t3 become unexecutable, because pri(t4) >

pri(t1) and pri(t4) > pri(t3), which is a cancelling behaviour. The constituent semanticoptions

of the BSML do not satisfyNSteady∨ NMaximizer . First, Big Semantics and ComboSemantics are

both false because their second conjuncts are false. Second, Maxmizer is false because its first

conjunct, i.e., “Many”, is false.

Let us adjust the BSML model in Figure 5.8(a) so that:

t1 : /v := 1,

t2 : [new(v) = 1], and

t3 : /v := 2,

with transitiont4 being removed from the model; the BSML subscribes to theDataflow semantic

option. If the same semantic options as above, plus theGC Big Step enabledness memory pro-

tocol are considered, when the model resides in its default control states, big step〈t1, t3〉 is one

of the possible big steps. In this big step, after the execution of t1, t2 is executable, but oncet3 is

156

C

A21

A31 A32

t2: i/x := 1

C11 C12

C1

C21

C2

C22

t1: [x < 1]

/y := 1

t2: îa

t1: ¬âb

B21 B22

B11 B12

B

B2

B1

(b) (c)

A

A1

A12

A2

A22

A3

A11

t4

(a)

t1

t2

t3

Figure 5.8: Examples of cancelling behaviour.

executed,t2 becomes disabled, which is a cancelling behaviour. Again,NSteady∨NMaximizer is not

true for this BSML because of the same reasons as above.

In the BSML model in Figure 5.8(b), if the BSML subscribes to theSingle concurrency se-

mantics, theP.I. Remainder event lifeline semantics, and theTake One maximality semantics,

transition t1 is initially executable, but if the first small step executest2, t1 becomes unready,

which is a cancelling behaviour that is confirmed by the fact that predicateNSteady∨ NMaximizer

is false. However, if theP.I. Next Combo Step event lifeline semantics together with theCombo

Take One combo-maximality semantics are chosen instead of theP.I. Remainder event lifeline

semantics, a non-cancelling semantics is achieved: Two bigsteps,〈Lt1, t2M〉 and 〈Lt2, t1M〉, are

possible, where the scope of a combo step is identified by a surrounding “L M”. This latter BSML

semantics is non-cancelling becauseNSteady is true through ComboSemantics being true.

In the model in Figure 5.8(c), if theSingle concurrency semantics, theGC Small Step en-

abledness memory protocol, and theTake One big-step maximality semantics are chosen, tran-

sition t1 is initially executable, but executingt2 makest1 unready. If theGC Next Combo Step

enabledness memory protocol together with theCombo Take One combo-maximality semantics

are chosen instead of theGC Small Step enabledness memory protocol, a non-cancelling se-

mantics is achieved:t1 and t2 are executed in the same combo step. The latter semantics is

non-cancelling because its semantic options satisfy predicate ComboSemantics.

157

The Role of External Communication

The role of theExternal Input Events semantic sub-aspect in determining a BSML semantics

as non-cancelling is similar to the role of theEvent Lifeline semantic aspect. As shown in the

feature diagram in Figure 5.7, anExternal Input Events semantics is instantiated by an option

that determines which events are considered as input eventsand by an option belonging to the

“Event Options” that determines the extent that an environmental input event persists in a big

step. It is only the second option, which belongs to the “Event Options”, that has a role in

determining a BSML semantics as non-cancelling or not. The first option, by itself, does not

have any effect on determining the enabledness of a transition: It only specifies which events in

the trigger of a transition should be considered as environmental input events, in a given big step.

As such, to extend the class of non-cancelling BSML semantics to include external input events,

it suffices to adjust predicatesBig SemanticsandComboSemanticsby conjoining them with the

following two predicates, respectively:

XBig Semantics ≡ (X.P.I. Remainder ∨ ¬Environmental Input Events), and

XComboSemantics ≡ (¬X.P.I. Small Step ∨ ¬Environmental Input Events),

where the prefix “X” for semantic options above refers to the event lifeline semantic options of

external input events.

In the X.P.I. Remainder semantic option, as opposed to the P.I. Remainder semantic option,

an environmental event is either present or absent throughout a big step. Thus, while the P.I.

Remainder semantic option cannot be used in theNSteadypredicate, the X.P.I. Remainder semantic

option can be used.

The Role of Interface Communication

The roles of theInterface Events and theInterface Variables in GC semantic aspects in deter-

mining a BSML semantics as non-cancelling are similar to theEvent Lifeline and theEnabled-

ness Memory Protocols semantic aspects, respectively. A major difference is that interface

events and variables do not have combo-step semantic options. As such, to extend the class of

non-cancelling BSML semantics to include interface eventsand interface variables, it suffices to

158

adjust predicateBig Semanticsby conjoining it with the following predicate:

IBig Semantics ≡ [Asynchronous Event ∨ ¬Interface Events] ∧

[GC Asynchronous Variable ∨ ¬Interface Variables in GC].

Similar to theAssignment Memory Protocol semantic aspect, theInterface Variables in

RHS semantic aspect does not have any role in determining a BSML semantics as non-cancelling.

Proofs

Next, after presenting a few lemmas, a proposition about thecorrectness of the above character-

ization of the non-cancelling BSML semantics is presented.

Lemma 5.1 The choice of a semantic option for each of theExternal Output Events and the

Assignment Memory Protocol semantic aspects of a BSML has no effect in determining it as

non-cancelling.

Proof Idea. These semantic aspects are not relevant because they do not affect the readiness,

fireability, or the priority of a transition. TheExternal Output Events determines the lifeline of

external output events, and not the triggering events of thetransitions. TheAssignment Memory

Protocol specifies the values of variables on the RHS of an assignment,but not the values of the

variables used in the GC of a transition. �

Lemma 5.2 If in a BSML semantics an executable transition in a snapshotcan become unready

or low-priority but fireable after the execution of the immediate small step, requiring predicate

Maximizer is the weakest constraint over the choices of itsConcurrency and Consistency se-

mantic options to guarantee a non-cancelling BSML semantics.

Proof Idea. TheNMaximizer predicate is copied below for convenience,

NMaximizer ≡ Many ∧

[¬(Take One ∨ Combo Take One)⇒ Source/Destination Orthogonal] ∧

[(¬(Take One ∨ Combo Take One) ∧ No Priority)⇒ Non-Preemptive].

159

To prove this claim, two points should be shown. First, requiring predicateNMaximizer can

modify a cancelling BSML semantics to a non-cancelling BSMLsemantics. And second, none

of the constraints in predicateNMaximizer can be relaxed.

To prove the first part of the claim, it will be shown that givena cancelling behaviour in a

BSML model, if the concurrency and consistency semantic options of the BSML are changed so

that they satisfy theNMaximizer predicate, then a cancelling behaviour does not arise. According

to Definition 5.1, a cancelling behaviour arises in a model when there is an executable transition,

t, at a snapshot and the effect of taking the immediate small step that does not includet makes

t unready or low-priority, but still fireable, althought does not have any conflict with any of the

transitions in the small step. To avoid such a cancelling behaviour, predicateNMaximizer , through

predicate Many, its first conjunct, tries to force such at to be taken by the immediate small

step. If t is included in the small step, a non-cancelling behaviour isachieved, according to the

first disjunct in Definition 5.1. However, the Many concurrency semantics in a BSML does not

guarantee that such at will be taken by the small step. If that is the case, however, then the second

and the third conjuncts of theNMaximizer predicate ensure that the third disjunct of Definition 5.1

is true; i.e., the immediate small step includes a transition, t′, such thatcon f lict(t, t′) is true.

If both the Source/Destination Orthogonal and Non-Preemptive semantic options are cho-

sen, such at′ is guaranteed to exist: If such at′ does not exist, thent could have been taken by the

small step, which is a contradiction. The antecedents of thesecond and the third conjuncts, how-

ever, recognize the cases that requiring the Source/DestinationOrthogonal and Non-Preemptive

semantic options are not necessary to achieve a non-cancelling BSML semantics. If the an-

tecedent of the second conjunct is false, it means that either the Combo Take One combo-step

maximality semantics, the Take One big-step maximality semantics, or both, have been chosen

in a BSML semantics, in which case even ift is left out of the small step, it becomes unfireable,

making the second disjunct of Definition 5.1 true, through its antecedent being false. Similarly, if

the antecedent of the third conjunct is false,t will become unfireable. The antecedent of the third

conjunct of theNMaximizer predicate has an extra conjunct compared to the antecedent of the sec-

ond conjunct that does not require the Non-Preemptive semantic option if one of the hierarchical

semantic options are chosen: If a hierarchical priority semantics is chosen, an interrupted and

an interrupt transition need not be taken together through the Non-Preemptive semantic option

because one has a higher priority than the other.

So far, the first part of the proof has been presented: it has been shown that the constraints

of the NMaximizer predicate together aresufficient to ensure a non-cancelling BSML semantics.

160

However, it should also be shown that these constraints arenecessary: A concurrency and con-

sistency semantic option is not unnecessarily required to be chosen by theNMaximizer predicate.

To show this, it is enough to inspect the role that other semantic aspects could have in relaxing

the NMaximizer predicate. The transition-based, enabledness semantic aspects need not be con-

sidered because they correspond to the readiness of a transition, which is not relevant in this

claim (the lemma already assumes that a transition could become disabled). The coordinative

enabled semantic aspects are of interest so far as they have an effect in makingt unfireable in the

destination of the immediate small step, to make the second disjunct of Definition 5.1 true. The

NMaximizer predicate already considers the roles of theBig-Step Maximality and theComb-Step

Maximality semantic aspects. The semantic options of theOrder of Small Step semantic aspect

order the execution of the transition of a model, however, none of them can make an executable

transition unfireable unless it is executed in the small step. Thus, theOrder of Small Step cannot

relax any of the constraints of the predicateNMaximizer . Lastly, the Negation of Triggers priority

semantics is not relevant in theNMaximizer predicate since its choice affects the readiness of a

transition, which is not relevant in this claim. Thus, theNMaximizer predicate is not only a suffi-

cient condition for turning a cancelling BSML semantics, ascharacterized in the lemma, into a

non-cancelling one, but also is a necessary condition. �

Proposition 5.3 A BSML semantics is non-cancelling if and only if its constituent semantic op-

tions satisfy the predicateN ≡ N′Steady∨ NMaximizer , where,

N′Steady ≡ (Big Semantics∧ XBig Semantics∧ IBig Semantics) ∨

(ComboSemantics∧ XComboSemantics).

Proof Idea. To prove this claim, it should be shown that predicateN characterizes all non-

cancelling BSML semantics and only them. First, it will be shown that any BSML semantics

whose semantic options satisfy predicateN is a non-cancelling BSML semantics. And second,

it will be shown that the semantic options of any non-cancelling BSML semantics satisfies pred-

icateN.

If the semantic options of a BSML satisfy predicateN, then eitherN′Steady, NMaximizer , or both

are true. IfN′Steady is true, then either the (Big Semantics∧ XBig Semantics∧ IBig Semantics)

predicate or the (ComboSemantics∧ XComboSemantics) predicate is true,3 which means that

3If the BSML neither supports events nor variables syntax, then both predicates can be true.

161

an executable transition remains priority-ready during the current big step or combo step, re-

spectively. Thus, a non-cancelling BSML semantics is achieved. This is because if the first

predicate is true, the statuses of events and the values of variables remain the same throughout

the big step, thus the transition remains ready; since the No Priority semantics is chosen, then

the transition is priority-ready. The Dataflow semantic option should not be chosen, because a

ready transition can become unready if a variable is assigned more than once during a big step,

as described in Example 35, on page 156, where the original model in the example is changed

to use thenew operator. Similarly, if the second predicate is chosen, a non-cancelling BSML

semantics is achieved. If predicateNMaximizer is true, regardless of whetherN′Steady is true or not,

a non-cancelling BSML semantics is achieved, according to Lemma 5.2. If bothN′Steady and

NMaximizer are true, then the BSML is non-cancelling because each predicate separately attempts

to satisfy one of the disjuncts of Definition 5.1, and these attempts never cancel each other.

Conversely, if a BSML semantics is non-cancelling, then it satisfies predicateN. Two cases

are considered based on whether the Many concurrency semantics is chosen or not.

If the BSML does not support the Many concurrency semantics, i.e., it subscribes to the

Single concurrency semantics, and an executable transition does not become unready or low

priority, then predicateN′Steady must be true. IfN′Steady is not true, it is always possible to create a

counter example model with a cancelling behaviour, similarto the ones in Example 35: A model

can be constructed in which the guard condition or the event trigger of an executable transition,

t, is forced to become false after the execution of the immediate small step, which executes a

single transition because of the Single concurrency semantics.

If the BSML supports the Many concurrency semantics, and would have not been a non-

cancelling BSML semantics if it would have supported the Single concurrency semantics, then

the original BSML semantics must satisfy predicateNMaximizer , according to Lemma 5.2. Lastly,

if the BSML would have been a non-cancelling BSML semantics even if it would have supported

the Single concurrency semantics, then the original BSML semantics should also satisfy predi-

cateN′Steady, as described in the previous paragraph. �

162

5.3.2 Priority-Consistent Semantics

First, the BSML semantics that subscribe to either the Scope-Parent or the Scope-Child semantic

options are considered, followed by the ones that subscribeto the Negation of Triggers. Lastly,

the BSML semantics that subscribe to both a hierarchical semantic option and the Negation of

Triggers semantic option are considered.

Hierarchical Priority Semantics

Any priority-consistent BSML semantics according to one ofthe hierarchical semantic options,

i.e., the Scope-Parent or the Scope-Child semantic option, must subscribe to the Take Onemax-

imality semantics. Otherwise, no constraints over the choice of the other semantic options can

result in a priority-consistent behaviour. For example, when the Take Many maximality seman-

tics and the Scope-Parent priority semantics are chosen together, it is not possible to choose the

transitions of a current small step in such a way that a model always reaches a control state that is

the source of a transition with the highest scope. Formally,the following predicate should hold,

PHierarchical ≡ Take One.

Example 36 Figure 5.9(a) shows a model that demonstrates an example of how the violation of

predicatePHierarchical results in a priority-inconsistent behaviour. The model isconsidered when it

resides in its default control states and environmental input eventi is present. If a BSML seman-

tics that subscribes to theMany concurrency semantics, theTake Many maximality semantics

(which violatesPHierarchical), the Scope-Parent priority semantics, and theGC Small Step en-

abledness memory protocol is considered, then two big steps, 〈{t1, t4}, t2, t6〉 and 〈{t1, t4}, t3, t5〉

are possible. The former big step includes transitiont6, which has a higher priority than transi-

tion t5 in the latter big step.

It is possible to create a similar model that neither uses events nor uses variables but exhibits

a similar priority-inconsistent behaviour. The model in Figure 5.9(b) shows a BSML model that

has a priority-inconsistent behaviour, when it resides in control stateB1, and a BSML semantics

is chosen that subscribes to theTake Many maximality semantics and theScope-Parent. Two

big steps are possible:〈t1, t2, t3〉 and〈t1, t2, t4〉, with the latter big step includingt4, which has a

higher priority than transitiont3 in the former big step.

163

A12

A1

A11

B1

B3

t2

t1

t3B4

B

CB2
t4

A2

A21 A22

t5: [x = 2]

A

A3
t6: [x = 1]

t4: i [x = 0]

t1: i [x = 0]

(a) (b)

t2: [x = 0]
/x := 1

t3: [x = 0]
/x := 2

Figure 5.9: Examples of priority-inconsistent behaviour for the Scope-Parent or Scope-Child
priority semantics.

Proposition 5.4 A BSML semantics that subscribes to the priority semanticsScope-Parent or

Scope-Child, but not theNegation of Triggers, is priority consistent if and only if it satisfies

predicatePHierarchical .

Proof Idea. If a BSML semantics subscribes to the Take One big-step maximality seman-

tics, a priority-inconsistent behaviour cannot arise whenthe Scope-Parent or the Scope-Child

semantic option is chosen. This is because, by virtue of allowing eachOr child of anAndcon-

trol state to take maximum one transition during a big step, the possibility of a model to arrive

at different configurations to have the choice to execute high or low-priority transitions in a

priority-inconsistent manner is precluded.

Conversely, if a BSML semantics is priority consistent, then it should subscribe to the Take

One big-step maximality semantics. Otherwise, if the BSML semantics subscribes to the Take

Many or the Syntactic semantic option, it is always possible to create a BSML modelsimilar to

the one in Figure 5.9(b) that has a priority-inconsistent behaviour. �

Negation of Triggers Priority Semantics

None of the transition-awareEvent Lifeline semantics for internal events, i.e., none of the event

lifeline semantics for internal events that are consideredin the scope of the formalization in

164

Chapter 4, support a priority-consistent behaviour according to the Negation of Triggers priority

semantics. Thus, the following predicate is needed to guarantee a priority-consistent behaviour,

PNegation ≡ ¬Negated Events,

where “¬Negated Events” predicate refers to all BSML semantics that do not support asyntax

for negated events in the trigger of a transition, which according the constraint 5 in Figure 3.3,

on page 34, refers to all BSML semantics that do not support the Negation of Events priority

semantics.

Variables have no role in determining the class of priority-consistent BSML semantics above,

because, unlike events that are used in the Negation of Triggers priority semantics, variables are

used only to determine the readiness of a transition.

Example 37 Figure 5.10 shows an example of how the violation of predicatePNegation results in

a priority-inconsistent behaviour according to theNegation of Triggers priority semantics. The

model in Figure 5.10 is considered when it resides in its default control states and the environ-

mental input event i is present. If a BSML semantics that subscribes to theSingle concurrency

semantics, theNegation of Triggers priority semantics, and theP.I. Remainder event lifeline

semantics, which violatesPNegation, is considered, then four big steps are possible:〈t1, t2, t4〉 ,

〈t2, t1, t4〉 〈t1, t4, t2〉, and〈t2, t3, t1〉. However, this is a priority-inconsistent behaviour because the

last big step executes transitiont3, although pri(t3) < pri(t4). Similar priority-inconsistent be-

haviour arise when theP.I. Next Small Step semantic option is chosen. Again, four big steps

are possible:〈t1, t2, t3〉 , 〈t2, t3, t1〉, 〈t2, t1, t4〉, and 〈t1, t4, t2〉. And again, a priority-inconsistent

behaviour arises: The first two big steps include the transition t3 whereas the last two big steps

include the transitiont4, while pri(t3)< pri(t4).

If the Many concurrency semantics is chosen, instead of theSingle concurrency seman-

tics, for both theP.I. Remainder and theP.I. Next Small Step event lifeline semantics, the only

possible big step would have been, T1 = 〈{t1, t2}, t4〉, which is a priority-consistent behaviour.

However, in general, theMany concurrency semantics cannot resolve this priority inconsistency

problem. For example, if transitiont′2, such that src(t′2) = A21, dest(t′2) = A22, and gen(t′2) = c,

is added to the model, an additional big step, T2 = 〈{t1, t′2}, t3〉, is possible, which results in a

priority-inconsistent behaviour: T2 includest3 instead oft4 in T1, while pri(t3)< pri(t4).

Similar priority-inconsistent behaviour arise when theP.I. Next Combo Step semantic op-

165

t1: i â
A12

A1

A11

t2: i b̂
A22

A2

A21

A

A3

A31 A32

t4: a

t3: (¬a∧ b)

Figure 5.10: Examples of priority-inconsistent behaviourfor the Negation of Triggers priority
semantics.

tion is chosen. For example, consider a BSML model similar tothe model in Figure 5.10, except

that it has an extra transitiont′1, such that src(t′1) = A11, dest(t′1) = A12, and gen(t′1) = c. Again,

the model is considered when it resides in its default control states and the environmental input

event i is present. If a BSML semantics that subscribes to theSingle concurrency semantics,

theNegation of Triggers priority semantics, and theP.I. Next Combo Step event lifeline seman-

tics is considered, then four big steps are possible:〈Lt1, t2M, Lt4M〉 , 〈Lt2, t1M, Lt4M〉, 〈Lt′1, t2M, Lt3M〉,

and 〈Lt2, t′1M, Lt3M〉, where the scope of a combo step is identified by a surrounding“ L M”. This

behaviour is priority inconsistent because the last two bigsteps includet3 and the first two big

steps includet4, while pri(t3) < pri(t4). If the Many concurrency semantics is considered in-

stead of theSingle concurrency semantics, then two big steps are possible:〈L{t1, t2}M, Lt4M〉 and

〈L{t′1, t2}M, Lt3M〉, where the former big step includes includest4 instead oft3 in the latter big step,

while pri(t3)< pri(t4).

The Role of External Communication A BSML semantics that supports anExternal Input

Events semantics with the X.P.I. Remainder event lifeline semantics can accommodate for a

priority-consistent behaviour, regardless of the semantic option that determines how an external

event is distinguished from an internal event, as specified in Table 3.4 on page 55. When a

BSML semantics subscribes to the X.P.I. Remainder semantics, an input event that is received

from the environment at the beginning of a big step persists throughout the big step, thus priority

inconsistency according to the Negation of Triggers priority semantics cannot happen. The

166

following predicate characterizes the constraint over thesemantics of the external input event,

PXEvent ≡ X.P.I. Remainder ∨ ¬Negated External Events,

where the “¬Negated External Events” predicate refers to all BSML semantics that do not sup-

port a syntax for negated external events in the trigger of a transition, precluding the possibility

of implementing the Negation of Triggers priority semantics using external events.

Example 38 The model in Figure 5.11 shows a BSML model that uses environmental input

eventsi1, i2, and i3. Transitiont3 has a higher priority than transitiont1 and t5, according to

theNegation of Triggers priority semantics. Next, the behaviour of the model is analyzed when

it resides in its default control states,A11, A21, andA31, andi1, i2, andi3 are present.

If a BSML semantics is used that subscribes to theX.P.I Remainder event lifeline semantics

for external events and theSingle concurrency semantics then the following four big steps are

possible:〈t3, t6〉, 〈t6, t3〉, 〈t4, t6〉, and〈t6, t4〉, which exhibit a priority-consistent behaviour.

If a BSML semantics is used that subscribes to theX.P.I Next Combo Step event lifeline se-

mantics for external events, instead of theX.P.I Remainder semantics, then the following eight big

steps are possible: T1 = 〈Lt3, t6M, Lt1M〉, T2 = 〈Lt6, t3M, Lt1M〉, T3 = 〈Lt3, t6M, Lt2M〉, T4 = 〈Lt6, t3M, Lt2M〉,

T5 = 〈Lt4, t6M, Lt1M〉, T6 = 〈Lt6, t4M, Lt1M〉, T7 = 〈Lt4, t6M, Lt2M〉, and T8 = 〈Lt6, t4M, Lt2M〉. This be-

haviour is priority inconsistent because, for example, T3 ⋗ T5, since pri(t3) > pri(t1).

If a BSML semantics is used that subscribes to theX.P.I Next Combo Step event lifeline se-

mantics for external events, instead of theX.P.I Remainder semantics, and theMany concurrency

semantics, instead of theSingle concurrency semantics, then the following four big steps are pos-

sible: T1 = 〈L{t3, t6}M, Lt1M〉, T2 = 〈L{t3, t6}M, Lt2M〉, T3 = 〈L{t4, t6}M, Lt1M〉, and T4 = 〈L{t4, t6}M, Lt2M〉,

which exhibit a priority-inconsistent behaviour, because, T2 ⋗ T3, since pri(t3) > pri(t1).

The Role of Interface Communication A BSML semantics that supports anInterface Events

semantics with the AsynchronousEvent event lifeline semantics can accommodate for a priority-

consistent behaviour: A generated interface event in the current big step will be only present in

the next big step right from the beginning, similar to the X.P.I. Remainder event lifeline semantics

for external events. The following predicate states this semantic characterization,

PIEvent ≡ Asynchronous Event ∨ ¬Negated Interface Events,

167

A

A22

A32

A3

A31

t5: ¬i1

t6: i2

A11 A12

t1: ¬i1

A1

A2

A21

t2: ¬i3

t3: i1

t4: i2

Figure 5.11: Priority consistency and the semantics of external events.

where the “¬Negated Interface Events” predicate refers to all BSML semantics that do not sup-

port a syntax for negated interface events in the trigger of atransition, precluding the possibility

of implementing the Negation of Triggers priority semantics using interface events.

The Interface Variables in GC semantic aspect, similar to theEnabledness Memory Pro-

tocols semantic aspect, is not relevant for the priority-consistency semantics, because, unlike

events, interface variables do not correspond to a prioritysemantics.

Proposition 5.5 A BSML semantics that subscribes to theNegation of Triggers priority seman-

tics, but not to theScope-Parent or theScope-Child priority semantics, is priority consistent if

and only if it satisfiesP′Negation ≡ PNegation∧ PXEvent∧ PIEvent.

Proof Idea. If a BSML semantics satisfies predicateP′Negation, it is priority consistent according

to the Negation of Triggers priority semantics. First, since it does not support internal events,

because ofPNegation, only the roles of external and interface events, represented by predicates

PXEventand PIEvent, respectively, need to be considered. PredicatePXEventcharacterizes

priority-consistent BSML semantics for external events: An environmental input event is either

present throughout a big step or is not present at all. Thus, at a snapshot of a model, either a

lower-priority transition or a higher-priority transition of a model, but not both, can be included

in different big steps of the model that are initiated from that snapshot. Similarly, predicate

168

PIEventcharacterizes priority-consistent BSML semantics for interface events: An interface

event is either present throughout a big step or is not present at all, precluding the possibility of a

priority-inconsistent behaviour. Finally, the conjunction of the predicatesPNegation, PXEvent, and

PIEventeffectively determines all priority-consistent BSML semantics that use different kinds

of events.

Conversely, if a BSML semantics is priority consistent withrespect to the Negation of Trig-

gers priority semantics, it satisfiesP′Negation. Otherwise, at least one of thePNegation, PXEvent,

andPIEventpredicates does not hold. However, if any of these predicates does not hold, an

example model can be constructed, as shown in Example 37 and Example 38, that has a priority

inconsistent behaviour. Thus,P′Negation holds in a priority consistent semantics. �

Hierarchical and Negation of Triggers Priority Semantics

A BSML semantics might subscribe to both a hierarchical semantic option, i.e., one of the Scope-

Parent or the Scope-Child priority semantics, and the Negation of Triggers priority semantics.

As described in Section 5.1.1, in such a BSML semantics, as described in Section 5.1.1, when the

priority of two transitions can be compared both according to the Negation of Triggers priority

semantics and according to the hierarchical priority semantics, the comparison according to the

Negation of Triggers priority semantics has precedence.

Proposition 5.6 A BSML semantics that subscribes to a hierarchical prioritysemantics together

with theNegation of Triggers priority semantics is priority consistent if and only if it satisfies

P ≡ PHierarchical ∧ P′Negation.

Proof Idea. If a BSML semantics satisfiesPHierarchical andP′Negation, in order for it to be priority

inconsistent, it should be the case that a model specified in this BSML could create two big steps

T1 andT2 such thatT1⋗T2. But that means that there exists at1 executed byT1 and at2 executed

by T2 such thatpri(t1) > pri(t2). However, such at1 andt2 cannot exist. Ift1 andt2 are priority

comparable according to the hierarchical priority semantics, but not the Negation of Triggers

semantics, thent1 should have been executed in the first small step ofT1, or otherwise the Take

One big-step maximality semantics would not have allowed it to be executed (since its scope is

a parent of the transitions in the first small step). But if so,then the first small step ofT2, which

is initiated from the same snapshot as the first small step ofT1, should have includedt1, either

169

instead oft2 or together witht2 (if the concurrency and consistency semantics allows that). In

either case, it cannot be the case thatT1⋗T2: In the former case, both big steps execute the high-

priority transitiont1, while in the latter case,T1 should also includet2, or a similar transition of

the same hierarchical priority, in addition tot1. If t1 andt2 are priority comparable according to

the Negation of Triggers priority semantics, then ift1 could have been taken,t2 could not have

been taken because the trigger oft2 would have been present throughout the big step. Thus, if a

BSML semantics satisfiesPHierarchical ∧ P′Negation, it is priority consistent.

Conversely, if such a BSML semantic is priority consistent,it should also satisfyPHierarchical ∧

P′Negation. If any of the conjunct is not satisfied, sayPHierarchical is not satisfied, a counter-example

model can be constructed that has a priority-inconsistent behaviour according to the hierarchical

priority semantics, as described earlier in the chapter in Example 36. Thus, the BSML semantics,

indeed, satisfiesPHierarchical ∧ P′Negation. �

5.3.3 Determinate Semantics

First, the determinate BSML semantics with respect to variables are identified, followed by the

ones that are determinate with respect to events. Lastly, the BSML semantics that subscribe to

both semantic options are considered.

Determinate with Respect to Variables

A BSML semantics is determinate with respect to variables for single-assignment models if it

either follows the RHS Big Step assignment memory protocol, or follows the Take One big-

step maximality semantics and the Many concurrency semantics, or does not support variable

assignments at all. Formally,

DVariables ≡ [¬Variable Assignments∨ RHS Big Step] ∨

[(RHS Small Step ∨ RHS Combo Step)⇒ (Take One ∧Many)].

Example 39 Figure 5.12 shows an example model of how the violation of predicateDVariables

results in a non-determinate behaviour. The model is considered when it resides in its default

control states. It is meant to do two things: First, it shouldswap the values of integer variables

x and y; and second, it should compute the values of the sum and the difference ofx and y

170

A13

A23

A

A1

A11

A2

A21
t2: /y := x

t1: /x := y

A22
t4: /di f f := x−y

A12
t3: /sun:= x+y

Figure 5.12: Examples of (non-) determinate behaviour withrespect to variables.

according to their initial values at the beginning of the bigstep. If a semantics that subscribes

to theSingle concurrency semantics, theTake Many big-step maximality semantics, and the

RHS Small Step assignment memory protocol, which violatesDVariables, 6 big steps are possible,

with two different outcomes, none of which achieves the intended behaviour. For example, big

step〈t1, t3, t2, t4〉 assigns the value ofy to x but not vice versa, and furthermore,sum= 2 × y

anddiff =0. If theRHS Big Step assignment memory protocol, instead of theRHS Small Step

assignment memory protocol, is chosen, again there are 6 bigsteps possible, all of which achieve

the intended behaviour.

In the model in Example 39, if a BSML that subscribes to the TakeManymaximality seman-

tics, the RHS Small Step assignment memory protocol, and the Many concurrency semantics is

chosen, which violatesDVariables, only big step〈{t1, t2}, {t3, t4}〉 is possible, which exhibits a deter-

minate behaviour but calculates the wrong difference,dif f =y− x, instead ofdif f = x−y. It might

be tempting to replace the consequent of predicateDVariables with only “Many”, but the new con-

sequent does not always result in a determinate behaviour. The next example demonstrates this

problem.

Example 40 The model in Figure 5.13 shows a model of a system that controls the operation of

a chemical plant. The environmental input eventsinc oneand inc two indicate that the amount

of a chemical substance should be incremented by one or two, respectively. If the two events

are received simultaneously, the intended behaviour is to increment the amount of the chemical

substance three units. The model is considered when: it resides in its default control states,

inc = inc 1 = inc 2 = 0, and the environmental input eventsinc oneand inc two are received

simultaneously. The model is single-assignment only if environmental input eventresetcannot

171

A

A12

A31

A2A1

A11

t4: done

A13

t6: reset

A21 A22

t5: start

A3

/inc := inc 1+inc 2

t2: done reset
t8:

process

A31

̂{done, process}

t7:

t1: [inc1 = 0] inc one

t3: [inc 2 = 0] inc two

/{inc 1 := 0, inc 2 := 0}
/inc 2 := 2̂start

/inc1 := 1̂start

Figure 5.13: An example of a non-determinate behaviour.

be received neither together withinc onenor together withinc two. If a BSML semantics that

subscribes to theTake Many maximality semantics, theRHS Small Step assignment memory

protocol, theP.I. Remainder event lifeline semantics for internal events, theX.P.I. Next Combo

Step event lifeline semantics for external events, and theMany concurrency semantics is chosen,

two big steps are possible:〈t1, t5, {t2, t7}, t3, t4〉 and〈t3, t5, {t4, t7}, t1, t2〉, with the value ofinc being

1 in the former big step and 2 in latter big step, which is a non-determinate behaviour.

The following lemma explains why the semantics in the above example is not determinate,

as opposed to when the Take Onemaximality semantics is chosen.

Lemma 5.7 In a BSML semantics that subscribes to theTakeOnemaximality semantics and the

Many concurrency semantics, if two big steps, T and T′, of a single-assignment model consist of

the same sets of transitions, then they are the same.

Proof Idea. The above claim can be proved by inductively arguing over thesmall steps of such

two big stepsT andT′. Starting from snapshotsT.b andT′.b, which are the source snapshots of

T andT′, and are the same, their first small steps,T1 andT′1, should be the same. If not, let us

assume that there exists at, such thatt ∈ (T1.τ − T′1.τ), meaning thatt is executed by the first

small step ofT but not the one ofT′. However, such at does not exist: Transitiont can only

be not taken byT′1 if it is replaced by at′ ∈ T′1 such thatcon f lict(t, t′). But if that is true,T′

can never executet because the Take One big-step maximality semantics disallows such at to

be taken aftert′ has been taken, and thus it is not possible thatT andT′ have the same set of

transitions, which is contradiction. Thus, it should be thecase thatT1.τ = T′1.τ. Similarly, it

172

should be the case that allT i ’s andT′i ’s, such that 1< i ≤ T.lengthand 1< i ≤ T′.length, are

the same. ThereforeT andT′ are the same. �

The Role of Interface Variables The role of theInterface Variables in RHS semantic aspect

in determining a BSML semantics as determinate is similar tothat of theAssignment Memory

Protocol, described by predicatesDVariables . The below predicate specifies the corresponding

constraints over the choice of the semantic options of theInterface Variables in RHS:

DIAssign ≡ [¬Interface Variables in RHS∨ RHS Asynchronous Variable] ∨

[RHS Weak Synchronous Variable⇒ (Take One ∧Many)].

Proposition 5.8 A BSML semantics is determinate with respect to variables ifand only if its

constituent semantic options satisfy the predicateD′Variables ≡ DVariables ∧ DIAssign.

Proof Idea. If a BSML semantics satisfiesD′Variables, it is determinate because each of its con-

stituent assignment semantic options falls into one of the following categories: (i) the semantic

option uses the values of variables at the beginning of a big step for assignments, i.e., the RHS

Big Step and RHS Asynchronous Variable semantic options, meaning that the order of the as-

signments in two big steps with the same set of transition does not affect their final outcomes;

or (ii) the semantic option is used in a BSML semantics that satisfies the “Take One ∧ Many”

predicate, which, by Lemma 5.7, means that two big steps consisting of the same transitions are

indeed the same. In both cases, however, the BSML semantics is determinate.

Conversely, if a BSML semantics is determinate with respectto variables it must satisfy

D′Variables. Otherwise, a counter example model, similar to the ones in Example 39 and Example

40, can be constructed that has a non-determinate behaviour. �

Determinate with Respect to Events

A BSML semantics is determinate with respect to events, if the following predicate is true about

it,

DEvents ≡ [¬Generated Events∨ P.I. Remainder] ∨

[(P.I. Next Small Step ∨ P.I. Next Combo Step)⇒ (Take One ∧Many)].

173

B

B1

B11 B12
t1: inc one

̂process(1)

B2

B21 B22
t2: inc two

̂process(2)

Figure 5.14: Examples of (non-) determinate behaviour withrespect to events.

If events with parameters are considered, then it is also required that the combine function for

parameters, which determines the value of a parameter of an event when it is generated more

than once during a big step, to be both commutative and associative.

Example 41 Figure 5.14 shows an example of how the violation of predicate DEvents results in

a non-determinate behaviour with respect to events. The model is considered when it resides

in its default control states. The model in Figure 5.14 is similar to the model in Figure 5.13 in

Example 40. It represents a system that controls the operation of a chemical plant.4 There are

two processes, modelled by control statesB1 andB2, which increment the amount of a chemical

substance in the plant by one or two units, respectively. Again, if the environmental input events

inc one and inc two are received simultaneously, the intended behaviour is to increment the

amount of the chemical substance three units. If a BSML semantics that subscribes to theSingle

concurrency semantics together with theP.I. Next Small Step event lifeline semantics is chosen,

which violatesDEvents, there are two big steps possible:〈t2, t1〉 and 〈t1, t2〉, with the former big

step resulting inprocess(1)while the latter big step resulting inprocess(2), at the end of their

corresponding big steps. If theP.I. Remainder event lifeline semantics is chosen, instead of

the P.I. Next Small Step, the same two big steps are possible but the result would always be

process(3). If the Many concurrency semantics is chosen, instead of theSingle concurrency

semantics, together with theP.I. Next Small Step, only one big step is possible,〈{t1, t2}〉, which

results inprocess(3).

The Role of External Events The role of theExternal Output Events semantic sub-aspect

is similar to the role of theEvent Lifeline semantic aspect for internal events in determining

4This model is adapted from a model in [36], which in turn is inspired by the motivating example in [2].

174

a BSML semantics as determinate. As shown in the feature diagram in Figure 5.7, anExternal

Output Events semantics is instantiated by an option that determines which events are considered

as output events and by an option belonging to “Event Options”, which are exactly the same set

of options as for theEvent Lifeline semantics for internal events but with different names, and

determine the extent that an environmental output event persists in a big step. It is only the second

option, belonging to the “Event Options”, that has a role in determining a BSML semantics as

determinate or not. To extend the class of determinate BSML semantics to include external

output events, it suffices to conjoin predicateDEvents above with the below predicate,

DOEvent ≡ [¬External Output Events ∨O.P.I. Remainder] ∨

[(O.P.I. Next Small Step ∨O.P.I. Next Combo Step)⇒ (Take One ∧Many)].

where the prefix “O” for semantic options above refers to the event lifeline semantic options of

external output events, which are shown as “Event Options” in Figure 5.7.

The External Events semantic aspect is not relevant in determining a BSML semantics as

determinate because it specifies the semantics of input events, rather than the events that are

generated during a big step.

The Role of Interface Events The role of theInterface Events semantic aspect in determining

a BSML semantics as determinate is similar to that of theEvent Lifeline semantic aspect. The

below predicate specifies the corresponding constraints over the choice of the semantic options

of the Interface Events semantic aspect:

DIEvent ≡ true,

where, “true” here means any non-transition–aware semantic option of the Interface Events

semantic aspect.

TheInterface Variables in GC semantic aspect has no role in determining a BSML semantics

as determinate because, similar to theEnabledness Memory Protocol for internal variables, it

only determines the readiness of a transition but not the values of variables.

Proposition 5.9 A BSML semantics is determinate with respect to variables ifand only if its

constituent semantic options satisfies the predicateD′Events ≡ DEvents∧ DOEvent.

175

Proof Idea. If a BSML semantics satisfiesD′Events, it is determinate because each of its con-

stituent event lifeline semantic options falls into one of the following categories: (i) the event

lifeline semantics accumulates events throughout a big step, meaning that if two big steps have

the same sets of transitions, they accumulate the same sets of transitions; and (ii) the event life-

line semantics is used in a BSML semantics that satisfies the “Take One ∧ Many” predicate,

which, by Lemma 5.7, means that two big steps consisting of the same transitions are indeed

the same. In both cases, however, the BSML semantics is determinate. In the latter case, the

set of generated events of a BSML model at the end of each of itsbig step is equal to the set of

generated events by its last combo step or small step, based on the choice of the event lifeline

semantics for a particular kind of event. If events with parameters are used, as long as a com-

mutative, associative combination function is used to combine the values of events, the BSML

semantics will be determinate.

Conversely, if a BSML semantics is determinate with respectto variables it must satisfy

D′Variables. Otherwise, a counter example model, similar to the ones in Example 41, can be con-

structed that has a non-determinate behaviour �

Determinate with Respect to Variables and Events

The following proposition states the constraints over the choices of the semantic options of the

class of determinate BSML semantics, with respect to both variables and events.

Proposition 5.10 A BSML semantics is determinate with respect to variables and events if and

only if its constituent semantic options satisfies the predicateD ≡ D′Variables ∧ D′Events.

Proof Idea. If a BSML semantics satisfiesD, in order for it to be non-determinate, it should be

the case that a model specified in this BSML could create two big stepsT1 andT2, from the same

source snapshot, that have the same set of transitions, but they have different values for variables

and/or have different statuses of events at their corresponding destination snapshots. But such

a pair of big steps cannot exist: The values of variables cannot be different at their destination

snapshots because the BSML satisfiesD′Variables and because of Proposition 5.8; also, the statuses

of events cannot be different at their at their destination snapshots because the BSML satisfies

176

D′Events and because of Proposition 5.9. Thus, the BSML semantics is determinate with respect

to variables and events.

Conversely, if a BSML semantics is determinate, its constituent semantic options should

satisfyD. Otherwise, depending on whether it violatesD′Variables and/or D′Events, counter example

models similar to the ones in Example 40, and Example 41, respectively, can be constructed,

which show the semantics is not determinate with respect to variables and/or events. Thus, the

BSML semantics satisfiesD. �

5.4 Quality Attributes and Syntactic Well-formedness

Sections 5.3.1, 5.3.2, and 5.3.3 specified the semantic characteristics that each enumerated the

BSML semantics that satisfy one of the three semantic quality attributes. It is, however, also

possible to use a combination of syntactic and semantic criteria to specify such classes of BSML

semantics. This section presents two examples of such characterizations. A language designer

or a modeller, based on an application or a domain, can createsimilar syntactic, semantic char-

acterization of a set of BSML semantics that satisfy a certain semantic quality attribute.

5.4.1 A Syntactic Well-Formedness Criterion for Non-Cancelling

In Proposition 5.3, on page 161, it was shown that a BSML semantics is non-cancelling if and

only if its semantic options satisfy predicateN ≡ N′Steady∨ NMaximizer , where

N′Steady ≡ (Big Semantics∧ XBig Semantics∧ IBig Semantics) ∨

(ComboSemantics∧ XComboSemantics)

This section shows that if a BSML model is single assignment,as described in Definition 5.4,

on page 150, then predicateBig Semantics, copied below for convenience,

Big Semantics ≡ [(GC Big Step ∨ ¬Guard Conditions) ∧ ¬Event Triggers] ∧

[(Take One ∨ No Priority) ∧ ¬Dataflow],

177

can be relaxed by removing the “Dataflow” term, resulting in predicateBig Semantics′:

Big Semantics′ ≡ [(GC Big Step ∨ ¬Guard Conditions) ∧ ¬Event Triggers] ∧

[(Take One ∨ No Priority)].

A single-assignment model is one that it does not produce anybig step such that two transitions

in the big step assign values to the same variable.

Example 42 The model in Figure 5.15 is the model characterized in the third paragraph in

Example 35, on page 156, which showed a cancelling behaviour. This model is not single as-

signment because when the model resides in its default control states, big step〈t1, t3〉 is possible,

which assigns values twice to v. Furthermore, this model hasa cancelling behaviour because in

the above big step after the execution oft1, t2 is executable, but oncet3 is executed,t2 becomes

disabled.

If transition t3 in model in Figure 5.15 is changed so that,

t3 : /v′ := 2,

then the model is a single-assignment model, and a cancelling behaviour cannot happen.

A31 A32

A21

A

A1

A12

A2

A3

A11
t1 : /v := 1

t3 : /v := 2

A22
t2 :

[new(v) = 1]

Figure 5.15: An example model with dataflow over variablev.

Proposition 5.11 A BSML that only allows single-assignment BSML models is non-cancelling

if and only if it satisfies predicateN ≡ N′′Steady∨ NMaximizer , where

N′′Steady ≡ (Big Semantics′ ∧ XBig Semantics∧ IBig Semantics) ∨

(ComboSemantics∧ XComboSemantics).

178

Proof Idea. The proof is the same as the proof for Proposition 5.3, on page161, except that

the part that considers the role of the Dataflow semantic option needs to be removed; i.e., the

part that says, “The Dataflow semantic option should not be chosen, because a ready transition

can become unready if a variable is assigned more than once during a big step, as described in

Example 35, on page 156.” This part is not relevant for single-assignment models because for

a transition,t, that uses thenew operator as a prefix of at least one of the variables ingc(t), if it

becomes executable, it cannot become disabled through itsgc(t): First, the values of variables in

gc(t) that are prefixed bynew cannot change because the model is single assignment; and second

the values of variables ingc(t) that are not prefixed bynew cannot change because of the GC Big

Step enabledness memory protocol. �

5.4.2 A Syntactic Well-Formedness Criterion for Priority Consistency

As stated in Proposition 5.5, on page 168, a BSML semantics ispriority consistent with respect

to the Negation of Triggers priority semantics, if and only if its constituent semanticoptions

satisfy predicateP′Negation ≡ PNegation∧ PXEvent∧ PIEvent, where

PNegation ≡ ¬Negated Events

PXEvent ≡ X.P.I. Remainder ∨ ¬Negated External Events,

PIEvent ≡ Asynchronous Event ∨ ¬Negated Interface Events.

Next, a syntactic well-formedness condition is introducedthat relaxes thePXEventpredi-

cate above to allow more event lifeline semantic options forexternal events to be considered

in the characterization of the class of priority-consistent BSML semantics. First, some needed

definitions are presented.

Definition 5.5 For a BSML model and a set of its transitions, T , T isneighbouringif for each

pair of distinct transitions, t1 and t2, in T, their scopes are the same; i.e., scope(t1) = scope(t2).

Lemma 5.12 For a BSML model, its set of transitions, T , can be partitioned into a unique set

of neighbourhoodsets of transitions TG = {T1, · · · ,Tm}, where m≥ 1, such that each of Ti ’s,

1 ≤ i ≤ m, is a maximal set of neighbouring transitions.

179

A

A22

A32

A3

A31

t5: ¬i1

t6: i2

A11 A12

t1: ¬i1

A1

A2

A21

t2: ¬i3

t3: i1

t4: i2

Figure 5.16: A BSML model that is not priority clustered.

Proof Idea. The set of sets of transitionsTG can be created by an algorithm that iterates through

all transitions inT and assigns a transition,t, to a set of transitions whose scopes are the same

as t’s; if such a set of transitions does not exist, a new set of transitions is created inTG and

t is assigned to it. Once all transitions are visited, the algorithm ends with a set of sets of

neighbouring transitions,TG: By definition, the set of transitions in each set are the transitions

whose scopes are pairwise the same.TG is unique because each of theTi ’s, 1 ≤ i ≤ m, is

maximal. �

Definition 5.6 For a BSML model, its set of transitions, T , and its set of neighbourhood sets of

transitions, TG = {T1, · · · ,Tm}, the model ispriority clustered, if for each distinct pairs of sets

of neighbourhood transitions Ti ,T j ∈ TG, their transitions do not share any positive or negated

literals in their triggers. Formally, if

∀ti ∈ Ti · ∀t j ∈ T j · (pos trig(ti) ∪ neg trig(ti)) ∩ (pos trig(t j) ∪ neg trig(t j)) = ∅.

Example 43 The model in Figure 5.16, which is the same model as in Figure 5.11, on page 168,

copied here for convenience, is not priority clustered. Forexample,(pos trig(t1)∪neg trig(t1))∩

(pos trig(t3) ∪ neg trig(t3)) = {i1} , ∅, although t1 and t3 are not neighbouring transitions.

180

For the class or priority-clustered BSML models, thePXEventpredicate can be relaxed to

the following predicate,

PXEvent′ ≡ (X.P.I. Remainder ∨ ¬Negated External Events) ∨

[X.P.I. Next Combo Step ∧ ((Take One ∧Many) ∨ XGC)] ∨

[X.P.I. Next Small Step ∧ Take One ∧Many],

where

XGC ≡ (¬GC Small Step ∨ ¬Guard Conditions) ∧

(GC Asynchronous Variable ∨ ¬Interface Variables in GC).

Example 44 The model in Example 5.17 shows a priority-clustered BSML model. The model

is considered when it resides in its default control states,and when environmental input events

i1, i2, i3, and i4 are all present, and variablec = true. If the BSML semantics that subscribes

to theX.P.I. Next Combo Step event lifeline semantics for environmental input events, the GC

Small Step enabledness memory protocol for internal variables, and the Single concurrency

semantics is chosen, which violates PXEvent′, then three big steps are possible: T1 = 〈Lt1, t4M〉,

T2 = 〈Lt2, t4M〉, and T3 = 〈Lt4MLt3M〉. However, this behaviour is priority inconsistent: T1 executes

t1 while T3 executest3, although pri(t1) > pri(t3). If the GC Combo Step is chosen, instead of

theGC Small Step semantic option, which satisfies PXEvent′, then the following four big steps

are possible:〈Lt1, t4M〉, 〈Lt2, t4M〉, 〈Lt4, t1M〉, and〈Lt4, t2M〉, which is a priority consistent behaviour.

Similar counter examples can be shown to exist for the model when the PXEvent′ predicate is

violated, for example, through its third conjunct.

The next example demonstrates the necessity of the priorityclustered well-formedness crite-

ria in establishing a priority-consistent BSML semantics using thePXEvent′ predicate.

Example 45 The model in Example 5.18 is similar to the model in Figure 5.17, in Example 44,

except that it has an extra Or control stateA3 and an extra transitiont6. This new model is not

priority clustered.

Again, the model is considered when it resides in its defaultcontrol states, and when en-

vironmental input eventsi1, i2, i3, and i4 are all present, and variablec = true. If the BSML

semantics that subscribes to theX.P.I. Next Combo Step event lifeline semantics for environ-

mental input events, theGC Combo Step enabledness memory protocol for internal variables,

181

A

A11 A12

A1

A21 A22

A2

t1: i1 [c = true]

t2: i2 [c = true]

t3: ¬i1

t4: i3/c := f alse

t5: i4 ∧ ¬i3

Figure 5.17: Priority consistency in a priority-clusterred BSML model.

A

A3

A31 A32

A11 A12

A1

A21 A22

A2

t1: i1 [c = true]

t2: i2 [c = true]

t3: ¬i1

t4: i3/c := f alse

t5: i4 ∧ ¬i3

t6: ¬i1

[c = f alse]

Figure 5.18: Priority inconsistency in a model that is not priority clusterred.

182

and theSingle concurrency semantics is chosen, which satisfies predicatePXEvent′, then the

following four big steps are possible: T1 = 〈Lt1, t4M, Lt6M〉, T2 = 〈Lt2, t4M, Lt6M〉, T3 = 〈Lt4, t1M, Lt6M〉,

and T4 = 〈Lt4, t2M, Lt6M〉. However, this behaviour is priority inconsistent because, for example,

T1 executest1, while T4 does not execute it, but executest6, although pri(t1) > pri(t6).

Similarly, if a BSML semantics that subscribes to theX.P.I. Next Small Step event lifeline

semantics for environmental input events, theGC Small Step enabledness memory protocol for

internal variables, and theMany concurrency semantics is chosen, which satisfies predicate

PXEvent′, then the following four big steps are possible: T′1 = 〈{t1, t4}, t6〉 and T′2 = 〈{t2, t4}, t6〉.

Again this behaviour is priority inconsistent because pri(t1) > pri(t6), and T′1 executest1, while

T′2 executest6.

Proposition 5.13 For a BSML that only allows priority-clustered BSML models,it is priority

consistent if and only if it satisfies predicatePNegation∧ PXEvent′ ∧ PIEvent.

Proof Idea. Using the same arguments as in the proof of Proposition 5.5, it can be shown that if

a BSML semantics for priority-clustered models is priorityconsistent, then it satisfies predicates

PNegation andPIEvent. It remains to show that it also satisfies thePXEvent′ predicate.

According to the first disjunct ofPXEvent′, an environmental input event is either present

throughout a big step or is not present at all. Thus, at a snapshot of a model, either a lower-

priority transition or a higher-priority transition of a model, but not both, can be included in

different big steps of the model that are initiated from that snapshot.

According to the second disjunct, an environmental input event that is present in the first

combo step of a big step becomes absent in the second combo step. However, because only

priority-clustered BSML models are allowed, meaning that the reaction of the model to an en-

vironmental input event is modelled only by a set of neighbouring transitions, and because ei-

ther the Many concurrency semantic has been chosen or the GC of transitions remain the same

during the combo-step, because of theXGC predicate, the model has a chance to react to the

environmental inputs in a manner that respects the priorityconsistency criteria. If the Many con-

currency semantics is chosen, the highest priority transitions each belonging to a neighbourhood

set of transitions are all executed during the first small step together. The next small steps and the

next combo steps do not cause a priority inconsistent behaviour because if a big step executes a

high-priority transition,t, in its first small step, then any other big steps would eitherexecute the

same high-priority transition or a transition that has the same priority ast, which precludes the

183

possibility of executing a transition with a lower prioritythant, because of the TakeOne big-step

maximality semantics. Similarly, ifXGC is true, the highest priority transitions each belonging

to a neighbourhood set of transitions are all executed during the first combo step, possibly se-

quentially. However, sinceXGC is true, a high-priority transition remains ready during the first

combo step. Again, a low-priority transition cannot execute unless a high-priority transition is

not ready in the first combo step.

According to the third disjunct, an environmental input event that is present in the first small

step of a big step becomes absent in the second small step. Again, a priority-inconsistent be-

haviour is not possible because a lower-priority transition can be taken in the small step after

the first one, only if a higher-priority transition has not been ready in the first small step, which

means it cannot become enabled in later small steps either.

Conversely, if a BSML semantics is priority consistent withrespect to the Negation of Trig-

gers priority semantics, it satisfiesPNegation ∧ PXEvent′ ∧ PIEvent. Otherwise, at least one

of the PNegation, PXEvent, and PIEvent predicates does not hold. However, if any of these

predicates does not hold, an example model can be constructed, similar to the ones shown in

Example 37, Example 44, and Example 45, that has a priority inconsistent behaviour. Thus,

PNegation ∧ PXEvent′ ∧ PIEvent holds in a BSML that allows only priority clustered BSML

model and is priority consistent. �

5.5 Related Work: Semantic Properties

Huizing and Gerth identified the three semantic quality attributes ofresponsiveness, modularity,

andcausalityonly for Single concurrency semantics and events [50]. Their responsiveness cri-

terion requires that the reaction of a model to an environmental input be observed in the same

big step that the input is received. The semantics in their framework that is not responsive is

semanticsA, which corresponds to the the Asynchronous Event interface event semantics in this

dissertation. Their modularity criterion requires that a generated event by a model is treated the

same as an event received from the environment, as describedin Chapter 3. The two semantics

in their framework that are modular, namely, semanticsA andD, can be easily shown to be also

non-cancelling. SemanticsD corresponds to the Take One maximality semantics together with

the Whole event lifeline semantics. Their causality criterion for events has been considered in

Chapter 3; the Whole semantic option is the only event-lifeline semantics that is not causal.

184

S

B

B1

B2

A1

A2

A

t4: îbt1: ¬a t3: îat2: a

Figure 5.19: Global consistency vs. priority consistency .

Pnueli and Shalev introduced aglobally consistentevent semantics [86], as described on page

49, which is the same as the P.I. Remainder event lifeline semantics except that if the absence of

an event has made a transition enabled in an early small step,that event is not generated later. This

semantics introduces a notion of priority consistency withrespect to the Negation of Triggers

priority semantics, but at the scope of individual big steps: It is not possible for a big step to take a

lower-priority transition earlier in the big step while taking a higher-priority transition later in the

big step. A globally-consistent semantics is not a priority-consistent BSML semantics. For ex-

ample, in the model in Figure 5.19, if the model resides in itsdefault control states, environmental

input i is present and persists throughout a big step, and a globally-consistent event semantics is

considered, the following three big steps are possible:T1 = 〈t1, t4〉, T2 = 〈t4, t1〉, andT3 = 〈t3, t2〉.

Big step〈t1, t3〉 is not a possible big step because eventa is both generated and its absence triggers

a transition. These three possible big steps, however, exhibit a priority-inconsistent behaviour,

for example, because:T1 andT2 execute t1, while T3 executes t1, althoughpri(t1) < pri(t2).

Global consistency semantics is not relevant for the BSML semantics that are priority consistent

because by predicatePNegation, described on page 164, priority-consistent BSML semantics do

not support internal events.

Synchronous languagesare used to model/program reactive systems that are meant to behave

deterministically [40]. In the deconstruction in Chapter 3, the un-clocked variations of syn-

chronous languages, such as Esterel [14] and Argos [68], arecategorized as BSMLs that support

the Whole event lifeline semantics. A model is deterministic if its reaction to an environmen-

tal input as a big step always results in a unique destinationsnapshot. Determinism is related

to determinacy: A deterministic semantics is by definition determinate, but not vice versa. A

determinate semantics does not preclude the possibility ofa model reacting to a single environ-

mental input via two big steps with different sets of transitions. In the presence of variables,

185

determinism can be only considered as the property of a modelbut not a semantics, because,

as opposed to events, variables can have infinite, or large, ranges, precluding the possibility of

handling determinism at the level of the description of a semantics. In the absence of variables,

for example, in pure Esterel, aconstructive[13] and aglobally deterministic[93] semantics have

been developed. Similar semantics has been developed for Argos [68].

Similar concepts as our semantic quality attributes have been considered in different mod-

els of computation, but at the level of models instead of semantics. For example, in Petri nets,

the notion ofpersistence[62], which requires a transition to remain enabled until itis taken, is

similar to our non-cancelling semantic quality attribute.In asynchronous circuits, the notions

of semi-modularityandquasi semi-modularityare similar to our non-cancelling semantic qual-

ity attribute, and the notion ofspeed independenceis analogous to our determinacy semantic

quality attribute [17, 90]. Janicki and Koutny introduce the notion ofdisabling in the context

of a relational model of concurrency [54], which is similar to our priority consistency seman-

tic quality attribute. If the execution of a low-priority transition,t1, disables the enabledness of

a higher-priority transition,t2, which is in parallel witht1, a disabling invariant for the system

can be specified that executest1 only if t2 is not enabled. Lastly, the notions ofpersistenceand

determinacy5 for program schemata[57] are analogous to our non-cancelling and determinacy

semantic quality attributes, respectively. A program schemata is a formalism to model parallel

computation of programs declaratively. In general, compared to the aforementioned concepts, (i)

our semantic quality attributes are defined for semantics, rather than individual models; and (ii)

they are aimed at practical requirements modelling languages, instead of models of computation.

A syntactic approach, as opposed to our semantic approach, to compare the properties of

BSMLs is considered by Eshuis [30], where three BSMLs, namely, statecharts by Pnueli and

Shalev [86], Statemate by Harel and Naamad [43], and UML StateMachines [78], are inves-

tigated. A total of 17 syntactic constraints, including thesingle-input assumption [46, 47] for

Statemate models, are introduced, and it is shown that that models that satisfy these constraints

behave thesamein all three semantics. Two models have the “same” behaviourif they satisfy

the samelinear, stuttering-closed, separable properties[30]: These are properties in LTL [84],

do not use the “next” operator, and areseparable[80], meaning that, “it is a boolean combination

of temporal formulas each of which only refers to a sequential component of the statechart.” [30]

Some of the insights of this work could be perhaps useful in identifying meaningful syntactic

well-formedness for achieving a semantic quality attribute.

5I have adopted the name of my semantic quality attribute fromthis work.

186

5.6 Summary

This chapter presented three semantic quality attributes that make it possible to compare the se-

mantics of two BSMLs. A semantic quality attribute of a language is a desired property that is

common to all models specified in that languages. Each of the semantic quality attribute speci-

fies a desired property about the way the sequence of small steps of a big step should be formed.

The set of all BSML semantics that support each of the three semantic quality attributes is char-

acterized. These characterization are achieved systematically by specifying the combinations of

the semantic options that satisfy each of the semantic quality attributes. For each specification,

proof of its correctness is presented. Also, two syntactic well-formedness criteria are formally

introduced that each can be used together with a set of semantic options to achieve a semantic

quality attribute.

187

Chapter 6

Synchronization in BSMLs

“I believe that no single theory will serve all purposes.” [72, p.4]

Robin Milner

This chapter introduces a formal, systematic way to adopt synchronization mechanisms for

BSMLs, which traditionally have not been equipped with synchronization capability. Synchro-

nization is only relevant for BSML semantics that subscribeto the Many concurrency semantics,

in which multiple transitions can be taken within a small step. This chapter introduces 16syn-

chronization typesfor a synchronization mechanism that is based on two complementary roles.

The 16 synchronization types arise based on the number of interactions a transition can take part

in, i.e., one vs. many, and the arity of the interaction mechanisms, i.e., exclusive vs. shared. The

chapter also introduces thesynchronizersyntax that can be associated with a compound control

state. A synchronizer uses a synchronization type to synchronize a set of transitions according to

that synchronization type. Adopting the synchronizer syntax together with the synchronization

types for BSMLs result in the class ofsynchronizing big-step modelling languages(SBSMLs).

SBSMLs are useful because they facilitate the specificationof the patterns of computation in

which a set of transitions must be either taken together in the same small step or must not be

taken at all.

The remainder of the chapter is organized as follows. Section 6.1 presents a motivating ex-

ample, based on the Committee Coordination problem [18], which demonstrates the application

of synchronization in modelling. Section 6.2 introduces the synchronizer syntax. Section 6.3

188

informally describes the semantics of the 16 synchronization types. Section 6.4 demonstrates the

various applications of synchronizers and synchronization types in modelling the semantics of

many existing modelling constructs.

Chapter 7 presents the formal semantics of SBSMLs, togetherwith proofs of how the seman-

tics of existing modelling constructs are implemented in SBSMLs.

6.1 A Motivating Example

The model in Figure 6.1 is an SBSML model that is inspired by the English description of

the “Committee Coordination” problem [18]. The committee coordination problem asks for a

scheme to schedule the meetings of different committees of a university. The members of each

committee are faculty members, each of them can be a member ofmore than one committee. A

committee can convene when all of its members are ready to meet. In the model in Figure 6.1, I

have extended this problem to include that each faculty member is either carrying out research,

teaching, or attending exactly one meeting. The model in Figure 6.1 is aspecificationof the

scheduling problem for the case of four faculty members, modelled byFi (1 ≤ i ≤ 4), and three

committees, modelled byCi (1 ≤ i ≤ 3). For example, the members of committeeC1 areF1, F2,

andF3. A meeting ofC1 convenes when transitionst2, t12, t22, andt41 are executed together. The

model in Figure 6.1 is specified in a synchronizing big-step modelling language (SBSML). The

transitions of the model are annotated with the labels of thesynchronizers, using the labels in a

normal or a complementary role (shown by over bars). For example, transitiont2 uses labelf1 in a

normal role, whereas transitiont41 uses labelsf1, f2, and f3 in complementary roles. A transition

might use a label in a normal role and a different label in a complementary role; e.g., transition

t52. TheAnd control state in the model is annotated with threesynchronizers. A synchronizer,

such asUPEE(f1, f2, f3, f4), consists of asynchronization type, e.g.,UPEE, and a set of labels,

e.g., { f1, f2, f3, f4}. As an example, the labels of synchronizerUPEE(f1, f2, f3, f4) are used by

transitionst2, t12, t22, andt41. These transitions, according to the semantics ofUPEE(f1, f2, f3, f4),

are either executed together in a synchronized manner, or none of them can be executed.1

In the model in Figure 6.1, each faculty member is initially busy with research and writing

(e.g.,F1 is initially in R1 doing research, represented by transitiont1, generating event,writing1),

1Unless the synchronization requirements of a transition are satisfied through synchronization with a different
set of transitions, which is not the case in this example.

189

but may have to give lectures (e.g.,F1 may have to give a lecture when the guard condition oft1,

class1, becomes true), or may attend a committee meeting (e.g.,F1 may attend a meeting ofC1

or C2, by taking transitiont2 or transitiont4, respectively). Sometimes, a faculty member leaves a

committee meeting before the meeting normally ends to give alecture, in which case the commit-

tee meeting ends abruptly. For example, transitiont7 specifies thatF1 needs to leave a meeting

of C1, when conditionclass1 is satisfied, requiring transitionst44, t13, andt23 to be executed with

it according to the synchronizersUUEE(leave1, leave2, leave3) andUUES(end1, end2, end3). The

set of transitions{t7, t13, t23, t44} constitute a small step, and are synchronized according to two

synchronizers. CommitteeC3 is designed to give a higher priority to ending a meeting when

a faculty member needs to give a lecture than to continuing the meeting. If the Scope Parent

priority semantics is chosen,t52 would have a higher priority thant50, thus the small step that

includest52 would have precedence over the small step that includest50.

6.2 Synchronization Syntax

Similar to a BSML model, an SBSML model consists of a hierarchy tree of control states and a

set of transitions between these control states. Additionally, the normal-form syntax of SBSMLs

include syntax for synchronization. This section describes only the synchronization syntax of

SBSMLs. The syntax of BSMLs can be found in Section 2.1. The formal BNF of SBSMLs is

presented in Section 7.1.

The model in Figure 6.2 is used to describe the syntactic and semantic concepts of SBSMLs.

The model shows an SBSML model that characterizes a set of simple synchronized ice skating

programs. Initially, all skaters are together, represented by theBasiccontrol stateTogether. Dur-

ing the program the skaters can split into three groups to perform theintersectionmaneuver(s),

represented by theAndcontrol stateIntersection.2 To avoid a clash, at each point of time, only

one of the three groups can initiate an intersection maneuver. The skaters can merge back to a

group, but the program can only end, by going to theEnd control state, when the skaters are

split. The environmental input eventsLine andCircle specify a line and circle maneuver in a

program, respectively.3 The environmental input eventsS plitandMergespecify that the skaters

split to three groups to perform intersection maneuver(s) and that the three groups merge back

2In the intersection maneuver, the skaters in one group skatebetween the skaters of another.
3In the line and circle maneuvers, the skaters of a team createa formation in a line or circle pattern, respectively.

190

t1: ̂writing1

M21

M11

R1

T1

{end2}

t5:

t3: {end1}

t4: { f1}

{ f1}
t2:

t8: [class1]

t9: ̂lecturing1

t7: [class1]
{leave1} {leave2}

[class1]
t6:

t10

t21: ̂writing3

M22

M13

R3

T3

{end2}

t25:

t23: {end1}

t24: { f3}

{ f3}
t22:

t28: [class3]

t29: ̂lecturing3

t27: [class3]
{leave1} {leave2}

[class3]
t26:

t30

t11: ̂writing2

M31

M12

R2

T2

{end3}

t15:

t13: {end1}

t14: { f2}

{ f2}
t12:

t18: [class2]

t19: ̂lecturing2

t17: [class2]
{leave1} {leave3}

[class2]
t16:

t20

t31: ̂writing4

M32

M23

R4

T4

{end3}

t35:

t33: {end2}

t34: { f4}

{ f4}
t32:

t38: [class4]

t39: ̂lecturing4

t37: [class4]
{leave2} {leave3}

[class4]
t36:

t40

t46: ̂insession2

P2

I2

t48:
{leave2}
{end2}

t45: { f1, f3, f4} t47: {end2}
P3

I3

t50: ̂insession3

t51: {end3}t49: { f2, f4}

B3

t52: {leave3} {end3}

t41: { f1, f2, f3}

P1

I1

t43: {end1}

t44:
{leave1}
{end1}

t42: ̂insession1

F1

F3

C2C1

F2

F4

C3

CMTS: {UPEE(f1, f2, f3, f4), UUES(end1,end2,end3), UUEE(leave1, leave2, leave3)}

Figure 6.1: Modelling faculty members and their responsibilities, using synchronization.

191

t4: Merge

Group2Group1 Group3

G11

G12

G21

G22

G31

G32

t5: {x}

t6: {x}

t8: {x} t11: {x}

t12: {x}t9: {x}

t1: Line

t2: Circle

t14: Finish End
t7: {x} t10: {x} t13: {x}

Together

t3: Split
Intersection: {UUES(x)}

Figure 6.2: A model for a set of synchronized ice skating programs.

into a single group, respectively. The environmental inputeventFinish specifies the end of an

ice skating program.

A compound control state of an SBSML (bothAnd andOr control states) can have a set

of synchronizers, which are graphically positioned at the top of the control state. For example,

the control stateIntersectionin the model in Figure 6.2 has one synchronizer:UUES(x). Each

synchronizerY(L) has: (i) asynchronization type, Y; and (ii) alabel set, L, surrounded by paren-

theses, instead of curly brackets. There are 16 synchronization types, each of which is a string

of four letters, where a letter represents an aspect of the semantics of the synchronization type.

The label set of a synchronizerdeclaresa unique set ofidentifiers(labels) that areusedby tran-

sitions that are to be synchronized by the synchronizer. In the model in Figure 6.2, synchronizer

UUES(x) has synchronization typeUUES, and declares the identifierx in its label set{x}.

A transition in an SBSML model can have: (i) a set ofrole sets, and (ii) a set ofco-role

sets. Each role set is a set oflabels, each of which is an identifier. Each co-role set is a set of

co-labels, each of which is an over-lined identifier. For example, in the model in Figure 6.2, the

set of role sets oft6 is {{x}} and the set of co-role set oft8 is {{x}}. The well-formedness criteria

of SBSMLs, summarized at the end of Section 6.3.1, require that all of the labels (co-labels) of

a role set (co-role set) are associated with the identifiers of the same synchronizer. When the set

of role sets or the set of co-role sets of a transition is a singleton, its curly brackets are dropped.

A role set is calleduni-role if it is a singleton andpoly-roleotherwise. Similarly, a co-role set is

calleduni-co–roleor poly-co–role. For example, the only role set oft6 is a uni-role. Transitions

t6, t8, andt11 can execute together because synchronizerUUES(x) match their role and co-role

sets.

192

Table 6.1: Synchronization types and their parameters, when considered for synchronizerY(L).
Index Parameter Purpose Values for SynchronizerY(L)

1
How an identifier can be used in the role sets of
transitions

U: The identifiers inL can be used
only in uni-roles
P: The identifiers inL can be used
in poly-roles

2
How an identifier can be used in the co-role
sets of transitions

U: The identifiers inL can be used
only in uni-co-roles
P: The identifiers inL can be used
in poly-co-roles

3
How many instances of a label can appear in
the role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

4
How many instances of a co-label can appear
in the co-role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

6.3 Synchronization Types

A synchronization type consists of a sequence of four letters, each of which is a value for one

of the four parameters that together create the set of 16 synchronization types. Table 6.1 de-

scribes the role of each parameter and its corresponding twopossible values, when considered

for an arbitrary synchronizerY(L). The “Index” column relates the position of a letter in the

synchronization type with its corresponding parameter.

Next, the semantics of synchronization types is described in detail by specifying their role

in determining the potential small steps of an SBSML model. The role of structural semantic

aspects, however, need not be considered. First, the semantic sub-aspects ofConcurrency and

Consistency, as will be shown in Section 6.4, are not relevant for SBSMLs because they are

forms of synchronization themselves. And second, for the sake of clarity, in this chapter, only

the No Priority semantics is considered, but Chapter 7 considers the roles of the other two

hierarchical semantic options. Thus, in this chapter, I will talk about the synchronization of

“enabled transitions”, which are transitions that could betaken in a small step if only the role of

enabledness semantic aspects are considered, instead of talking about “executable transitions”,

which consider the role of all semantic aspects, including the structural semantic aspects. The

formal semantics in Chapter 7 describes the semantics of SBSMLs in a uniform way, considering

all the semantic aspects as a whole.

193

From a set of enabled transitions,T, determined by the enabledness semantic aspects of a

BSML, a potential small step,X, X ⊆ T, must not only satisfy the constraints of all of the

synchronizers that control transitions inT.

In a synchronizerY(L), the first two letters of its synchronization type,Y, indicate how the

identifiers inL can be used in transitions within the scope ofY(L). A U in the first position means

that for all identifiersl ∈ L, all transitions inX that havel in their role sets,l must belong to a

uni-role (i.e., a singleton role set). AU in the second position means that for all identifiersl ∈ L,

all transitions inX that havel in their co-role sets,l must belong to a uni-co-role set. AP in

the first or second position of the synchronization type places no such constraints but only has a

different meaning from aU if there are multiple identifers inL. The constraints of the first two

indices in the synchronization type can be checked syntactically by well-formedness constraints,

described later in this section.

As in some process algebras, such as CCS [72], a label in a roleset, e.g.,m, is matchedwith

a co-label in a co-role set that has the same identifier, i.e.,m. For every transition,t, included

in X, the labels in all its role sets and the co-labels in all its co-role setsmustparticipate in a

match: For every label,m, in a role set, there must be a matching co-label,m, from another

transition included inX, and vice-versa for every co-label,n, in its co-role sets. The third and

fourth indices of the synchronization type indicate how many transitions can participate in this

match: Effectively, how many labels,m, can match anm and vice-versa, amongst the role sets

and co-role sets of the transitions inX. For a synchronizer with label setL and a synchronization

type whose third letter isE, i.e., one of the**E* synchronization types, every identifier,l ∈ L,

can appear at most once in the role sets of all transitions inX. For synchronization types***E,

every over-lined identifier ofL, l, can appear at most once in the co-role sets of all transitions in

X. For synchronization types**S* (and***S), an identifierl ∈ L can appear multiple times in

the role sets (and co-role sets) of the transitions inX.

In summary, after collecting the role sets and co-role sets of all the transitions withinX that

use identifiers ofL, we have a set of role sets and a set of co-role sets:

R= {R1,R2, · · · } and

C = {C1,C2, · · · }.

These sets should satisfy all of the following conditions:

- Every labelr ∈ Ri, whereRi ∈ R, must have a corresponding co-labelc ∈ C j, such that

194

Table 6.2: Examples of synchronizing transitions.
Synchronizer Synchronizing Transitions (Non-Exhaustive)
UUEE(m) t1: {m}, t2: {m}
UUSE(m) t1: {m}, t2: {m}, t3: {m}
UUSS(m) t1: {m}, t2: {m}, t3: {m}, t4: {m}
UPEE(m, n) t1: {m}, t2: {n}, t3: {m, n}}
UPSE(m, n) t1: {m}, t2: {m}, t3: {n}, t4: {n}, t5: {m, n}
UPES(m, n) t1: {m}, t2: {m}, t3: {m, n}, t4: {m, n}
UPSS(m, n) t1: {m}, t2: {m}, t3: {n}, t4: {n}, t5: {m, n}, t6: {m, n}
PPEE(m, n, p, q) t1: {m, n}, t2: {p, q}, t3: {m, p}, t4: {n, q}
PPSE(m, n, p, q) t1: {m, n, p, q}, t2: {m, n}, t3: {p, q}, t4: {m, p}, t5: {n, q}
PPSS(m, n, p, q) t1: {m, n, p, q}, t2: {m, n}, t3: {p, q}, t4: {m, n, p, q}, t5: {m, p}, t6: {n, q}

C j ∈ C, andr = c; and vice versa for every co-label;

- If the synchronization type is**E*, for every co-labelc ∈ C j, whereC j ∈ C, there is

exactly one corresponding labelr ∈ Ri, such thatRi ∈ R, andc = r;

- If the synchronization type is***E, for every labelr ∈ Ri, whereRi ∈ R, there is exactly

one corresponding labelc ∈ C j, such thatC j ∈ C, andr = c; and

- Finally, the setX must be maximal, i.e., it is not possible to add one or more transition in

T and to satisfy the above constraints of the synchronizationtype.

Table 6.2 shows examples ofsynchronizing transitionsaccording to 10 synchronizers of dis-

tinct types. The transitions in each row are enabled transitions of a model. Intuitively, the first two

letters of a synchronization type specify the number of interactions, i.e., the number of matchings

over distinct identifiers, that a transition can take part in, i.e.,biparty vs.multiparty interaction.

The last two letters of a synchronization type specify the arity of the interaction mechanism, i.e.,

exclusivevs.sharedinteraction.

In the model in Figure 6.2, when the model resides inG11,G21, andG31, the set of transitions

{t5, t9, t11} is a potential small step of the model, which satisfies the constraints of synchronizer

UUES(x): (1) only uni-roles usex; (2) only uni-co-roles usex; (3) only t9 has a role set including

x; and (4) botht5 and t11 have co-role sets includingx. The other two potential small steps

are: {t6, t8, t11} and {t5, t8, t12}. The model neither allows two groups to initiate an intersection

maneuver simultaneously, nor a group to initiate two intersection maneuvers consecutively.

195

Each pair of synchronization typesUPEE andPUEE, UUSE andUUES, UPSE andPUES, PUSE

andUPES, PPSE andPPES, andUPSS andPUSS are symmetric. A synchronizer with one of these

types can be replaced with a synchronizer with the same labelset but the symmetric type, with

the role sets and co-role sets of the transitions within its scope swapped.

If a model has more than one synchronizer, the constraints oftheir corresponding synchro-

nization types should be considered together; i.e., the setX above should satisfy the synchroniza-

tion requirements of all of the synchronizers together.

6.3.1 Well-formedness Criteria for SBSML Models

Lastly, in the semantics described above, some well-formedness conditions are assumed. An

SBSML model iswell-formedif all of the following seven conditions hold,

i Each label uniquely belongs to the label set of exactly one synchronizer.

ii For each label,l, if there is at least one transition with a poly-role that includesl, then the

synchronization type of its corresponding synchronizer should be a synchronization type

whose first letter isP (i.e., P***), otherwise it must be one of theU*** synchronization

types. Similarly, the second letter of a synchronization type is specified based on the

characteristics of the co-role sets of transitions.

iii No two synchronizers of a control state have the same synchronization type.

iv Two labels that are associated with the same synchronization type do not belong to two

different role sets or two different co-role sets of the same transition.

v For each label,l, of a synchronizer,y, and each transition,t, l is associated with at most

one of the role sets or co-role sets oft.

vi A synchronizer,y, is associated with the least common ancestor of the source and desti-

nation control states of the transitions that use the labelsof y in their role sets or co-role

sets.

vii A synchronizer,y, of a control state,s, cannot be split into two synchronizers,y1 andy2,

such thaty1 is assigned tos buty2 is assigned to a descendant ofs.

Hereafter, by an SBSML model, I mean a well-formed SBSML model.

196

6.4 Applications

This section, through examples, describes how the semantics of different modelling constructs

and different semantic concepts can be modelled succinctly using synchronization in SBSMLs.

Section 6.4.1 describes how the semantics ofmulti-source, multi-destination transitions[41, 86]

can be described using regular transitions and synchronizers. Section 6.4.2 describes how some

of the semantic options of the concurrency and consistency semantic aspect can be described by

other semantic options and synchronizers, thereby allowing multiple BSML semantics to exist

in different components of a model. Section 6.4.3 shows how the semantics of the Present In

Same event lifeline semantics, whose semantics was not includedin the semantic formalization

of Chapter 4, can be modelled by using synchronizers. Section 6.4.4 describes how the seman-

tics of some of thecomposition operatorsin template semantics [75] can be described using

synchronizers in SBSMLs. Lastly, Section 6.4.5 shows how the essence of some of thework-

flow patterns[96] can be captured succinctly using synchronization in SBSMLs. The formal

treatment of the discussions in this section are presented in Section 7.4.

6.4.1 Modelling Multi-source, Multi-destination Transit ions

Multi-source, multi-destination transitions embody a form of concurrent, synchronized execu-

tion: When a multi-source, multi-destination transition is executed, it exits all of its source

control states and enters all of its destination control states [41, 86]. A multi-source, multi-

destination transition of a model can be replaced with a set of regular transitions that are always

taken together by synchronizing via a synchronizer of typeUPEE. As an example, the SBSML

model in Figure 6.3(b) is equivalent to the model in Figure 6.3(a), which has two multi-source,

multi-destination transitionsx andy. Transitionx is replaced by transitionsx1, x2, andx3, and

transitiony is replaced by transitionsy1, y2, andy3. From the set of regular transitions that model

a multi-source, multi-destination transition, e.g.,x, one of the transitions, e.g.,x1, adopts the

guard and trigger conditions, the actions, and the possiblerole sets and co-role sets ofx, along

with a new co-role set with new co-labels each representing one of the other transitions. The other

transitions each has one singleton role set, to match the newco-role set of the first transition. The

number of control states in the source and destination of a multi-source, multi-destination tran-

sition need not be the same, in which case new dummy control states are introduced to make the

number of source control states and destination control states equal. For example, in the model

197

(a)

(b)

R

R11 R12

R22

R32

R′

R′12

R′21 R′22

R′32

M

M22

M31

M12

M21

M′

M′11

M′22

M′32

M′12

M

M11

M′21

R′11

R′31

y

M′31

R21

R31M32

y3: {b2}

y1: {b1, b2}

M1

R′2

R′3

M2

M3

M′1

x M′2

M′3

R1

R2

R3

R′1x1:

{a1, a2}

x2: {a1}

y2: {b1}

R: {UPEE(a1,a2, b1, b2)}

R4

x3: {a2}

R41

Figure 6.3: Modelling multi-source, multi-destination transitions using regular transitions.

in Figure 6.3(b), control stateR4 is introduced to accommodate for the source control state ofx3

and the destination control state ofy3. This new control state does not change the behaviour of

the model compared to the original model becauseR41 is the only control state ofR4.

Henceforth, for convenience, I use the syntax of multi-source, multi-destination transition as

part of the normal-form syntax of SBSMLs.

6.4.2 Modelling BSML Semantic Options

In the presence of synchronization, the BSML semantic options for theConcurrency, Small-

Step Consistency andPreemption structural semantic sub-aspects are not needed. Next, through

examples, it is shown how a more inclusive semantic option ofeach of these semantic sub-aspects

can be used to implement a less inclusive one. Thus a single SBSML can include a combination

of the semantic options of these semantic aspects.

198

D12

D11

dt1: {a}

D1 D2

D21

D22

dt2: {a}

D31

D32

D3

dt3: {a}

S RC

S1 S2

S11

S12

S21

S22

S31

S42

st1 st2

(a)

st3

S3

(b)

DES: {UUEE(a)}

D4

t1: {a}

D41

Figure 6.4: Deriving the Single semantics using the Many concurrency semantics.

Concurrency

Using the Many semantic option together with a synchronizer of synchronization typeUUEE,

an And control state can be constrained to execute at most one of itstransitions at each small

step: Every transition within theAnd control state is modified to synchronize with a new self

transition,t1: {a}.4 As an example, the model in Figure 6.4(a) can take all of its three transitions

together in one small step, while the model in Figure 6.4(b) can take only one of the transitions

in each small step. Thus, using synchronization, the Many semantic option covers the Single

semantic option.

Small-Step Consistency

Using the Source/Destination Orthogonal semantic option together with synchronizers of type

PUEE, the Arena Orthogonal semantic option can be enforced. The model in Figure 6.5(b),

which is specified in the Source/ Destination Orthogonal semantics, has an equivalent be-

haviour to the model in Figure 6.5(a), which is specified in the Arena Orthogonal small-step

consistency semantics. If transitionst2 is included in a small step, then according to the Arena

Orthogonal semantics, neitherst4 nor st5 should be included in the small step. In the model in

Figure 6.5(b), this is achieved by using a synchronizer of typePUEE that does not allowdt2 to

be taken together withdt4 or dt5. Similarly, transitiondt4 cannot be included in the same small

step thatdt2 or dt5 belong to. It is possible to have a hybrid semantics. For example, changing

the role set of transitionsdt2 anddt4 both to{a2} and{a4}, respectively, means that each ofdt2
4This transformation is analogues to howasynchronycan be derived fromsynchronyin SCCS [71, 72].

199

D12 D22{a2,
a5}

dt4 :dt2 :
{a4,
a5}

dt5 :
{a5}

S RC

S3S1

S11 S31

S32

st5st3

S21

S22

st1

S2

(a)

DES: PUEE(a2,a4,a5)

D1

D11

D2

D21

D3

D31
dt6: {a2}

D4

dt7: {a4}

D5

dt8: {a5}

D6D32

(b)

dt1 dt3
S12 st4st2

Figure 6.5: Deriving the Arena Orthogonal semantics using the Source/Destination Orthogo-
nal semantics.

anddt4 can be taken withdt5 in the same small step, butdt2 anddt4 cannot be taken together in

the same small step. Such a hybrid small-step consistency semantics disallows transitions that

graphically cross each other to be included in the same smallstep.

Preemption

Using the Non-Preemptive semantics together with synchronizers of typePUEE, similar to the

previous section, a Preemptive semantics can be derived. For example, in the model in Fig-

ure 6.6(a), transitionst4, which is an interrupt transition, can be taken together with transitions

st2 andst3 by the Non-Preemptive semantics. Similarly, transitionst5 can be taken together with

transitionsst1 and st2. These transitions, however, cannot be taken together if the Preemptive

semantics is chosen. The model in Figure 6.6(b), which is specified in the Non-Preemptive se-

mantics, has an equivalent behaviour to the model in Figure 6.6(a), when it is specified in the

Preemptive semantics. In the model in Figure 6.6(b), for example, transitionsdt4 anddt2 cannot

be taken together because only one of them can synchronize with t2.

6.4.3 Modelling the Present In Same Event Lifeline Semantics

The Present In Same event lifeline semantics, a generated event in a small step can trigger tran-

sitions only in the same small step. This semantics can be modelled using synchronizers. Some

200

(a) (b)

D41

D2

D1

D3

D′dt1:

{a1}

dt2:

{a2}

{a3}

D22

D12

dt3: D32D31

D21

D11

D′1

D′2

D dt4: {a2, a3}

DES: {PUEE(a1, a2, a3)}

st5

S′1

S′2

S′
st4

S RC

st1

st3

st2

S

S1
S11 S12

S2
S21 S22

S3
S31 S32

D51

D61

D4

D5

D6

t1: {a1}

t2: {a2}

t3: {a3}

dt5: {a1, a2}

Figure 6.6: Deriving Preemptive semantics using a Non-Preemptive semantics.

BSMLs, such asµ-Charts [82], support a notion of asignal that when generated in a small step

of a model can be sensed as present by all of the transitions ofthe model in the same small step,

which is the same as the Present In Same event lifeline semantics if signals are considered as

events.

The Present In Same event lifeline semantics can be modelled by using synchronizers of type

PPSS. A set of signals generated by a transition corresponds to a poly-role. The conjunction of

signals in the trigger of a transition corresponds to a poly-co-role. Since more than one instance

of an event can be generated in the same small step, the third letter of the synchronization type is

S. Since a generated event can trigger more than one transitions, the fourth letter of the synchro-

nization type isS (shared). To model the negation of a signal, a synchronizer of type PUSE and

two labels can be used to disallow both a signal to be generated by a transition and its negation

to be the trigger of a transition, in the same small step.

As an example, in the model in Figure 6.7(a), when the model isinitialized and input signal

I is received from the environment, either of the potential small steps{st1, st4} and {st2, st3}

can be taken, non-deterministically in the Present In Same semantics. The SBSML model in

Figure 6.7(b) has the same behaviour as the one in Figure 6.7(a). Labelsu, v, andw correspond to

events/signalsa, b, andc, respectively. Input eventI is maintained in the model in Figure 6.7(b).

Labelsx, y, z, together with labelsx′, y′, z′, ensure that each of the signalsa, b, andc can be

exclusively either generated or its negation can trigger a transition, respectively. For example,

transitionsdt1 anddt3 cannot be taken together becauset1 and t2 cannot be taken together, but

201

S1

S11

S12

b∧ c)
¬a∧
st1: (I ∧

S21

S22

S2

st2: (I ∧

¬b∧ c)
a ∧

S4

S41

S42

S3

S31

S32

̂{a, c}
st3:

t2: {x}

D51

t1: {x′}

D61

t3: {y′} t4: {y}

t6: {z}

D71

t5: {z′}

dt4:

{y, z}}
{{v,w},

D31

D32

dt3:
{{u,w},
{x, z}}{u,w}

dt2: I

D21

D22

{y′}
{v,w}

dt1: I

D11

D12

{x′}

S RC

(a)

st4:
̂{b, c}

(b)

D5

D6

D7

D41

D42

D4D3D2D1

DES: {PPSS(u, v,w), PUSE(x, y, z, x′, y′, z′)}

Figure 6.7: Modelling the Present In Same event lifeline semantics.

dt1 needs to synchronize witht1 over labelx′ anddt3 needs to synchronize witht2 over labelx.

6.4.4 Modelling Composition Operators

In template semantics [75], a set of composition operators are introduced, each of which rep-

resents a useful execution pattern in modelling. This section describes how the behaviour of

the rendezvous, environmental synchronization, andinterleavingcomposition operators can be

modelled using synchronizers. For each of the remaining composition operators in template

semantics, there is a similarworkflow pattern[96], whose semantics is considered in the next

section.

202

int

B2

A2
t1: {a1}

t2: {a2}

I51

C22C12

C1

C11

A1

B1

st1

C21

C2

A3

B3

A4

B4

st1 st2 st3

(a) (b)

I1

I11

I12

I2

I21

I22

I31

I32

I41

I42

dt1:
{a1}

dt2:
{a1}

dt3:
{a2}

dt4:
{a2}

I3 I4 I5

Int : {UUSE(a1,a2)}

Figure 6.8: Modelling the interleaving composition operator in SBSMLs.

Interleaving:

Composing two components via the interleaving compositionoperator has the effect that in each

small step only one of the concurrent components can contribute transitions to the small step.

As an example, in the model in Figure 6.8(a), in each small step, either transitions ofC1 or

those ofC2 should be executed. The SBSML model in Figure 6.8(b) uses a synchronizer of

synchronization typeUUSE and an additional controlling component to enforce the interleaving

semantics of the model in Figure 6.8(a), by executing eithert1 or t2 in a small step, but not both.

Rendezvous

The rendezvous binary composition operator, analogous to the CCS Composition operator [72],

requires one of the transitions of one of its operands to generate a synchronization event and

one of the transitions of the other operand to consume it as a trigger, in the same small step.

If a pair of synchronizing transitions are not enabled, the non-synchronizing transitions can be

executed in an interleaving manner. Such a semantics of the rendezvous composition operator,

in the context of CCS-like models, can be modelled using synchronizers of typeUUEE.

Environmental Synchronization

The environmental synchronization composition operator,analogous to the CSP Concurrency

operator [48], requires its two operands to synchronize over transitions that are triggered with

the samesynchronization eventreceived from the environment. At each snapshot, it is possible

203

dt1:
e [b1]
{u, v,w}

t6:

t5:

{v}

e

E4

E41

E42

e [¬b4]

dt4:

t7:

t8:

e [b4]

{w}

{w}

{v} {w}
e

E2

E21

E22

e [¬b2]

dt2:
e [b2]

t3:

t4:

{u}

{u}

e

E3

E31

E32

e [¬b3]

dt3:
e [b3]
{v}

{u}

Env: {PUEE(u, v,w)}

E1

E11

E12 e

t1:
e [¬b1]

t2:

{u, v,w}

{u, v,w}

Equivalent SBSML model for the model in Fig 6.9(a).(b)

C1

B2

A2A1

B1

e [b1]
st1: st2:

C2

A3

B3

A4

B4

st3: st4:
e [b3] e [b4]

env

C11 C12 C21 C22

e [b2] e

Environmental synchronization composition operator.(a)

Figure 6.9: Modelling the environment synchronization composition operator in SBSMLs.

that no, one, or more than one transition in each operand is enabled and triggered with the

synchronization event. When all concurrent parts of the operands have enabled transitions that

are triggered with the synchronization event, a synchronizer of typePUEE can be used to execute

all of them together in the same small step. Otherwise, when there is an arbitrary number of

enabled transitions that are triggered with the synchronization event, it should be ensured that a

maximal set of such transitions are taken together in the same small step.

Figure 6.9(a) uses the environmental synchronization composition operator over evente to

coordinate the execution ofC1 andC2. Each of the transitions in the model has a guard condition

on a boolean variable that is assigned a value by the environment. Figure 6.9(b) is an SBSML

model that has the same behaviour as the model in Figure 6.9(a). Each control state of the

model in Figure 6.9(b) has a self transition to accommodate for the execution of synchronization

transitions when not all of the synchronizing transitions are ready to execute, either because the

guard condition of a synchronizing transition is false, or because it has already been executed.

This transformation, however, does not consider the possibility for a synchronizing transition to

204

be taken together with other synchronizing transitions or anon-synchronizing transition. Section

7.4.4, on page 257, presents a transformation scheme that takes into account these possibilities.

6.4.5 Modelling Workflow Patterns

Workflow patterns [96] are used in business process modelling, as well as Web services choreog-

raphy languages, such as BPEL [77]. A workflow pattern distills a recurring pattern of execution

that is useful in modelling a wide range of systems. There arefive basic workflow patterns[96]:

(i) sequence, which executes two activities sequentially: Once the firstactivity finishes, the

second activity starts; (ii)parallel split, which starts executing multiple activities in par-

allel; (iii) synchronization, which merges multiple parallel activities into a single activity;

(iv) exclusive choice, which non-deterministically chooses to execute one activity from a

set of possible activities; and (v)simple merge, which requires exactly one of the alternative

activities to finish before a next activity starts. The semantics of many of the workflow patterns

inherently deal with a notion of synchronization. For example, a task should start only after an

earlier task has finished; i.e., thesequence pattern.

Next, through examples, it is shown how simple workflow patterns can be modelled using

the expressiveness of the synchronizers. Workflow patternsare in general considered as abstract

modelling constructs that are manifested in different languages differently. I use a BSML-like

syntax to specify workflow models. The following discussions about the semantics of workflow

patterns in the context of BSMLs are also relevant in a different setting, because the proposed

translations focus on the “control flow” aspects of these patterns that remain more or less the

same in different frameworks. I use multi-source, multi-destination transitions in my transfor-

mations. The model in Figure 6.10(a) uses special syntax to represent thesequence, parallel

split, andsynchronization workflow patterns, denoted byseq, par, syn in a circle, re-

spectively. Intuitively, the model in Figure 6.10(a) requires M to be executed followed by the

parallel executions ofP1 andP2, their synchronization once they are done, and lastly, followed

by the execution ofQ. I consider entering a control state that has no outgoing transition as the

end of the activity that corresponds to that control state; aparallel activity ends when all of its

constituent parts end. For example, in Figure 6.10(a), the end of M is when bothM1 and M2

have been entered. The SBSML model in Figure 6.10(b) is equivalent to the intended behaviour

of the model in Figure 6.10(a). The transformation from the workflow patters in the model in

Figure 6.10(a) to the SBSML model in Figure 6.10(b) follows the above informal description of

205

(a)

(b)

A workflow model using thesequence, parallel split, andsynchronization workflow patterns.

st2

M12

M22

st1M1

M2
M21

M11 Q12

Q22

st5

st6

Q1
Q11

Q21
Q2

P1
P11 P12

P22

st3

st4

par syn seq

P2
P21

M Q

seq

dt5

K

K1
K11 K12

K2
K21

dt6 K22

dt1

dt2

H

H11 H12

H2

H1

H21 H22

I

I1
I11 I12

I21
I2

I22

dt3

dt4

t1 t2

Equivalent SBSML model for the model in Fig. 6.10(a).

S RC

DES

Figure 6.10: Modelling thesequence, theparallel split, and thesynchronization work-
flow patterns in SBSMLs.

the semantics of the workflow patterns. The transformation is straightforward, thanks to being

able to use multi-source, multi-destination transitions.

In interpreting and modelling the semantics of the sequencepattern above, in Figure 6.10(b),

an additional idle small step is introduced between the lastsmall step of the first activity and

the first small step of the second activity. This extra small step can be avoided by using an

non-preemptive semantics and an interrupt transition thattransfers the control flow to the second

activity simultaneously when the last small step of the firstactivity is being executed.

Figure 6.11(a) shows a model that uses workflow patternsequence to executeP after M.

The control statesH andI , in the SBSML model in Figure 6.11(b), correspond to controlstates

M and P in the model in Figure 6.11(a), respectively. The SBSML model in Figure 6.11(b)

uses three boolean variables, namelyb1, b2, andb3, to determine the last small step at the end

of which the last transitions of all of the children ofH are executed. This last small step also

executes new transitiont, because its guard condition will be satisfied, moving the model to

206

(a)

(b)

Usingsequence workflow pattern.

seq

I12
dt4I1

I11

I

dt5 I22
I2

I21

dt6 I32
I3

I31

Equivalent SBSML model as in Figure 6.11(a) , without introducing any extra small step.

DES

H1

H

H2

H3

H4
H41

H12

H22

H11
/b1 := true

dt1 :

H21
dt2 :

H31 H32
dt3 :

/b2 := true

/b3 := true

S RC

P12
st4P1

P11

P

st5 P22
P2

P21

st6 P32
P3

P31

M12
st1M1

M11

M

st3 M32
M3

M31

st2 M22
M2

M21

dt4 : [new small(b1) ∧

new small(b2) ∧
new small(b3)]

Figure 6.11: An alternative modelling of thesequence workflow pattern without introducing
any additional small step.

207

(b)

(a)

t5: {x1}

X1

t6: {x2}

mer

Equivalent SBSML model for the model in Fig. 6.12(a).

A workflow model using thesequence, exclusive choice, and thesimple merge workflow patterns.

dt1 dt5

K

K1
K11 K12

K2
K21

dt6 K22
dt2

H

H11 H12

H21
H2

H1

H22

I1
I12

I2
I21 I22 t4

I11
dt3

dt4

t3

st1 st5

st6

seq

M

M1

M2

M11

M21

M12

st2 M22

Q

Q1
Q11 Q12

Q2
Q21 Q22

P12

P21 P22

P1

P2

xor

P11
st3

st4

seq

S RC

DES: {UUEE(x1, x2)}

t1:{x1}

t2:{x2}

Figure 6.12: Modelling theexclusive choice and thesimple merge workflow patterns in
SBSMLs.

control stateI . Although not shown here, variablesb1, b2, andb3 need to be reset to false, upon

entering control stateH. This translation, however, relies on using thenew small that in general

is a transition-aware BSML semantics.

The model in Figure 6.12(a) shows example usage of the other two basic workflow patterns

that are not used in the model in Figure 6.10(a), namely theexclusive choice andsimple

merge workflow patterns. The model also uses thesequence workflow pattern. The model in

Figure 6.12(b) shows an SBSML model that has an equivalent behaviour as the model in Fig-

ure 6.12(a); thesequence workflow pattern is modelled using the first approach outlined above;

i.e., using multi-source, multi-destination transitionstogether with introducing an extra small

step. Control statesM, P1, P2, andQ correspond to control statesH, I1, I2, andK, respectively.

The semantics of theexclusive choice workflow pattern is modelled using a synchro-

nizer of typeUUEE with label set{x1, x2}. The size of the label set depends on the number of

208

choices that theexclusive choice workflow pattern can choose from; in this case it is the

non-deterministic choice of executingI1 or I2. In the model in Figure 6.12(b) either transitiont1
or transitiont2 could synchronize with transitiont5 or transitiont6, respectively, in effect, imple-

menting the semantics of theexclusive choice. Sincet5 andt6 cannot be executed together,

exactly one choice is made. Each of the multi-source, multi-destination transitionst1 andt2 does

not requireUUSE for their synchronization, since only one of the constituent regular transitions

of each needs to synchronize, as described in Section 6.4.1.

The semantics of thesimple merge workflow pattern is based on the completion of exactly

one of the alternative activities involved in this workflow pattern. By the definition of the pattern,

only one of the activities can be executed at each point of time. For example, in the model in

Figure 6.12(a), thesimple merge requires that eitherst3 or st4, but not both, to be executed.

In the model in Figure 6.12(b), two regular transitions,t1 and t2, are used to indicate the end,

andmerge, of the activities inI1 and I2, respectively. Transitionst1 and t2 cannot possibly be

executed together.

6.5 Related Work: Taxonomies for Synchronization

The different synchronization types that are used in SBSMLs are inspired by various process

algebras [9, 37], such as ACP [8], CCS [72], and CSP [48], and CIRCAL [70].

My classification of synchronization types overlaps with the classification ofmultiparty in-

teraction mechanismsby Joung and Smolka [55]. They present a novel classificationfor syn-

chronization mechanisms based on four criteria, which, in my terminology, can be described as:

(i) whether or not the role sets and co-role sets of all transitions are singletons; (ii) whether or

not a transition, in addition to specifying its role sets andco-role sets, can specify a particular

transition (or transitions in a part of the hierarchy tree) with which it wishes to synchronize; (iii-

a) whether or not the number of role sets and co-role sets of a transition together can be more

than one; (iii-b) whether or not a control state can be the source control state of more than one

transitions that can synchronize; and (iv) whether only a minimal set of synchronizing transitions

are taken at each small step or a maximal set of all synchronizing transitions should be taken at

each small step. Criterion (i) corresponds to the first two letters of my synchronization types,

with my criteria being more distinguishing. Criterion (ii)is not relevant for my framework since

it can be modelled by a naming convention for labels (cf., [55, p. 85]). Criterion (iii), called

209

conjunctive vs. disjunctive parallelism[55], is meant to distinguish between process algebras

such as SCCS (synchronous CCS) [71], which can perform multiple handshakes in one small

step, and CCS, which can do at most one handshake; this criterion is closely related to the cri-

terion (i) [55, p.83]. Part (a) of the criterion is not relevant in my framework since multiple role

sets, or multiple co-role sets, related to the same synchronizer must be merged into one role set,

or co-role set, respectively. Part (b) of criterion (iii) isnot considered as a parameter since it

corresponds to a syntactic constraint in my framework, rather than a semantic concept. Lastly,

criterion (iv) is not considered, focusing on semantics in which a maximal set of synchronizing

transitions is always taken, in the spirit of the semantics of BSMLs, where a maximal, consistent

set of enabled transitions is always taken as a small step.

Compared to Joung and Smolka’s taxonomy, my framework additionally considers the role of

the third and fourth letters of my synchronization types. Also, additionally, my framework allows

multiple synchronization types in one language. In general, the taxonomy of Joung and Smolka

“is based on issues that may affect the complexity of scheduling multiparty interaction” [55,

p.78], whereas my framework is based on issues relevant for designing suitable modelling lan-

guages for requirements specification.

Bliudze and Sifakis introduce a semantic definition framework to define and compare the

meaning ofglue operators(composition/synchronization operators) in structural operational se-

mantics (SOS) [15], in the context of component-based development frameworks. Their work

does not intend to present a design space of glue operators, but instead presents a general way for

how different glue operators can be compared in terms of expressiveness; e.g., comparing two

set of glue operators according to theweak expressivenessandstrong expressivenesspre-orders.

In comparison, my goal is to create a parameterized framework of synchronization mechanisms

based on relevant semantic criteria for modelling, independent of any semantic definition mech-

anism.

The results by Bliudze and Sifakis [15] and Joung and Smolka [55], however, could be useful

for my work when designing tool support for SBSMLs.

My synchronizer syntax is inspired by theencapsulation operatorin Argos [68]. The encap-

sulation operator specifies the scope in which a signal can beused. My syntax is different in that

multiple synchronizers can be attached to the same control state.

A class of BSMLs called synchronous languages [40], which includes languages such as

Esterel[14] and Argos [68], have been successful in the specification of deterministic behaviour:

210

“In contrast with traditional thread- or event-based concurrency models that embed no precise or

deterministic scheduling policy in the design formalism, synchronous language semantics take

care of all scheduling decisions.” [93] The main characteristic of the synchronous languages is

that the statuses ofsignalsof a model are constant throughout a big step, thus a transition is

either enabled or disabled with respect to the statuses of events, deterministically. Synchronous

semantics, however, introduce semantic difficulties such as non-causality and global inconsis-

tency [68, 40, 14, 86]. Using the synchronization capability of SBSMLs, it is possible to sim-

ulate the subset of the responsibilities of signals in synchronous languages that deal with the

coordination of the simultaneous execution of transitions. As such, when signal-like artifacts

are not available in a domain, e.g., UML StateMachines [78] uses a buffered events mechanism,

synchronization could be used to achieve determinism in a model, by constructing the model

such that each of its snapshots has a unique potential small step.

SBSMLs, however, as opposed to synchronous languages, do not guarantee determinism as

an inherent property of their semantics.5 When a deterministic behaviour is desired in an SBSML

model, care should be taken when using a synchronizer that has a synchronization type with its

third and/or fourth letter beingS, which allows synchronization with an arbitrary number of

transitions. Similarly, care should be taken when using multiple synchronizers in a model, which

could allow multiple sets of transitions to synchronize, according to different synchronizers,

thereby creating different potential small steps. As an example, in the model in Fig. 6.7(b), if

labelsx, y, andz are removed from the model, replacing them in the co-role sets of t2, t4, t6 with

u, v, andw, respectively, the model can create a wrong small step that would includedt1, dt2,

dt3, anddt4. The wrong small step is possible because labelx′ in dt1 can match its corresponding

label in t1, while labelu of dt3 can match its corresponding label indt2. Similarly, dt2 anddt4
can match their corresponding labels int3 anddt1, respectively.

6.6 Summary

This chapter introduced a synchronization mechanism for the family of BSMLs. Syntactically,

transitions are extended with role sets, each of which is a set of labels, and co-role sets, each of

which is a set of co-labels; and control states are extended with synchronizers, each of which has

5A model in a synchronous language with a possible nondeterministic behaviour is conservatively rejected at
compile time.

211

one of the 16 introduced synchronization types and a set of labels. Semantically, the transitions of

a model synchronize via their role sets and co-role sets according to the synchronizers that control

them. The result is the new family of synchronizing big-stepmodelling languages (SBSMLs).

The chapter showed that SBSMLs not only have applications inmodelling but also can be used

to model different semantic variations of the big-step semantic deconstruction, as well as, the

semantics of many common modelling constructs.

212

Chapter 7

Formal Semantics for SBSMLs

“A unifying theory is usually complementary to the theoriesthat it links,

and does not seek to replace them.” [48, p.1]

Tony Hoare and He Jifeng

This chapter presents a formal semantics for the synchronization syntax described in Chapter 6.

The semantics of synchronization is entirely orthogonal tothe enabledness semantic aspects, thus

this chapter relies on the previously-stated formalization of the enabledness semantic aspects in

Section 4.5. TheConcurrency and Consistency semantic aspect is not relevant in the presence

of synchronization: For each of its sub-aspects, using one of its semantic options and synchroniz-

ers, the other semantic option can be modelled. Therefore, theConcurrency and Consistency

semantic aspect is not needed in this chapter.

The remainder of this chapter is organized as follows. Section 7.1 presents the formal syntax

of synchronizing big-step modelling languages (SBSMLs) inthe form of a BNF. Section 7.2

presents the formal semantics of SBSMLs, which is based on a semantic definition schema sim-

ilar to the one for BSMLs. Section 7.3 presents a succinct formalization of the synchronization

types that is plugged into the definition in Section 7.2, to derive a complete semantic definition.

Section 7.4 formally describes the transformations of modelling constructs, such as multi-source,

multi-destination transitions and composition operators, to SBSMLs. It also describes the trans-

formations of one semantic option of theConcurrency and Consistency semantic aspect to an-

other using SBSMLs. The proofs of the correctness of these transformations are also presented.

213

〈root〉 ::= 〈Orstate〉
〈Orstate〉 ::= Or 〈states-o〉 〈transitions〉 〈synchronizers〉
〈states-o〉 ::= 〈states-o〉 〈state〉 | 〈state〉
〈Andstate〉 ::= And 〈states-a〉 〈transitions〉 〈synchronizers〉
〈states-a〉 ::= 〈states-a〉 〈state〉 | 〈state〉
〈Basicstate〉 ::= Basic
〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉
〈synchronizers〉 → 〈synchronizer〉 | 〈synchronizers〉 〈synchronizer〉
〈synchronizer〉 → "" | 〈synchtype〉 〈labelset〉
〈synchtype〉 → UUEE | UPEE | PUEE | PPEE | UUSE | UPSE | · · · | PPSS

Figure 7.1: SBSML abstract syntax in BNF.

Section 7.5 discusses the relevance of the semantic qualityattributes, which were introduced for

BSMLs in Chapter 5, for SBSMLs.

7.1 Formal Syntax

This section presents the syntax of SBSMLs formally, followed by introducing syntactic notation

needed for the formalization of SBSML semantics.

7.1.1 Synchronization-Related Definitions

Figure 7.1 presents the BNF for the syntax of SBSMLs. Similarto the BNF of BSMLs, in Fig-

ure 2.3, an SBSML model is a hierarchy tree ofAnd, Or, andBasiccontrol states, together with

transitions over these control states. Additionally, the BNF in Figure 7.1 allows each compound

control state to have a set of synchronizers. A control state, a transition, or a synchronizer has a

unique name, similar to the ones defined for BSMLs in Section 2.1.3, on page 20. For the sake of

brevity and clarity, I have not included these names in the abstract syntax in Figure 7.1, however,

it is always possible to ascribe a unique name to each of theseelements of a model to identify it

(e.g., by labelling the nodes of the hierarchy tree of the model according to an order of traversal).

Table 7.1 presents the accessor functions and relations forthe elements of the syntax of an

SBSML model. These definitions were discussed informally inChapter 6. In addition to these

214

Table 7.1: Syntactic notation for SBSMLs.
Notation Description

syn(s) The set ofsynchronizersof control states.
syntype(y) Thesynchronization typeof synchronizery.
synlabels(y) The label setof synchronizery.
rolesets(t) The set ofrole setsof transitiont, each of which is a set of labels.
corolesets(t) The set ofco-role setsof transitiont, each of which is a set of co-labels.

t4: Merge

Group2Group1 Group3

G11

G12

G21

G22

G31

G32

t5: {x}

t6: {x}

t8: {x} t11: {x}

t12: {x}t9: {x}

t1: Line

t2: Circle

t14: Finish End
t7: {x} t10: {x} t13: {x}

Together

t3: Split
Intersection: {UUES(x)}

Figure 7.2: A model for a set of synchronized ice skating programs (the same as the model in
Figure 6.2).

definitions, the notation defined in Table 4.1 and Table 4.2 for BSMLs, on pages 92 and page 93,

respectively, are also used for SBSMLs.

Example 46 In the SBSML model in Figure 7.2, which is the same model as in Figure 6.2

copied here for convenience, syn(Intersection)= {UUES(x)} , syntype(UUES(x))= UUES, and

synlabels(UUES(x)) = {x}. Also, rolesets(t5) = ∅, corolesets(t5) = {{x}}, rolesets(t6) = {{x}},

and corolesets(t6) = ∅.

As usual, the outer pair of curly brackets of a singleton set is dropped; e.g., instead of

corolesets(t5) = {{x}} in Figure 7.2,corolesets(t5) = {x}.

7.1.2 Well-Formed SBSML Models

As informally described in Section 6.3.1, an SBSML model must be well-formed, by following

seven well-formedness conditions. Next, these conditionsare presented formally.

215

i Each label uniquely belongs to the label set of exactly one synchronizer. Formally,

∀l · ∃y1, y2 · (l ∈ synlabels(y1)) ∧ (l ∈ synlabels(y2))⇒ y1 = y2.

ii For each label,l, if there is at least one transition with a poly-role that includesl, then the

synchronization type of its corresponding synchronizer should be a synchronization type

whose first letter isP (i.e., P***), otherwise it must be one of theU*** synchronization

types. Similarly, the second letter of a synchronization type is specified based on the

characteristics of the co-role sets of transitions. Formally,

∀s · ∀y ∈ syn(s) · ∀l ∈ synlabels(y)·

(∃t · ∃r ∈ rolesets(t) · (l ∈ r) ∧ (|r | > 1)⇔ syntype(y) ∈ P***),

whereP*** represents the set of synchronization types whose first letters isP. A similar

predicate for the second letter of the synchronization typeof a synchronizer is defined that

checks for the size of co-role sets of transitions, instead of role sets in the above predicate.

iii No two synchronizers of a control state have the same synchronization type. Formally,

∀s · ∀y1, y2 ∈ syn(s) · syntype(y1) = syntype(y2)⇒ y1 = y2.

iv Two labels that are associated with the same synchronization type do not belong to two

different role sets or two different co-role sets of the same transition. Formally,

∀s · ∀y ∈ syn(s) · ∀l1, l2 ∈ synlabels(y)·

(∀t · ∀r1, r2 ∈ rolesets(t) · (l1 ∈ r1) ∧ (l2 ∈ r2)⇒ r1 = r2) ∧

(∀t · ∀c1, c2 ∈ corolesets(t) · (l1 ∈ c1) ∧ (l2 ∈ c2)⇒ c1 = c2).

v For each label,l, of a synchronizer,y, and each transition,t, l is associated with at most

one of the role sets or co-role sets oft. Formally,

∀s · ∀y ∈ syn(s) · ∀l ∈ synlabels(y) · ∀t·

¬[(∃r ∈ rolesets(t) · (l ∈ r)) ∧ (∃c ∈ corolesets(t) · (l ∈ c))].

vi A synchronizer,y, is associated with the least common ancestor of the source and destina-

216

tion control states of the transitions that use the labels ofy in their role sets or co-role sets.

Formally,

∀s · ∀y ∈ syn(s) · ¬[∀l ∈ synlabels(y) · ∃s′ ∈ children+(s) · ∀t·

∀r ∈ rolesets(t) · (l ∈ r)⇒ lca(src(t), dest(t)) ∈ children∗(s′) ∧

∀c ∈ corolesets(t) · (l ∈ c)⇒ lca(src(t), dest(t)) ∈ children∗(s′)].

vii A synchronizer,y, of a control state,s, cannot be split into two synchronizers,y1 andy2,

such thaty1 is assigned tos buty2 is assigned to a descendant ofs. Formally,

∀s · ∀y ∈ syn(s) · ¬[∃L ⊂ synlabels(y) · ∃s′ ∈ children+(s) · ∀t·

∀r ∈ rolesets(t) · (r ⊆ L) ⇒ lca(src(t), dest(t)) ∈ children∗(s′) ∧

∀c ∈ corolesets(t) · (c ⊆ (
⋃

l∈L l))⇒ lca(src(t), dest(t)) ∈ children∗(s′)].

The above well-formedness constraints together ensure that scoping problems, such as name

clash between the labels of two synchronizers, do not arise in the semantic definition of SBSMLs.

7.2 Semantic Definition for SBSMLs

Similar to the formalization of BSML semantics, SBSML semantics are defined using a semantic

definition schema. Figure 7.3 is the schema that is used to define SBSML semantics, and is the

same as the one for BSMLs in Figure 4.2, on page 88. As usual, the set of potential small steps

of a model at snapshotsp is denoted asexecutable(root, sp).

7.2.1 Semantics of SBSMLs vs. Semantics of BSMLs

The formalization of the enabledness semantic aspects for SBSMLs are exactly the same as

for BSMLs in Section 4.5, because they do not have any role in the semantics of synchroniza-

tion. SBSMLs all use the fixed semantic options of Many for the concurrency semantic aspect,

Source/Destination Orthogonal for the small-step consistency semantic aspect, and the Non-

Preemptive for the preemption semantic aspect. The alternative semantic options for these se-

mantic aspects can be modelled using synchronizers, as described in Section 6.4.2 informally,

217

1. NBig(sp0, I , sp′) ≡ reset(sp0, I , sp) ∧ (∃k ≥ 0 · Nk(sp, sp′))
∧ executable(root, sp′) = ∅

2. reset(sp0, I , sp) ≡
∧

1≤i≤n

reset eli(sp0, I , sp)

3. N0(sp, sp′) ≡ sp= sp′

4. Nk+1(sp, sp′) ≡ ∃τ, sp′′ · NS mall(sp, τ, sp′′) ∧ Nk(sp′′, sp′)
5. NS mall(sp, τ, sp′) ≡

∧

1≤i≤n

next eli(sp, τ, sp′) ∧ τ ∈ executable(root, sp)

Figure 7.3: Semantic definition schema for SBSMLs.

and as will be formalized in Section 7.4.2. Thus, theConcurrency and Consistency semantic

aspect is not considered in the semantic formalization of SBSMLs.

The semantics of SBSMLs, however, differ from the semantics of BSMLs in how the poten-

tial small steps of a model are created. In a BSML model, a potential small step of the model

at a snapshot is a maximal set of enabled, high-priority transitions that can be taken together ac-

cording to the concurrency and consistency semantics of theBSML. In an SBSML model, such

a maximal set of enabled, high-priority transitions is not apotential small step of the model if the

synchronization requirements of the transitions in the setare not satisfied.

For example, for an SBSML with a hierarchical priority semantics, a naive approach to en-

force the synchronization requirements of the transitionsof a potential small step of a model is to

keep track of the synchronizing transitions of the model as its hierarchy tree, and its synchroniz-

ers, are traversed hierarchically. This approach would be similar to the hierarchical computation

for BSMLs, presented in Section 4.4.1 and Section 4.4.2. However, such an approach fails to

consider that: (i) the synchronizing transitions of a modeldo not necessary have the same scope;

and (ii) a transition can be controlled by more than one synchronizers that are associated with

different control states. Implementing the above two requirements in a hierarchical semantic def-

inition, however, is not straightforward. For example, letus consider adapting the hierarchical

computation in Figure 4.10, on page 107, for an SBSML with theScope-Child priority semantics.

Let us consider the hierarchical computation when control state,s, of an SBSML model, and a

pair of transitions,t1 andt2, that synchronize according to the synchronization requirements of

a synchronizer in a lower control state and are passed to the attribute of s that keeps track of

executable transitions. If one of the transitions, e.g.,t1, has an extra synchronization requirement

218

enforced by a synchronizer at the current level, but that requirement cannot be satisfied by any

enabled transition with a scope at the current level, thent1 should be removed from the set of

executable transitions. Furthermore, removingt1 means that: (a)t2 should also be removed from

the set of executable transitions; and (b)t1 and t2 could possibly be replaced by some enabled

transitions from the lower levels of the hierarchy tree. However, this means that the computa-

tion in Figure 4.10 should be changed in a way that is not quitehierarchical any more. Similar

problems arise when the Scope-Parent or the No Priority priority semantics is considered for

SBSMLs.

Next, a method for computation of potential small steps in SBSMLS is presented, in which

the synchronization and priority constraints are only considered at the root of a model, and only

once.

7.2.2 Computing the Potential Small Steps

Figure 7.4 is an attribute-grammar–like formalism to compute the set of potential small steps

of an SBSML model. Similar to the formalization of the semantics of BSMLs, an attribute-

grammar–like formalism is used to compute the set of potential small steps of a model at a

snapshot,sp. The value ofexecutable(root, sp) is equal to the value of attributeex(root, sp)

in Figure 7.4. Attributeex(root, sp) computes the set of potential small steps of a model at

snapshotspbased on a chosen priority semantics and the set of synchronizers of the model,Y.

Lines 2a to 9a in the schema compute the possible potential small steps of an SBSML model

incrementally, as if it is a BSML model and the No Priority semantics is chosen, similar to

lines 2a-9a of Figure 4.10, as described in Section 4.4. The semantics of synchronization and

priority are considered in line 1a. Line 10 in Figure 7.4 is the definition of the merge operator,

denoted by “�”, which is similar to the definitions of the merge operators in Figure 4.8 and

Figure 4.10, except that the Source/Destination Orthogonal and the Non-Preemptive semantics

are hard-coded as consistency criteria in the last two conjuncts.

In the formalization of the semantics of BSMLs, for each of the hierarchical semantic options,

Scope-Parent and Scope-Child, a separate hierarchical computation forexecutable(root, sp) is

needed, as shown in Figure 4.8 and Figure 4.10, respectively. For SBSMLs, however, only one

hierarchical computation is used: The priority semantics is enforced at the root of a hierarchy

tree. This approach is adopted because the enabledness of a transition and its being a high-

priority transition does not mean that it belongs to a potential small step if its synchronization

219

1. 〈root〉 ::= 〈Orstate〉
a. ex(root, sp) = PRI[MAX(SYN(ex(Orstate, sp)))]

2. 〈Orstate〉 ::= Or 〈states-o〉 〈transitions〉 〈synchronizers〉
a. ex(Orstate, sp) = ex(states-o, sp)� en trs(transitions, sp)

3. 〈states-o〉 ::= 〈states-o〉 〈state〉
a. ex(states-o0, sp) = ex(states-o1, sp) ∪ ex(state, sp)

4. 〈states-o〉 ::= 〈state〉
a.ex(states-o, sp) = ex(state, sp)

5. 〈Andstate〉 ::= And 〈states-a〉 〈transitions〉 〈synchronizers〉
a. ex(Andstate, sp) = ex(states-a, sp)� en trs(transitions, sp)

6. 〈states-a〉 ::= 〈states-a〉 〈state〉
a.ex(states-a0, sp) = {T1 ∪ T2|T1 ∈ ex(states-a1, sp) ∧ T2 ∈ ex(state, sp)}

7. 〈states-a〉 ::= 〈state〉
a. ex(states-a, sp) = ex(state, sp)

8. 〈Basicstate〉 ::= Basic
a. ex(Basicstate, sp) = ∅

9. 〈state〉 ::= 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉
a. ex(state, sp) = ex(Orstate, sp), ex(Andstate, sp), or

ex(Basicstate, sp)

10. T� T′ = { (T1∪T′′)| T1 ∈ T ∧ T′′ ⊆ T′∧
∀t′ : (T1 ∪ T′) · t′ ∈ (T′−T′′)⇔ ∃t ∈ (T1 ∪ T′′)·
(t 6⊥ t′) ∧ ¬((t t′) ∨ (t′ t)) }

11. SYN(T) =
{

T − T′| (T ∈ T) ∧ (T′ ⊂ T) ∧
∧

1≤i≤4

SYNi(T − T′) ∧

∀X : 2T′ · (X , ∅)⇒ ¬
[∧

1≤i≤4

SYNi((T − T′) ∪ X)
] }

12. MAX(T) = { T | T ∈ T ∧ (∄T′ ∈ T · (T′ ⊃ T)) }

13. PRI(T) = { T | T ∈ T ∧ (∄T′ ∈ T · (T′ ⋗ T)) }

Figure 7.4: Computing potential small steps of SBSML models.

220

requirements cannot be satisfied by other transitions in anypotential small step. As such, the

priority and synchronization semantics cannot be considered independently: They need to be

considered only once at the root of the hierarchy tree.1

Line 1a in Figure 7.4 uses three functions, namely,PRI, MAX, andSYN, to enforce a priority

semantics, to ensure that a potential small step cannot be extended with further transitions, and

to incorporate the roles of the synchronizers of an SBSML model, respectively. Line 11 in

Figure 7.4 specifies theSYNfunction, whose detailed definition is presented in Section7.3. For

each set of transitions,T, theSYNfunction computes a set of transitions,T′, that can be removed

from T so that the result consists of transitions that are synchronizing according to all of the

synchronizers of the model. The fourth conjunct of the definition, on the second line, ensures

that T′ is a minimal set. Line 12 specifies theMAX function, which discards all computed

sets of transitions by theSYNfunction that are a subset of another computed set of transitions.

FunctionMAX is necessary, despite the fourth conjunct of theSYNfunction, because although

a set of transitionT−T′ computed by theSYNfunction is maximal, there could exist another

set of transitionsR−R′ such that (R−R′) ⊃ (T−T′). For example, ifT = {t1, t2, t3}, T′ = {t3},

R= {t1, t2, t4}, R′ = ∅, andt3 6⊥ t4, then (R−R′) ⊃ (T−T′). The fourth conjunct of theSYNfunction

is not necessary, but I mention it to distinguish between thetwo types of maximality involved in

the computation of the set of potential small steps. Line 13 specifies thePRI function. ThePRI

function allows a set of transitions to be a potential small step if there is not any set of transitions

T′ that has a higher priority thanT. As described in Section 5.1.1, the semantics of the “⋗”

operator depends on the choice of a priority semantics. If the No Priority priority semantics is

chosen, thenPRI(T) = T.

7.3 Formalization of Synchronization Types

This section formally specifies the semantics of the synchronization types, which, in turn, are

used to specify the formal definition of theSYNfunction, used in the computation in Figure 7.4.

Recall that a synchronization type is a four-letter sting that specifies how a synchronizer that

uses it can coordinate the execution of the transitions thatuse the labels in the label set of the
1A similar semantic definition approach for hierarchical priority semantics to the one used for SBSMLs in this

chapter could have been adopted for BSMLs. However, I found the semantic definition approach in Chapter 4
more prescriptive than the alternative because the formalization of a hierarchical priority semantics is more clearly
manifested in a BSML semantic definition.

221

Table 7.2: Synchronization types and their parameters, when considered for synchronizerY(L).
Index Parameter Purpose Values for SynchronizerY(L)

1
How an identifier can be used in the role sets of
transitions

U: The identifiers inL can be used
only in uni-roles
P: The identifiers inL can be used
in poly-roles

2
How an identifier can be used in the co-role
sets of transitions

U: The identifiers inL can be used
only in uni-co-roles
P: The identifiers inL can be used
in poly-co-roles

3
How many instances of a label can appear in
the role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

4
How many instances of a co-label can appear
in the co-role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

synchronizer. Table 7.2, copied here from page 193 for convenience, summarizes the meaning

of each letter of a synchronization type.

This section presents a formalization of the synchronization types that formalizes the mean-

ing of each letter of a synchronization type as a separate predicate, in a prescriptive way. This

formalization is designed based on the observation that a set of transitions are synchronizing

according to a synchronizer if the conjunction of four statements that each represents one of the

letters of the synchronization type of the synchronizer is true. For example, let us consider a

synchronizerPUES(L) and a set of transitions,τ, that synchronize according toPUES(L). Also,

let us denote the subset of labels inL that have been used in the role sets and co-role sets of the

transitions inτ asM. Then, for each labelm ∈ M, the following four statements must be all true:

(i) if a transitiont ∈ τ uses a labelm ∈ M in one of its role sets,r, then for any other labelm′ ∈ r,

m′ ∈ M; (ii) a transitiont ∈ τ can use a labelm ∈ M only in a uni-co–role set; (iii) a labelm ∈ M

must be used in exactly one of the role sets of one of the transitions in τ, and furthermore, it

should match the over-lined label of one uni-co–role set of at least one transition inτ; and (iv) a

labelm∈ M must be used in at least one of the uni-co–role sets of one of the transitions inτ, and

furthermore, it should match the label of one of the role setsof exactly one transition inτ. Each

of the above four statements corresponds to the meaning of one of the letters of synchronization

type “PUES”. Furthermore, each statement refers to a particular set oftransitions and the labels

over which they synchronize.

222

In the formalization of the synchronization types, to abstract away from the particularities of

a certain set of synchronizing transitions,relation typesare used that each represents one of the

letters of one of the 16 synchronization types. If two synchronization types use the same letter in

the same index, then it is not necessarily the case that theirrelation types are the same, because

of the interdependencies between different letters of a synchronization type. A relation type that

represents one of the letters of a synchronization type can be instantiated with a particular label

set and a particular set of transitions. The result will be a set of sets of tuples that enumerate

the acceptable patterns of interaction between the transitions over the labels of the label set,

according to the letter of the synchronization type that therelation type represents. Thus, if a

set of transitions is synchronizing according to one of the letters of the synchronization type of

a synchronizer, then the pattern of interaction of the transitions must be one of the acceptable

patterns derived from the corresponding relation type of the letter.

Next subsection describes how the relation types are definedand how they can be integrated

into the semantic definition schema presented in the previous section to derive a complete se-

mantics for an SBSML.

7.3.1 Formalization

For a synchronizery and a set of transitionsτ, τy and τ̄y denote the set of transitions inτ that

has a role set using at least one of the labels insynlabels(y) and the set of transitions inτ that

has a co-role set using at least one of the labels insynlabels(y), respectively. Conversely,Lτy
andL̄τy denote the set of labels insynlabels(y) that are used in at least one of the role sets of the

transitions inτ and the set of labels insynlabels(y) that are used in at least one of the co-role sets

of the transitions inτ, respectively.

Example 47 In the model in Figure 7.2, ifτ = {t6, t8, t11} and y = UUES(x), thenτy = {t6},

τ̄y = {t8, t11}, Lτy = {x} andL̄τy = {x}.

It is important to note that̄Lτy is equal to{x}, and not{x}, as is the case for a co-role set.

Next, some notation are introduced that capture the interactions amongst a set of transitions,

τ, through the labels of a synchronizer,y. Four relations are introduced that each captures these

interactions from the perspective of one of the letters of the synchronization type of the synchro-

nizer.

223

Relationsλ3(τ, y) : (τy × Lτy) × τ̄y andλ4(τ, y) : (τ̄y × L̄τy) × τy correspond to the third and fourth

letters ofsyntype(y), respectively. Relationλ3 specifies how the transitions that each has at least

a role set usingsynlabels(y) interact with transitions that each has at least a co-role set using

synlabels(y). Relationλ4 does the opposite: It specifies how the transitions that eachhas at least

a co-role set usingsynlabels(y) interact with transitions that each has at least a role set using

synlabels(y). Formally,

λ3(τ, y) = {(t, l), t′| l ∈
⋃

r∈rolesets(t)(r) ∧ l ∈
⋃

c∈corolesets(t′)(c) ∧ l ∈ synlabels(y)}, and

λ4(τ, y) = {(t, l), t′| l ∈
⋃

c∈corolesets(t)(c) ∧ l ∈
⋃

c∈roleset(t′)(r) ∧ l ∈ synlabels(y)}.

Relationsλ1(τ, y) : τy × (Lτy ∪ L̄τy) andλ2(τ, y) : τ̄y × (Lτy ∪ L̄τy), except for their types, are

derived fromλ3 andλ4 relations, respectively. They correspond to the first and second letters of

syntype(y), respectively. Relationλ1 specifies how the transitions that each has at least a role set

usingsynlabels(y) interact through the labels used by either the role sets or the co-role sets of

the transitions inτ. Relationλ2 does the opposite: It specifies how the transitions that eachhas

at least a co-role set usingsynlabels(y) interact through the labels used by either the role sets or

the co-role sets of the transitions inτ. Formally,

λ1(τ, y) = dom(λ3(τ, y)), and

λ2(τ, y) = dom(λ4(τ, y)).

The types ofλ1 andλ2 are not derived from the types ofλ3 andλ4. Instead, they require their

ranges to be (Lτy ∪ L̄τy), instead ofLτy and L̄τy, respectively, in order to specify the labels used by

both the role sets and the co-role sets of the transitions, asspecified above.

Example 48 In the model in Figure 7.2, forτ = {t6, t8, t11} and y= UUES(x),

i λ3(τ, y) = {((t6, x), t8), ((t6, x), t11)},

(The two tuples together specify thatt6 uses labelx in its role set to interact with botht8
andt11, which both have a co-role set that usesx.)

ii λ4(τ, y) = {((t8, x), t6), ((t11, x), t6)},

(The first and second tuples specify that transitionst8 and t11 each uses labelx in one of

their co-role sets to interact witht6, which has a role set that usesx.)

224

iii λ1(τ, y) = {(t6, x)}, and

(The relation specifies that transitiont6 uses labelx in one of its role sets to interact with

the other transitions.)

iv λ2(τ, y) = {(t8, x), (t11, x)}.

(The relation specifies that transitionst8 and t11 each uses labelx in one of its co-role sets

to interact with the other transitions.)

Theλi ’s relations, 1≤ i ≤ 4, are used to check whether a set of transitions,τ, satisfies the se-

mantics of a synchronizer,y. For each of the four letters of a synchronization type, a relation type

is introduced that describes the pattern of interactions ofthe synchronization type according to

that letter. Table 7.3 specifies these relation types for each synchronization type for an arbitrary

syntype(y) andτ. For a set of transitionsτ and a synchronizery, depending onsynchtype(y),

Λ1, Λ2, Λ3, andΛ4 determine the type of relationsλ1(τ, y), λ2(τ, y), λ3(τ, y), andλ4(τ, y), respec-

tively. In fact, Table 7.3 specifies 16familiesof relation types, each family representing all of the

synchronizers with the same synchronization type, each of the synchronizers considered with its

all possible sets of enabled transitions. The symbols used in Table 7.3, which specify the type

of the relations, are similar to the ones used in Z notation todenote the type of a relation or

function [91]; Table 7.4 specifies the meaning of each symbol.2 A non-empty set of transitions,

τ, which could be chosen as a potential small step, satisfy thesynchronization requirements of a

synchronizery, if

[[λ1(τ, y) ∈ Λ1(τ, y)] ∧ [λ2(τ, y) ∈ Λ2(τ, y)] ∧ [λ3(τ, y) ∈ Λ3(τ, y)] ∧ [λ4(τ, y) ∈ Λ4(τ, y)]] ∨

[(λ1(τ, y) = ∅) ∧ (λ2(τ, y) = ∅) ∧ (λ3(τ, y) = ∅) ∧ (λ4(τ, y) = ∅)].

In the above predicate, the first disjunct specifies the case that at least two transitions inτ par-

ticipate in a synchronization according to the labels iny. The second disjunct considers the case

for the transitions inτ that do not participate in any synchronization according tothe labels iny;

e.g.,τ could contain transitions without any role sets or co-role sets.

Example 49 In the model in Figure 7.2, forτ = {t6, t8, t11} and y = UUES(x), the following

conditions hold and thusτ satisfies y’s synchronization requirements (where a pair of“ [] ” is

used to specify the set that represents a relation type):

2I have also added a few extra symbols, in the same spirit as thesymbols used in Z.

225

Table 7.3: Invariants of synchronization types for a set of transitionτ.
Type Λ3(τ, y) Λ4(τ, y) Λ1(τ, y) Λ2(τ, y)

y = UUEE(L) (τy × Lτy) 7֌→ τ̄y (τ̄y × L̄τy) 7֌→ τy τy֌→ (Lτy ∪ L̄τy) τ̄y֌→ (Lτy ∪ L̄τy)
y = UPEE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy) 7֌→ τy τy֌→ (Lτy ∪ L̄τy) τ̄y ←← (Lτy ∪ L̄τy)
y = PUEE(L) (τy × Lτy) 7֌→ τ̄y (τ̄y × L̄τy) 7→→ τy τy ←← (Lτy ∪ L̄τy) τ̄y֌→ (Lτy ∪ L̄τy)
y = PPEE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy) 7→→ τy τy ←← (Lτy ∪ L̄τy) τ̄y ←← (Lτy ∪ L̄τy)

y = UUSE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy)← τy τy →→ (Lτy ∪ L̄τy) τ̄y֌→ (Lτy ∪ L̄τy)
y = UPSE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy)← τy τy →→ (Lτy ∪ L̄τy) τ̄y ←← (Lτy ∪ L̄τy)
y = PUSE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy)↔→ τy τy ↔↔ (Lτy ∪ L̄τy) τ̄y֌→ (Lτy ∪ L̄τy)
y = PPSE(L) (τy × Lτy) 7→→ τ̄y (τ̄y × L̄τy)↔→ τy τy ↔↔ (Lτy ∪ L̄τy) τ̄y ←← (Lτy ∪ L̄τy)

y = UUES(L) (τy × Lτy)← τ̄y (τ̄y × L̄τy) 7→→ τy τy֌→ (Lτy ∪ L̄τy) τ̄y →→ (Lτy ∪ L̄τy)
y = UPES(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy) 7→→ τy τy֌→ (Lτy ∪ L̄τy) τ̄y ↔↔ (Lτy ∪ L̄τy)
y = PUES(L) (τy × Lτy)← τ̄y (τ̄y × L̄τy) 7→→ τy τy ←← (Lτy ∪ L̄τy) τ̄y →→ (Lτy ∪ L̄τy)
y = PPES(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy) 7→→ τy τy ←← (Lτy ∪ L̄τy) τ̄y ↔↔ (Lτy ∪ L̄τy)

y = UUSS(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy)↔→ τy τy →→ (Lτy ∪ L̄τy) τ̄y →→ (Lτy ∪ L̄τy)
y = UPSS(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy)↔→ τy τy →→ (Lτy ∪ L̄τy) τ̄y ↔↔ (Lτy ∪ L̄τy)
y = PUSS(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy)↔→ τy τy ↔↔ (Lτy ∪ L̄τy) τ̄y →→ (Lτy ∪ L̄τy)
y = PPSS(L) (τy × Lτy)↔→ τ̄y (τ̄y × L̄τy)↔→ τy τy ↔↔ (Lτy ∪ L̄τy) τ̄y ↔↔ (Lτy ∪ L̄τy)

Table 7.4: Relations and functions types.
Symbol Meaning

↔ Relation
←↔ Left-total relation
↔→ Right-total relation
↔↔ Bi-direction total relation
7→ Partial function
7֌ Injective, partial function
7→→ Surjective, partial function
7֌→ Injective, surjective, partial function
→ Total function
֌ Injective, total function
→→ Surjective, total function
֌→ Injective, surjective, total function

226

i λ3(τ, y) ∈ [({t6} × {x})← {t8, t11}],

ii λ4(τ, y) ∈ [({t8, t11} × {x}) 7→→ {t6}],

iii λ1(τ, y) ∈ [{t6}֌→ {x}], and

iv λ2(τ, y) ∈ [{t8, t11} →→ {x}].

Where the values ofλ1(τ, y), λ2(τ, y), λ3(τ, y), andλ4(τ, y) were specified in Example 48.

If τ′ = {t6, t9, t11} and y= UUES(x)are chosen, the first three conditions do not hold and thus

τ′ does not satisfy y’s synchronization requirements. Formally,

i λ3(τ′, y) = {((t6, x), t11), ((t9, x), t11)} < [({t6, t9} × {x})← {t11}],

ii λ4(τ′, y) = {((t11, x), t6), ((t11, x), t9)} < [({t11} × {x}) 7→→ {t6, t9}],

iii λ1(τ′, y) = {(t6, x), (t9, x)} < [{t6, t9}֌→ {x}], and

iv λ2(τ′, y) = {(t11, x)} ∈ [{t11} →→ {x}].

Relationsλ1 andλ2, which correspond to the semantics of the first two letters ofa synchro-

nization type, are necessary to ensure that all the labels and co-labels of a set of synchronizing

transitions engage in a synchronization. Otherwise, a set of transitions can be mistakenly, vacu-

ously, considered as synchronizing.

Example 50 In the model in Figure 7.2, forτ = {t6} and y = UUES(x), the following two

conditions hold forτ and y,

i λ3(τ, y) = ∅ ∈ [({t6} × {x})← ∅],

ii λ4(τ, y) = ∅ ∈ [(∅ × {x}) 7→→ {t6}].

However,τ is not meant to satisfy the requirements ofUUES(x), because,

i λ1(τ, y) = ∅ < [{t6}֌→ {x}], and

ii λ2(τ, y) = ∅ < [∅ 7→→ {t6}].

227

Table 7.3 consists of 64 relation types: Each of the 16 synchronization types is represented

by four relation types that each represents one of the letters of the synchronization type. Each

synchronization type is uniquely identified by its set of four relation types. As mentioned earlier,

if two synchronization types use the same letter in the same index, then it is not necessarily the

case that their relation types are the same, because of the interdependencies between different

letters of a synchronization type. The formalization of oneletter of a synchronization type factors

in the effect of other letters of the synchronization type. Next, as anexample, it is explained how

the formalization of the relation types for the synchronization typePUES can be derived from the

English description ofPUES.

Example 51 Let us consider the earlier English description of the meaning of synchronization

typePUES, when considered for a synchronizer y= PUES(L) and a set of synchronizing transi-

tionsτ. The meaning of synchronization typePUES can be described through the following four

statements that each corresponds to one of the letters of thesynchronization type:

- The third letter, i.e., “E”, requires that if a transition t∈ τy uses a label l∈ Lτy in one of

its poly-role sets to interact with another transition t′ ∈ τ̄y, through one of the uni-co–role

sets of t′, then there should not exist any transition other than t thatuses l in one of its role

sets. This description is formalized in the following relation type,

(τy × Lτy)← τ̄y,

which formalizes the above description by requiring that relation λ3(τ, y) when considered

in the inverse form is a total function. Recall that relationλ3(τ, y) relates a pair(t, l), such

that t ∈ τy and l ∈ Lτy, to a transition t′ ∈ τ̄y, if t′ uses l in one of its co-role sets. The

relation type requires t′ to associate with at most one(t, l). It requiresλ3(τ, y) to be a

function because t′ can have only uni-co–role set on̄Lτy, and thus it can be related with

at most one transition inτy. Also, the function must be total because of the wayλ3 is

constructed.

- The fourth letter, i.e., “S”, requires that if a transition t∈ τ̄y uses a label l∈ L̄τy in one of

its uni-co–role sets to interact with another transition t′ ∈ τy, through one of the poly-role

sets of t′, then there should not exist any transition other than t′ that uses l in one of its role

228

sets. This description is formalized in the following relation type,

(τ̄y × L̄τy) 7→→ τy,

which formalizes the above description by requiring that relation λ4(τ, y) is a partial, sur-

jective function. Recall that relationλ4(τ, y) relates a pair(t, l), such that t∈ τ̄y and l ∈ L̄τy,

to a transition t′ ∈ τy, if t′ uses l in one of its role sets. Thus,(t, l) is required to associate

with at most one t′. The relation type requiresλ4(τ, y) to be a function because there must

be only one such t′ that uses the label l in its role set. The function type is partial because

each transition, t, uses one of the labels, l, in one of its uni-co–role sets, and thus, the

function is not defined for(t, l′), where l, l′. The function type is surjective because of the

wayλ4 is constructed.

- The first letter, i.e., “P”, specifies that the labels in synlabel(y) can be used by poly-roles.

This description is formalized in the following relation type,

τy ←← (Lτy ∪ L̄τy),

which formalizes the above description by requiring that relation λ1(τ, y) when considered

in the inverse form to be a total, surjective function. Recall that relationλ1(τ, y) specifies

how the transitions that each has at least one role set using labels in Lτy interact through

the labels used by either the role sets or the co-role sets of the transitions inτ. The relation

type is total function because any label in Lτy ∪ L̄τy must be associated with exactly one

transition that uses it in one of its role sets. The function type is surjective because of the

way theλ3 relation, and thus theλ1 relation, are constructed.

- The second letter, i.e., “E”, requires that the labels in synlabel(y) can be used only by

uni-co–roles. This description is formalized in the following relation type,

τ̄y →→ (Lτy ∪ L̄τy),

which formalizes the above description by requiring that relation λ2(τ, y) is a total, sur-

jective function. Recall that relationλ2(τ, y) specifies how the transitions that each has at

least one co-role set using labels in̄Lτy interact through the labels used by either the role

sets or the co-role sets of the transitions inτ. The relation type is total function because

229

any transition inτ̄y has exactly one uni-co–role set with a label in Lτ
y ∪ L̄τy. The function

type must be surjective because each label in Lτ
y ∪ L̄τy must be associated with a co-role set

of a transition for the synchronization to make sense.

The formalization of the relation types of other synchronization types are carried out in a similar

manner as in Example 51 for the “PUES” synchronization type.

7.3.2 Integration with the Semantic Definition Schema

Using the characterization of synchronization types in Table 7.3, the definition of theSYNfunc-

tion used in Figure 7.4 can be specified. From Figure 7.4, function SYNwas defined as,

SYN(T) =
{

T − T′| (T ∈ T) ∧ (T′ ⊂ T) ∧
∧

1≤i≤4

SYNi(T − T′) ∧

∀X : 2T′ · (X , ∅)⇒ ¬
[∧

1≤i≤4

SYNi((T − T′) ∪ X)
] }
,

whereT is a set of sets of enabled transitions, andT − T′ is a maximal subset of synchronizing

transitions ofT ∈ T.

The definitions of theSYNi , 1≤ i ≤ 4, is then defined as follows,

SYNi(τ) ≡
[∧

y∈Y

λi(τ, y) ∈ Λi(τ, y)
]
∨
[∧

y∈Y

λi(τ, y) = ∅
]
,

whereY is the set of all synchronizers of the model.

As such, functionSYNensures that a set of enabled transitions of a model are only considered

as a potential small step if the transitions satisfy the requirements of all synchronizers of the

model, some of which are vacuously satisfied, when the transitions do not use the labels of a

synchronizer. The implication in the second line of the definition of functionSYNensures that

a set of synchronizing transitions cannot be extended by additional enabled transitions, while

satisfying the synchronization requirements of the synchronizers inY.

Next, an example of how the above formalism works in the presence of more than one syn-

chronizer is presented.

230

t1: ̂writing1

M21

M11

R1

T1

{end2}

t5:

t3: {end1}

t4: { f1}

{ f1}
t2:

t8: [class1]

t9: ̂lecturing1

t7: [class1]
{leave1} {leave2}

[class1]
t6:

t10

t21: ̂writing3

M22

M13

R3

T3

{end2}

t25:

t23: {end1}

t24: { f3}

{ f3}
t22:

t28: [class3]

t29: ̂lecturing3

t27: [class3]
{leave1} {leave2}

[class3]
t26:

t30

t11: ̂writing2

M31

M12

R2

T2

{end3}

t15:

t13: {end1}

t14: { f2}

{ f2}
t12:

t18: [class2]

t19: ̂lecturing2

t17: [class2]
{leave1} {leave3}

[class2]
t16:

t20

t31: ̂writing4

M32

M23

R4

T4

{end3}

t35:

t33: {end2}

t34: { f4}

{ f4}
t32:

t38: [class4]

t39: ̂lecturing4

t37: [class4]
{leave2} {leave3}

[class4]
t36:

t40

t46: ̂insession2

P2

I2

t48:
{leave2}
{end2}

t45: { f1, f3, f4} t47: {end2}
P3

I3

t50: ̂insession3

t51: {end3}t49: { f2, f4}

B3

t52: {leave3} {end3}

t41: { f1, f2, f3}

P1

I1

t43: {end1}

t44:
{leave1}
{end1}

t42: ̂insession1

F1

F3

C2C1

F2

F4

C3

CMTS: {UPEE(f1, f2, f3, f4), UUES(end1,end2,end3), UUEE(leave1, leave2, leave3)}

Figure 7.5: Modelling faculty members and their responsibilities, using synchronization (the
same model as in Figure 6.1).

231

Example 52 Figure 7.5 shows the same model as in Figure 6.1, which is responsible to coordi-

nate the different activities of the faculty members of a department, as described in Example 6.1.

Let us consider the model when it resides in the set of controlstates{M11,M12,M13,R4, I1,P2,

P3}. Also, let us consider the variableclass1 when it is true, meaning that the first member,

F1, of the first committee,C1, needs to leave the meeting to deliver a lecture. The set of tran-

sitions τ = {t7, t13, t23, t44} satisfies the requirements of the three synchronizers in themodel,

UPEE(f1, f2, f3, f4), UUES(end1, end2, end3), andUUEE(leave1, leave2, leave3).

The set of transitionsτ is synchronizing with respect to y1 = UPEE(f1, f2, f3, f4), just because

the transitions inτ do not use any of the labels in{f1, f2, f3, f4}; therefore, the correspondingλ1,

λ2, λ3, andλ4 relations are empty and vacuously satisfy the conditions inSYN function.

The set of transitionsτ is synchronizing with respect to y2 = UUES(end1, end2, end3) because,

i λ3(τ, y2) = {((t44, end1), t13), ((t44, end1), t23)} ∈ [({t44} × {end1})← {t13, t23}],

ii λ4(τ, y2) = {((t13, end1), t44), ((t23, end1), t44)} ∈ [({t13, t23} × {end1}) 7→→ {t44}],

iii λ1(τ, y2) = {(t44, end1)} ∈ [{t44}֌→ {end1}], and

iv λ2(τ, y2) = {(t13, end1), (t23, end1)} ∈ [{t13, t23} →→ {end1}].

The set of transitionsτ is synchronizing with respect to y3 = UUEE(leave1, leave2, leave3) be-

cause,

i λ3(τ, y3) = {((t7, leave1), t44)} ∈ [({t7} × {leave1}) 7֌→ {t44}],

ii λ4(τ, y3) = {((t44, leave1), t7)} ∈ [({t44} × {leave1}) 7֌→ {t7}],

iii λ1(τ, y3) = {(t7, leave1)} ∈ [{t7}֌→ {leave1}], and

iv λ2(τ, y3) = {(t44, leave1)} ∈ [{t44}֌→ {leave1}].

The set of transitionsτ′ = {t7, t23, t44}, for example, is also a set of synchronizing transitions

with respect to the three synchronizers, but does not satisfy the maximality requirements of the

SYN function, and thus is not considered as potential small step.

232

7.3.3 Discussion: Non-Hierarchical Computation

The computation of the potential small steps in Figure 7.4 isnot entirely hierarchical, because the

semantics of synchronization and priority is enforced at the root of the hierarchy tree of a model.

This approach is different from the ones for BSMLs, in Figure 4.8 and Figure 4.10, where the

hierarchical priority semantics are manifested in the computation of the attributes of all control

states, including the intermediary control states in a hierarchy of control states. As mentioned

earlier, similar computations as in Figure 4.8 and Figure 4.10 are not possible for SBSMLs be-

cause an enabled, high-priority transition may not be included in any potential small step because

its synchronization requirements are not satisfied. Similarly, the synchronizing transitions of a

potential small step cannot be computed hierarchically andincrementally, because, for exam-

ple, choosing a pair of low-priority synchronizing transitions according to synchronization type

EE** could preclude the possibility of replacing one of these transitions with a higher-priority

transition that is higher in the hierarchy tree of the model.

The order of the application of thePRI, MAX, andSYNfunctions in line 1a in Figure 7.4

does matter: If thePRI function is applied first, then a potential small step might not be included

because a potential small step including a higher-prioritytransition whose synchronization re-

quirements cannot be satisfied is favoured against another potential small step including a lower-

priority transition whose synchronization requirements can be satisfied at this snapshot. The

converse, however, is not true: When theSYNandMAX functions are applied first, whichever

potential small step that is favoured according to a priority semantics can be taken as the next

small step (its synchronization requirements already hold).

Explicit Priority

The semantic definition mechanism in this section can be adapted to formalize the semantics

of the Explicit priority semantics. For a BSML that follows this semantic option, a semantic

definition schema can be created that considers the role of the Concurrency and Consistency

semantic options in the same way as in the semantic definitionschemas in Figure 4.8 and Figure

4.10, but has only a singlePRI function at the root of the hierarchy tree, similar to the semantic

definition schema in Figure 7.4.

233

Hierarchical Computation for Regular Models

An SBSML model isregular if it is only possible for a set of transitions that are pair-wise

orthogonal to synchronize by a synchronizer. In a regular SBSML model, only transitions that

have the same scope can synchronize via a synchronizer.

For a regular SBSML model, a hierarchical computation similar to the one for BSMLs can be

defined. For example, when the Scope-Child priority semantics is chosen, a similar hierarchical

computation as in Figure 4.10, on page 107, for BSMLs can be adopted for SBSMLs, except that

the merge operator must be defined as below:

T� T′ = { (T1∪T′′) | T1 ∈ T ∧ T′′ ⊆ T′ ∧

∀X : 2(T′−T′′) · X , ∅ ⇒ [¬SYN(T′ ∪ X) ∨

(∃t′ ∈ X · ∃t ∈ (T1 ∪ T′′) · ¬(t ⊥ t′) ∧ ¬((t t′) ∨ (t′ t)))] }.

The set of synchronizersY, which is used by functionSYN, is also used for the semantic defi-

nition of regular models, but hereY is only the set of synchronizers in the current control state,

as opposed to the set of all synchronizers of the model. SetY need not keep track of any other

synchronizers in the model because the role sets and the co-role sets of a transition lower in the

hierarchy tree of the model does not have any effect on the synchronization of the transitions at

the higher level, because of the model being regular.

The first line in the above definition adds new enabled transitions, whose scopes is the current

level of the hierarchy tree, to a set of transitions passed from a lower level of the hierarchy tree;

the second line in the above definition ensures that a maximalset of synchronizing transitions of

the current level are chosen, unless adding new transitionscreate an inconsistent set of transitions,

as checked in the third line.

Similarly, a hierarchical computation for the Scope-Parent priority semantics in SBSMLs

can be defined for regular SBSMLs, based on the computation inFigure 4.8, on page 103.

Interestingly, when the No Priority priority semantics is chosen, however, even if an SBSML

is regular, a hierarchical computation of small steps cannot be achieved. Such a computation is

inherently non-hierarchical: A set of synchronizing transitions that have a high (low) scope do

not have any precedence over a set of transitions in a lower (higher) scope. Thus, all possible

combinations of synchronizing transitions must be considered as potential small steps.

234

7.4 Transformation Schemes and Their Verification

In this section, the transformation schemes for transforming syntactic constructs and semantic

options into synchronization mechanisms in SBSMLs are formally described. Furthermore, the

correctness of these formal transformations are proved. The informal version of these transfor-

mations were presented in Section 6.4.

In this section, the termoriginal modelrefers to the source model in a transformation, which

can be either an SBSML model or an extended SBSML model annotated with additional syntactic

constructs that are the subject of the transformation scheme. The termnew modelrefers to the

SBSML model resulting from applying the transformation algorithm to an original model.

At the end of the section, in Section 7.4.6, a discussion of how the synchronization schemes

affect the well-formedness of a new model is presented. It is shown that the well-formedness of

the resulting new models do not undermine the correctness ofthe transformation schemes.

7.4.1 Multi-source, Multi-destination Transitions

This section presents a transformation scheme for converting a BSML model that uses multi-

source, multi-destination transition syntax to an equivalent BSML model in which a multi-

source, multi-destination transition is replaced with regular transitions. First, a few needed defi-

nitions are presented, followed by a brief description of the common semantics of SBSMLs when

they support multi-source, multi-destination transitions.

Preliminaries

A multi-source, multi-destination,mt, as opposed to a regular transition, has asetof source con-

trol states and asetof destination control states. Therefore, in this section,src(mt) anddest(mt)

return sets of control states, for both regular and multi-source, multi-destination transitions.

Definition 7.1 A multi-source, multi-destination transition, mt, is well-formed, if

i the set of control states src(mt) are pairwise orthogonal;

ii the set of control states dest(mt) are pairwise orthogonal; and

235

iii
⋃

s∈src(mt)(children∗(s)) ∩
⋃

d∈dest(mt)(children∗(d)) = ∅.

The rational for well-formedness criteria i and ii is clear:A model cannot reside in more than

one of the children of any of itsOr control states. Criteria iii disallows multi-source, multi-

destination transitions that have a kind of loop, similar toa regular self transition. The discussion

on page 246 discusses the difficulties of dealing with a special subclass of these transitions.

Henceforth, by a multi-source, multi-destination transition, I mean a well-formed multi-

source, multi-destination transition. A model is requiredto have only well-formed multi-source,

multi-destination transitions.

A multi-source, multi-destination transition,mt, is balancedif |src(mt)| = |dest(mt)|, other-

wise it isimbalanced. The usual functions and relations used for regular transitions are also used

for multi-source, multi-destination transitions; e.g.,gen(mt) specifies the set of generated events

of mt androlesets(mt) specifies the set of role sets ofmt.

For a multi-source, multi-destination transition,mt, its highest scope, denoted byhs(mt), is

the highest control state,h, in the hierarchy tree such that there existss ∈ src(mt) andd ∈ dest(t)

andlca(s, d) = h. Similarly, thelowest scopeof mt, denoted byls(t), is the lowest control state,

l, in the hierarchy tree such that there existss ∈ src(mt) andd ∈ dest(t) andlca(s, d) = l. For a

regular transition,t, hs(t) = ls(t) = lca(src(t), dest(t)).

The semantics of an SBSML that supports multi-source, multi-destination transitions is the

same as the semantics of the SBSML without these transitionsexcept for theSmall-Step Consis-

tency and thePreemption semantic sub-aspects, i.e., the definitions of the “⊥” and “ ” relations,

and the hierarchical priority semantics, i.e., the Scope-Parent and the Scope-Child semantic op-

tions. Next, a new version of these concepts is presented so that they accommodate for multi-

source, multi-destination transitions.

Definition 7.2 Two transitions, mt and mt′, where either could be a multi-source, multi-destination

transition, areorthogonal, denoted by mt⊥ mt′, if: (i) for any two control states s∈ src(mt)

and s′ ∈ src(mt′), s⊥ s′; and (ii) for any two control states d∈ dest(mt) and dest′ ∈ src(mt′),

d ⊥ d′.

Definition 7.3 A transition, mt, is aninterrupt fortransition, mt′, where either transitions could

be a multi-source, multi-destination transition, if:

236

i For any two control states s∈ src(mt) and s′ ∈ src(mt′), s⊥ s′; and

ii For any two destination control states d∈ dest(mt) and d′ ∈ dest(mt′), one of the following

conditions is true:

(a) d′ is orthogonal with all control states in src(t) and d is not orthogonal with any

transition in src(t) ∪ src(t′); or

(b) Neither d is orthogonal with any control state in src(t) nor d′ is orthogonal with any

control state in src(t′), but d∈ children+(d′).

Because all source control states of a multi-source, multi-destination transition are orthogonal,

as well as, all its destination control states, it is not possible for a pair of multi-source, multi-

destination transitions to be both orthogonal and one beingan interrupt for the other.

Definition 7.4 For a pair of transitions mt and mt′, where either transition could be a multi-

source, multi-destination transitions, mt has ahigher prioritythan mt′, i.e., pri(mt) > pri(mt′),

according to theScope-Parent if ls(mt) is higher than ls(mt′) in the hierarchy tree of the model.

Similarly, pri(mt) > pri(mt′) according to theScope-Child if hs(mt) is lower than hs(mt′) in the

hierarchy tree of the model.

Formal Transformation and Correctness

Based on whether a multi-source, multi-destination transition, mt, is balanced or imbalanced, a

formal transformation scheme to turn it into a set of regular, synchronizing transitions is pre-

sented.

Case 1: mt is balanced. The transformation ofmt to a set of regular transitions, denoted by

transtoregular(mt), is achieved by Algorithm 1. The algorithm uses variablesT and f , which

have types: set of transitions and bijective functions between transitions, respectively.

Example 53 The SBSML model in Figure 7.6 (a) has a balanced multi-source, multi-destination

transitionx. Applying the transformtoregular(x) results in the SBSML model in Figure 7.6 (b),

with x1 being the representative transition, as described in Algorithm 7.5.

237

Algorithm 1: transformtoregular(mt).
Input : mt
Result: A balanced multi-source, multi-destination transitionmt is replaced by|src(mt)|

regular transitions.
1 if mt is a balanced transitionthen
2 T := ∅;
3 f := ∅;
4 Define any bijective mappingf : src(mt)֌→ dest(mt) such that,
5 if Scope-Parent semantics chosenthen
6 There exists (sr , s′r) ∈ f such thatlca(sr , s′r) = ls(mt);
7 end
8 else ifScope-Child semantics chosenthen
9 There exists (sr , s′r) ∈ f such thatlca(sr , s′r) = hs(mt);

10 end
11 foreach (si , s′i) ∈ f do
12 Create a new, regular transitionti in the model such thatsrc(ti) = si and

dest(ti) = s′i ;
13 T := T ∪ {ti};
14 end
15 Pick a transitiontr from T, as arepresentative transitionsuch that if the Scope-Parent

or Scope-Child priority semantics is chosen,src(ti) = sr anddest(ti) = s′r ;
16 Modify tr so thatasn(tr) = asn(t), gen(tr) = gen(t), trig(tr) = trig(t), gc(tr) = gc(t),

rolesets(tr) = rolesets(t), andcorolesets(tr) = coroleset(t);
17 Modify tr so that it has a new co-role set:

corolesets(tr) = corolesets(tr) ∪ {ct1, ct2, · · · , ctn−1}, wheren = src(t) = dest(t), and
the new co-role set consists of new co-labels not already used in the model;

18 foreach t j ∈ T (t j , tr) do
19 Modify it so that it has a new, distinct singleton role setrolesets(t j) = {{ct j}};
20 end
21 Assign the synchronizerUPEE(ct1, ct2, · · · , ctn−1) to the control state that, according to

the well-formedness conditions, can synchronize the transitions inT according to the
new co-role set and the role sets;

22 Add the transitions inT to the model, and Removemt from the model;
23 end

238

(a)

(b)

M

M31 M32
M3

M11
M1 M12

M

M31 M32
M3

M′32M′31

M′3

M′

M′11

M′22

M′12

M′21

M′1

M′2

M11
M1 M12

M′32M′31

M′3

M′

M′11

M′22

M′12

M′21

M′1

M′2
M2211

M221

M222

M22

M21

M2221

M2212

M2222

M2211

M221

M222

M22

M21

M2221

M2212

M2222

M2

M2

L

L : UPEE{c1, c2}

x: e

x1 :
e {c1, c2}

x2 : {c1}

x3 : {c2}

Figure 7.6: Transforming multi-source, multi-destination transitions into regular transitions.

239

Before proving the soundness of the transformation oftransformtoregular(mt), the following

three lemmas need to be proven.

Lemma 7.1 For two transitions, mt1 and mt2, which each can be either a balanced or a reg-

ular transition, they are orthogonal if and only if (iff) all pairs of regular transitions rt1 ∈

transtoregular(mt1) and rt2 ∈ transtoregular(mt2) are orthogonal.

Proof Idea. If mt1 andmt2 are not orthogonal, then there is a pair of control statess1 ∈ src(mt1)

and s2 ∈ src(mt2) such that¬(s1 ⊥ s2), and/or a pair of control statesd1 ∈ dest(mt1) and

d2 ∈ dest(mt2) such that¬(d1 ⊥ d2). In any of these cases, because of functionf , defined on line

4 in Algorithm 1, being bijective, there would exist a pair oftransitionsrt1 ∈ transtoregular(mt1)

andrt2 ∈ transtoregular(mt2) that are not orthogonal. Conversely, ifmt1 andmt2 are orthogonal,

by definition, all pairs of control statess1 ∈ src(mt1) ands2 ∈ src(mt2) are orthogonal, as well

as, all pairs of control statesd1 ∈ dest(mt1) andd2 ∈ dest(mt2). Thus, the induced transitions by

bijective functionf are also all orthogonal because their source control statesand their destina-

tion control states are pairwise orthogonal. �

Lemma 7.2 For two transitions, mt1 and mt2, which each can be either a balanced or a regular

transition, transition mt1 is an interrupt for mt2, iff for all pairs of regular transitions rt1 ∈

transtoregular(mt1) and rt2 ∈ transtoregular(mt2), rt1 is an interrupt for rt2.

Proof Idea. If mt1 is not an interrupt formt2, then either condition i or one of the conditions

ii(a) or ii(b) in Definition 7.3 does not hold. In any of these cases, a pair of transitionsrt1 ∈

transtoregular(mt1) and rt2 ∈ transtoregular(mt2) are created by the bijective functionf , on

line 4 of Algorithm 1, such thatrt1 is not an interrupt forrt2, according to the same relationship

between control states that announcesmt1 not being an interrupt formt2. Conversely, ifmt1 is

an interrupt formt2, there is no such a pair of transitionsrt1 ∈ transtoregular(mt1) and rt2 ∈

transtoregular(mt2) such thatrt1 is not an interrupt forrt2. �

Lemma 7.3 At a snapshot of a model, a balanced transition mt has the highest priority iff all

regular transitions rt∈ transtoregular(mt) could be included together in a potential small step.

240

Proof Idea. For the Negation of Triggers priority semantics, the above claim is true because

the resulting representative transition in Algorithm 1 hasthe same trigger as the original multi-

source, multi-destination transition. The other regular transitions would also have the highest

priority, by virtue of being taken only if the representative transition is enabled. For the Scope-

Parent and Scope-Child priority semantics, the lowest scope or highest scope control state of

mt determines its priority precedence, respectively. Also, since the priority of the representative

transition ofmt, determined in lines 4-9 of Algorithm 1, also similarly depends on the lowest

scope or highest scope control state ofmt, mthas a high priority at a snapshot iff its representative

transitions and other corresponding regular transitions have a high priority. �

Proposition 7.4 Transformation in Algorithm 1 is sound.

Proof Idea. For a balanced transition,mt, if all transitions inT = transtoregular(mt) are exe-

cuted together, their effect would be the same as executingmt because: (i) there is one transition

in T that adoptsasn(mt) andgen(mt); and (ii) the destination control states thatmtand the transi-

tions inT arrive at are the same. Thus, it remains to prove that ifmt belongs to a potential small

stepτ, in the original model, it is also the case that in the new model, there is a similar potential

small stepτ′ = τ−{t}∪T. This can be proven becauset is enabled iff the representative transition

of T is, and because of lemmas 7.1, 7.2, and 7.3. Therefore, transformation in Algorithm 1 is

sound. �

Algorithm 2 repeatedly applies Algorithm 1 to a set of transitions.

Algorithm 2: trans f ormall(MT).
Input : MT
Result: All balanced multi-source, multi-destination transitions inMT are replaced by

their corresponding regular transitions.
1 foreach mt ∈ MT do
2 transformtoregular(mt);
3 end

Proposition 7.5 Replacing all balanced transitions of a model using Algorithm 2 results in a

new model with the same behaviour as the original one.

241

Proof Idea. By Proposition 7.4, replacing a single multi-source, multi-destination transition

is sound. Lemmas 7.1, 7.2, and 7.3 ensure that replacing morethan one multi-source, multi-

destination transitions does not add to or remove from the behaviour of the original model. Thus,

the new model and the old model have the same behaviour. �

Case 2:mt is imbalanced. In this case, in order to be able to create similar regular transitions as

in Algorithm 1, extradummycontrol states need to be created. First, some necessary definitions

and notation are introduced.

Given an SBSML model and its set of transitions,T, MT^ ⊆ T denotes the set of imbalanced

transitions inT, andS^ =
⋃

mt∈MT^(src(mt)∪dest(mt)). For a control state,s ∈ S^, its maximum

incoming shortage, denoted bymaxin(s), is

maxin(s) = max{|src(mt)| − |dest(mt)| | mt ∈ MT^ · s ∈ dest(mt)}.

Similarly, itsmaximum outgoing shortage, denoted bymaxout(s), is

maxout(s) = max{|dest(mt)| − |src(mt)| | mt ∈ MT^ · s ∈ src(mt)}.

Functionmaxinout(s) specifies the maximum ofmaxin(s) andmaxout(s). Themaxinout(s) is

used to determine the number of dummy control states that need to be created for a control state

s.

For each imbalanced transition,mt, it suffices to create dummyBasiccontrol states for one

of its source or destination control states,s, based on which set has a smaller size. Once these

dummy control states are created, the set of source or destination control states ofmt is adjusted

to use them to create balanced transition. Using the value ofmaxinout(s), all other imbalanced

transitions with one of their source or destination controlstate beings can also be adjusted to

become balanced simultaneously.

Algorithm 3 uses the above idea to turn all imbalanced transitions of a model into balanced

transitions. Its input is the set of imbalanced transitionsof a model,MT^, together with the set

of control states,S^, which are the control states that could potentially benefitfrom introducing

dummy control states. The regular transitions and balancedtransitions remain unaffected by

this algorithm, however, the overall hierarchy tree of the model changes. The algorithm uses

242

variablesMT andS to store the values ofMT^ andS^, respectively, before the transformation

starts, becauseMT^ andS^ change as computation proceeds. A few other temporary variables

are used in the algorithm, with obvious roles.

Algorithm 3: balance(MT^,S^).
Input : MT^, S^
Result: MT =MS = MT^ = S^ = ∅

1 MT := MT^;
2 S := S^;
3 while S , ∅ do
4 choose anys fromS;
5 Let MTs := {mt | mt ∈ MT ∧ (s ∈ src(mt) ∨ s ∈ dest(mt))};
6 Create a newAndcontrol statesnew such thatchildren(snew) = {s} ∪ new, where

new= {n1, · · · , nmaxinout(s)} is a set ofBasiccontrol states; ifs is a default control state,
thende f ault(parent(s)) = snew ;

7 foreachmt ∈ MTs do
8 if (s ∈ src(mt) and |src(mt)| < |dest(mt)|) then
9 src(mt) := src(mt) ∪ {n1, · · · , n|dest(mt)|−|src(mt)|};

10 end
11 if (s ∈ dest(mt) and |src(mt)| > |dest(mt)|) then
12 dest(mt) := dest(mt) ∪ {n1, · · · , n|src(mt)|−|dest(mt)|};
13 end
14 end
15 S := S −

⋃
mt∈MTs

(src(mt) ∪ dest(mt));
16 MT :=MT − MTs;
17 end

Example 54 The SBSML model in Figure 7.7(a) is the same as model in Figure6.3(a), on page

198. In this model, MT̂= {x, y}. The SBSML model in Figure 7.7(b) is the same as the model in

Figure 7.7(a) except that the imbalanced transitions in themodel (a) are replaced by balanced

transitions in model (b), via applying the “balance” algorithm, specified in Algorithm 3, to the

set of imbalanced transitions of model (a).

The model in Figure 6.3(b), on page 198, has a different hierarchy tree than the model in

Figure 7.7(b). In that example, for the sake of exposition, an equivalent model is presented that

is not based on any particular algorithm.

Next, the proof of the soundness of the transformation in Algorithm 3 is presented.

243

(a)

(b)

N1 N2

M′32M′31

M′3

M31 M32
M3

M

M22

M31

M12

M21

M′

M′11

M′22

M′32

M′12

M

M11

M′21

y

M′31M32

M1

M2

M3

M′1

x M′2

M′3

M′

M′11

M′22

M′12

M′21

M′1

M′2

M

M11
M1

M

M12

M21 M22

M2

y

x

n22 1n21 1

Figure 7.7: Balancing the imbalanced transitions, using thebalancealgorithm.

244

Lemma 7.6 Given the set of imbalanced transitions of an SBSML model, MT^, and the set of

corresponding control states of MT^, S^, after executing “balance(MT^,S^)”, MT ^ = S^ = ∅.

Proof Idea. Algorithm 3 considers all imbalanced transitions because of the while loop on line 4

and the for loop on line 7. Otherwise, if an imbalanced transition is not considered, it means that

its source and destination control states do not belong toS^, before the algorithm is executed,

which is not possible by the definition ofS^. The next claim is that for eachmt ∈ MT^, the

algorithm balances this transition. This can be proven by inspecting the body of the for loop

on line 7. If mt is imbalanced because the size ofsrc(mt) being small, it becomes balanced by

adjustingsrc(mt) so that its size is exactly the same asdest(mt), as performed by the if statement

on line 8. Otherwise, ifmt is imbalanced because the size ofdest(mt) being small, it becomes

balanced by adjustingsrc(mt), as performed by the if statement on line 11. Lastly, the Algorithm

3 obviously terminates: Both the while and the for loop iterate over finite sets, whose sizes

decrease as computation progresses. As such, after executing the Algorithm 3,MT^ = S^ = ∅.

�

Proposition 7.7 Given the set of imbalanced transitions of an SBSML model, MT^, and the set

of corresponding control states of MT^, S^, after executing “balance(MT^,S^)”, the resulting

model has the same behaviour as the original model.

Proof Idea. For an imbalanced transition,mt, and its corresponding balanced transition,mt′,

in the new model after applying Algorithm 3,mt is enabled iff mt′ is. Also, the effect of both

transitions are the same becausemt′ is only different frommteither in its source or its destination

control states. Thus, it remains to show that if two transitionsmt1 andmt2 could have been taken

together in a small step in the old model, their corresponding transitionsmt′1 andmt′2 could also

be taken together in a similar small step. This can be proven by the fact that: (i) the algorithm

preserves the comparative priority precedence of the transitions in the old model when they are

modified to their corresponding transitions in the new model; (ii) the algorithm preserves the “⊥”

relation for transitions; i.e.,mt1 ⊥ mt2 ⇔ mt′1 ⊥ mt′2; and (iii) the algorithm preserves the “ ”

relation; i.e.,mt1 mt2⇔ mt′1 mt′2. Claim (i) above is true because the addition of dummy control

states and the adjustments of the source and destination control states of imbalanced transitions

neither change the trigger of the imbalanced transitions (for the Negation of Triggers priority

semantics) nor their relative scopes (for the Parent-Scope and Child-Scope priority semantics).

245

The relative scope of transitions do not change because the addition of a newAndcontrol state,

on line 6, only adds an additional level in the hierarchy treewithout assigning any transition to

that level of hierarchy. Claim (ii) above is true because if apair of control statess1 ands2 are

orthogonal in the old model, their corresponding control states in the new model,s′1 ands′2, are

also orthogonal: Ifs′1 and/or s′2 have become the children of newAndcontrol state(s), through the

execution of line 6 of the algorithm, then they would remain orthogonal because an additional

Andcontrol state does not affect their being orthogonal; ifs′1 and/or s′2 have not been affected by

line 6, they would obviously remain orthogonal. Thus, the “⊥” relation is preserved. A similar

argument is in order for the “ ” relation. Therefore, applying thebalancealgorithm to a model

does not change its behaviour. �

Proposition 7.8 For an SBSML model M1, if applying the “balance” algorithm (Algorithm 3)

to its imbalanced transitions yields model M2, and applying the “trans formall” algorithm (Al-

gorithm 2) to the balanced transitions of M2 yields M3, the behaviour of M1, M2, and M3 are all

the same.

Proof Idea. By Proposition 7.5 and Proposition 7.7. �

Self Multi-Transitions

A multi-source, multi-destination transition,mt, is aself multi-transitionif

⋃
s∈src(mt)(children∗(s)) ∩

⋃
d∈dest(mt)(children∗(d)) , ∅.

In a self multi-transition, at least one of the source and oneof the destination control states are

ancestrally related, creating a kind of loop when presenting mt graphically.

Algorithm 1, on page 238, which transforms a balanced multi-source, multi-destination tran-

sition into a set of orthogonal transitions, can be applied to a self multi-transition to create a

balanced multi-source, multi-destination transition. For example, the transformation of transi-

tion mt in model in Figure 7.8(a) results in the model in Figure 7.8(b).

246

B2

A2

B2

A2

C1

A1

B1

st1

C2

A3

B3

A4

B4

st1 st3

(a)

C1

A1

B1

st1

C2

A3

B3

A4

B4

st1 st3

(b)

t2

M M

mt t1

C11 C12 C21 C22 C11 C12 C21 C22

Figure 7.8: Applying algorithmtransformtoregularto a self multi-transition.

Imbalanced Self Multi-Transitions. If a self multi-transition is imbalanced, however, the

balancealgorithm, in Algorithm 3, cannot be used, when a model is specified in the Scope-

Parent or the Scope-Child priority semantics. The example models in Figure 7.9 demonstrate

the problem. The model in Figure 7.9(a) has one self multi-transition, namely,x. Applying

the balancealgorithm to this model results in the model in Figure 7.9(b). While in the first

model, according to the Scope-Parent priority semantics,pri(x) = pri(y), in the second model

pri(y) > pri(x). If the No Priority priority semantics is chosen, however, thebalancealgorithm

could be applied soundly to self multi-transitions.

In general, there does not seem to exist any transformation scheme to balance imbalanced

self multi-transitions without changing the relative priority of the transitions. This is because,

as opposed to non-self multi-transitions, the newAnd control state that is created to adjust the

imbalance of a self multi-transition surrounds all source and destination control states of the new

balanced transition, making the transitions to have a lowerpriority (in the case of Scope-Parent

semantics) or a higher priority (in the case of Scope-Child semantics). For example, in the model

in Figure 7.9(b), theAndcontrol stateP2 surrounds all control states in the source and destination

of x, as opposed to control stateP1 in the model in Figure 7.9(a).

247

M

S1 S2

S11

S12

S21

S22

S31

S42

S3

x

y

P1

S1 S2

S11

S12

S21

S22

S31

S42

S3

x

N1
M

y

P2

(a) (b)

P1

Figure 7.9: Applying thebalancealgorithm to a model that has an in-out self transiton.

7.4.2 BSML Semantic Options

This section introduces three transformation schemes thateach represents how a semantic option

of one of theConcurrency, Small-Step Consistency, andPreemption semantic aspects can be

modelled in SBSMLs using the other semantic option of the aspect. It also presents the proofs of

the correctness of these transformation schemes.

Concurrency

The transformation scheme presented in this section can convert a BSML model that is specified

in the Single concurrency semantics to an equivalent SBSML model that is specified in the

Many concurrency semantics. The algorithm is designed in a way that it is possible to make

parts of an SBSML model to use the Single concurrency semantics while other parts use the

Many concurrency semantics.

Algorithm 4 shows how a compound control state,s, of an SBSML, or a BSML, model can be

modified so that each small step at most has one transition,t, such thatscope(t) ∈ children∗(s).

For a given set of transitions,T, of an SBSML model, and a control state,s, Ts denotes the

set of transitions,t ∈ T, such thatscope(t) ∈ chidlren∗(s).

Example 55 Figure 7.10 shows two SBSML models that are similar to the models in Figure 6.4,

but use different names for control states and transitions. Applying algorithm “manytoone” to

248

Algorithm 4: manytoone(s).
Input : s
Result: At most one transition whose scope is a child ofs, or s itself, can be included in a

small step.
1 Create a newBasiccontrol state,single;
2 Create a new transition,tsingle, such thatsrc(tsingle) = single, dest(tsingle) = single;
3 Create a newAndcontrol state,snew, such thatchildren(snew) = {s} ∪ {single};
4 foreach t ∈ Ts do
5 rolesets(t) = rolesets(t) ∪ {a}, wherea is a new label in the model;
6 end
7 Setcorolsets(tsingle) = {{a}};
8 Assign synchronizerUUEE(a) to snew;

S12

S11

t1: {a}

S1 S2

S21

S22

t2: {a}

S31

S32

S3

t3: {a}

S RC

S1 S2

S11

S12

S21

S22

S31

S42

t1 t2

(a)

t3

S3

(b)

S4

t1: {a}

DES: {UUEE(a)}

S41

Figure 7.10: The effect of applying Algorithm 4.

control stateSRCin the model in Figure 7.10(a) results in the SBSML model in Figure 7.10(b)

that can execute at most one of the transitions of the original model in each of its small step.

If the input to themanytoonealgorithm is the root control state of an SBSML model, then the

model behaves as if it was specified in the Single concurrency semantics, instead of the Many

concurrency semantics.

A possible undesired side effect of themanytoonealgorithm is that it disables the role of

some, or all, of the synchronizers in the original model, depending on which control state it is

applied to. This is because, within the scope of the control state that the algorithm is applied

to, at most one transition of the original model can be executed in a small step, precluding the

possibility of synchronization.

249

Proposition 7.9 Given an SBSML model, its set of transitions, T , and one of itscompound

control states, s, applying the “manytoone” algorithm, i.e., Algorithm 4, to s results in a new

model whose behaviour is different from the original model in that, for each potential small step

τ in the original model, there is a corresponding potential small stepτ′ in the new model such

that one of the following statements is true:

i τ = (τ′ ∩ T), and there does not exist any t∈ τ such that t∈ Ts; or

ii (τ′ ∩T) ⊂ τ, and for each t∈ (τ− τ′)∩Ts, there exists exactly one transition t′ ∈ (τ′ ∩Ts),

and there does not exists a transition t′′ ∈ (τ ∩ Ts) such that pri(t′′) > pri(t′).

Proof Idea. In the case i above, if the set of transitions,τ, is a potential small step in the

original model, the same set of corresponding transitions,τ′, in the new model is a potential

small step, because: (a) clearly, if a transitiont ∈ τ is enabled, it is also enabled in the new

model; and (b) if two enabled transitionst1, t2 ∈ τ satisfy the structural semantics of the SBSML

semantics that the original model is specified in, they also satisfy the structural semantics in the

new model, because, first,t1 andt2 do not belong toTs, unless|τ| = 1; and second, their small-

step consistency, preemption, priority, and synchronization interrelationships are not affected by

themanytoonealgorithm. Lastly,τ′ cannot have an extra transition thatτ does not have. If there

exists at ∈ (τ′ ∩T)− τ, it should be the case thatt < Ts. Also, it should be the case thatτ is not a

maximal set of transitions that can be taken in the original model as a potential small step, which

cannot be true by the definition of SBSML semantics.

In the case ii above, it is effectively required that (τ′ ∩ T) = τ − Ts ∪ {t′}, such thatt′ ∈ Ts

cannot be replaced with a higher-priority transitiont′′ ∈ Ts. Using a similar argument as for the

case i above, it can be shown that all transitions inτ that do not belong toTs also belong to a

potential small stepτ′ in the new model. It remains to show that exactly one of the transitions in

τ∩ Ts can be included inτ′, which is clearly the case because of the transformation in algorithm

manytoone: If |τ′ ∩ Ts| > 1, it means that the synchronizerUUEE(a) is synchronizing according

to the semantics ofUUSE, which cannot be the case. Lastly,t′ cannot be replaced with a higher-

priority transitiont′′, because of thePRI function in the SBSML semantic definition schema in

Figure 7.4, described on page 220. �

250

Small-Step Consistency

The transformation scheme presented in this section can convert a BSML model that is specified

in the Arena Orthogonal small-step consistency semantics to an equivalent SBSML model that

is specified in the Source/Destination Orthogonal small-step consistency semantics. The algo-

rithm is designed in a way that it is possible to make parts of an SBSML model to use the Arena

Orthogonal small-step consistency semantics while other parts use theSource/Destination Or-

thogonal small-step consistency semantics. First, some notation are presented, before presenting

the transformation algorithm.

For a set of transitions,T, and one of its transitions,t ∈ T, the set ofarena conflicting

transitions witht, denoted by functionac(t), is the set of all transitions inT, such that,

t′ ∈ ac(t)⇔ (t′ ∈ T) ∧ (t ⊥ t′) ∧ ¬(arena(t) ⊥ arena(t′)).

For a set of transitionsT, allac(T) denotes
⋃

t∈T ac(t).

Given a compound control state,s, of an SBSML, or a BSML, model, Algorithm 5 specifies

how transitions whose scopes are withins, i.e., the transitions inTs, can be changed so that they

follow the Arena Orthogonal semantic option, instead of the Source/Destination Orthogonal

semantic option.

If the input to thesrcdesttoarenaalgorithm is the root control state of an SBSML model,

then, the model effectively behaves as if it was specified in an Arena Orthogonal small-step

semantics, instead of a Source/Destination Orthogonal semantics.

Example 56 Figure 7.11 shows two SBSML models that are similar to the ones in the transfor-

mation on 200, except that the unnecessary renaming in Figure 7.11(b) are avoided here. Apply-

ing algorithm “srcdesttoarena” to control stateSRC in the model in Figure 7.11(a), results in

the SBSML model in Figure 7.11(b). In the SBSML model in Figure 7.11(b),

ac(t2) = {t4, t5},

ac(t4) = {t2, t5},

ac(t5) = {t2, t4}, and

allac({t1, t2, t3, t4, t5}) = {t2, t4, t5}.

The SBSML model in Figure 7.11(b) is different from the SBSML model in Figure 7.11(a)

251

Algorithm 5: srcdesttoarena(s).
Input : s
Result: A pair of transitions whose scopes belong tochildren∗(s) can be included in a

small step if their arenas are orthogonal.
1 Based on the size ofTc = allac(Ts), create a set of new labelsA = {a1, · · · , an}, where

n = |Tc|;
2 Define any bijective mappingf : Tc֌→ A;
3 Create a set of newBasiccontrol state,B = {B1, · · · , Bn};
4 Create a set of new self transitionsTB = {tB1, · · · , tBn}, such thatsrc(tBi) = dest(tBi) = Bi ;
5 foreach tBi ∈ TB do
6 corolesets(tBi) = {{ai}};
7 end
8 foreach t ∈ Tc do
9 rolesets(t) = rolesets(t) ∪ [

⋃
h∈ac(t)(f (h))] ;

10 end
11 Create a newAndcontrol state,snew, such thatchildren(snew) = {s} ∪ B;
12 Assign synchronizerPUEE(A) to snew

in that no pair of transitions of the original model that haveoverlapping arenas can be taken

together in the same small step.

Proposition 7.10 Given an SBSML model, its set of transitions, T , and one of itscompound

control states, s, applying the “srcdesttoarena” algorithm, i.e., Algorithm 5, to s results in a

new model whose behaviour is different from the original model in that, for each potential small

stepτ in the original model, there is a corresponding potential small stepτ′ in the new model

such that one of the following statements is true:

i τ = (τ′ ∩ T), and there does not exist any t1, t2 ∈ (τ ∩ Ts) such that t1 ⊥ t2 and arena(t1) 6⊥

arena(t2); or

ii (τ′ ∩ T) ⊂ τ, and for each t1 ∈ (τ − (τ′ ∩ T)), there exists a transition t2 ∈ (τ ∩ Ts)

such that t1 ⊥ t2 and arena(t1) 6⊥ arena(t2); furthermore,τ′ is maximal, i.e., it cannot be

extended with additional transitions inτ − τ′, andτ′ has the highest priority, i.e., none of

its transitions cannot be replaced with a higher-priority transition inτ − τ′.

Proof Idea. In the case i above, since no two transitions inTs that have overlapping arenas are

included inτ, all transitions ofτ, including the ones inτ ∩ Ts, can be included in a potential

252

D12 D22{a2,
a5}

t4 :t2 :
{a4,
a5}

t5 :
{a5}

S RC

S3S1

S11 S31

S32

t5t3

S21

S22

t1

S2

(a)

DES: PUEE(a2,a4,a5)

D1

D11

D2

D21

D3

D31

t7: {a4}

t8: {a5}

D32

(b)

t1 t3
S12 t4t2

t6: {a2}

B2

B3

B1

Figure 7.11: The effect of applying Algorithm 5.

small step,τ′, of the new model. For a transition,t ∈ τ, if t ∈ (τ ∩ Ts), it can synchronize with

its corresponding transition inTB, created on line 4 of the algorithm, and thus can be included

in τ′; this synchronization is possible because each of the transitions inTB is orthogonal with all

transitions inTs. Otherwise, ift ∈ (τ−Ts), it need not synchronize with any transition inTB, and

thus it can be included inτ′ because it can be included inτ.

In the case ii above, ift1 ∈ (τ − (τ′ ∩ T)), then it means thatt1 is not included inτ′ because

it could not have synchronized with a transition inTB according to the synchronizer introduced

in line 4 of Algorithm 5, otherwiset1 could not have belonged toτ either. But if t1 cannot

synchronize with a transition inTB, it means that there is another transition,t2 ∈ τ′, that is

synchronizing on the same label thatt1 needs to synchronize. But because of the way role sets

of transitions are constructed on line 9 of Algorithm 5, thatis only possible ift2 ∈ ac(t1), which

meanst1 ⊥ t2 andarena(t1) 6⊥ arena(t2). Lastly, τ′ is maximal and high priority because of

the semantic definition schema in Figure 7.4 and the definition of PRI andSYNfunctions in the

schema. �

Preemption

The transformation that disallows two transitions that oneis an interrupt for another to be in-

cluded in the same small step is similar to the transformation presented for disallowing a pair

of orthogonal transitions whose arenas are not orthogonal in the same small step. The idea of

253

transformation is the same in that for each transition,t, first, its set ofinterrupting conflicttran-

sitions, ic(t), similar to the set of arena conflicting,ac(t), described above, should be defined.

Using this syntactic information, a similar algorithm as Algorithm 5 can be designed that creates

new dummy control states that have self transitions whose missions are to disallow a pair of

transitions that one is an interrupt for another to be executed together, by exclusively synchro-

nizing with one or the other, but not both. To avoid duplication, this algorithm and its proof of

correctness, which are very similar to the ones for small-step consistency transformation, are not

presented.

7.4.3 The Present In Same Event Lifeline Semantics

The transformation scheme presented in this section shows how the Present In Same event life-

line semantics can be modelled using the synchronization capability of SBSMLs. Algorithm 6

receives a BSML model specified in the Present In Same event lifeline semantics and replace

its internal events, which follow the semantics of the Present In Same event lifeline semantics,

with necessary synchronization instrumentation that model the semantics of these events. The

input to the algorithm consists of the set of transitions of amodel,T, its set of internal events,

{e1, · · · , en}, which are called signals in some BSMLs that support the Present In Same event

lifeline semantics, and its root control state.

Intuitively, Algorithm tosignals, in Figure 6, works as follows: For each signal,ei, a pair

of labels are created, namely,xi and x′i . For each signal,ei, a new control state and two self

transitions on it, namely,txi and tx′i
, are defined so that it is not possible for bothei and¬ei to

trigger transitions in the same small step. Labelxi is used for synchronization of transitions that

generateei, while labelx′i is used for synchronization of transitions that are triggered with the

negation ofei. Lastly, for each signal,ei, a third label,l i, is defined so that the generated events

of one transition is related to the trigger of another via a synchronization mechanism. Bothl i and

xi are necessary so that a small step cannot have two disjoint subsets, one including transitions

that generate and are triggered withei, and another including transitions that are triggered with

the negation ofei.

In Algorithm tosignals, in Figure 6, it is assumed that: (i) there is no transition inthe model

such that it generates an event and is triggered with the negation of the event; and (ii) there is no

transition in the model such that it is both triggered with anevent and generates it.

254

Algorithm 6: tosignals(T, {e1, · · · , en}, root).
Input : T, {e1, · · · , en}, root
Result: Events/signals in the Present In Same event lifeline semantics are replaced by

synchronization instrumentation.
1 Create a set of newBasiccontrol state,B = {B1, · · · , Bn};
2 Create a set of new labelsX = {x1, · · · , xn} ;
3 Create a set of new labelsX′ = {x′1, · · · , x

′
n} ;

4 Createn new self transitions,{tx1, · · · , txn}, such thatsrc(txi) = Bi, dest(txi) = Bi, and
corolesets(txi) = {{xi}}, for 1≤ i ≤ n ;

5 Createn new self transitions,{tx′1
, · · · , tx′n}, such thatsrc(tx′i

) = Bi, dest(tx′i
) = Bi, and

corolesets(tx′i
) = {{x′i }}, for 1 ≤ i ≤ n ;

6 Create a set of new labelsL = {l1, · · · , ln};
7 foreach t ∈ T do
8 foreachei ∈ {e1, · · · , en} do
9 if ei ∈ pos trig(t) then

10 corolesets(t) = corolesets(t) ∪ {l i} ;
11 pos trig(t) = pos trig(t) − {ei};
12 end
13 else if ei ∈ neg trig(t) then
14 rolesets(t) = rolesets(t) ∪ {x′i } ;
15 neg trig(t) = neg trig(t) − {ei};
16 end
17 else if ei ∈ gen(t) then
18 rolesets(t) = rolesets(t) ∪ {l i} ∪ {xi} ;
19 gen(t) = gen(t) − {ei};
20 end
21 end
22 end
23 Create a newOr control state,M, and a newAndcontrol state,snew, such that

children(snew) = root∪ B andparent(snew) = M, whereM is the new root control state;
24 Assign synchronizerPPSS(L) andPUSE(X ∪ X′) to snew ;

255

t1: (I ∧

S1

S11

S12

e2 ∧ e3)
¬e1 ∧

S21

S22

S2

t2: (I ∧

¬e2 ∧ e3)
e1 ∧

S3

S31

S32

̂{e1, e3}

t3:
̂{e2, e3}

t4:

S4

S41

S42

S12

S11

{l2, l3}

{x′1}

t1: I

S22

{l1, l3}

S21

t2: I

{x′2}

S32

S31

t3:

{x1, x3}}

{{l1, l2},

S42

S41

t4:

{x2, x3}}

{{l2, l3},

(b)

S4S3S2S1

S

O

S

(a)

S61

S71

A: {PPSS(l1, l2, l3), PUSE(x1, x2, x3, x′1, x
′
2, x
′
3)}

S51

t7: {x′2} t8: {x2}

t5: {x′1} t6: {x1}

t9: {x′3} t10: {x3}

Figure 7.12: The effect of applying Algorithm 6.

Example 57 Figure 7.12 shows the effect of applying the “tosignals” algorithm to the SBSML

model in Figure 7.12(a). The result is the SBSML model in Figure 7.13(b) whose events are

replaced by synchronization instrumentation, and has the same behaviour as the original model.

The models in Figure 7.12 are similar to the ones in Figure 6.7, on page 202, except that: (i) the

name of events and labels are changed here to match the transformation algorithm; and (ii) here

the model in Figure 7.12(b) is created by exactly following the steps in Algorithm 6, as opposed

to the model in Figure 202 that is manually created, with a slightly different set of control states.

Proposition 7.11 Given an SBSML model that uses internal events according to the Present

256

In Same event lifeline semantics, applying tosignals(T, {e1, · · · , en}, root), where T is the set of

transitions of the model, E= {e1, · · · , en} is its set of events, and root is its root control state,

results in an SBSML model that has the same behaviour as the original model.

Proof Idea. To prove the above claim, it suffices to show that for each small step,τ, in the orig-

inal model, there is a small step,τ′, in the new model that includes the corresponding transitions

of τ, and vice versa.

For each such aτ, there exists a correspondingτ′ because: (i) if a transition,t, in τ is not

triggered by an internal event, its corresponding transition, t′, can be included inτ′, because

tosignalsdoes not instrument that transition; (ii) if a pair of transitions, t1 and t2, are included

in τ becausepos trig(t1) ∩ gen(t2) , ∅, their corresponding transitions,t′1 and t′2, can also be

included inτ′ because of their synchronization instrumentation on lines4, 10, and 18 ; and

(iii) if a transition, t, in τ is triggered by the negation of an internal event that is not generated

by any transition inτ, its corresponding transition,t′, can also be included inτ′, because the

corresponding transitions of a pair of transitions that onegenerates an event and the other is

triggered by its negation cannot be included in a small step of the new model, because of the

instrumentations on lines 5 and 14 and the fact that the self transitions inX and X′, defined

on lines 2 and 3, respectively, pairwise share the same control state; and (iv) lastly, Algorithm 6

does not affect the way a set of maximal, high-priority transitions are grouped together in the new

model compared to the original model, because: (a) it does not change the relative precedence of

the transitions, according to any of the priority semantics; and (b) the synchronizers introduced

on line 24 do not put any restrictions on the maximality of a small step.

Using the above lines of arguments conversely, it can also beproven that for eachτ′, there

exists a correspondingτ. Thus, the original and the new model have the same behaviour. �

7.4.4 Composition Operators

In this section, the formal transformation of some of the common composition operators intro-

duced in template semantics [75, 74] to their equivalent SBSMLs are considered.

In the following transformation schemes, acomponentor anoperandof a template semantic

composition operator corresponds to a compound control state of an SBSML. Thus, the input

to a transformation algorithm for a composition operator consists of a set of compound control

257

states, plus any extra syntactic elements, such as synchronization events in the case of rendezvous

and environmental synchronization composition operators. As such, a hierarchy of composition

operators of a model in template semantics can be transformed into a hierarchy of control states

of an SBSML model. A model in template semantics that does nothave any composition operator

behaves the same as its equivalent BSML model. In template semantics, there is no notion of

synchronizer.

In template semantics, originally, the composition operators are considered as binary opera-

tors, but here they are considered as n-ary operators.

Interleaving

“In interleaving composition, only one component can execute transitions in astep[emphasis

mine]” [75], where step has the same meaning as small step in this dissertation.

Algorithm 7 specifies how an interleaving composition operator can be transformed into an

And control state that has the same behaviour as the compositionoperator. The input to the

algorithmtointerleavingis a set of control states{s1, · · · , sn}. As before, for the set of transitions

of a model,T, Ts is the set of all transitions inT such thatlca(src(t), dest(t)) ∈ children∗s.

Algorithm 7: tointerleaving({s1, · · · , sn}).
Input : {s1, · · · , sn}

Result: Each small step includes the transitions of at most one of theTsi ’s, where
si ∈ {s1, · · · , sn}.

1 Create a set of new labelsA = {a1, · · · , an};
2 Create a newBasiccontrol state,int;
3 Createn new self transition,X = {x1, · · · , xn}, such thatsrc(xi) = int, dest(xi) = int, and

corolesets(xi) = {{ai}}, for 1 ≤ i ≤ n ;
4 Create a newAndcontrol state,snew, such thatchildren(snew) = {s1, · · · , sn} ∪ {int};
5 foreach si ∈ {s1, · · · , sn} do
6 foreach t ∈ Tsi do
7 rolesets(t) = rolesets(t) ∪ {ai};
8 end
9 end

10 Assign synchronizerUUSE(A) to snew;

258

int

B2

A2

Int : {UUSE(a1,a2)}

C1

t1:
{a1}

C12

A2

{a1}

C11

A1

B1 B2

C2

t3:
{a2}

C22

A4

{a2}

C21

A3

B3 B4

it1: {a1}

it2: {a2}

I

(b)

C22C12

C1

C11

A1

B1

st1

C21

C2

A3

B3

A4

B4

st1 st2 st3

(a)

Figure 7.13: The effect of applying Algorithm 7.

Example 58 Figure 7.13 shows that how the effect of applying the “tointerleaving” algorithm

to a model that uses the interleaving composition operator results in an SBSML model with the

same behaviour. The SBSML model in Figure 7.13(b) is the result of “tointerleaving(C1,C2)”.

The models in Figure 6.8, on page 203 are similar to the ones inFigure 7.13, except that the

model in Figure 6.8(b) is not obtained through applying algorithm “tointerleaving”, in order to

obtain a simpler model.

Proposition 7.12 Given a model in template semantics with one interleaving composition oper-

ator “ int(s1, · · · , sn)”, replacing the composition operator with “tointerleaving({s1, · · · , sn})”

yields an SBSML model that has the same behaviour as the original model.

Proof Idea. To prove the above claim, it suffices to show that for each small step,τ, in the orig-

inal model, there is a small step,τ′, in the new model that includes the corresponding transitions

of τ, and vice versa. As such, it should be proven that “only one component” of the original

model “can execute transitions in a” small step of the new model. This is true because at each

small step only one of the transitions inX, created on line 3 of the algorithm, can be executed,

which in turn can synchronize exclusively with the transitions of one of the control states, which

each represents a component of the composition operator in the original model. Thus, the trans-

formation in Algorithm 7 is sound. �

259

Rendezvous

The rendezvous composition operator requires that, “exactly one transition in the sending com-

ponent generates asynchronization event[emphasis mine] that triggers exactly one transition

in the receiving component” [75], where synchronization events of a composition operator are

unique and syntactically specified. In Section 6.4.4, a simple semantics for rendezvous com-

position operator was considered that assumed models such as the processes in CCS, whose

semantics can be modelled using synchronizers of typeUUEE. However, in the general case an

operand of a rendezvous composition operator itself can be an arbitrary control state, possibly an

Andcontrol state that can execute concurrent transitions. In such a general case, the semantics of

rendezvous composition operator in template semantics additionally requires that: “Transitions

that are enabled by non-synchronization events or that generate non-synchronization events can

execute only in an interleaved manner.” [74] In the general case, the only syntactic assumption

made about a model is that each of its transitions can synchronize according to one rendezvous

composition operator and over only one of its synchronization events.

Algorithm 8 specifies a transformation scheme for the rendezvous composition operator for

the general case. The input to the algorithm is a set of control states,{s1, · · · , sn}, n > 2 , each

of which is an operand of the rendezvous composition operator, and a set of synchronization

events,{e1, · · · , em}, m> 1. The set of labels inA in the algorithm are used to ensure that a set of

transitions in a small step that do not synchronize over synchronization events belong to at most

one of the components. The set of labels inL are used to model the synchronization events of

the rendezvous composition operator. Label setO is used to ensure that a small step does not

include both transitions that synchronize over a synchronization event and the transitions that do

not.

Example 59 The model in Figure 7.14(a) shows a model that uses the rendezvous composition

operator over two componentsC1 andC2. Applying “torendezvous({C1,C2}, {e})” results in the

SBSML model in Figure 7.14(b) that is equivalent to the original model.

Proposition 7.13 Given a model in template semantics with a rendezvous composition operator

“ ren({s1, · · · , sn}, {e1, · · · , em})”, replacing the composition operator with “torendezvous({s1, · · ·

, sn}, {e1, · · · , em})” yields an SBSML model that has the same behaviour as the original model.

260

Algorithm 8: torendezvous({s1, · · · , sn}, {e1, · · · , em}).
Input : {s1, · · · , sn}, {e1, · · · , em}

Result: Either a transition fromt ∈ Tsi and a transition fromt′ ∈ Tsj , 1≤ i ≤ n, such that
ej ∈ pos trig(t) andej ∈ gen(t′), 1 ≤ j ≤ m, are included in a small step, or the
small step includes non-synchronizing transitions from atmost one of theTsi ’s,
1 ≤ i ≤ n.

1 Create a set of new labelsA = {a1, · · · , an};
2 Create a set consisting of a new labelO = {o};
3 Create a set of new labelsL = {l1, · · · , lm};
4 Create a newBasiccontrol state,int;
5 Createn new self transitions,X = {x1, · · · , xn}, such thatsrc(xi) = int, dest(xi) = int, and

corolesets(xi) = {{ai}}, for 1 ≤ i ≤ n ;
6 Create one last self transitions,to, such thatsrc(to) = int, dest(to) = int, and

corolesets(to) = {{o}} ;
7 Create a newAndcontrol state,snew, such thatchildren(snew) = {s1, · · · , sn} ∪ {int};
8 foreach si ∈ {s1, · · · , sn} do
9 foreach t ∈ Tsi do

10 if gen(t) ∩ {e1, · · · , em} = ej then
11 rolesets(t) = rolesets(t) ∪ {l j} ∪ {o};
12 gen(t) = ∅;
13 else if pos trig(t) ∩ {e1, · · · , em} = ej then
14 corolesets(t) = corolesets(t) ∪ {l j};
15 pos trig(t) = ∅;
16 end
17 else
18 rolesets(t) = rolesets(t) ∪ {ai};
19 end
20 end
21 end
22 end
23 Assign synchronizerUUSE(A) to snew;
24 Assign synchronizerUUEE(L ∪O) to snew;

261

t2:
[b2]

C1 C2

t5:
[b5]

C1

B1 B2

{r}
t1: t3:

[b3]
{a1}

C2

B3 B4

t4:
{{r},
{o}}

t2:
[b2]
{a1}

t5:
[b5]
{a2}

r
st2: rent3:

(a)

(b)

A1

B1 B2

A2

C12

r [b3]
t1:

[b6]
t6:

̂r
t4:

A3

B3

C22

A4

B4

C11 C21

A1 A2 A3 A4

t6:
[b6]
{a2}

C21C11 C22C12

rend: {UUSE(a1, a2), UUEE(r, o)}

it1: {a1}

it2: {a2}

I it3: {o}

Figure 7.14: The effect of applying Algorithm 8.

262

Proof Idea. To prove the above claim, it should be shown that for each small step,τ, in the

original model, there is a small step,τ′, in the new model that includes the corresponding tran-

sitions ofτ, and vice versa. If such aτ or τ′ does not exist when the other exists, it means that

the transformation algorithmtorendezvousis not sound. To prove the soundness of Algorithm

8, it should be shown that in the new model either a pair of transitions that synchronize over a

synchronizing event are included a small step or the transitions that do not synchronize over syn-

chronizing events and belong to one component are included in the small step, but not both kinds

of transitions. Two transitions that synchronize over a synchronization event can be included in a

small step of the new model only exclusively, because such two transitions synchronize accord-

ing to a synchronizer of typeUUEE, and furthermore, no additional such pair of transitions can

be included in the same small step because one of the transitions in the first pair of transitions

also exclusively synchronizes with transitionto, created on line 6 of the algorithm, via labelo.

If such a pair of synchronizing transitions is not included in a small step, the transitions of only

one of the components can be included in the small step, because only one of the transitions

in X, created on line 5 of the algorithm, can be executed in each small step. Thus, algorithm

torendezvousis sound because it mimics the behaviour of therendezvouscomposition operator

that it translates. �

Environmental Synchronization

The environmental synchronization operator requires that, “both components execute in the same

microstep[emphasis mine] if the executing transitions all have the same trigger event,e, which

is a designatedsynchronization event[emphasis mine] (line 1), and if all components that can

react to this event participate in the step” [75], wherethe term “microstep” corresponds to the

term “small step” in this dissertation and a synchronization event can be received only from the

environment. Similar to the case in the rendezvous composition operator, when synchronizing

transitions cannot be taken, “in the ’unsync’ case, none of the executing transitions is triggered

by a synchronization event, so one or the other component takes a step in isolation (interleav-

ing).” [75] In template semantics, the following well-formedness condition is assumed for envi-

ronmental synchronization composition: If a transition istriggered by a synchronization event or

generates a synchronization event, neither it is triggeredwith any other events, synchronization

or otherwise.

Algorithm 9 specifies a transformation scheme for the environmental synchronization oper-

263

ator. The input to the algorithm is a set of control states,{s1, · · · , sn}, n > 2 , each of which is

an operand of the composition operator, and a set of synchronization events,{e1, · · · , em}, m> 1.

The set of labels inA are used to ensure that a set of transitions in a small step that do not syn-

chronize over any synchronization events belong to at most one of the components. The set of

labels inL are used to model the synchronization events of the composition operator.

Algorithm 9: toenvironmental({s1, · · · , sn}, {e1, · · · , em}).
Input : {s1, · · · , sn}, {e1, · · · , em}

Result: In a small step, either a maximal set of transitions that synchronize over the same
environmental input synchronization event can be included, or the
non-synchronizing transitions from at most one of theTsi ’s, 1≤ i ≤ n, are
included.

1 Create a set of new labelsA = {a1, · · · , an};
2 Create a set of new labelsL = {l1, · · · , lm};
3 Create a newBasiccontrol state,int;
4 Createn new self transitions,X = {x1, · · · , xn}, such thatsrc(xi) = int, dest(xi) = int, and

corolesets(xi) = {{ai}}, for 1 ≤ i ≤ n ;
5 Createm new self transitions,P = {p1, · · · , pm}, such thatsrc(pi) = int, dest(pi) = int, and

corolesets(pi) = {{l i}}, for 1 ≤ i ≤ m ;
6 Create a newAndcontrol state,snew, such thatchildren(snew) = {s1, · · · , sn} ∪ {int};
7 foreach si ∈ {s1, · · · , sn} do
8 foreach t ∈ Tsi do
9 if trig(t) ∩ {e1, · · · , em} = ej then

10 rolesets(t) = rolesets(t) ∪ {l j};
11 end
12 else
13 rolesets(t) = rolesets(t) ∪ {ai};
14 end
15 end
16 end
17 Assign synchronizerUUSS(A∪ L) to snew;

Example 60 The model in Figure 7.15(a) shows a model that uses the environmental synchro-

nization operator over two componentsC1 andC2. Applying “toenvironmental({C1,C2}, {e1, e2})”

results in the SBSML model in Figure 7.15(b) that is equivalent to the original model.

The models in Figure 6.9(b), on page 204, shows an SBSML modelthat has the same be-

haviour as the model in 6.9(a). The source model does not include any non-synchronizing tran-

264

t3:
e2

t2:
[b2]

t1:
e1

C1

A1

B1

A2

B2

C11 C12

env

[b4]

(a)

t8:
[b8]

t7:
e1

t6:
[b6]

t5:
e2

xp4: {l2}XP

xp1: {a1}

xp2: {a2}

xp3: {l1}
[b4]
t4:

{a1}

t5:
e2

{l2}

t6:
[b6]
{a2}

t7:
e1

{l1}

t8:
[b8]
{a2}

[b2]
{a1}

t2: t3:

{l2}
e2

{e1, e2}t4:

C2

C21 C22

A3

B3

A4

B4

Env: {UUSE(a1, a2, l1, l2)}

C2

C21 C22

A3

B3

A4

B4

C1

A1

B1

A2

B2

C11 C12

(b)

{l1}
e1

t1:

Figure 7.15: The effect of applying Algorithm 9.

265

sition. The transformation used in that figure, in order to demonstrate the role of poly-roles, first

identifies the maximum number of synchronization transitions that can be taken together accord-

ing to an environmental input event. If some of the transitions in such a maximal set cannot be

taken in a small step, the added dummy synchronizing transitions need to replace them. Here, a

more general approach has been adopted that also considers non-synchronizing transitions.

Proposition 7.14 Given a model in template semantics with one environmental synchroniza-

tion composition operator “env({s1, · · · , sn}, {e1, · · · , em})”, replacing the composition operator

with “toenvrionmental({s1, · · · , sn}, {e1, · · · , em})” yields an SBSML model that has the same

behaviour as the original model.

Proof Idea. Similar to the proof for the soundness of the other composition operators, it suffices

to show that for each small step,τ, in the original model, there is a small step,τ′, in the new model

that includes the corresponding transitions ofτ, and vice versa. As such, it should be proven that

a small step either includes a maximal set of transitions that synchronize over the same synchro-

nization event or it includes the transitions that do not synchronize over synchronizing events

and belong to one component are included in the small step, but not both. It is not possible for

the non-synchronizing transitions of different components to be included in the same small step,

because of the self transitions created by line 4 in the algorithm, which are on the same control

state. Similarly, it is not possible for the synchronizing transitions that synchronize over different

synchronization events to be included in the same small stepbecause of the self transitions that

are created by line 5 in the algorithm. Lastly, non-synchronizing and synchronizing transitions

cannot be included in the same small step because their corresponding self transitions, created on

lines 4 and 5 of the algorithm, cannot be executed together inthe same small step, because their

corresponding self transitions are over the same control state. Thus, algorithmtoenvironmental

is sound. �

7.4.5 Workflow Patterns

This section considers the transformation of the sequence workflow pattern, whose name is the

same as the name of a similar composition operator in template semantics. The formalization

of the transformation schemes of the other workflow patterns, some of which were described

informally in Section 6.4.5, are not considered in this dissertation because: (i) these workflow

266

patterns are not originally defined in the context of BSMLs orSBSMLs; and (ii) there is no

conclusive formal semantics for these patterns in the literature. However, as shown informally in

Section 6.4.5, the transformation schemes for the workflow patterns are mainly in the same style

as other syntactic constructs, semantic variations, and composition operators.

Sequence

When two components are connected through a sequence workflow pattern/composition oper-

ator, “the first component executes in isolation until it terminates (i.e., reaches itsfinal basic

states[emphasis mine]) and then the second component executes in isolation. If component one

is a composite component, then all of its basic components must reach final basic states before

the second component can start,” [74] where a final basic state is either syntactically designated

in a language or is a control state of a model that has no outgoing transitions.

In Section 6.4.5 the two components of a sequence composition operator are connected via

a multi-source, multi-destination transition, which implements the semantics of the sequence

workflow pattern, but introduces an extra idle small step between the execution of the first and the

second component. As mentioned in Section 6.4.5, an alternative interpretation of the semantics

of the sequence workflow pattern, such as the one in template semantics [75], disallows the extra

idle small step. This section presents a transformation algorithm that neither introduces any extra

idle small steps nor uses any synchronizers. First, some notation need to be introduced.

Given a compound control state,s, f inal(s) denotes the set of finalBasiccontrol states of

s. EachOr control state,s, has at most one final control state, such thatf inal(s) , de f ault(s).3

There is no need to allow more than one final control state in anOr control state because two

final control states can be merged by directing the incoming transitions of one to the other. The

final control states of anAndcontrol states is the union of the final control states of its children.

Given a control state,s, incoming(s) is the set of all transitions, such that for each of these

transitions,t, lca(src(t), dest(t)) < children+(s) anddest(t) ∈ children∗(s).

Algorithm 10 specifies a transformation scheme for the sequence composition operator. The

input to the algorithm is two compound control states,s1, s2, each of which is an operand of the

composition operator. The set of variables{v1, · · · , vn} is used to determine when the final states

3If f inal(s) = de f ault(s), perhaps|children(s)| = 1, which means theOr control state is itself virtually aBasic
control state.

267

of the first component are all arrived in, upon which, in the same small step, transitiontlast is

executed to move the control of the model to the control states of the second component. When

control states1 is reentered, all variables in{v1, · · · , vn} are reset.

Algorithm 10: tosequence(s1, s2).
Input : s1, s2

Result: First, transitions ofs1 are executed, followed by the ones ofs2.
1 Create a set of new boolean variables{v1, · · · , vn} that corresponds to the set of control

statesf inal(s1) = { f1, · · · , fn};
2 foreach fi ∈ { f1, · · · , fn} do
3 forall the t ∈ incoming(fi) do
4 asn(t) := asn(t) ∪ {“vi := true′′};
5 end
6 end
7 Create a newBasiccontrol state,last;
8 Create a new transition,tlast, such thatsrc(tlast) = last, dest(tlast) = s2, and

gc(tlast) = (new small(v1) ∧ · · · ∧ new small(vn));
9 Create a newAndcontrol state,snew, such thatchildren(snew) = {s1, s2} ∪ {last};

10 foreach t ∈ incoming(s1) do
11 forall the vi ∈ {v1, · · · , vn} do
12 asn(t) := asn(t) ∪ {“vi := f alse′′};
13 end
14 end

Example 61 The model in Figure 7.16(a) shows a model that uses the sequence operator over

two componentsM and Q. The result of “tosequence(M,Q)” is the SBSML model in Figure

7.16(b), which is equivalent to the original model.

Proposition 7.15 Given a model in template semantics with one sequence composition operator

“ seq(s1, s2)”, replacing the composition operator with “toseq(s1, s2)” yields an SBSML model

that has the same behaviour as the original model.

Proof Idea. It suffices to show that for each small step,τ, in the original model, there is a small

step,τ′, in the new model that includes the corresponding transitions of τ, and vice versa. As

such, it should be proven that initially each small step includes transitions froms1, and once all

final states ofs1 are entered, the control is passed tos2, after which only small steps including

268

(a)

(b)

M12

M22

t1M1

M2
M21

M11

M

Q12

Q22

Q1
Q11

Q21
Q2

Q

N

t5: {v1 := f alse; v2 := f alse}

t5

Q12

Q22

Q1
Q11

Q21
Q2

seq

Q

t3

t4

t3

t4

last
tlast: (new small(v1) = true∧ new small(v2) = true)

M1

M2

M11

M

M12

M22

t1

t2

t2

v2 := true
M21

v1 := true

Figure 7.16: The effect of applying Algorithm 10.

269

transitions ofs2 are executed. The transformation in Algorithm 10 clearly does not allow small

steps that include transitions from boths1 ands2. Furthermore, variables{v1, · · · , vn} are all true

at the end of a small step if and only if an incoming transitionto each final control states ofs1

has been executed. But in this last small step,tsmall is executed, because its guard, which checks

the values of{v1, · · · , vn} variables at the end of a small step, is true, and furthermore, tlast is an

interrupt for the last incoming transitions of the final control states ofs1. Thus, once all final

control states ofs1 are entered, the control is passed tos2, as desired. Lastly, upon reentrance to

s1, the{v1, · · · , vn} variables are all reset to false afresh, through the way the incoming transitions

to s1 are modified on line 12 of the algorithm. �

A Transition-Aware Semantics. It should be noted that the above transformation uses the

new small keyword whose semantics is transition aware, and out of the scope of the semantic

formalization in Chapter 4. It seems that this is the price that needs to be paid to avoid the extra

idle small steps between the execution of the transitions ofthe operands of a sequence operator.

Instead ofnew small keyword, synchronization can be used so that two componentsthat are

connected by a sequence operator synchronize when the first component and all its subcompo-

nents finish their execution, after which the second component starts its execution. However,

such an approach again creates extra unnecessary small steps due to the synchronization nec-

essary to recognize when all subcomponents have finished their execution. Such an approach

is described by Milner [72, p.172–174,190–192], where he explains how CSP sequence opera-

tor, “;”, [48, p. 171] can be translated into CCS. But this approach introduces extra CCS silent

actions “τ”.

7.4.6 Effect of Transformation Schemes on Well-Formedness

To achieve a clear exposition of the transformation schemesand their proofs of correctness in

the preceding sections, it was assumed that the changes in the role sets, co-role sets, and the syn-

chronizers of a model do not violate the well-formedness conditions of the model, as described

in Section 7.1.2. However, a transformation algorithm can create a non-well–formed SBSML

model. However, such a model can becorrectedin a straightforward manner, while preserving

the intended behaviour of the model. Furthermore, it is shown that the proofs of correctness

presented for transformation algorithms remain valid, because of the types of well-formedness

270

violations and the proposed corrections.

The only well-formedness criterion that could be violated by a new model produced by a

transformation algorithm is the criterion iv of the well-formedness of SBSMLs, which states:

Two labels that are associated with the same synchronization type do not belong to two different

role sets or two different co-role sets of the same transition. The following pattern of scenarios

can cause such a violation. A transformation scheme may introduce a new singleton role set, say

{x}, for a transitiont that already has a singleton role set, say{y}, where both{x} and{y} are meant

to be synchronized by synchronizers that have the same type that belongs to “U***”. According

to criterion v,{x} and{y} need to be merged, but{x, y} does not match “U***”, violating crite-

rion ii. Thus the corresponding synchronizers of{x} and{y} also need to be merged to a same

synchronizer whose synchronization type belongs to “P***”. The merge of the synchronizer can

in turn trigger another merge with an already existing synchronizer that has the same synchro-

nization type as the newly-created synchronizer. A similarpattern of well-formed violation can

happen for synchronizers of synchronization type “*U**”. A similar correction can be applied

to this second pattern of violation scenarios by merging thesynchronizer to a new synchronizer.

The above corrective steps to transform a model to a well-formed model, however, preserve

the original behaviour. First, for example, a transition,t, with role sets{{x}, {y}} that synchronize

with two different synchronizer of the same synchronization type “U***”, by definition, behaves

exactly the same ast having a single role set{x, y} that synchronizes with a single synchronizer

of synchronization type “P***”: In both modelst is required to have synchronization overx and

y, according to the semantics of the third and fourth letters of the corresponding synchronizers,

which are the same in both cases. The above statement, however, is true if the semantics of such

non-well–formed SBSML models is defined according to the semantic definition schema on page

220, which is the case; i.e., even if a model violates the well-formedness criterion iv, its behaviour

is defined according to the formal semantics in Section 7.2.4 Similarly, merging the co-role sets

of a transition that synchronize according to synchronizers that have the same synchronization

type that belongs to “*U**” does not change the behaviour of the model. Lastly, mergingtwo

synchronizers that have the same synchronization type belonging to “P***” or “ *P**” does not

change the behaviour of the model. Thus, the corrective steps outlined above do not change

the behaviour of a model, and therefore, the reasoning presented in the proofs presented in this

4As an example of an SBSML model with an undefined semantics, anSBSML model that allows a transition to
have a role set{x, y} that synchronizes according to a synchronizer of synchronization type “U***” has a nonsensical
meaning. However, none of the transformation algorithms create such nonsensical models.

271

section remain sound in the presence of the aforementioned types of non-well–formed SBSML

models.

7.5 Relevance of Semantic Quality Attributes for SBSMLs

This section considers the relevance of each of the three semantic quality attributes introduced

for BSMLs, described in Chapter 5, for SBSMLs.

7.5.1 Non-Cancelling SBSML Semantics

Recall that in a non-cancelling BSML semantics, once a transition of a model becomes exe-

cutable in a big step, it remains executable during the big step. However, the non-cancelling

semantic quality attribute is not relevant for SBSMLs, because, as discussed in Section 7.3.3, an

enabled, high-priority transition may not be executable ata snapshot because its synchronization

requirements cannot be satisfied. As such, a notion of an executable transition in SBSMLs can

be only defined with respect to the executability of other transitions, which is not consistent with

the notion of non-cancelling BSML semantics.

7.5.2 Priority-Consistent SBSML Semantics

Recall that in a priority-consistent BSML semantics, the higher-priority transitions are chosen

to execute over lower-priority transitions during a big step. The priority consistency semantic

quality attribute is also relevant for SBSMLs. Exactly the same semantic characterization as the

one for the priority-consistent BSML semantics holds for the SBSML semantics. The follow-

ing proposition restates the necessary and sufficient conditions for an SBSML semantics to be

priority consistent, which is similar to the Proposition 5.6 for BSMLs, on page 5.6.

Proposition 7.16 An SBSML semantics that subscribes to a hierarchical priority semantics to-

gether with theNegation of Triggers priority semantics is priority consistent if and only if it

272

satisfiesP ≡ PHierarchical ∧ P′Negation, where

PHierarchical ≡ Take One,

P′Negation ≡ PNegation∧ PXEvent∧ PIEvent,

PNegation ≡ ¬Negated Events

PXEvent ≡ X.P.I. Remainder ∨ ¬Negated External Events, and

PIEvent ≡ Asynchronous Event ∨ ¬Negated Interface Events.

Proof Idea. A similar proof of correctness as the one for Proposition 5.6, on page 169, can be

developed for this proposition. An outline of this proof is presented below.

PredicatePHierarchical guarantees that the execution of an SBSML model cannot proceed in

two different ways: One arriving at a configuration where a high-priority transition according

to a hierarchical priority semantics can be taken, and one arriving at a configuration where a

low-priority transition according to a hierarchical priority transition can be take. (The correct-

ness proof of Proposition 5.4, on page 164, can be conferred for more detail.) PredicateP′Negation

guarantees that a priority-inconsistent behaviour according to the Negation of Triggers seman-

tics does not arise: Internal events are not supported, because ofPNegation, so it is not possible

for a big step to include a high-priority transition, whose event trigger has just been generated,

while another big step includes a low priority transition, because the event trigger of the high-

priority transition is not generated yet. PredicatesPXEventandPIEvent require the external

environmental input events and the interface events, respectively, to be either present or absent

throughout a big step, so that a lower-priority transition can be only taken if the triggering event

of a higher-priority transition is not present at the sourcesnapshot of the current big step. (The

correctness proof of Proposition 5.5, on page 168, can be conferred for more detail.)

Conversely, if an SBSML semantics is priority consistent itshould satisfy predicateP, other-

wise counter example models similar to the ones in Example 36, Example 37, and Example 38

can be created that exhibit a priority-inconsistent behaviour. (The aforementioned examples are

relevant for SBSMLs too, since a BSML model is an SBSML model without any synchronizers.)

Thus, an SBSML semantics is priority consistent iff it satisfiesP. �

273

7.5.3 Determinate SBSML Semantics

Recall that in a determinate BSML semantics, if two big stepsof a BSML model execute the

same (multi) set of transitions in different orders, their destination snapshots are equivalent.The

determinacy semantic quality attribute is also relevant for SBSMLs. The same semantic charac-

terization as the one for BSMLs, in Proposition 5.10, on page176 holds for SBSMLs.

Proposition 7.17 An SBSML semantics is determinate with respect to variablesand events if

and only if its constituent semantic options satisfies the predicateD ≡ D′Variables ∧ D′Events, where

D′Variables ≡ DVariables ∧ DIAssign,

DVariables ≡ [¬Variable Assignments ∨ RHS Big Step] ∨

[(RHS Small Step ∨ RHS Combo Step)⇒ (Take One ∧Many)],

DIAssign ≡ [¬Interface Variables in RHS ∨ RHS Asynchronous Variable] ∨

[RHS Weak Synchronous Variable⇒ (Take One ∧Many)],

D′Events ≡ DEvents∧ DOEvent,

DEvents ≡ [¬Generated Events ∨ P.I. Remainder] ∨

[(P.I. Next Small Step ∨ P.I. Next Combo Step)⇒ (Take One ∧Many)], and

DOEvent ≡ [¬External Output Events ∨O.P.I. Remainder] ∨

[(O.P.I. Next Small Step ∨O.P.I. Next Combo Step)⇒ (Take One ∧Many)].

Proof Idea. A similar proof of correctness as the one for Proposition 5.10, on page 176, can be

developed for this proposition. A sketch of this proof is presented below.

First, a similar lemma to Lemma 5.7, on page 172, can be statedfor SBSMLs: If two big steps

of an SBSML model that is specified in an SBSML semantics that follows the TakeOne big-step

maximality semantics and the Many concurrency semantics have the same set of transitions,

they are the same. PredicateD′Variables guarantees determinacy with respect to variables because

it ensures that either the values of variables in the assignments are obtained from the beginning of

a big step, which guarantees determinacy, or the SBSML semantics subscribes to both the Take

One and the Many semantic options, thus if two big steps have the same set of transitions they

are the same. Similarly, theD′Events guarantees determinacy with respect to events because either

the events are required to accumulate during a big step or theSBSML semantics subscribes to

both the Take One and the Many semantic options, thus if two big steps have the same set of

transitions they are the same.

274

Conversely, if an SBSML semantics is determinate it should satisfy predicateD, otherwise

counter example models simile to the ones mentioned in the proof of Proposition 5.10 can be

constructed that exhibit non-determinate behaviours.

Thus, an SBSML semantics is determinate iff it satisfiesD. �

7.6 Summary

This chapter presented a formal semantic definition method for SBSMLs. It also presented trans-

formation schemes, in forms of algorithms, that showed how the semantics of various modelling

constructs, as well as, some structural semantic options, can be modelled in SBSMLs. For each

transformation scheme, the proof of its correctness was presented. Lastly, the relevance of the

semantic quality attributes of BSMLs for SBSMLs was discussed.

275

Chapter 8

Conclusion and Future Work

“The other point of view sees mathematics as playing primarily an active

role. According to this point of view, machines, languages,and systems

are (or should be) the computer scientists’ own creations, so that they can

freely choose to create them to conform to mathematically simple

principles. The mathematics is directed toward design rather than study,

and mathematics is used not so much to describe existing objects as to

plan new ones. This we call theprescriptiveapproach.” [5, p.283–284]

Edward Ashcroft and William Wadge

This section presents a brief summary of the dissertation, and then presents a summary of the

contributions followed by plans for future work.

This dissertation presents a semantic deconstruction for awide range of modelling languages

that have in common that the reaction of a model specified in them is a big step consisting of a

sequence of small steps, each of which is the execution of a set of transitions. The thesis uses

the term big-step modelling languages (BSMLs) to refer to this family of modelling languages.

The semantic deconstruction distinguishes between these languages based upon eight semantic

aspects, each of which is a semantic variation point that hasa set of semantic options. The disser-

tation provides an analysis of the relative advantages and disadvantages of the semantic options

of each semantic aspect to enable modellers and language designers to compare two BSMLs and

choose one over another, based on the properties of their constituent semantic options.

276

The dissertation introduces a prescriptive semantic definition framework for formalizing the

semantics of BSMLs. A semantics produced in this framework is prescriptive in that the con-

stituent semantic options of the semantics of a BSML are manifested clearly as mainly separate

parts of its semantic definition. My goal has been to produce semantic definitions that are under-

standable and accessible to various stakeholders of a semantics, by the virtue of being partitioned

clearly into intuitively meaningful parts.

The dissertation introduces three semantic quality attributes, which represent useful patterns

for big steps of a model. These semantic quality attributes are cross-cutting concerns over the

semantic aspects of BSMLs. To characterize the BSMLs that satisfy each of these semantic qual-

ity attributes, the dissertation presents necessary and sufficient conditions over the choices of the

semantic options of the BSMLs that guarantee that semantic quality attribute. The dissertation

presents also the outlines of the proofs of the correctness of these characterizations.

Lastly, the dissertation presents a synchronization capability for BSMLs, introducing the

class of synchronizing big-step modelling languages (SBSMLs). It presents a semantic defini-

tion framework for SBSMLs that is similar to the one for BSMLs, but does not need to consider

the role of the concurrency and consistency semantic sub-aspects because one of the two se-

mantic options of each of these sub-aspects can be used to model the other semantic option.

The dissertation also shows how SBSMLs can be used to model the semantics of many useful

modelling constructs, such as multi-source, multi-destination transitions, some of the template

semantics composition operators, and some of the workflow patterns. Algorithms are presented

that each is a transformation scheme for modelling one of theaforementioned concurrency and

consistency semantic options or modelling constructs. Foreach of the transformation schemes,

the outline of the proof of its correctness is presented.

8.1 Summary of Contributions

The contributions of this dissertation can be summarized bythe following five statements.

• The dissertation presents a high-level semantic frameworkthat unifies the semantics of a

large family of seemingly different modelling languages, namely, the family of BSMLs.

This high-level big-step semantic deconstruction enablesone to understand the semantics

of a BSML through its constituent semantic options and in comparison to the constituent

277

semantic options of other BSMLs. The big-step semantic deconstruction is accompanied

by criteria to differentiate between two semantic options so that one can choose one se-

mantic option out of the several that are possible.

• To provide understandability when formalizing the big-step semantic deconstruction, the

dissertation presents a semantic definition framework thatprescriptively maps each con-

stituent semantic option of a BSML into a separate part of thesemantic definition. This

formalization provides a detailed account of the BSML semantics in an accessible way, so

that one can trace the formalization of a semantic option to aparticular part of a semantic

definition.

• The dissertation presents three semantic quality attributes that each distinguishes between

two BSMLs based on whether they provide a certain kind of semantic facility for dealing

with the ordering of the small steps of a big step or not. The characterization of these se-

mantic quality attributes reveal interrelationships among seemingly independent semantic

options in a BSML. They also provide rationales for languagedesign decisions that other-

wise would have seemed ad hoc. For example, the specificationof non-cancelling BSML

semantics highlights the role of concurrency in small-stepexecution, while the specifica-

tions of priority consistent and determinate BSML semantics highlight the role of limiting

the number of transitions that each concurrent component ofa model can execute in a big

step.

• To provide uniformity in dealing with various semantic concepts and various modelling

constructs that all use a form of synchronization, the dissertation introduces an explicit

synchronization capability to BSMLs, resulting the new family of SBSMLs. The disserta-

tion presents also a formal semantics for SBSMLs in a prescriptive manner, using a novel,

declarative way to characterize the semantics of different synchronization types.

• Lastly, the dissertation introduces transformation schemes that each translates a common

syntactic construct that is not supported in the normal-form syntax of BSMLs and SB-

SMLs into a form of synchronization in SBSMLs. These transformation schemes provide

the means for a systematic way to design new composition operators, workflow patters,

and other syntactic constructs whose semantics can be described using synchronization.

Similarly, the dissertation presents transformation schemes that each shows how a certain

semantic option can be modelled using an alternative semantic option together with a syn-

chronization mechanism in SBSMLs. These transformation schemes deem some of the

278

semantic aspects of the big-step semantic deconstruction unnecessary when considered for

SBSMLs.

8.2 Future Work

I am interested in continuing the research reported in this dissertation in the following five direc-

tions.

8.2.1 Including More Languages

I plan to extend the BSML semantic deconstruction frameworkto include the modelling lan-

guages that support asynchronous communication, as taxonomized in Section 2.2.4, on page 25.

A modelling language such as UML StateMachines [78] can be considered a BSML, except that

events generated in a UML StateMachine model is communicated through asynchronous chan-

nels. First, I plan to identify the new semantic aspects and/or semantic options that are required

to include these languages in the semantic deconstruction.These semantic aspects and/or se-

mantic options should then be integrated into the existing semantic formalizations of BSMLs

and SBSMLs in a prescriptive manner. Also, the semantic quality attributes for BSMLs should

be redefined and re-characterized to account for these new languages.

8.2.2 Identifying More Semantic and Syntactic Criteria

The dissertation has introduced semantic criteria to compare two BSMLs to choose one over

another when modelling a system under study. These criteriaare in the form of advantages and

disadvantages of individual semantic options, as well as, in the form of semantic quality at-

tributes, which consider the collective effect of a set of semantic options. Section 5.4.1 described

examples of how the syntax and semantics of a BSML can be considered together to achieve a

semantic quality attribute in the BSML, instead of considering only the semantic options. I plan

to explore more of these hybrid, syntactic and semantic characterizations of semantic quality

attributes. Furthermore, using such a hybrid approach, I expect to identify more semantic quality

attributes. For example, determinism can be an interestinghybrid, syntactic and semantic quality

attribute to be considered for BSMLs.

279

For SBSMLs, I plan to adapt the complexity results of Joung and Smolka [55] and extend

them for the synchronization types introduced in my dissertation. It would be then possible to

provide a complexity criteria when choosing to include a synchronization type in a language or

when choosing to include a modelling construct whose semantics is based on certain synchro-

nization type(s) in a language.

8.2.3 Identifying Non-Technical Criteria

The semantic criteria presented in this dissertation compare two BSMLs mainly from a technical

points of view. They do not consider criteria such as usability of a language in modelling a system

under study. A useful research direction is to identify qualitative criteria for the semantics of

BSMLs, to differentiate a semantic option from another, or to differentiate two BSML semantics,

based on the collective effects of their constituent semantic options, from one another. The

identification and the evaluation of each of these criteria in a BSML, however, require designing

careful empirical experiments. In particular, these experiments should consider the role of the

domain that a certain BSML is being used in. My long-term goalis to create a catalogue of

BSMLs and domains with the technical and qualitative criteria that distinguish a language from

one another.

8.2.4 A Unifying Framework for the Enabledness Semantic Aspects

The dissertation has shown how the structural semantics aspects, which determine how a set of

transitions can be taken together to form a small step, can beuniformly described using syn-

chronization. The enabledness semantic aspects, however,do not enjoy such a unifying semantic

definition method. Currently, I am working on a semantic definition language that succinctly and

uniformly describes the enabledness semantic aspects. I plan to integrate this language into the

semantic definition schema of BSMLs and SBSMLs.

8.2.5 Tool Support

Lastly, the big-step semantic deconstruction can benefit from tool support in two ways.

First, analysis tools for model checking and simulation of BSMLs and SBSMLs can be devel-

oped systematically: The operational, prescriptive semantics introduced in this dissertation lends

280

itself to an implementation that can be decomposed into components that each corresponds to a

semantic aspect or a semantic option of the big-step semantic deconstruction. When developing

such tools, one of my major design goals will be to provide foran effective validation of the

implementation through a rigorous method of inspection. I plan to use the experience and effort

in similar tool suites that are developed by my colleagues for providing parametric tool support

generator frameworks [65, 87].

Second, the big-step semantic deconstruction, its normal-form syntax, its syntactic features,

the semantic aspects, and their semantic options can be all formalized in logic, using methods

similar to the ones previously developed for formalizing the semantics of modelling languages

[24, 25, 75, 74]. Once a logical formalization of my semanticdefinition framework has been

obtained, it is possible to analyze and prove various properties of a BSML, including its semantic

quality attributes, formally. My goal will be to develop a formalization framework that can not

only be extended with new syntactic and semantic features but also strives for reuse of proofs for

languages that have syntactic and/or semantic features in common. Similarly, the syntax and the

semantics of SBSMLs can be formalized and analyzed. The transformation schemes, presented

in Chapter 7, can also be formalized so that one can prove the correctness of these transformation

schemes systematically using theorem provers.

281

References

[1] The Esterel V7 reference manual version V7.30, initial IEEE standardization proposal.

2005.1 50, 57

[2] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence

charts.IEEE Transactions on Software Engineering (TSE), 29(7):623–633, 2003. 78, 174

[3] Rajeev Alur and Thomas A. Henzinger. Reactive modules.Formal Methods in System

Design, 15(1):7–48, 1999. 2, 16, 36, 37, 40, 60, 62, 64, 66, 70, 71, 81, 83

[4] Edward A. Ashcroft and William W. Wadge. Generality considered harmful: A critique

of descriptive semantics. Technical Report CS-79-01, University of Waterloo, Cheriton

School of Computer Science, 1979. 3, 9, 86

[5] Edward E. Ashcroft and William W. Wadge.� for semantics. ACM Transactions on

Programming Languages and Systems (TOPLAS), 4(2):283–294, 1982. 3, 5, 9, 86, 276

[6] Luciano Baresi and Mauro Pezzè. Formal interpreters for diagram notations.ACM Trans-

actions on Software Engineering and Methodology (TOSEM), 14(1):42–84, 2005. 4, 131

[7] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous programming

with events and relations: The SIGNAL language and its semantics. Science of Computer

and Programming, 16:103–149, 1991. 26

[8] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, 37(1):77–121, 1985. 209

1Each bibliographic entry is followed by the list of the pagesin the dissertation that reference that entry.

282

[9] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. The Handbook of Process

Algebra. Elsevier, 2001. 8, 84, 209

[10] Gérard Berry. A hardware implementation of pure Esterel. Sadhana, Academy Proceed-

ings in Engineering Sciences, Indian Academy of Sciences, 17(1):95–130, 1992. 26, 48,

65

[11] Gérard Berry. Preemption in concurrent systems. InFoundations of Software Technology

and Theoretical Computer Science, volume 761 ofLNCS, pages 72–93. Springer, 1993.

43

[12] Gérard Berry. Hardware and software synthesis, optimization, and verification from es-

terel programs. InTools and Algorithms for the Construction and Analysis of Systems,

volume 1217 ofLNCS, pages 1–3. Springer-Verlag, 1997. 26

[13] Gérard Berry. The constructive semantics of pure esterel draft version 3, 1999.

http://www-sop.inria.fr/esterel.org/. 186

[14] Gérard Berry and Georges Gonthier. The Esterel synchronous programming language:

Design, semantics, implementation.Science of Computer Programming, 19(2):87–152,

1992. 2, 16, 20, 25, 26, 27, 36, 40, 44, 47, 48, 50, 55, 60, 65, 73, 83, 185, 210, 211

[15] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-based

systems. In19th International Conference Conference on Concurrency Theory CON-

CUR’08, volume 5201 ofLNCS, pages 508–522. Springer, 2008. 210

[16] Frederic Boussinot. Sugarcubes implementation of causality. Technical Report RR-3487,

INRIA, Institut National de Recherche en Informatique et enAutomatique, 1998. 48, 84

[17] Janusz A. Brzozowski and H. Zhang. Delay-insensitivity and semi-modularity.Formal

Methods in System Design, 16(2):191–218, 2000. 186

[18] K. Mani Chandy and Jayadev Misra.Parallel Program Design: A Foundation. Addison-

Wesley, 1988. 188, 189

[19] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,

Stanford University, October 1984. 57

283

[20] Michelle L. Crane and Juergen Dingel. On the semantics of UML state machines: Cate-

gorization and comparison. Technical Report 501, Queens Univerity, 2005. 4

[21] Krzysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, Boston, 2000. 30

[22] James Dabney and Thomas L. Harman.Mastering Simulink. Pearson Prentice Hall, 2004.

40, 70, 71, 127

[23] Nancy Day. A model checker for statecharts: Linking CASE tools with formal methods.

Master’s thesis, University of British Columbia, 1993. 47

[24] Nancy A. Day.A Framework for Multi-Notation, Model-Oriented Requirements Analysis.

PhD thesis, University of British Columbia, 1998. 131, 281

[25] Nancy A. Day and Jeffrey J. Joyce. Symbolic functional evaluation. In12th International

Conference on Theorem Proving in Higher Order Logics TPHOL’99, volume 1690 of

LNCS, pages 341–358, 1999. 4, 131, 281

[26] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. InProceedings of the

Joint 8th European Software Engeneering Conference and 9thACM SIGSOFT Symposium

on the Foundation of Software Engeneering (ESEC/FSE-01), volume 26, 5 ofSoftware

Engineering Notes, pages 109–120. ACM Press, 2001. 26

[27] Jacques Derrida.Points...: Interviews, 1974-1994. Stanford University Press, 1 edition, 2

1995. 29

[28] Laura K. Dillon and Kurt Stirewalt. Inference graphs: Acomputational structure support-

ing generation of customizable and correct analysis components. IEEE Transactions on

Software Engineering (TSE), 29(2):133–150, 2003. 4, 131, 132

[29] Stephen A. Edwards. Compiling Esterel into sequentialcode. In37th Conference on

Design Automation (DAC), pages 322–327, 2000. 26

[30] Rik Eshuis. Reconciling statechart semantics.Science of Computer Programming,

74(3):65–99, 2009. 186

284

[31] Shahram Esmaeilsabzali and Nancy A. Day. Prescriptivesemantics for big-step modelling

languages. In13th International Conference on Fundamental Approaches to Software

Engineering (FASE’10), volume 6013 ofLNCS, pages 158–172. Springer Verlag, 2010.

14

[32] Shahram Esmaeilsabzali and Nancy A. Day. Semantic quality attributes for big-step mod-

elling languages. In14th International Conference Fundamental Approaches to Software

Engineering (FASE’11), volume 6603 ofLNCS, pages 65–80. Springer Verlag, 2011. 14

[33] Shahram Esmaeilsabzali, Nancy A. Day, and Joanne M. Atlee. A common framework for

synchronization in requirements modelling languages. In13th International Conference

on Model Driven Engineering Languages and Systems (MoDELS’10), Part II, volume

6395 ofLNCS, pages 198–212. Springer Verlag, 2010. 15

[34] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee,and Jianwei Niu. Big-step

semantics. Technical Report CS-2009-05, University of Waterloo, Cheriton School of

Computer Science, 2009. 14, 41

[35] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee,and Jianwei Niu. Semantic

criteria for choosing a language for big-step models. In17th IEEE International Require-

ments Engineering Conference (RE’09), pages 181–190, 2009. 14

[36] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee,and Jianwei Niu. Deconstruct-

ing the semantics of big-step modelling languages.Requirements Engineering, 15(2):235–

265, 2010. 14, 174

[37] Colin Fidge. A comparative introduction to CSP, CCS andLOTOS. Technical Report

93-24, The university of Queensland, Department of Computer Science, 1994. 209

[38] Jimin Gao, Mats Per Erik Heimdahl, and Eric Van Wyk. Flexible and extensible notations

for modeling languages. InFASE’07, volume 4422 ofLNCS, pages 102–116, 2007. 4,

131, 132

[39] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous

data flow programming language Lustre.Proceedings of the IEEE, 79(9):1305–1320,

September 1991. 26

285

[40] Nicolas Halbwachs.Synchronous Programming of Reactive Systems. Kluwer, 1993. 25,

26, 44, 48, 84, 185, 210, 211

[41] David Harel. Statecharts: A visual formalism for complex systems.Science of Computer

Programming, 8(3):231–274, 1987. 2, 11, 13, 19, 36, 40, 71, 73, 197

[42] David Harel and Hillel Kugler. The RHAPSODY Semantics of statecharts (or, On the

Executable Core of the UML). InIntegration of Software Specification Techniques forAp-

plications in Engineering, volume 3147 ofLNCS, pages 325–354. Springer-Verlag, 2004.

36, 37, 73

[43] David Harel and Amnon Naamad. The statemate semantics of statecharts.ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 5(4):293–333, 1996. 24, 36,

37, 47, 48, 60, 73, 76, 83, 186

[44] David Harel and Amir Pnueli. On the development of reactive systems. InLogics and

Models of Concurrent Systems. Springer-Verlag, 1985. 25

[45] David Harel, Amir Pnueli, J. P. Schmidt, and R. Sherman.On the formal semantics of

statecharts. InProc. of the Second IEEE Symp. on Logic in Computation, pages 54–64,

1987. 36, 40, 47, 60, 62, 71, 83

[46] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency

checking of requirements specifications.ACM Transactions on Software Engineering and

Methodology, 5(3):231–261, 1996. 2, 16, 27, 50, 54, 58, 60, 64, 67, 70, 71,81, 83, 186

[47] K. L. Heninger, J. Kallander, David Lorge Parnas, and J.E. Shore. Software requirements

for the A-7E aircraft. Technical Report 3876, United StatesNaval Research Laboratory,

1978. 2, 16, 27, 50, 54, 58, 60, 64, 67, 70, 71, 81, 186

[48] Tony Hoare.Communicating Sequential Processes. Prentice Hall, 1985. 4, 203, 209, 213,

270

[49] Tony Hoare and He Jifeng.Unifying Theories of Programming. Prentice Hall, 1998. 5,

16, 69, 133

[50] Cornelis Huizing and Rob Gerth. Semantics of reactive systems in abstract time. InREX

Workshop, volume 600 ofLNCS, pages 291–314, 1992. 5, 48, 57, 61, 84, 85, 133, 184

286

[51] i Logix Inc. Statemate 4.0 Analyzer User and Reference Manual, 1991. 41

[52] ISO. LOTOS: a formal description technique based on thetemporal ordering of obser-

vational behaviour. Technical Report 8807, InternationalStandards Organisation, 1989.

4

[53] Roman Jakobson. The translation studies reader. In Lawrence Venuti, editor,On linguistic

aspects of translation. Routledge, 2 edition, 8 2004. 135

[54] Ryszard Janicki and Maciej Koutny. Structure of concurrency. Theoretical Computer

Science, 112(1):5–52, 26 April 1993. 186

[55] Yuh-Jzer Joung and Scott A. Smolka. A comprehensive study of the complexity of multi-

party interaction.Journal of the ACM, 43(1):75–115, 1996. 209, 210, 280

[56] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. S. Peterson.

Feature-oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-

90-TR-21, SEI, Carnegie Mellon University, 1990. 21

[57] Richard M. Karp and Raymond E. Miller. Parallel programschemata.Journal of Com-

puter and System Sciences, 3(2):147–195, May 1969. 186

[58] Kenneth L. McMillan.Symbolic Model Checking. Kluwer Academic Publishers, Norwell

Massachusetts, 1993. 62

[59] Donald E. Knuth. Semantics of context-free languages.Mathematical Systems Theory,

2(2):127–145, 1968. 102

[60] Leslie Lamport. Computer science and state machines. In Concurrency, Compositionality,

and Correctness, Essays in Honor of Willem-Paul de Roever, volume 5930 ofLNCS, pages

60–65. Springer, 2010. 16

[61] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Technical Report 44, Digital

Equipment Corporation, 1989. 25

[62] Lawrence H. Landweber and Edward L. Robertson. Properties of conflict-free and persis-

tent Petri nets.Journal of the ACM, 25(3):352–364, 1978. 186

287

[63] Nancy G. Leveson, Mats P. E. Heimdahl, Holly Hildreth, and Jon D. Reese. Requirements

specification for process-control systems.IEEE Transactions on Software Engineering

(TSE), 20(9):684–707, 1994. 24, 36, 37, 47, 48, 55, 57, 62, 66, 76, 83

[64] Robert J. Lipton. Reduction: A method of proving properties of parallel programs.Com-

munications of the ACM, 18:717–721, 1975. 25

[65] Yun Lu, Joanne M. Atlee, Nancy A. Day, and Jianwei Niu. Mapping template semantics

to SMV. In19th International Conference on Automated Software Engineering (ASE’04),

pages 320–325, 2004. 4, 131, 132, 281

[66] Andrea Maggiolo-Schettini, Adriano Peron, and SimoneTini. Equivalences of statecharts.

In 7th International Conference Conference on Concurrency Theory CONCUR’96, vol-

ume 1119 ofLNCS, pages 687–702, 1996. 49, 52, 84, 114

[67] Andrea Maggiolo-Schettini, Adriano Peron, and SimoneTini. A comparison of statecharts

step semantics.Theoretical Computer Science, 290(1):465–498, 2003. 5, 84, 85

[68] Florence Maraninchi and Yann Rémond. Argos: an automaton-based synchronous lan-

guage.Computer Languages, 27(1/3):61–92, 2001. 2, 16, 26, 36, 37, 38, 40, 44, 47, 48,

73, 80, 83, 185, 186, 210, 211

[69] John McCarthy. Towards a mathematical science of computation. InIFIP ’62. 1962. 100

[70] George J. Milne. Circal and the representation of communication, concurrency, and time.

ACM Transactions on Programming Languages and Systems (TOPLAS), 7(2):270–298,

1985. 209

[71] Robin Milner. Calculi for synchrony and asynchrony.Theoretical Computer Science,

25(3):267–310, July 1983. Fundamental study. 39, 199, 210

[72] Robin Milner. Communication and Concurrency. Prentice Hall, 1989. 4, 188, 194, 199,

203, 209, 270

[73] Peter D. Mosses.Action Semantics, volume 26 ofCambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, 1992. 133

288

[74] Jianwei Niu.Template Semantics: A Parameterized Approach to Semantics-Based Model

Compilation. PhD thesis, University of Waterloo, 2005. 4, 10, 11, 13, 27,75, 85, 130,

257, 260, 267, 281

[75] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Templatesemantics for model-based

notations.IEEE Transactions of Software Engineering (TSE), 29(10):866–882, 2003. 4,

10, 11, 13, 27, 41, 47, 72, 73, 75, 85, 90, 130, 197, 202, 257, 258, 260, 263, 267, 281

[76] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Understanding and comparing model-

based specification notations. In11th IEEE International Requirements Engineering Con-

ference (RE’03), pages 188–199. IEEE Computer Society, 2003. 85

[77] OASIS-Standard. Web services business process execution language version 2.0. 2007.

205

[78] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, v2.1.2. 2007.

Formal/2007-11-01. 8, 36, 37, 186, 211, 279

[79] David L. Parnas and Jan Madey. Functional documents forcomputer systems.Science of

Computer Programming, 25(1):19–23, 1995. 53, 64

[80] Doron Peled. On projective and separable properties.Theoretical Computer Science,

186(1-2):135–156, 1997. 186

[81] Mauro Pezzè and Michal Young. Constructing multi-formalism state-space analysis tools:

Using rules to specify dynamic semantics of models. In19th International Conference on

Software Engineering (ICSE’97), pages 239–249, 1997. 4, 131, 132

[82] Jan Philips and Peter Scholz. Compositional specification of embedded systems with

statecharts. In Michel Bidoit and Max Dauchet, editors,Theory and Practice of Software

Development (TAPSOFT’97), volume 1214 ofLNCS, pages 637–651. Springer-Verlag,

1997. 47, 84, 201

[83] Benjamin C. Pierce.Types and Programming Languages. MIT Press, 2002. 23

[84] Amir Pnueli. The temporal logic of programs. In18th Annual Symposium on Foundations

of Computer Science (FOCS’77), pages 46–57. IEEE Computer Society Press, 1977. 186

289

[85] Amir Pnueli and M. Shalev. What is in a step? InJ.W. De Bakker, Liber Amicorum, pages

373–400. CWI, 1989. 49, 50, 51, 62, 92

[86] Amir Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. InInterna-

tional Conference on Theoretical Aspects of Computer Software (TACS’91), volume 526

of LNCS, pages 244–264. Springer, 1991. 11, 13, 20, 28, 36, 40, 47, 49, 55, 60, 70, 71,

73, 83, 84, 92, 116, 185, 186, 197, 211

[87] Adam Prout, Joanne M. Atlee, Nancy A. Day, and Pourya Shaker. Semantically config-

urable code generation. In11th International Conference on Model Driven Engineering

Languages and Systems (MoDELS’08), volume 5301 ofLNCS, pages 705–720, 2008. 4,

281

[88] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel.Models for concurrency: To-

wards a classification.Theoretical Computer Science, 170(1–2):297–348, 15 December

1996. 39

[89] Sandeep K. Shukla and Michael Theobald. Special issue on formal methods for glob-

ally asynchronous and locally synchronous (GALS) systems.Formal Methods in System

Design, 28(2):91–92, 2006. 57

[90] Signe J. Silver and Janusz A. Brzozowski. True concurrency in models of asynchronous

circuit behavior.Formal Methods in System Design, 22(3):183–203, 2003. 39, 186

[91] J. Spivey.The Z Notation. A Reference Manual. Prentice-Hall, 2 edition, 1992. 225

[92] Ali Taleghani and Joanne M. Atlee. Semantic variationsamong UML StateMachines.

In 9th International Conference on Model Driven Engineering Languages and Systems

(MoDELS’06), volume 4199 ofLNCS, pages 245–259. Springer, 2006. 84

[93] Olivier Tardieu. A deterministic logical semantics for pure Esterel. ACM TOPLAS,

29(2):8:1–8:26, 2007. 36, 48, 84, 186, 211

[94] Robert D. Tennent. The denotational semantics of programming languages.Communica-

tions of the ACM, 19:437–453, 1976. 1

[95] Andrew C. Uselton and Scott A. Smolka. A compositional semantics for statecharts using

labeled transition systems. In5th International Conference Conference on Concurrency

Theory CONCUR’94, volume 836 ofLNCS, pages 2–17. Springer, 1994. 84

290

[96] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, BartekKiepuszewski, and Alistair P.

Barros. Workflow patterns.Distributed and Parallel Databases, 14(1):5–51, 2003. 11,

13, 197, 202, 205

[97] Robert van Glabbeek. The linear time – branching time spectrum. In J. C. M. Baeten and

J. W. Klop, editors,Proceedings of CONCUR’90, LNCS 458, pages 278–297. Springer-

Verlag, 1990. 39

[98] Dániel Varró. A formal semantics of UML statecharts by model transition systems. In

International Conference on Graph Transformations, volume 2505 ofLNCS, pages 378–

392. Springer, 2002. 132

[99] Michael von der Beeck. A comparison of statecharts variants. InFormal Techniques in

Real-Time and Fault-Tolerant Systems (FTRTFT’94), volume 863 ofLNCS, pages 128–

148. Springer, 1994. 2, 4, 16, 84

[100] Ludwig Wittgenstein. Major works: Selected philosophical writings. InThe Blue Book.

Harper Perennial Modern Classics, 1 edition, 3 2009. 86

[101] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering.Trans-

actions on Software Engineering and Methodology (TOSEM), 6(1):1–30, 1997. 53, 64

291

	List of Tables
	List of Figures
	Introduction
	Approaches to Semantic Categorization and Comparison
	Informal, imprecise approaches
	Formal, implementation-biased approaches
	Formal, deconstructional approaches

	Thesis Overview
	Validation
	Contributions of the Thesis
	Outline of the Thesis

	Common Syntax and Semantics
	Normal-Form Syntax
	Control States
	Transitions
	BSML Syntax in BNF
	BSML Syntactic Features

	Common Basic Semantics
	Snapshots
	Enabledness
	Execution
	Environmental inputs

	Representing BSMLs in the Normal-Form Syntax
	Control States
	Transitions

	Summary

	Semantic Deconstruction
	Overview of Semantic Aspects
	Big-Step Maximality
	Concurrency and Consistency
	Concurrency
	Small-Step Consistency
	Preemption

	Event Lifeline
	External Events
	Interface Events

	Enabledness Memory Protocol
	External Variables
	Interface Variables in GC

	Assignment Memory Protocol
	Interface Variables in RHS

	Order of Small Steps
	Priority
	Combo-Step Maximality
	Semantic Side Effects
	Complicated Event Lifeline Semantics
	Cyclic Evaluation Orders
	Ambiguous Dataflow
	Complicated Explicit Ordering
	Partial Explicit Ordering
	Inconsistent Preemption and Priority Semantics
	Conflicting Maximality

	Validation: Specifying the Semantics of BSMLs
	Related Work: Semantic Categorization and Comparison
	Summary

	Semantic Formalization
	Overview of Semantic Definition Schema
	Snapshots and Snapshot Elements
	Enabledness of a Transition

	Syntactic Notation
	The Snapshot Element for Control States
	Structural Parameters
	Scope-Parent Priority Semantics
	Scope-Child Priority Semantics
	No Priority Semantics
	Other Priority Semantics

	Enabledness Parameters
	Big-Step Maximality
	Event Lifeline
	Enabledness Memory Protocol
	Assignment Memory Protocol
	Order of Small Steps
	Combo-Step Maximality

	Related Work: Semantic Formalization Methods
	Summary

	Semantic Quality Attributes of BSMLs
	Quantification over Big Steps
	Priority-Related Definitions

	Semantic Quality Attributes for BSMLs
	Non-Cancelling
	Priority Consistency
	Determinacy

	Semantic Instantiation for Quality Attributes
	Non-Cancelling Semantics
	Priority-Consistent Semantics
	Determinate Semantics

	Quality Attributes and Syntactic Well-formedness
	A Syntactic Well-Formedness Criterion for Non-Cancelling
	A Syntactic Well-Formedness Criterion for Priority Consistency

	Related Work: Semantic Properties
	Summary

	Synchronization in BSMLs
	A Motivating Example
	Synchronization Syntax
	Synchronization Types
	Well-formedness Criteria for SBSML Models

	Applications
	Modelling Multi-source, Multi-destination Transitions
	Modelling BSML Semantic Options
	Modelling the Present In Same Event Lifeline Semantics
	Modelling Composition Operators
	Modelling Workflow Patterns

	Related Work: Taxonomies for Synchronization
	Summary

	Formal Semantics for SBSMLs
	Formal Syntax
	Synchronization-Related Definitions
	Well-Formed SBSML Models

	Semantic Definition for SBSMLs
	Semantics of SBSMLs vs. Semantics of BSMLs
	Computing the Potential Small Steps

	Formalization of Synchronization Types
	Formalization
	Integration with the Semantic Definition Schema
	Discussion: Non-Hierarchical Computation

	Transformation Schemes and Their Verification
	Multi-source, Multi-destination Transitions
	BSML Semantic Options
	The Present In Same Event Lifeline Semantics
	Composition Operators
	Workflow Patterns
	Effect of Transformation Schemes on Well-Formedness

	Relevance of Semantic Quality Attributes for SBSMLs
	Non-Cancelling SBSML Semantics
	Priority-Consistent SBSML Semantics
	Determinate SBSML Semantics

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Including More Languages
	Identifying More Semantic and Syntactic Criteria
	Identifying Non-Technical Criteria
	A Unifying Framework for the Enabledness Semantic Aspects
	Tool Support

	References

