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Abstract

With the popularity of model-driven methodologies and theiredance of modelling lan-
guages, a major question for a modeller is: Which languageitable for modelling a system
under study? To answer this question, one not only needsto #re range of relevant languages
for modelling the system under study, but also needs to leetaliiompare these languages. In
this dissertation, | consider these challenges from a seojaoint of view for a diverse range of
behavioural modelling languages that | refer to as the faofiBig-Step Modelling Languages
(BSMLs). There is a plethora of BSMLs, including statechaits variants, SCR, un-clocked
variants of synchronous languages (e.g., Esterel and Argod reactive modules. BSMLs are
often used to model systems that continuously interact thi#ir environments. In a BSML
model, the reaction of the model to an environmental inp& Eg step, which consists of a
sequence of small steps, each of which can be the concuxeruteon of a set of transitions. To
provide a systematic method to understand and comparerensies of BSMLS, this disserta-
tion introduces the big-step semantic deconstruction ésaonk that deconstructs the semantic
design space of BSMLs into eight high-level, independentas#ic aspects together with the
enumeration of the common semantic options of each semaspiect. The dissertation also
presents a comparative analysis of the semantic optionsabf ®mantic aspect to assist one to
choose one semantic option over another. A key idea in thstlelg semantic deconstruction is
that the high-level semantic aspects in the deconstruotiomgnize a big step as a whole, rather
than only considering its constituent transitions operslly.

A novelty of the big-step semantic deconstruction is th&enids itself to a systematic se-
mantic formalization of most of the languages in the decotibn. The dissertation presents
a parametric, formal semantic definition method whose patars correspond to the semantic
aspects of the deconstruction, and thus it produces ppéisersemantics: The manifestation of
a semantic option in the semantics of a BSML can be clearlytified.

The way transitions are ordered to form a big step in a BSMLssw@ce of semantic com-
plexity: A modeller needs to be aware of the possible ordktiseoexecution of transitions when
constructing and analyzing a model. The dissertation dhices three semantic quality attributes
that each exempts a modeller from considering an aspectlefiag in big steps. The ranges of
BSMLs that support each of these semantic quality attrebate formally specified. These speci-
fications indicate that achieving a semantic quality aftiebbn a BSML is a cross-cutting concern
over the choices of its ffierent semantic options. The semantic quality attributgstteer with



the semantic analysis of individual semantic options candssl in tandem to assist a modeller
or a semanticist to compare two BSMLSs or to create a new,etk&EML from scratch.

Through the big-step semantic deconstruction, | have desea that some of the semantic
aspects of BSMLs can be uniformly described as forms of symihation. The dissertation
presents a general synchronization framework for behagiooodelling languages. This frame-
work is based on a notion of synchronization between tramsitof complementary roles. It is
parameterized by the number of interactions a transitiortaie part in, i.e., one vs. many, and
the arity of the interaction mechanisms, i.e., exclusivesigred, which are considered for the
complementary roles to result in 16 synchronization tygesnhance BSMLs with the capabil-
ity to use the synchronization types, a synchronizer syistaxroduced for BSMLs, resulting in
the family of Synchronizing Big-Step Modelling Languag&B8EMLSs). Using the expressive-
ness of SBSMLs, the dissertation describes how underlyirgsemantics of many modelling
constructs, such as multi-source, multi-destinationditeons, various composition operators,
and workflow patterns, there is a notion of synchronizati@t tan be systematically modelled
in SBSMLs.
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Chapter 1
Introduction

“A general language-independent framework of semanticatepts
would help to standardize terminology, clarify simileggiand diferences
between languages, and allow rigorous formulation andfgosemantic
properties of languages. A language designer could analyppmsed
constructs to help find undesirable restrictions, incoibpiies,
ambiguities, and so on["[94, p.437]

Robert Tennent

With the increasing presence of software systems in our@mvient, there is a need for
systematic, reliable ways to specify, create, verify, aramain these systems. Many believe
that it is through the use of models that the complexity ofr@rewing software systems can
be conquered. A model is an abstraction of a phenomenonhvisiepresented in a modelling
language. Often when modelling a software system, therenargy alternative languages that
can be used. To narrow the range of alternatives, a modedledanto answer the question of
why languageA, and not languag®, is a more appropriate choice in a certain context. This
dissertation considers this question from a semantic pdwview: What are the semantic criteria
to compareA andB to choose one over another?

In this dissertation, | undertake the above research aigaléor the class abig-step mod-
elling languages | introduce the term Big-Step Modelling Languages (BSMLi®) describe

lIn this dissertation, all of the abbreviations are intenttele pronounced as their constituent letters, and not
as the phrase they represent. As such, based on this pratianaionvention, | use the appropriate form of the
indefinite article for an abbreviation.



a family of behavioural modelling languages that are ofteedufor the requirements specifi-
cation of interactive and reactive systems, which commateievith their environments con-
tinuously. There is a plethora of BSMLs, many with graphieahtax (e.g., some statecharts
variants [41[99] and Argos [68]), some with textual syntedg(, reactive modules|[3] and Es-
terel [14]), and some with tabular format (e.g., SCR [47)4®Bhese languages have in common
that the reaction of a system to an environmental inpubig &tep which consists of a sequence
of small stepseach of which is the execution of a set of transitions. Comlgydhe syntax of

a BSML includes a combination of hierarchical control ssatvents, and variables syntax that
are used in a transition syntax that often has guard andnggéids. BSMLs provide two major
advantages to a modeller. First, the reaction of a model enaitonmental input can be con-
veniently modelled as multiple small steps, without wangyabout a new environmental input
being missed during the reaction of the model to the currevitenmental input. And second,
since the reaction of a model to an environmental input caisisoof more than one transition,
a model can be decomposed into orthogonal parts, each ohwhittake part separately in the
reaction. As such, a modeller can decompose a model ints, gath of which either corre-
sponds to a physical component of a system under study oedstodacilitate the separation of
concerns in modelling.

The semantics of many BSMLs have been a contentious areas@aneh. For example,
searching on the internet for the articles whose titlesuitelboth the terms “statecharts” (or
“statechart”) and “semantics” returns 139 articles. (T¢esrch was carried out using Google
Scholar on December 20, 2010.) Among these articles, thererges that introduce a new se-
mantics for statecharts and articles that usketent semantic definition methods for defining the
semantics of statecharts. While the above situation detrades the dticulties of categorizing
and comparing two BSMLs even when they are labelled with #leesname, a more compli-
cated situation arises when the semantics of BSMLs witleidint names are considered, which
usually have less in common with each other than the onesthh@teame name.

To compare the semantics of two BSML&,and B, their semantics must be knownfsu
ciently clearly and there must be a semantic criterion. Bmantics of modelling languages
are defined in dferent ways, and therefore, either they need to be transtbtma single for-
mat or the semantic criteria by which they are compared meselevant for dferent kinds
of semantic definitions. Furthermore, one might be inteckst knowing whether there is yet
another modelling language that is even better thaA and B according to certain semantic
criteria; or whether there is a way to define such a superigguage. Thus, instead of consid-
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ering only individual pairs of languages and identifyingithcomparison semantic criteria, it is
desirable to create a common semantic framework for BSMlwghith distinct languages can
be distinguished and can be compared according to some cors@naantic criteria.

Creating such a semantic framework for a large group of laggs with diferent syntactic
and semantic characteristics, however, is a major chadleingorinciple, such a semantic frame-
work for a set of languages should consist of a setevhantic decision pointhat categorize
the semantics of the languages based ons#raantic decisionthat each language adopts at
each semantic decision point. ldeally, (i) these semarmtitstbn points correspond to a set of
high-level, already-established semantic concepts tteatiaderstandable to the users of these
languages; and (ii) the semantic decisions are formakzisbh manner such that a resulting se-
mantics for a language clearly embodies its semantic aewssiThus, if one understands such
high-level semantic decision points and semantic decssishghe is likely to understand their
formal semantics. The resulting formal semantics@escriptive semanticgl, (5] because the
formalism is used in an “active? [4, 5] role to design, andgumibe, a semantics, based on its
semantic decisions. In contrast, irdascriptive semantidd), 5], a semanticist seems to have
been employedds a describéronly “for recording design decisions already made”, ascxygul
to, “playing a part in the language design process” [5].

Another major challenge is to identify the semantic créahat can be used to compare
two languages in a manner that helps a language designer @daller to choose one over
another. Some of these criteria couldlbeal in that each compares the semantic decisions of
two languages at a certain semantic decision point. Othiterier could beglobal in that each
compares the set of semantic decisions of two languages liplasemantic decision points
collectively. Both kinds of semantic criteria, howevere arseful: The former kind of criteria
helps one to make individual semantic decisions when chgasi creating a language, while
the latter kind of criteria helps one to compare two semaraga whole.

1.1 Approaches to Semantic Categorization and Comparison

This section briefly overviews thefiirent approaches that have been used in the literature to cat
egorize modelling languages. In general, these approaetmelse categorized into three groups:
(i) informal, imprecise approaches, (ii) formal, implentetion-biased approaches, and (iii) for-
mal, deconstructional approaches.



1.1.1 Informal, imprecise approaches

A framework in this category is often a useful, survey-likdegorization of a set of related
modelling languages. An example of this approach is theriné comparison of statecharts
variants by von der Beeck [99]. This seminal work comparesta@echarts variants based on a
list of 19 “problems” [99], which includes a combination gfrgactic, semantic, and semantic-
formalization issues. In similar frameworks, Fidge congsaprocess algebras CCS|[72], CSP
[48], and LOTOSI[[52], and, Crane and Dingel compar@edént variations of UML StateMa-
chines and their supporting tools [20]. These frameworksiédfinition, are usually insightful
summarizations of dierent, often ad hoc, features of a set of languages. Theyrasemted at
different levels of preciseness and systematicness. In gehevedver, the summarization that
each dfers can neither be easily extended with new analytical Imsigor can be used as the
basis for a unified formalization of the semantics of the leagges that are considered. Much
effort is needed to interpret the imprecisely stated featuréisese languages. Therefore, even
if a uniform semantic formalization of these languages Wdé possible, it would lead to de-
scriptive semantics: For most semantic features of theulages, it is not clear how to formalize
them in a way that they are manifested clearly in a semanticitien, prescriptively.

1.1.2 Formal, implementation-biased approaches

A framework in this categoryfers a set of semantic decision points that are derived fr@m th
tool suite that it represents. | call such a tool suite@-support generator framewoid GF),
which takes the definition of a language, including its seticanas input, and generates tool
support, such as model checking and simulation capabditytfat language, as output |81, 25,
28,75, 65[ b, 38, 87]. TGFsfier in thesemantic input formatéSIF) they use, and the proce-
dure by which they obtain tool support for a language. An SiR be an existing formalism,
such as higher-order logic [25], structural operationahaetic format[[28], or a new formal-
ism, such as template semantics![[75, 74]. A TGF often stfivespen-ended flexibility and
extensibility, to accommodate new notations, and thuslfssSa general, expressive format for
semantic definition. An SIF, by its mission, does not repneadhigh-level semantic framework
with intuitively understandable semantic decision pqibt# rather it is an expressive semantic
definition language that is designed to be flexible, extdasdnd implementable. Technically,
the semantics of a language specified in an SIF can be coedidsiprescriptive: All its semantic



decisions are trivially embodied in its semantic definititiowever, it would be misleading to
consider these semantic definitions as prescriptive, lsecduey are based on a semantic frame-
work whose semantic decision points are often general sitr@mcepts that are applicable to
a wide, open-ended group of languages. As such, an SIF oftelupes descriptive semantics
because it aims “for generality at the expense of simplaitgt elegance.[]5, p.284]

1.1.3 Formal, deconstructional approaches

A framework in this category is organized around a set of sgimalecision points that are
intuitively understandable for stakeholders of the seimandf languages. These frameworks
are also accompanied by semantic formalizations that pegdtescriptive semantics. A notable
example of these frameworks is the semantic framework ofiHgiand Gerth([50] for a class
of BSML semantics that supports only internal events. THg semantic decision point in their
framework is for the semantics of internal events. The se¢im&rmalization method that they
choose is specialized not only to embody each of the five plessemantic decisions, but also to
highlight the diferences between these decisions when formalized. Furbhestiey identify
three semantic criteria that allows one to choose one eeemstics over another.

In the Unifying Theories of Programmind9], Hoare and Jifeng advocate a set of principles
for unification and categorization of languages. They atgrsinese principles in the context of
semantic decision points and semantic decisions that amdymalevant for process-algebraic
languages and programming languages.

Other frameworks can be considered in more than one of theeathwoee categories. For
example, Maggiolo-Schettini, Peron, and Tini comparedlsemantic variations of statecharts
in the context of a Structured Operational Semantic (SO®pséic definition framework [67].
| categorize their work into the third category of formalcdastructional approaches because
they identify semantic decision points that correspondndenstandable semantic concepts for
the family of statecharts. However, their work can also blegarized under the second cate-
gory because they intentionally adopt a limited composélsyntax for statecharts, similar to
process-algebras, in order to be able to use SOS.

This dissertation introduces a semantic framework for BShlthe formal, deconstructional
approach to semantic categorization and comparison.



1.2 Thesis Overview

This dissertation introduces tlég-step semantic deconstructitmmework for BSMLs, which
unifies the semantics of a large group of seemingiyedént modelling languages into the family
of BSMLs. The big-step semantic deconstructitatonstructshe semantics of various BSMLs
into eight semantic aspectand enumerates the commeamantic optiongound in existing
BSMLs for each semantic aspect. In a few cases, | have addeahsie options that complement
the ones found in the existing BSMLs; these semantic optwasncluded to make the range
of possible semantic options for a semantic aspect morersgdic. The semantic aspects and
the semantic options are the semantic decision points andeimantic decisions of the family
of BSMLs, respectively. The dissertation presents a patr@crsemantic definition method that
uniformly formalizes the semantics of most of the languagabe deconstruction, producing
prescriptive semantic definitions. To compare the langsiagehe deconstruction, the disser-
tation presents semantic criteria thaffelientiate two BSMLs based on theifférences at the
scope of a single semantic aspect. Furthermore, geg®ntic quality attributeare introduced
that compare two BSMLs based on their semantic options flaesponding semantic aspects.

Like any other deconstructional analyses of a set of langsidfe big-step semantic decon-
struction provides insights about the range of possible BSkmantics, their interrelationships,
as well as, clues about ways to further the unification of tis&VIB semantics. This disserta-
tion describes how some of the semantic aspects in the épgssimantic deconstruction can be
unified as diferent forms osynchronizatiorthat distinguish dterent BSMLs based on whether
they support certain kinds of synchronizing transitionsor. Hence, BSMLs can be extended
with a synchronization capability, to result in the familyy ynchronizing big-step modelling
languagegSBSMLs). With the expressive power of explicit synchraian, SBSMLs can be
used to model the semantics of various existing modellingracts, revealing that these mod-
elling constructs all use fierent forms of synchronization in their semantics, and tthey can
be adopted also by the languages in the family of SBSMLs.

Thesis Statement. The big-step semantic deconstruction is a novel, hightleve
semantic framework for the family of BSMLs, with a formal s@mtic definition
method that produces prescriptive semantics for most ofathguages in the fam-
ily. Using this framework, BSMLs can be compared at indidbsemantic decision
points. Some BSMLs féer novel semantic quality attributes that each relieves a



modeller from dealing with some of the complexity of orderiof transitions in a
big step of model. The set of all BSMLs that subscribe to a sgimguality at-
tribute can be formally specified by enumerating all comtams of the semantic
decisions that each yields a BSML semantics that subsciibébee semantic qual-
ity attribute. BSMLs can be compared based on the semantdilitgattributes that
each BSML has. The family of SBSMLs introduces synchromratapability to
BSMLs. The semantics of SBSMLs can be formally describeddreacriptive man-
ner, similar to the way the semantics of BSMLs are descrilide introduction of
synchronization for BSMLs deems some of the semantic detigoints of the big-
step semantic deconstruction as unnecessary, becausadémeantic decision points
and their corresponding semantic decisions can be unijodegcribed as forms of
synchronization. Lastly, SBSMLs are expressive enoughddehthe semantics of
many existing modelling constructs, such as the semantiosutii-source, multi-
destination transitions, some of the composition opesatdrtemplate semantics,
and some workflow patterns. These modelling constructs eameamlessly adopted
by SBSMLs.

Big-Step Semantic Deconstruction. The various ways that the semantics of events, variables,
concurrency, and priority can be defined in BSMLs creategeldesign space for the semantics
of BSMLs.

This dissertation introduces the big-step semantic denart®n that is a novel method to
decompose and organize the semantics of various BSMLs ight semantic aspects and the
common semantic options found in existing BSMLs for eachas@in aspect. The semantic as-
pects are identified mainly based on conceptual sequéyiiatihe process of creating a big step
in a BSML. The choice of a semantic option for a semantic aspendependent of the choice
of a semantic option for another semantic aspect, excep few cases where certain combi-
nations of semantic options lead to inconsistent BSML seit&nThese cases are excluded by
the big-step semantic deconstruction; cf., Fiduré 3.3 qe[@@. To achieve understandability
in the big-step semantic deconstruction and prescripgisein its formalization, whenever ap-
plicable, | have considered a big step as a whole, rather ¢basidering only its constituent
transitions operationally. For the same reasons, | have asemmon normal-form syntax that
is expressive enough to model the syntax of many BSMLs. Asutid have been able to create
a framework that focuses on semantics, without being sidkeéd unnecessarily by the syntactic
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variations of BSMLs. An existing BSML can be identified inglitamework by, first, determin-
ing a mapping from its syntax to the normal-form syntax, amcbed, by determining the set of
semantic options that represent its semantics. A new BSMlbeadefined in this framework by
choosing a set of syntactic features and semantic opti@fitve not been considered together
in a language previously.

In the big-step semantic deconstruction, | have considenédthose languages that each (i)
has an explicit stage in its semantics for sensing the emviemtal inputs, and (ii) its operational
semantics specifies the reaction of a model to an envirorahemut as a sequence of small
steps, instead of one single step. For example, procedsraigf®] are not considered in the big-
step semantic deconstruction because they support neithiee above two criteria. Typically,
a language that supports these criteria supports also aicatiom of events and variables in its
syntax, in order to provide a mechanism to relate the smeglissin the sequence. This disser-
tation does not consider languages such as UML StateMac[iBthat carbuffer the received
environmental inputs or the generated events of a model.eMexymany of the semantic aspects
in the big-step semantic deconstruction are relevant alsthese languages. For example, the
notion of run to completion in UML StateMachines [78] is sianito the notion of maximality
of a big step in the big-step semantic deconstruction.

To assist a modeller to choose one semantic option over @andtdr each semantic option
in the big-step semantic deconstruction, the dissertgiresents a set of semantic properties,
each of which is labeled as alvantageor adisadvantagef the semantic option. These labels
are determined based on agreed-upon, common wisdom inténatlire or a straightforward
rationalization presented in the dissertation that is suegd by examples.

Prescriptive Semantics. The formalization of the semantics ofiirent subsets of BSMLs has

been a contentious area of research, as evident by the larmgken of publications devoted to

the formalization of the semantics of these subsets of BSNIhe stakeholders of these formal-
izations, like all other formal semantics, vary from tooldmpers, to modellers, to semanticists.
These stakeholders, however, have competing interestexBmple, a tool developer is usually
interested in a precise, operational formalization of aa@ros; a modeller might compromise
between understandability and preciseness; and a semsantight be more interested in a for-

malization that reveals the semantic decisions and sempriaperties of a semantics clearly.
The big-step semantic deconstruction provides an oppityttmdecouple such concerns.



This dissertation presents a semantic definition framewwakproduces prescriptive, formal
semantic definitions for a large subset of BSMLs: The higlelleemantic options of a BSML,
chosen by the various stakeholders of the BSML, can be tradeady as separate parts of its se-
mantic definition. The semantic definition framework is agmaetricsemantic definition schema
to formalize the semantics of most of BSMLs in the big-stemaetic deconstruction. By in-
stantiating the parameters of the semantic definition sehem operational BSML semantics
is derived. The semantic aspects of BSMLs correspond toidtgparameters of the semantic
definition schema, and the semantic options of each semasy&ct correspond to the possible
values for the parameter that represents the semantictagjpecsemantic definition schema, its
parameters, and the values of the parameters are speciéahiard logic and set theory. Ex-
cept for a couple of cases, the specification of a value of anpater of the semantic definition
schema is independent of the specification of a value of angidwrameter. The exceptions deal
with semantics that support a notion@mbo stepwhich partitions a big step to consecutive
segments of small steps.

The big-step semantic deconstruction together with thisasgic definition framework allow
the underlying semantic options of a BSML to be chosen bdferag formalized. Therefore,
the semantic formalization process is not used as a wdistmverthe range of possible seman-
tic design decisions at the time of formalization but as a iomado specifythe already-made
semantic design decisions of a BSML. By analogy, BNF is aguigtive method for defining
syntax, as opposed to pre-BNF methods, which were des@idj. “In general, the descriptive
approach aims for generality even at the expense of simphaid elegance, while the prescrip-
tive approach aims for simplicity and elegance even at tiperese of generality. [5, p.284] A
corollary of a prescriptive semantic definition method isttih specifies a clear scope for a class
of semantics.

To validate the correctness of my semantic definition fraor&formally, a set of formal, ref-
erence semantic definitions for existing languages areatetdcheck my formalization against
them. However, for each BSML, or a subclass of BSMLs, thesaugually many semantic defi-
nitions available in the literature, specified using a rapfgifferent semantic definition methods.
Thus, instead of proving the correctness of my formalizatielectively with respect to one or
more semantic definition, | have used inspection as a methgdih confidence in my formal-
ization: While mapping the semantics of an existing BSMlointy semantic aspects and their
options, | have used many example models as witnesses foottrectness of my mapping.



Semantic Quality Attributes. The complexity of dealing with the semantic intricaciesatet

to the ordering of the executions of the small steps of a l@g san be a source of complexity
and distraction for a modeller. For example, a modeller, ancalel reviewer, might need to
ensure that a certain enabled transition does not mistakebme disabled in certain execution
scenarios. A semantic quality attribute of a modelling lzange is a desired semantic property
that is common to all models specified in that language.

This dissertation introduces three semantic qualitytattes for BSMLs, each of which aims
to alleviate a kind of semantic intricacy related to the oirttg of the small steps of big steps.
The dissertation presents the outlines of the proofs thaodetrate that each of the three se-
mantic quality attributes is realized by any BSML whose ¢itnent semantic options satisfy
a set of identified necessary andfstient constraints over the choices of the semantic options.
These constraints reveal positive and negative interoelsttiips among seemingly independent
semantic options by identifying their collectivefect. Also, the dissertation shows formally how
it is possible to achieve a semantic quality attribute forSVB. by constraining its syntax via
syntactic well-formedness conditions. This latter appha@ achieve a semantic quality attribute
advocates an approach in design of modelling languagesichvitie syntax and the semantics
of a languages are considered together, as opposed to avaappn which semantics is merely
a function that maps syntax to its meaning.

Using the semantic deconstruction, the relative advastage disadvantages of the semantic
options, and the characterization of the semantic quaitipates in terms of semantic options,
a modeller or a language designer can either (i) use the senganality attributes to narrow the
range of semantic options for a language, or (ii) gain insigibout a language’s attributes after
choosing its semantic options. The above two means for Eggaomparison can be used: (a)
as a semantic catalog, to compare the semantics of exis&hB and choose an appropriate
BSML; (b) as a semantic scale, to assess the semantic pesgpefra BSML; or (c) as a semantic
menu, to help design a BSML from scratch.

Synchronization for BSMLs. The prescriptive semantic definition framework in this diss-
tion formalizes theenablednessemantic aspects and thiucturalsemantic aspectsftierently.
The enabledness semantic aspects deal mainly with howateedfta model changes from one
small step to the next. The structural semantic aspectsatrathe meaning of the hierarchial
structure of a model. While the enabledness semantic aspestuniformly formalized using
a snapshot-element-based approach, inspired by and ddeptetemplate semanticis [75,]74],
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the structural semantic aspects are formalized via logicadicates that determine how a set of
enabled transitions can form a small step. Compared to tmeal@ation of the enabledness
semantic aspect, the formalization of the structural seéimaspects are less systematic in that
they do not use a uniform specification method, similar toshapshot elements used for the
formalization of the enabledness semantic aspects. Iolsegrfor a more systematic method, |
discovered how underlying fierent structural semantic aspects, there is a unifying ¢hé&rach
represents a form of synchronization.

This dissertation introduces a notionsyinchronization typand asynchronizesyntax that
not only preclude the necessity of having most of the stratgemantic aspects in the big-step
semantic deconstruction, but also provide the means t@exahd recognize that the semantics
of various modelling constructs are forms of synchronaatit shows how each of the semantics
of multi-source, multi-destination transitions [41, 8@je composition operators of template
semantics[75, 74], and the essence of many workflow patf@fijsises its own dferent form
of synchronization. Introducing synchronization to BSMEesults in the class afynchronizing
big-step modelling languag€SBSMLSs). A synchronizer in an SBSML model has one of the 16
synchronization types. A synchronizer is associated wileteof transitions whose executions
are governed by the synchronization constraints that thehspnizer enforces. A transition
might be controlled by more than one synchronizer.

The formalization of the semantics of synchronization §/{gedone via a novel, declarative
approach that uses relation types to characterize the aksghchronizing transitions of a model
according to a certain synchronization type.

This dissertation presents also transformation schem#ésg form of algorithms, (i) to model
the semantic options of the structural semantic aspectSbflB, and (ii) to model the semantics
of the modelling constructs whose semantics can be desdsipsynchronizers. The dissertation
presents the outlines of the proofs that demonstrate tlcat teansformation scheme is correct
with respect to its formal description, in case (i), and wébpect to its natural-language descrip-
tion, in case (ii).

1.3 Validation

The big-step semantic deconstruction iaavel semantic framework in that it covers a range
of seemingly unrelated modelling languages that have net lsensidered together previously
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in a unifying semantic framework. Chaptdr 3 presents tlaméwork, its high-level semantic
aspects, the semantic options of each semantic aspecthamrxample BSMLs that subscribe
to each semantic option. The enabledness semantic aspelcthaar corresponding semantic
options arehigh level in that each considers a big step as a whole. The structurzrde
aspects arkigh levelin that each corresponds to an already-established sentamitept such
as concurrency, preemption, and priority. The dissentatalidates that the semantics ovade
range of BSMLs can be expressed in my semantic framework by enumeratingotigituent
semantic options of each, as summarized in Tablg 3.12, ce(§g

The semantic definition schema for formalizing BSML senamtpresented in Chapter 4,
producegrescriptive semantics For each semantic aspect, the semantic definition schesna ha
a parameter. For those semantic options of the semantictdbpéare supported by the semantic
definition schema, | provide a parameter value for its cpwading parameter. Thus, a semantic
definition of a BSML can be partitioned into parts, each ofsfthcorresponds to a constituent
semantic option of the BSML. The prescriptiveness of theseastics can be inspected, and val-
idated, immediately: The formalization of the values ofplagameters of the semantic definition
schema are mainly independent.

A semantic option of a semantic aspect can be compared witth@non the basis of their
relative advantages and disadvantages. To facilitate sutiparisons for the semantic options
of each semantic aspect, the list of their correspondingatdges and disadvantages are pre-
sented in a tabular format, in Chapiér 3. These tables irclgb a list of example BSMLs that
subscribe to each semantic option.

The formal semantics of two BSMLs can be compared on the loddlse novel semantic
qualityattributes that each supports. Chapiér 5 introduces three novel senqaiality attributes
together with the enumeration of the BSMLs that support edithe semantic quality attributes.
A BSML A can then be compared with BSMR on the basis of these three semantic quality
attributes. Such eomparisonconsiders the collectivetect of the constituent semantic options
of A andB: For each BSMLA andB, it is determined whether its set of constituent semantic
options satisfies each of the three semantic quality ate#or not, using the formal specification
of the semantic quality attributes in Sectlonl5.3. The dissien validates theoundnesof the
comparison of BSMLs based on these semantic quality at&ésdoy proving that the specification
of the classes of BSML semantics that support each of therg@puality attribute is correct.

The family of SBSMLs providesynchronization capability for the languages in the family
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of BSMLs. The formal semantics of SBSMLs is presented in @raf in a similaprescriptive
way as the formal semantics of BSMLs are described. Compardte semantics of BSMLs,
with synchronization capability available for SBSMLs, soof the structural semantic aspects of
BSMLs becomeainnecessaryin SBSMLs because their semantics can be restated usingpa not
of synchronization, as described in Secfion 6.4.2. Septidi® presents algorithms that specify
how the semantic options of a structural semantic aspedbeamodelled by synchronization. It
validates thecorrectnessof each of these algorithms by proving its correctness va#ipect to
the semantics of its corresponding semantic option.

Finally, SBSMLs are expressive enough to model the sensaotia range of modelling con-
structs, including the semantics of multi-source, muétstihation transitions [41, 86], composi-
tion operators of template semantics![[75, 74], and many fimvkpatterns[[96], as described in
Sectior{ 6.4. Sectidn 1.4 validates #ngressivenessf SBSMLs by presenting algorithms that
specify how the semantics of these modelling constructbeatescribed using synchronization.
The correctnessof each of these algorithms is validated by proving its adrress with respect
to the natural-language description of its correspondingetiing construct.

1.4 Contributions of the Thesis

The following list summarizes the contributions of thiss#igation:

e The dissertation introduces a high-level, deconstruatisemantic framework for the fam-
ily of BSMLs in the form of semantic aspects and their coroggping semantic options.
This framework is called the big-step semantic deconsbouciThe semantic aspects and
the semantic options of the big-step semantic deconstructiate a large number of mod-
elling languages through their underlying unifying senmobncepts.

e The dissertation introduces a prescriptive method to defimesemantics of most of the
BSMLs in the big-step semantic deconstruction in a manregrdistinguishable parts of
a semantic definition can be traced back to the high-levebséimconcepts of the decon-
struction.

e The dissertation introduces a set of semantic criteria éongaring two BSMLs. These
semantic criteria enable the comparison of two BSMLSs, (igbymerating the relative ad-
vantages and disadvantages of each of the constituent Semmjations of the two BSMLSs,
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and (ii) by identifying the overall semantic quality atuiies of the constituent semantic
options of each of the two BSMLs.

e The dissertation introduces an explicit synchronizatiapability to the family of big-
step modelling languages, resulting in the new class ofteyimizing big-step modelling
languages.

e The dissertation introduces transformation schemes etihe synchronization capability
of synchronizing big-step modelling languages to model sahthe semantic aspects
in the big-step semantic deconstruction, as well as, to inibeesemantics of various
modeling constructs. These transformation schemes révaalinderlying the semantics
of these semantic aspects and modelling constructs thaneason of synchronization.

1.5 Outline of the Thesis

Chapter 2 introduces the common syntactic constructs amhrsec concepts that are used
throughout the thesis. It also briefly describes how theasywof various big-step modelling

language (BSMLSs) can be represented using the common sthvatis introduced in this chap-

ter.

Chaptei.B presents the deconstruction of BSML semantioseiigiht semantic aspects and
their corresponding semantic options. Each semantic agppeesented in a separate section,
accompanied by example BSMLs that use each of its semaritongnd by example models that
demonstrate the role of each semantic option. The reseascifts reported in this chapter have
been published [3%, 36], with a more detailed version of #wiits disseminated in a technical

report [34].

Chaptef ¥ presents the formalization of the semantics of BSMirst, a parametric semantic
definition schema is introduced whose parameters corresfmeemantic aspects. Then, the
possible values of each parameter are presented. A verfdiois semantic definition framework,
which does not cover all of the semantic aspects and opti@ssheen published [31].

Chaptet b presents the three semantic quality attributé83#Ls. It also formally specifies
the subset of BSMLs that satisfy each of the semantic quatitybutes. For each of these
specifications, the outline of the proof of its correctnegsresented. A summary of the research
results in this chapter has been accepted to be publishid [32
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Chaptef b introduces a synchronization capability for BSMiesulting in the class of syn-
chronizing big-step modelling languages (SBSMLs). Alsinformally describes how various
modelling constructs and semantic options can be modedlied) the synchronization capability
of SBSMLs. A summary of the research results in this chamerdeen published [33].

Chaptef TV presents a semantic definition framework for SB&SMt.also presents transfor-
mation schemes, in the form of algorithms, that describe B88MLs can be used to specify
the semantics of the modelling constructs and the semaptions of the structural semantic
aspects. For each transformation scheme, the outline girtdod of its correctness is presented.

Lastly, Chaptef18 presents the conclusions of the thesisd@ulisses new directions for
future work.

Each of the Chaptdd 3, Chapfdr 4, Chapler 5, Chapter 6 hawitseparate related work
section, at the end of the chapter.

Chapterg b andl 6 can be read independently of Chapter 4, tefocespme of the proofs in
Sectior 5.B.

In the list of references at the end of the dissertation, kdgkaphic entry is followed by the
list of the pages in the dissertation that reference thayent
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Chapter 2

Common Syntax and Semantics

“Computer scientists collectively fier from what | call the Whorfian syndrorhe

the confusion of language with reality. Since these devacegescribed in dierent
languages, they must all befidirent. In fact, they are all naturally described as state
machines.

1 Seehttp://en.wikipedia.org/wiki/Sapir-Whorfhypothesis’ [60] p.60]

Leslie Lamport

This chapter introduces the syntactic constructs and timaisgc concepts that are used, in
Chaptef B, to describe the semantic deconstruction of BSMestion 2.1l presents a normal-
form syntax for BSMLs. Sectidn 2.2 presents the common ls&siantics for big-step modelling
languages. Sectidn 2.3 discusses how the syntax of many BSfdh be translated into the
normal-form syntax of BSMLs described in Section/2.1.

2.1 Normal-Form Syntax

There is a plethora of BSMLs, including those with graphisghtax (e.g., statecharts vari-
ants [99], Argos|[68]), those with textual syntax (e.g.,cte@ modules|[[B], Esterel [14]), and
those with tabuldequational syntax (e.g., SCR [46,/47]). As is usual whenysigda class of

related notations, aormal-form syntaf49] is used that is diiciently expressive to represent the
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Dialing

.
Dialer

tz: (dial(d) A redial)[c = 0]/Ip:=d; c:=1; "out(d)

DialDigits ta: dial(d)[c<10]
/Ip:=lpx10+d;

c++; “out(d)

t1: (dial(d) A —redial)[c<10]
/c++; Ip:=Ipx10+ d; "out(d)

Redialer ts: rediallc = 0]/p:=Ip; dial(digit(lp, 1))

P )
WaitFor v Redial e [c<Ipl]
Digits 5 p

Redial P
dial(digit(p, (c+1))

Figure 2.1: A model for dialing and redialing.

syntax of other notations. This section presents a nororat-Eyntax for BSMLs. A BNF rep-
resentation of this syntax is presented at the end of S€gilbR, after describing the graphical
representation of the syntax.

In the normal-form syntax of BSMLs, a model is defined throtwgb main components: (i)
a set ofcontrol stateghat are organized ashaerarchy tree and (ii) a set otransitionsbetween
the control states. Figufe 2.1 shows a BSML model in thisassyfur a dialing system that has
two functionalities. It can either collect a 10-digit phomember or redial a previously dialed
number. The syntactic elements of this model are describgt But for now, it is helpful to
note that the rounded boxes create a hierarchy tree of ¢atétes and an arrow between two
control states is a transition.

2.1.1 Control States

A control state (e.gDialDigits in Figurd2.1) is a named artifact that a modeller uses teeszmt

a noteworthy moment in the execution of a model. Such a momemt abstraction that groups
together the past behaviours (consisting of inputs redebyethe model and the model’s past
reactions to these inputs) that have a common set of futuravi@urs. By using a control state,
a modeller can describe future behaviour in terms of theeotircontrol state and the current
environmental inputs.

A control state has a name andype which is eitherBasig Or, or And Graphically, a
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control state is shown by a rounded rectangular with a labet that is its name. The set of
control states of a model formhaerarchy tree A leaf node of a hierarchy tree isBasiccontrol
state. AnAnd or anOr control state, which is a non-leaf node of a hierarchy treeailed a
compounccontrol state. Relationshild, descendanparent andancestorare defined with their
usual meanings, as follows. The child relation relates @robstate with the immediate control
state below it in the hierarchy tree. The root of the hierprirhe is not a child of any control
state; this control state is referred to asrbet. A control state is descendent of another ifitis its
child through transitivity. The parent relation is the irse of the child relation: A control state,
s, is the parent of a control stat&, if s’ is its child. Each control state, except for the root, has a
unique parent by the definition of the hierarchy of contrates, which is a tree. Basiccontrol
state is not a parent of any control state. A control statecestor of another if it is its parent
through transitivity. In the model in Figufe 2.1, contrat&Dialing is anAnd control state and
has twoOr child control stated)ialer andRedialer control stateDialDigits is a child ofDialer
and a descendant @fialing. The name of arAnd control state is specified by a separate solid
box attached to the top left of the rounded box that representhe children of arAnd control
state are separated by dashed linesAAd control state is required to have more than one child,
while anOr control state need not. When a child of And control state is a®r control state,
the rounded box that represents it is not drawn because ifldeschof theOr control state can be
surrounded by the border lines of its surroundirgd control state and its dashed lines. 8n
control state has defaultcontrol state, which is its child and is identified by an inaegnarrow
that has no source control state. In the model in Figude\®ditForDial is the default control
state ofDialer. The control states with/” on them, e.g.WaitForDial, arestablecontrol states,
and have a semantic role in determining the length of a bjg stesubsegments of a big step, as
will be described in the next chapter.

A model may have nénd control states. The root control state must be&arcontrol state
so that the arena of every transition, as described in S62il02, is guaranteed to exist. Amd
control state may haveBasiccontrol state as its child, although usuallBasiccontrol state is
a child of anOr control state. In some of the examples in this dissertatf@root control state
of the model is not shown.

Two control statesverlapif they are the same or one is an ancestor of the other. Forggam
in the model in Figuré 211, control statBsaling and Dialler are overlapping, but not control
statesDialler and Redialler Theleast common ancestaf two control states is the lowest
control state (closest to the leaves of the hierarchy ttes)is an ancestor of both. In the model
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in Figurel 2.1, the least common ancestobidIDigits andRedialDigitsis Dialing. Two control
states ar@rthogonalif neither is an ancestor of the other and their least comnmgestor is an
And control state. In Figure 2. DialDigits andRedialDigitsare orthogonal. Thecopeof a
transition is the least common ancestor of its source antindéisn control states. Tharena

of a transition is the lowesdr control state in the hierarchy tree that is the ancestor tf the
source and destination control states of the transitiothérmodel in Figuré 211, both the scope
and the arena of transitidn is the Or control stateDialer. In general, however, the scope and
arena of a transition need not be the same.

2.1.2 Transitions

Each transition (e.gt; in Figure[2.1) has a name, botlsaurceand adestinationcontrol state,
and four optional parts: (i) aBvent trigger which is a conjunction of event literals, some of
which may be negated (a negated event being prefixed by)a(fi) a guard conditionGC) (en-
closed by “[ ]7), which is a boolean expression over the setasfables of the model; (iii) a set
of assignmentgprefixed by a 7”); and (iv) a set ofgenerated eventprefixed by a ). A
generated event may have a parameter that can be modelleddwjating a variable with it.

An assignment consists oflaft-hand side variabléLHS), and aright-hand side expres-
sion (RHS). All variable expressions and assignments of modelsassumed to be well-typed.
Variables and events are global; local variables and sceyeuts can be modelled by a renaming
that makes them globally unique.

Two transitions arerthogonalif their source control states are orthogonal, as well ais the
destination control states. A transitibins aninterrupt for transitiont’” when the sources of the
transitions are orthogonal and one of the following cowndisi holds: (i) the destination of is
orthogonal with the source @f and the destination dfis not orthogonal with the sources of
either transitions (Figurle_2.2(a)); or (ii) the destinatimf neither transition is orthogonal with
the sources of the two transitions, but the destinatiohisfa descendant of the destination of
t’ (Figure[2.2(b)).

The normal-form syntax is a collection of various syntactiastructs adopted fromftierent
BSMLs. Some of these constructs have been adapted to fit #r@albdesign of the normal-
form syntax. For example, the notions Ahd and Or control states are adopted from Harel's
statecharts [41]; a few of the syntactic definitions for cohstates are adopted from Pnueli

19



(b)

Figure 2.2: Interrupting transitions.

and Shalev’s work on the semantics of statecharts [86]; a@adtion ofstablecontrol state is
adopted from th@ause command in Berry and Gonthier’s work that introduces E${éd.

2.1.3 BSML Syntax in BNF

Figure[Z.8 is the BNF representation of the normal-form ayraf BSMLs, as described in
Sectiof 2,111 and Sectién Z2.11.2. For the sake of brevityBtiE in Figure Z.B does not include
the declaration of events, variables, etc. The normal-®yntax uses both boolean expressions,
represented via the “b-expression” symbol in the BNF, andenc expressions, represented via
the “num-expression” symbol. It is assumed that all expoessand assignments are well-typed.

The default and stable control states, which were graghicgbresented by an arrow without
a source and a/” label, respectively, are represented textually in the BiN#&the “Default’and
“Stable” symbols, respectively. The symbol “identifier’d@sinique name to identify a syntactic
element such as a control state or a transition; an idensifeets with a character but can also
include numbers.

Throughout this dissertation, | refer to the normal-formtsy of a BSML through a combi-
nation of elements in the BNF grammar in Figlrel 2.3 and a sbelgfer definitions, including
the ones described in Section 211.1 and Setionl2.1.2. THeddadmmar allows me to specify
inductive definitions over the hierarchy tree of models,levthe helper definitions allows me to
specify operational definitions that deal with the sequsméesmall steps of big steps.
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(root) = “Or’ (state+

(state := (Orstate | (Andstate | (Basicstate

(Orstate n= “Or” (identifien (state+

(Andstate = "And” (identifier) ((state (state+)

(Basicstatg = (“Basic” | “Default” | “Stable” | “Combo-Stable”Xidentifier)
(transition$ = (transition+

(transition := (identifien (source (destination

(triggen (‘" (guard*T")
(“/"(assignment) (“~ " “{"(genevent"}")

{(sourcé = (state
(destination ::= (state
(triggen = ({postevent| (negeveni:

(b-expression
(variable“: =" (expressioj’;”
(b-expression| (num-expression

(guargd
(assignment ::
(expression

(genevent = (posevent
(posevernt = (identifien
(negevent = “="(posevent
(variable = (identifier

Figure 2.3: The BNF for the BSML normal-form syntax.

2.1.4 BSML Syntactic Features

Figure[2.4 is a feature diagrain |56] that represents the gmtibn of syntactic constructs of
BSMLs that are of interest for the semantic decision poisgsn@antic aspects) of BSMLs. Each
feature in the diagram is labelled with the sections in Cadpthat describe its role and detailed
semantics. The syntax of a BSML must have a notion of tramsith specify the behaviour of
a system, thus control states are necessary to define imassitHowever, all other syntactic
features in the feature diagram of Figlrel 2.4 are optiomapréactice, the syntax of most useful
BSMLs support at least events or variables.

A leaf node of the feature diagram represents a primitivéasyit feature of BSMLs. For
example, thdNegated Eventsnode is the syntactic feature that allows the negation ofitamnal
event to be used in the event trigger of a transition. A n@af-fede represents a syntactic
feature that has additional syntactic sub-features inhiislieen nodes. For example, tisent
Triggers node is the syntactic feature that has syntactic sub-fesitiEnvironmental Input
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Figure 2.4: Feature diagram for the syntactic variatiom{sobdf interest to BSML semantic
aspects.
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Events Interface Events andNegated Events In the feature diagram in Figure 2.4, only “and”
branches are used for sub-features of a feature: In thesehms, if a feature is chosen, then all
of its children sub-features are also chosen, except fostlbefeatures that are connected to a
small circle, which are “optional” sub-features. An optibfeature, as opposed to a “mandatory”
feature, need not be chosen if its parent feature is choskiof the features in the diagram in
Figure[2.4, except th€ontrol Statesfeature, are optional features.

The Events and Variables nodes both have child nodes that each represents the ngcessa
syntactic feature for a specific kind of communication seticanFor example, thEnvironmen-
tal Input Events andEnvironmental Input Variables features are used for the environmental
communication through events and variables, respecti&lyilar syntactic features as for the
environmental communication exist for communication tlyle interface events and interface
variables.

The StableandCombo Stablechild nodes of theControl States feature represent special
kinds of control states that are used to determine when atgmends or when a segment of a
big step ends, respectively.

2.2 Common Basic Semantics

Initially, a model resides in the default control statestefoot control state, no event is present,
and its variables have their initial values. If a model resith anAnd control state, it resides
in all of its children. If a model resides in &@r control state, it resides in one of its children,
which is by default its “default” child. The operational semtics of a BSML describes how a
model reacts to aanvironmental inpuvia abig step An environmental input is a set of events
and variable assignments that are received from the emagah Figureé 2J5 depicts a big step
T, which is a reaction of a model to environmental inpud big step is an alternating sequence
of small stepandsnapshotswhere a small step is the execution of a set of transitips}, @nd

a snapshot is a tuple that stores informanTheTi 's (1 <i < n)are small steps of, andsp,
sp, andsp’s (1 < i < n) are its snapshots. In the examples throughout this detgert a big
step is represented as the sequence of its small steps] esgepresented a3, To, - -+, Tp).

1Big steps and small steps are often called macro steps amd stéps, respectively. | adopt new terms to avoid
association with the fixed semantics of the languages tleathase terms. The big-stsmall-step terminology has
been used in the study of the operational semantics of progiag languages in a similar spirit as used heré [83].
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Some BSMLs, such as RSML [63] and Statemateé [43], introdudetarmediate grouping of a
sequence of small steps intacambo step The small steps of a combo step hide some of their
effects, e.g., thefect of their assignments, from one another. Secfions 354(336, and 319
describe when combo steps are useful. In representing adugthe scope of each of its combo
steps is identified by a surrounding |f”. For examplei( Ty, TJ)), (T3, T4)) is a big step that
consists of two combo steps and four small steps.

2.2.1 Snapshots

A snapshot of a model is a tuple that consists of sets of irdtion that each captures a facet of
the computation of a model in a particular moment of execuths the execution of the model
proceeds, its current snapshot gets updated. A snapskotadhsists of: (i) aonfiguration
which is a set of control states; (iivariable evaluationwhich is a set ofvariable name, valye
pairs; and (iii) a set oévents Each of a big step, a small step, or a combo step lsasieceand
destinationsnapshot (e.gspandsp are the source and destination snapshofs)of

2.2.2 Enabledness

In each small step of a BSML model, a setesfabled high-priority transitions is chosen to be
executed. In general, a transition is enabled if its eveggér and guard condition are satisfied,
and its source control state is in the source configuratiah@ftmall step. Dierent semantic
options use dferent snapshots of a big step to define enabledness. A toansitigh priority

if it cannot be replaced with another transition of highaopty, according to the semantics of
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priority in the BSML. At each snapshot, there could exist tiplé sets of enabled transition,
each of which is gotential small stephat can be taken.

2.2.3 Execution

The dfects of the execution of the transitions of a small step eré@atdestination snapshot.
When a transition is executed, it leaves its source contaté gand its descendants), and enters
its destination control state (and its descendants). Whariag anOr control state, a transition
enters its default control state, and when enteringrahcontrol state, it enters all of its children.
Thus, if the source (destination) control state of a tramsis anAndcontrol state, the execution
of the transition includes exiting (entering) the childadrthe source (destination) control state.
The semantics of event generation and variable assignntégt ldetween BSMLSs.

In a few, non-common cases, transition execution can be meoé/ed; e.g., when the least
common ancestor of the source and destination controlsstdita transition is a\nd control
state. A discussion of these cases is included in Section 4.3

The execution of a small stepasomic the variable assignments and event generation of one
transition cannot be seen by another transition, excetrferof the semantic options for events,
described in Sectidn 3.4. Because of atomicity, a sequerags@nments on a transition can be
converted to a set of assignments|[61, 64].

2.2.4 Environmental inputs

When choosing a BSML for modelling a system under study, thraain of the system must
satisfy the assumptions of the BSML regarding the modeilgylo take multiple transitions in
response to an environmental input and not miss other infinsre are three types of assump-
tions:

e Fast computationThis assumption, which is usually referred to as the “syoicih hypoth-
esis” or the “zero-time assumption”[14,140], postulatext the system is fast enough, and
thus never misses an input. The domain of systems that arelladdsing this paradigm is
called “reactive systems!"[14, 40,144]. A reactive systemsgally a mission-critical sys-
tem that is meant to react to environmental inputs in a time&yner, at the rate produced
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by the environment; e.g., the controller system of a nualeactor. No environmental in-
puts are missed. Therefore, the implementation of a reastistem should guarantee that
the system is fast enough that all environmental inputs Bregssed.

A reactive system might be either implemented as embeddeglsse on a piece of hard-
ware, or directly as a piece of hardwalrel[L0} (12, 29]. As suwdmy of the BSMLs that
support the synchrony hypothesis adopt their underlyingcples from the principles
of hardware. For example, a BSML might equate a big-step &aetion of the model
during a “tick” of the global clock of the system; e.g., Eslef14] and Argos([68]. In
this dissertation, the synchronous languages whose sgnthgsemantics are closer to the
hardware and directly support a notion of clock, such asrey8€] and Signal[7], are not
considered.

e Helpful environmerﬁ This assumption postulates that the environment is helpfigsu-
ing an input only when the system is ready![40]. The domairysfesns that are modelled
using this paradigm is called “interactive systems” [40h iAteractive system is flerent
from a reactive system in that the rate of environmental i;jmidictated by the system,
rather than by the environment. An example of an interaciy&em is an automated
banking machine, which interacts with its environment. (isecustomer) at its own rate
when it is ready, rather than at the rate the customer mikgtd provide inputs for it. An
environmental input might be missed by the system when tegesyis busy processing
a previous environmental input. Therefore, a modeller adecensure that the require-
ments of a system are consistent with the assumption thahvaémmemental input might be
missed.

e Asynchronous communicatiofhis assumption postulates that the system hadgfarng
mechanism to store the environmental inputs, and thus meigges an environmental
input. As such, no constraints are imposed on the computafieed of the system, or on
the frequency of the arrival of environmental inputs.

In this dissertation, only the BSMLs with the first two assuioips are considered. The third
assumption is mutually exclusive with these two assumptidihe BSMLs that adhere to the first
two assumptions share many semantic options. As such, soesat is dificult and unnecessary
to label a BSML conclusively as following one or the othenamsption.

2The term “helpful environment” is adopted from a similarioatin Interface Automat26].
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2.3 Representing BSMLs in the Normal-Form Syntax

It is straightforward to represent the syntax of many BSMiLsur normal-form syntax. Tem-

plate semantic$ [75, 74], which has a “composed hierartyraax” comparable to our normal-

form syntax, describes the mapping of the syntax of many BSMLits syntax. In this section,

the syntactic representations of a few less obvious caetstae considered. Additionally, a few
syntactic representations are discussed in Chapter 3, thleéncorresponding semantic deci-
sion points are presented. Also, Chajfler 6 presents thadimtepresentations of modelling
constructs whose semantics relies on synchronization.

2.3.1 Control States

A BSML may not include the notion of control states. If a mdsledaction to an environmental
input is always independent of its past behaviours, themthti®n of control state is not useful
for the model. In our normal-form syntax, one way to représies syntax of a BSML that does
not have control states is to create a single control statiesrves as the source and destina-
tion control states of all transitions. The notion of therarehy of control states might still be
useful for specifying priority between transitions in siwBSML (cf., Sectiori_3]8 for priority
semantics).

A BSML with a textual syntax without explicit control statesich as Esterel [14], realizes
a line of a program as a control state. For example, in Esfé4g] anexit statement within
a parallel command of a model moves the flow of control fromhimithe parallel command to
the next command outside the scope of the parallel commahd.p@rallel command and the
command after it can be conceptually considered as cortatdswith the parallel command
being anAnd control state. Thexit statement can be considered as a transition that connects
the two control states.

SCR [46[47] is a BSML that uses a tabular format. The notidrimodes” and “transitions
between modes” in its syntax can be represented by the sadiorontrol states and transitions
between control states, respectively.
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2.3.2 Transitions

In the normal-form syntax for transitions, event triggeishvdisjunctions are not allowed, be-
cause an event trigger that has disjuncts can be split intopteutransitions, each with only one
of the disjuncts of the original event trigger and exactly #ame other elements as the original,
such a transformation yields a model that is semanticaflystime as the original model [86].

To model multi-source, multi-destination transitionsngssingle-source, single-destination
transitions, they can be split into multiple transitionatthre either taken together, or are not
taken at all. Such an execution scheme requires synchtmrizzetween these split transitions.
In Chaptef B, where a notion of synchronization for BSMLsnisaduced, such a translation is
described.

2.4 Summary

This chapter presented a normal-form syntax for BSMLs thdesigned to model the syntax of
many BSMLs. It first described this syntax informally, falled by a presentation of its BNF. It
presented a feature diagram that shows the variation paitite BSML syntax that are relevant
for the semantic decision points. It presented also a comsearantics for the normal formal
syntax of BSMLs. The variations of this semantics are dbscrin Chapt€r]3.

28



Chapter 3
Semantic Deconstruction

“No one gets angry at a mathematician or a physicist whom lsber
doesn't understand, or at someone who speaks a foreigndgaghbut
rather at someone who tampers with your own language, wigh th
“relation,” which is yours ..."[[27, p.115]

Jacques Derrida

This chapter introduces a deconstruction of BSML semaimitcs eight semantic aspectand
their correspondingemantic optionsSectiori 3.1 is an overview of the deconstruction, followed
by sections that describe each semantic aspect. Sécfi@rdastribes the few identifieside
effectsbetween the semantic options offdrent semantic aspects. Secfion B.11 provides a sum-
mary of the semantic options via a table that specifies theas#moptions of some common
BSMLs. The formalization of the semantics described in thiapter are presented in Chapier 4.

3.1 Overview of Semantic Aspects

The operation of a big step can be deconstructed into thes@escribed in Figufe 3.1. This
systematic deconstruction is based on: (i) conceptualesgiglity in the process of creating
a small step (partly based on the syntactic elements of thgelyo (ii) orthogonal concerns
in the operation of a big step, and (iii) semantic variatiaings in existing BSML$. Each

LIn this dissertation, | use the terms “semantic variatioim{s® and “semantic variations” interchangeably with
the terms “semantic decision points” and “semantic deo&iorespectively. | use the former pair of terms to refer
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Figure 3.1: Operation of a big step.

stage of the diagram is associated with one ofgbmantic aspectand is labelled with the
corresponding section of the chapter that describes itnfas¢ic aspect may be decomposed into
some semantic sub-aspects. A semantic aspect or sub-aggeechumber ademantic options
each of which is a semantic variation for carrying out a stageSectio3.111, it is shown how
the semantics of dierent BSMLs can indeed be specified through the stages adilusam, or
more particularly, using the semantic aspects and theiogt Therefore, it is shown that the
semantic aspects cover all semantic variation points ofahguages that are considered in the
scope of this dissertation. In a few cases, | have added senmgmions for a semantic aspect
that complement the ones found in the existing BSMLs; thegsasitic options are included to
make the range of possible semantic options for a semam@casiore systematic.

Next, the role of each stage in Figlirel3.1, i.e., each semasyiect, is described briefly. | use
the Sans Serif font to distinguish the name of semantic aspects from notexal TheBig-Step
Maximality semantic aspect specifies when a big step ends, at whichguoaw big step starts by
sensing new environmental inputs. Tbembo-Step Maximality semantic aspect specifies when

to the semantic dierences between two existing BSMLs and use the latter pderofs to refer to the semantic
possibilities when designing a BSML. The distinction betwesemantic variation points and semantic decision
points is similar to the distinction between the notion offfation points” and the notion of “variable features” in
generative programming[21].
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a combo step ends, at which point a new combo step starts bgtendj the values of variables
andor the statuses of events, based on the details of a compaestgantics, to reflect théfect

of the execution of the small steps of the combo step.Eveat Lifeline semantic aspect specifies
how far within a big step a generated event can be sensed ssnpr® trigger a transition.
Separate sub-aspects are considered for the semaniiterofal eventswhich are not meant to
be observed by the environment of a model,d@rternal eventsvhich are used to communicate
with the environment, and fanterface eventsvhich are used to specify communications among
the diferent disjoint components of a model. TEeabledness Memory Protocol semantic
aspect specifies the snapshot from which the values of Vasiave read to enable the guard
condition of a transition. Similar to evenisternal variablesandinterface variablesand their
semantics, are distinguished. TO@eder of Small Steps semantic aspect describes options for
the order of transitions that execute within a big step. Fthenset of transitions enabled by
events, variables, and ordering constraints,Gbacurrency and Consistency semantic aspect
determines the set of potential small steps: first, it spEifthether more than one transition
can be taken in a small step; and second, if more than onetioansan be taken, it specifies the
consistency criteria for including multiple transitiomsa small step. ThBriority semantic aspect
chooses a small step from the set of potential small steps.A$signment Memory Protocol
semantic aspect specifies the snapshot from which the valmeariable in the right-hand side
of an assignment is read.

The feature diagram in Figuie 8.2 shows the eight semargicés for BSMLs together with
their corresponding semantic options. Semantic aspeetsearesented by shaded boxes and
the Sans Serif font, and semantic options are represented by clear box@kshanSiaLL Cap
font. Each semantic aspect is labelled with the sectionighdiapter that describes it. An arced
branch in the diagram represents an “exclusive or”: If aufigais chosen, then exactly one of its
sub-features is chosen. For example, if Big- Step Maximality semantic aspect is chosen, then
exactly one of its options,x&ractic, TAke Ong, or Take Many should be chosen. To achieve a
concise diagram, a set of recurring semantic options fontereated semantic sub-aspects are
grouped together as “Event Options”, which is referencedhvis label in the diagram.

| partition the BSML semantic aspects into two categoridge dhablednessemantic aspects
and thestructuralsemantic aspects. The enabledness semantic aspects thetilersemantics
of how a single transition can be included in a big step andtvghtne dfect of its execution.
The structural semantic aspects deal with how a set of ethatalesitions can be taken together
in a small step. In the feature diagram in Figuré 3.2, enatglesl semantic aspects and structural

31



[SOURCE/DESTINATION ORTHOGONAL j

Big-Step Maximality ARENA ORTHOGONAL -
Sectiof 3P Event Options

Small-Step Consistency
— Consistency

Sectiof 3.3.2
Sectiof 3.8

I NoN-PREEMPTIVE

Concurrency

Sectiof 3311 PREEMPTIVE

Preemption

[Mm SectiofiZAB

(Internal) Events
SivaLe Sectiof 3%

Event Lifeline External Events
Sectiof 3%

PRESENT IN WHOLE
Concurrency and

HyBRrID INPUT
EvenTs

Event Options

External Input
Events

Sectiof 3411

Interface Events

Sectiof 3.4P

[STRONG SYNCHRONOUS EVENT J Event Options

GC BiG Srep

[WEAK SyNcHRONOUS EVENT J

[A SYNCHRONOUS EVENT }

1%}

2

€

g Enabledness Memory

S Protocol — Sectiof 36

(7] GC SIRONG SYNCHRONOUS VARIABLE

g Interface Variables

2 inGC — Sectiof 3.5 GC WeAK SYNCHRONOUS VARIABLE }
(Internal) Variables GC AsYNCHRONOUS VARIABLE }

in RHS — Sectiof 3.6

Assignment Memory
Protocol — Sectiof 3.6

RHS SiRONG SYNCHRONOUS VARIABLE }

Order of Small Steps |
Sectiof 3.y

RHS WkAK SYNCHRONOUS VARIABLE }

DAtAFLOW

RHS AsyNCHRONOUS VARIABLE }

HIERARCHICAL
T 12 i \
Sectiof 3.B
NEGATION OF
TRIGGERS

—{Combo-Step Maximality — Sectiol 319

Figure 3.2: The feature diagram representing the BSML sémedaconstruction. The shaded
and clear boxes are semantic aspects and semantic opespectively. The rounded, shaded
boxes and the solid, shaded boxes are the enabledness astdutitaral semantic aspects, re-
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semantic aspects are distinguished by rounded and soliesboaspectively. As Chapter 4 will
describe, dierent specification methods are used for formalizing theaseios of enabledness
and structural semantic aspects.

A BSML semantics must subscribe toBig-step Maximality semantics, as shown by the
corresponding mandatory feature in the diagram in Figue Bhe other aspects are optional
and depend on the syntactic features included in the BSML.SMB semantics might have
more than one priority semantic option, which together tiarts its priority semantics (cf.,

Sectior 3.B).

A semantic aspect or a semantic option might be relevanhsémantics of a BSML only
if a certain syntactic construct is allowed in the BSML. Figf3.3 enumerates the dependencies
between the syntactic and semantic features. To desceise tiependencies, the names of syn-
tactic features in Figufe 2.4 and the names of semantic &sped semantic options in Figurel3.2
are used as propositions, which indicate the choice of thtufe in the corresponding feature
diagram. The standard logical operators describe thesendepcies. Thep = g’ operator is
logical implication: ifpis true therg must be true. Theg & g’ operator is logical equivalence:
either p andq are both true, or both are false. The ¥ q” operator is logical or: eithep, q,
or both are true. Thep A " operator is logical and: botp andq are true. For example, the
first dependency asserts that if the syntax for events isinse8SML, i.e., the Events' is true,
there must exist an event lifeline semantic option for ithe BSML, i.e., the Event Lifeline”
is true, and vice versa. As such, some of the semantic asprectslevant only for the BSMLs
whose syntax support certain syntax.

The last three dependencies in Figuré 3.3 are between serfeatures, as opposed to be-
tween syntactic and semantic features. These dependeavittibe explained in the sections on
the semantic aspects.

In the feature diagram in Figulre 8.2, a semantic (sub-)aspeits parent, is labelled with the
section in which it is described. The order of these secti®mgended to minimize the required
forward referencing to other semantics aspects (althooghedorward referencing cannot be
avoided). In the following sections, for each semantic espts semantic options are summa-
rized in a table that includes a brief description of eachas@i option, a list of its characteris-
tics, and a list of representative BSMLs for each option.hE@wracteristic of a semantic option
is identified as a relative advantage or disadvantage f&driy a “+” or “-”, respectively, which
is determined based on the conventional wisdom on this ctarstic. Such wisdom may not
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Figure 3.3: Dependencies between syntactic features gur€{iZ.4) and semantic features (in
Figure[3.2). Bold: syntactic featuresSans Serif: semantic aspects, andi§1 Car: semantic
options.)
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always be appropriate for a model depending on the domaimeafytstem under study, the pref-
erence of the modeller, etc. These options cover the vamnigafiound in most existing BSMLs.

I have also introduced a few semantic options that do not havigness in existing languages;
these semantic options are introduced to provide a sysieowterage of the range of possible
semantic options for a particular semantic aspect. As inrfel@.2, the SaLL Car font is used

to express the names of semantic options. Throughout therhanany examples are presented
that are meant to demonstrate th&atiences between semantic options (but not to endorse one
over another). The model snippets in the examples are ngpleden Finally in Section 3.11, a
table is presented that summarizes the semantic optioserhiy a number of BSMLSs.

3.2 Big-Step Maximality

The big-step maximality semantics of a BSML specifies whensiquence of small steps of a
big step concludes. Talle B.1 lists the three possible ser@stions. In the Sntactic option,

a BSML allows a modeller to designate syntactically a basitrol state of a model asstable
control state. During a big step, once a transitidinat enters a stable control state is executed,
no other transition whose arena overlaps with the arertacah be executed. In thexde Ong
option, once a transitiohis executed during a big step, no other transition whosesawearlaps
with the arena of can be executed. As such, ed@hcontrol state can contribute a maximum
of one transition to a big step. Lastly, thekE Many option allows a sequence of small steps to
continue until there are no more enabled transitions to belgrd.

Scope of a big step: In the Take One and the Rke Many options, the destination snapshot of a
big step is not obvious, which can be complicated for a meddih the Sntactic option, the end
of a big step can be traced syntactically, which can be hElpficonstructing and understanding
a model.

Sequential transitions vs. non-terminating big steps: In the Sintactic and Take Many op-
tions, it is possible to specify a computation as a big step ¢bnsists of multiple sequential
transitions within arOr control state. But, in these two semantics, it is also pés$dr a big
step to never terminate because the execution of the bighsteg reaches a snapshot in which
there are no more transitions to be executed. In thesStic maximality semantics, additionally,
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Table 3.1: Big-step maximality semantic options.

| Options Definition | Characteristics | Examples |
SYNTACTIC No two transitions with . pause command in
overlapping arenas that(+) _Syntactlc SCOPE Esterel [14], “run
: p »for big steps PR
enter designated “stable il to completion” in
control states can be takarit) quuentla Or Rhapsody [[42] anc
in the same big step. transitions | UML StateMa-
(-_) Non-terminating chines[78]
big steps
Take ONE No two transitions with Terminating bi statecharts[[41| 45
overlapping arenas can begtrg Sermlna Ing big 186], reactive mod-
taken in the same big step.> <P ules [3], and Ar-
() Unclear, non-
. gos [68]
syntactic scope for
big steps
TAKE MANY Small steps continue untjl . Statemate [[43] an(
there are no more enable=c£2n8§;%ient'al Or RSML [63]
transitions.
() Unclear, non-
syntactic scope for
big steps
(-) Non-terminating
big steps

S

a big step may never terminate because the model never eeaclyatactically designated stable
control state. Some BSMLs with the&actic semantics require the non-stable control states of
a model to have “else” transitions so that a big step can awegch a stable configuration (e.g.,
[42,[78]). Otherwise, a big step may halt because no tramsgienabled to be executed although

the big step is not maximal yet. In thake ONe semantics, a sequence of transitions irCan
control state cannot be included in a big step, but a big dteqya terminates.

Stable control states can be used to model the semantice ghattse command in Es-

terel [14,[93]. During a big step, once all non-overlappinogtcol states of the model’s con-
figuration have executed thrause command, the big step ends. As such, if thise com-
mand is executed outside of a parallel command, then theidpgterminates. But if thpause
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~
t;: dial(d)[c < 10]
@ /c++; out(d)

Figure 3.4: Dialer system.

command is executed inside a branch of a parallel commaed ttte big step terminates when
every branch of the parallel command has executegdase command. Stable control states
can also be used to model the semantics of “compound transitin Rhapsody [42] and UML
StateMachineg [78]: The “pseudo states” of a model are nextlals non-stable control states,
and “states” are modelled as stable control states. Someed8EMLs that support theake
One semantics, such as reactive modules [3] and Argads [68] rédikeenced by the principles of
synchronous hardware, which assumes that, during a bigategn-concurrent part of a model
can take only one transition (equivalently, each hardwareponent reacts once during a clock
tick). The Take Many semantic option is usually used by the BSMLs that supporhti®sn of
combo step (e.g., Statemalte[43] and RSML [63]). The Statemoal suite can be configured
to use either the Ake ONe semantic option, whose big steps are referred to as “stepshe
Take Many semantic option together with combo steps, whose big stepeterred to as “super

steps” [43].

Example 1 The model in Figuré_3l4 collects a dialed digit of a phone deenvironmental
input evendial(d)) and transmits the dialed digitto the IP network via generated evenit(d
Variable ¢ allows a maximum of 10 digits to be collected, at which pdietdentral IP system
would connect the caller to the dialed callee (the connecfimctionality of the system is not
described). The ++” operator denotes increment by one.

Let us consider a BSML semantics in which if an environmempait event is received at the
beginning of a big step, it persists until the end of the bepstAlso, let us consider the source
shapshot where evedtal(d) is received from the environment ands zero. If theTake Many
big-step semantics is chosen, then transitipis executed 10 times in succession, sending the
same digitd, 10 times. If th&@ake OnE big-step maximality semantics is chosen, or$keractic
semantics is chosen and control stBtes designated as stable, then the model behaves correctly.

2Throughout the dissertation, when mentioning a syntatgiment of a model in an example, whose body is in
the Italic font, | use the normal font to highlight the syrtta@lement from the rest of the text.
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Dialing

.
Dialer

tz: (dial(d) A redial)[c = 0]/Ip:=d; c:=1; "out(d)

DialDigits ta: dial(d)[c<10]
/Ip:=lpx10+d;

c++; “out(d)

t1: (dial(d) A —redial)[c<10]
/c++; Ip:=Ipx10+ d; "out(d)

Redialer ts: rediallc = 0]/p:=Ip; dial(digit(lp, 1))

P )
WaitFor v Redial e [c<Ipl]
Digits 5 p

Redial P
dial(digit(p, (c+1))

Figure 3.5: A model for dialing and redialing, copied frongpHLT.

Example 2 The model in Figure_3]5, which is the same as the model in E[g@uk, on page17,
copied here for convenience, is an extension of the simplerdn Figure[3.4 to support redial
functionality. The model uses tl8&NtacTic sSemantic option for big-step maximality. Control
statesWaitForDial and WaitForRedial each signified by av”, are stable control states. For
exampleWaitForRedials used to terminate a big step after the model receivesialinput in
control stateWaitForRedialand dials all the digits of the last dialed number. Once adl thgits
of the last-dialed phone number are redialled, control stMaitForRedialis entered again via
transitiont;.

Example 3 The model in Figure 316 is for a two-bit coun&@ontrol stateBit; andBit, model

the least and most significant bits of the counter, respelstivEach time the environmental
input eventko, which represents a clock tick, is received, the countereiments by one. Let us
consider a semantics where a received environmental infauttgoersists throughout the big step.
After an even number of tickBit; sends everik,, thereby instruct8it, to toggle its status. After
counting four clock ticks, th€ountergenerates theoneevent. Consider the snapshot where the
model resides in control stat@&it,; andBit,; and a semantics where each small step comprises
the execution of exactly one transition. If thexe One big-step semantics is chosen, then the
model behaves correctly. The fit&, input event produces the big stéj}), the secondkg
input event produces the big stgp}, {t3}), the thirdtky input event again produces the big step

3This example is adopted from [68], where a more elaboratsioeof it is used as the running example of the
paper.
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Figure 3.6: A two-bit counter.

{t1}), and lastly, the fourthk, input event produces the big stéfh,}, {t4}), which generates
eventdone If the Take Many big-step semantics is chosen, then the model behaves eatlgrr
by creating non-terminating big steps; for example, uparereing the firstk, input event, the
model can engage in the following non-terminating big st¢f}, {to}, {t1}, {t2}, - - - ).

3.3 Concurrency and Consistency

BSMLs vary in how the enabled transitions of a model execugether in a small step. In the
examples in the previous section, each small step has gxawltransition, but there are other
options. Tabl&3]2 lists the three concurrency and comgigteemantic sub-aspects that specify:
(i) concurrency: whether more than one transition can bertak a small step, and if so, (ii)
small-step consistency: which transitions can be takeeth®y, considering the composition
tree of a model, and (iii) preemption: whether the executibone transition in a small step can
preempthe execution of another transition or not.

3.3.1 Concurrency

There is a dichotomy in hardware and software about how toeirtbe execution of a sys-
tem: single-transitiorvs. many-transition[71,[88,/90/ 97]. Similarly, in BSMLs, there are two
options: (i) a small step can execute only one transitionsmall step (the ScLe option), and
(i) all enabled transitions that can be taken togetheralert in a small step (the My option).
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Table 3.2: Concurrency and consistency semantic options.

| Options | Definition | Characteristics | Examples |
Concurrency
SINGLE A small step consists of o statecharts []41]
the execution of exactly (+) Simplicity n 45, [86], State-
one transition. (-) Non-determinism | g5, 2], and
reactive mod-|
ules [3]
Many A small step may con; Argos and
sist of the er;ecu{ion of (+) Low chance for Es?erel%}

more than one trans
tion.

_non-determinism
(-) Race conditions

Small-Step Consistency

ARENA ORTHOG-

The arenas of two dis

" (+) Simplicity

Argos [68] and

ONAL tinct transitions of a _ Esterel [14]
small step are orthogd-() High chance for
nal. non-determinism
Source/ Desti- | The source contro| N/A
NaTIoN OrtTHOGO- | States and destination(+) Low C.h‘f"”ce for
NAL control states of twa non-determinism
distinct transitions of g () Complex
small step are pairwise
orthogonal.
Preemption

NoN-PREEMPTIVE

Two transitions that ong

3(+) Support for “last

Argos [68], and

Is an “interrupt for” an-
other cannot be taken i
a small step.

" (+) Simple flow of con-
trol

(-) No support for “last
wishes”

>

Is an “interrupt for” an-| * . hes” semantics of
other can be taken in g"V'>"€S ... lexit and trap
small step. 1SI) fCountelrlntumve statements in
ow of contro Esterel m]
PREEMPTIVE Two transitions that ong N/A

4
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The SnGLE option is simple because it does not have to deal with the tmfties of executing
multiple transitions (e.g., race conditions), but it cansmundesired non-determinism because
two enabled transitions can execute iffelient orders.

Race conditions: A model has aace conditionwhen more than one transition in a small step
assign values to a variable. Typically, one of the assignisisichosen non-deterministically [75],
but there are other optioris [34].

Example 4 Figure[3.7 shows the model for describing the behaviour afgke trgfic light sys-
tem at an intersectio@!.‘l’he model consists of And control statefficLight, which itself consists
of two Or control states: thBlS control state controls the tyAc in the north-south direction and
the EW control state controls the tyAc in the east-west direction. It is assumed that the envi-
ronment provides the sequence of environmental input &ventl changeend change: - -, in a
timely manner according to the schedule of thgficdight. Environmental input eveehddesig-
nates the end of green light for a direction by changing iesegr lights to yellow. Environmental
input eventhangechanges the direction of tfgc by switching the red lights to green lights, and
the yellow lights to red lights. The system is initialized!sat the lights for north-south direc-
tion are green, and the lights for east-west direction ame. r€onsider the snapshot where the
model resides in control stat&3/N_Redand NS_Yellow, and environmental input eveahange

is received. If th&ake ONE big-step maximality semantics together with 8réLE concurrency
semantics are chosen, then the model can choose to exeeubeytstep consisting of the se-
guence of transitiongt,}, {t4}), or the sequence of transitiok,}, {t,}), non-deterministically.
However, executing the latter sequence of transitionsaalthe model to arrive at snapshot
EW_GreenandNS_Yellow, which is not a desirable behaviour. If tiany concurrency seman-
tics is chosen, then the model executes big&tef,}), arriving at control stateEW_Greenand
NS_Red

Next, two semantic sub-aspects are considered that spgemifythe set of transitions can
be combined to be taken together in a small step, when threr Memantics is chosen. The
small-step consistengub-aspect deals with transitions that do not preempt etwdr.oThe
preemptionsub-aspect deals with transitions that do preempt each. ofte two sub-aspects
deal with disjoint sets of transitions of a model.

4This example is adopted from [51].
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Figure 3.7: Tréic light system.

3.3.2 Small-Step Consistency

For two enabled transitions that neither is an interrupttifi@r other, this semantic sub-aspect
specifies whether they can be taken together in a small stepe I$urce/DesTiNaTION ORTHOG-
ONAL Semantic option, two transitions that are orthogonal, (Whose source control states and
destination control states are pairwise orthogonal) cataken together in a small step. The
Arena OrRTHOGONAL Option is more restrictive in that two transitions can bduded in the same
small step only if their arenas are orthogonal (where theaa# a transition is the lowe€r
control state in the hierarchy of the composition tree tead common ancestor of the source
and destination control states of the transition). In comspa, the A&exa OrTHOGONAL Option

is simpler than the @rce/Destinarion OrRTHOGONAL Option, but it can introduce undesired non-
determinism by not taking all of the enabled transitions$ tha SSurce/DesTiNaTION ORTHOGONAL
option takes. The Rena OrtHoGoNAL Semantic option and theake One big-step maximality
semantics are similar: The former semantic option disallomo transitions whose arenas are
the same or ancestrally related to be included in a small stiibe the latter disallows the two
transitions to be included in a big step.

Example 5 The model in Figuré_318 is similar to the model in Figlre] 3.6,pagd 3D, but has
the extra Or control stat&tatusthat specifies whether the counter is in the process of cognti
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Figure 3.8: The revised two-bit counter.

or it has already counted four ticks and should be reset. @enghe snapshot where the model
resides in control state®it;,, Bit,,, and Counting and the fourthtky event is received. Let us
choose theMany concurrency semantics together with theesent v SaAME event communica-
tion mechanism (explained in Sectionl3.4), in which a geedravent can enable a transition
in the same small step. If thierena OrTHOGONAL Semantics is chosen, then orty} can be
taken, but not together witty, because the arena ¢f is a parent of the arena db. If the
Source/DesTiNaTION ORTHOGONAL Semantics is chosen, théjt,, t4}) can be taken, and the model
behaves correctly. (As described in detail in Sedfioh 48 execution of, involves exiting the
Or control stateBit, and reentering its default control staBit,,. The destination configuration
of the small step iBit,4, Bit,;, andMax.)

3.3.3 Preemption

The notion ofpreemption11] is relevant for a pair of transitions when one isiaterrupt for

the other, as described in Sectlon]2.1. Recall that a tiangitis an interrupt for transitioty
when the sources of the transitions are orthogonal and ot dbllowing conditions holds: (i)
the destination of is orthogonal with the source ¢fand the destination dfis not orthogonal
with the sources of either transitions (Figlrel 3.9(a));iiptlfe destination of neither transition is
orthogonal with the sources of the two transitions, but tegtidation oft is a descendant of the
destination of’ (Figure[3.9(b)). The NN-Preemprive option allows such aandt’ to be executed
together in the same small step, whereas theN®1ive option does not. In the dk-PreempTIvVE
option, the &ect of executing such a small stgpt’} includes the variable assignments and event
generations of both transitions, but the destination cordiion of the small step is determined
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(b)

Figure 3.9: Interrupting transitions.

as if onlyt has been executed (i.e., the destinatiort’ a§ not relevant). As such, executing
{t,t’} in Figure[3.9(a) moves the model to control stdteand executingt, t’} in Figure[3.9(b)
moves the model to control statg$, andS;,. While complex, due to its counterintuitive flow of
control, the NoN-Preemprive option satisfies the “last wishes” of the children of &and control
state that is interrupted.

The Non-Preemprive semantics can be used to model the “weak preemption” secsauiti
exit andtrap statements in Esterel[14,]40]. The concurrent executicaneixit command
with a nonexit command complies with the condition (i) above of the intptifor relation. The
concurrent execution of twexit commands complies with the condition (ii) above of the inter
rupt for relation. In Argos[68], a dierent notion of hierarchical control state than ours is uged
transition whose source control state is a Basiccontrol stateS is an interrupt for a transition
whose arena iS or a descendent &. This notion of control state and interrupt can be trandlate
into the normal-form syntax described here, by turrfingto anAndcontrol state with two chil-
dren: One representirf§without the interrupt transition, and another having o ¢ransition
that models the interrupt transition. In Esterel [14, 40ddition to the N~-PreempTIvE SEMan-
tics, there is a syntax to specifgi2mprive behaviour through the “strong preemption” semantics
of watching statements. In aflo <statements> watching(e)” statement, the execution of
“<statements>" is immediately aborted when eveabccurs, without satisfying the “last wish”
of “<statements>". Such awatching statement can be translated into the normal-form syntax
here by creating a transitioh, whose source is aAnd or Or control state that represents the
“<statements>", and it is triggered with evers. Transitiont in the aforementioned translation
is not an interrupt for any transition, but needs to be asgignhigher priority than the transitions
in its source.

Example 6 The model in Figuré 3.10 is an extension of the model in FiuBe This model
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Dialing

.
Dialer

tz: (dial(d) A redial)[c = 0]/Ip:=d; c:=1; "out(d)

t3: dial(d)[c<10]
/Ip:=lpx10+d;
c++; “out(d)

t1: (dial(d) A —redial)[c<10]
/c++; Ip:=Ipx10+ d; "out(d)

Redialer ts: rediallc = 0]/p:=Ip; dial(digit(lp, 1))

2 ()
WaitFor v Redial e [c<Ipl]
Digits 5 p

Redial P
dial(digit(p, (c+1))

t: [limit = true] t: [limit = falsg

Figure 3.10: Interrupting transitions.

is a model of a dialer system that receives the dialed didi phone, through evemtial(d),
and transmits these digits via output evemiis(d), to establish the connection with a destination
phone number. Compared to the model in Figurd 3.5, the madElgure[3. 10 additionally
controls the total number of calls that can be establishedeaah point of time. If the maximum
number of concurrent calls is reached, which is determingthle boolean environmental input
variablelimit, the dialing process is aborted via transitibriLet us consider the snapshot where
environmental input variablémit is true, the model resides in control stat@&itforDial and
WaitforRedial the value of variable, which is the number of dialed digits so far, is nine, and the
environmental inpudlial(d) is received, i.e., the caller dials the last digit of a phonenber. Let

us choose th&yntactic big-step maximality semantics and thleny concurrency semantics. If
the PrReempTIVE SEManNtic option is chosen, the system may abort the diatoweps by executing
{t}), and not({t,}). But if theNon-preEmMPTIVE SEMAntic option is chosen, then the call would go
through by executingty, t}), arriving at the destination configuratidiviax}.
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Figure 3.11: The event lifeline of the generated eweliccording to dierent event lifeline
semantic options.

3.4 Event Lifeline

A generated event of a transition is broadcast to all parsmbdel. An event'status which

Is eitherpresentor absent can be sensed by the event trigger of a transition. édeat lifeline
semantics of a BSML specifies the snapshots of a big step iohadigenerated event can be
sensed as present. In this dissertation, the maximum eielimid of an internal event is the
big step in which it is generated. Interface events, desdrilSectio 3.4]2, provide a semantic
option for a lifeline beyond the same big step in which an éw&generated. Table 3.3 shows
the five event lifeline semantics: (i) in th&#ent in WHoLE option, a generated event is present
throughoutits big step, from the beginning of its big stéipjrf the PrResent iIn REMAINDER Option,

a generated event is present in the snapshot after it isaedesand persists until the end of its
big step; (iii) in the Resent iIn NexT ComBo Step option, a generated event is present only during
the next combo step; (iv) in thekBsent iIn NexT SvaLL Step option, a generated event is present
only in the next snapshot; and (v) in thessknt v Same option, a generated event is present
only during the small step in which it is generated (instaataus communication). Figure 3111
depicts the event lifeline of the evesgenerated in small stefp, according to the dierent event
lifeline semantics. The name of an event lifeline semamgiésllowed by a line that depicts the
extent of the big step in whichis present, according to that semantics.
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Table 3.3: Event lifeline semantics.

| Options | Definition | Characteristics | Examples |
PRESENT IN WHOLE A generated : Argos [68] and
event in a big (+) Modularity Esterel[14]

step is assume
to be presen
throughout
same big step.

the

d(+) Global consistency
- (-) Non-causality

(-) Counterintuitive be-
haviour

sensed as prese
only in the next
combo step afte
it is generated.

PRESENT IN REMAINDER | A generated . statecharts [[45
event in a big (+) Causality 86]
step is sensenl(') Unorderedness
as present in (-) Global inconsisH
the same big t€ncy
step after it is
generated.
Present IN NExT ComBo | A generated . Statemate [[43]
Srep event can be (+) Causality and RSML [63]

L(+) Partial orderedness
(-)  Multiple-instance
- events

PreseNT IN NEXT SMALL
Srep

A
event can
sensed as prese
only in the next

is generated.

generated
be

small step after it

(+) Causality

1{+) Orderedness
(-)  Multiple-instance
events

statecharts[23]

PRESENT IN SAME

A

event can

small step it is
generated in.

generated
be
sensed as prese fn
only in the same

(+) Instantaneous com
unication

(-) Non-causality

() Multiple-instance
events

=

statecharts [[82
“and used in[75]
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The Resent v WaoLE Semantic option supports the “perfect synchrony hypofi¢0, 68].
If a big step is considered as the reaction of a synchronaasitduring a “tick” of the clock,
the semantics of the perfect synchrony hypothesis is sirtaléhe signal rules of synchronous
hardware. In synchronous hardware, a signal is either presebsent during a tick of a clock,
but not both.

The Resent IN Same semantic option is diierent from the other semantic options in that the
generated events of a small step canridc the enabledness of another small step, making the
small steps of a big step independent of one another. In €Hépthis semantics is considered
within the context of synchronization semantics.

Causality: A big step iscausalif its small steps can be sequencedBsT», - - - , Ty, such that
any event that triggers a transition in small stel < i < n) must be generated by some earlier
small step inTy, T,, .-+, Ti_;. To a modeller, the transitions of a non-causal big step reayns
counterintuitive, and execute out of the blue. Thasext v WHoLE and the REsent IN SAME
semantic options can create non-causal big steps. To avoitausal big steps, some BSMLs
that use the WoLe event lifeline semantics introduce a notion of a “correctidal, which never
creates a non-causal big stepl[14,[16, 93]. Analysis toolbeaised to detect “incorrect” models,
conservatively, and reject them at compile time [16, 40]t iBa BSML supports variables, the
detection of incorrect models is undecidablel [40].

Orderedness: The Resent IN REmanDEr Semantics lacks a “rigorous causal ordering” [63]: if
evente, is generated earlier than evesnt it need not be the case that transitions triggered, by
are executed earlier than transitions triggere@byl he Reesent v Next ComBo Step semantics
was devised to alleviate this problem by having a “rigoroagsal ordering” between combo
steps, while being insensitive to the order of event germratithin a combo step [43, 63]. A
disadvantage of theriesent iIn NExT ComBo Step semantics is that a modeller needs to keep track
of the scope of a combo step in order to consider its genemtents all at once in the next
combo step. Thedsent iv NexT SmaLL Step semantics is ordered: a transition triggered by an
internal event can be executed only &is generated by a transition in the previous small step.

Modularity:  The Resent INn WHoLE option is “modular” [50] with respect to events: an event
generated during a big step can be conceptually considieeesbhime as an environmental input
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event because it is present from the beginning of the big #t#mther event lifeline semantics
are non-modular. In a non-modular event lifeline semantoacurrent parts of a model cannot
play the role of the environment for each other, becausensidas of the model may change the
behaviour in diferent ways than the environment does. As a result, a modebthea constructed
incrementally.

Multiple-instance events: An instanceof an event in a big step is a contiguous segment of the
shapshots of a big step where the event is present. Twodigistances of an event correspond
to two disjoint sets of small steps. In thedent v Next ComBo SteP, PRESENT IN NEXT SMALL
Srep, and Resent IN SaME event lifeline semantics, multiple instances of the sanemg\wgen-
erated by dferent small steps, may exist in the same big step. Thus, dahésstf an event can
change multiple times in a big step, making it complicatedafonodeller to determine whether
an event is present in a certain snapshot of a big step, or not.

Global inconsistency: When negated events are included in the BSML syntax, ilaeeRr iv
RemMAINDER Semantic option can produce “globally inconsistent” bigpst[85| 86]. A big step is
globally inconsistent if it includes a transition that geates an event and a transition triggered
by the absence of that event. A globally inconsistent big s$eundesired because an event
is sensed both as absent and present in the same big steprisherRy REmaINDER Semantic
option can achieve a variation of the original global cotesisy semantic$ [85, 86], by not taking
a transition that generates an event that was sensed ag ehg@n in the big sted [66]. The
global inconsistency problem is not relevant for other ssimaptions because th&Rent N
RemaINDER Semantic option is the only semantic option that allows mmaxn one instance of an
event in a big step and yet allows the aforementioned instersty. The other lifeline semantics
that allow multiple instances of an event in the same big atepglobally inconsistent, but by
design.

Global consistency vs. causality: Figure[3.1P shows the relationship between the big steps
of the Resent IN REMAINDER Semantics and therBsent v WHoLE Ssemantics. A big stef

from a globally consistentf2sent IN REMAINDER Semantics also satisfies &EENT N WHOLE
semantics becaudés generated events, by the definition of global consistesreypresent from
the beginning of the big step. Conversely, a big Stefrom a causal Resent in WHoLE Semantics
also satisfies ad®sent INn REMaINDER Semantics because, by the definition of causality, an esent i
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Figure 3.12: Global consistency vs. causality.

sensed as present by a transitiomobnly if it is already generated in the big step. Therefore, if
global consistency is guaranteed syntactically (e.grethee no negated event triggers), then the
set of big steps in ther@sent INn REMAINDER Semantics is a subset of the big steps of thisEr

N WHOLE semantics.

Events with parameters: An event can have a value parameter, as in Est@ﬁ[]ﬂk}r an
event with a value parameter, the value of its parametertedned per instance of the event.
When an event instance is generated by more than one toamgitie value of its parameter is
determined by a “combine function” [14]. A combine functiama commutative, associative
function, such as addition, that “combines” th&elient values of the parameter of an event that
are generated by a set of transitions. In tResENt INn REMAINDER, PRESENT IN NEXT ComBO STEP,
Present IN NExT SmaLL Step, and REsSenT IN SaME Semantics, a combine function combines the
values of the parameter of an event generated by transitiotie previous and current small
steps, previous combo step, previous small step, and ¢wneall step, respectively. In the
Present INn WHoOLE option, the value of the parameter of an event instance id fixeing a big
step, and is determined by combining all of the values of trameter of the event generated
during the big step.

Implicit events: Some BSMLs us@émplicit eventdn their syntax, which represent events that
are generated in response to a certain property of the catigutof a model. For example,
the implicit evententered(s) [85] is generated when control statés entered, implicit event
@T(cond) [46,[47] is generated when the value of boolean expressiaod changes from false

5In Esterel[1], the value parameter of an event can be of tys/awhich means that, infiect, an event can
have more than one value parameter, each of which being ereetef a single array.
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to true, ancassigned (V) [85] is generated when variablgs assigned a value. Implicit events
may or may not have the same semantics as the event lifelin@gies of named events.

Example 7 In Example[ B, on page B8, when considering Tage One big-step maximality
semantics, the semantics that subscribes toR8enT IN WHOLE, PRESENT IN REMAINDER, Of
Present IN NExT SmALL Step event lifeline semantics all yield the expected behavibthe Take
One big-step maximality semantics, tiMeany concurrency semantics, therReNa ORTHOGONAL
small-step consistency semantics, BReemptive preemption semantics (or tidoN-PREEMPTIVE
preemption semantics) are chosen, thenRiiesent iv Same semantics also yields the expected
behaviour.

Example 8 In the model in Figuré 315, on pagel38, varialpestores the last dialed phone num-
ber. Upon receiving theedialenvironmental input everRedialerinstructsDialer, by generating
the correspondinglial events, to dial the digits dp. (The size of an integex, is denoted a|,
and itsnth digit asdigit(x, n).) Variablep is necessary because once redialling stpts over-
written. Consider the snapshot where the environmentaltiepentredialis receivedg is zero,
and|lp| is 10. The environmental input everedial persists throughout the big step. A seman-
tics that follows theSyntactic big-step maximality semantics (annotating a stable cdrstiate
with a “v”), the Many concurrency semantics, thherena OrtHOGONAL SMall-step consistency
semantics, th®reempTIvE preemption semantics, tf®esent iIn Next SmaLL Step event lifeline
semantics, and uses the up-to-date values of variablegrcaiuce the big stefis, {t,, ts}, {t3, ts},
-+, {ta, te}, {ts, t7}), which transmits the first digit twice and does not transiné kast digit. If
the Present IN Same event lifeline semantics is chosen, the model producesaitiect big step
{ts, 1o}, {t3, te}, - - -, {ts, t7}). In both cases, if the size of the redialled number is less fity the
model cannot stabilize, and remains in th&lDigits control state.

Example 9 The model in Figuré_3.13 is a simple model of a cruise contysteam of a car.
The system regulates the amount of power transmitted to lleel& of the car by adjusting the
amount of gas that is provided to the engine, in order to namthe speed specified by the
cruise control system. If the cruise control system is oractzleration does not have angext
on the amount of gas that is provided to the engine. But if thése control system is on and
the acceleration event is received, then the cruise cosyrsiem is turnedff and acceleration
is processed as usual. The two Or control states of the Antlai@tateFuelControlprocess the
cruise control and acceleratigthe-acceleration functionalities, respectively. The emvinental
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Figure 3.13: Speed control system for a car.

input eventsruiseon andcruiseoff turn the cruise control system on angf,aespectively. The
environmental input evenécelanddeaccekpecify whether the accelerator is being pressed or
de-pressed, respectively. The boolean environmentat irgsiablesover.speecandunderspeed
specify whether the vehicle is moving faster or slower,eespely, than the target speed set by
the cruise control system. Eventgreasegasanddecreasayasslightly increase and decrease
the amount of fuel into the engine, respectively.

Consider the moment when the cruise control system is osydtem is over speed, and the
accelerator is pressed; i.e., when the system resides ittai@tate On, over.speed= true, and
accelis received from the environment. Let us chooseTixe One big-step maximality seman-
tics and theSingLE concurrency semantics. If tH&esent in WHoLE Semantic option is chosen,
then the only possible big step consist$tgifand{t,}, which results in the desired behaviour for
the system. If thBresenT IN REMAINDER Semantic option is chosen, then additiondlly}, {ts}) is
a valid big step, which both decreases and increases the ahodgas to the engine. The latter
big step is globally inconsistent, becausereasegasis sensed as absent kyand is generated
by te. If the variation of global consistency semanticslin/[66¢osen, thexi{ts}) is a valid big
step;ts cannot be taken during the big step since it generateeasegas
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Figure 3.14: A taxonomy for events.

3.4.1 External Events

The model in Figure 315, on pagel 38, uses edéitin two different ways: (i) as an environmental
input event initiated by a human caller, and (ii) as an irdéevent generated by tiiedialer To
avoid modelling flaws, many have advocated that the interéd@ system with its environment
should be clearly and explicitly specified [79, 101]. A cebltbd way to achieve this interface,
as shown in Figure_3.14, is to distinguish between the euwbatsthe environment can control,
environmental input eventand the events that are generated by the madeitrolled events
A controlled event may be observable by the environment @reenvironmental output event
or not (i.e., aninternal event. The environmental input and output events of a model toaget
constitute theexternal eventsf the model.

A BSML may choose distinct event lifeline options for envimental input events, envi-
ronmental output events, and internal events, as showneirieiture diagram of Figufe 3.2.
Often, the event lifeline semantics of the environmentalirevents is the X &sent iINn WHOLE
(or equivalently, the X Resent IN REMAINDER) Semantics, meaning that an input event persists
throughout a big step, and the event lifeline semanticsegtivironmental output events is the
same as the event lifeline semantics of the internal evertis. prefix “X” in the name of the
semantic options, signifying &rnal event, is used so that no two semantic options wowld ha
the same name.

A BSML may syntactically distinguish environmental inpueats and environmental output
events from each other, and from internal events. Altevabtia BSML isnon-distinguishing
if it does not distinguish syntactically between the exéémevents and the internal events of a
model. In these BSMLs, it is still possible to consider irgorgiceived at the beginning of the big
step as environmental inputs, and outputs generated imshainall step or last combo step of
a big step as environmental outputs, each with distincttdifetine choices. Table 314 lists the
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possible semantic options forftérentiating environmental input events and internal eszelmt

the Sintactic INpuT EVENTS Option, an environmental input event is syntacticallyidiptished.
Thus a BSML that subscribes to this option is a “distingnighBSML. In the Riceivep EVENTS

As EnxviRONMENTAL Option, an event that is received at the beginning of a big steonsidered

an environmental input event. In therkkip Inputr Events option, an event that is received at the
beginning of a big step is considered an environmental iapent only if it is agenuine inpubf a
model, meaning it is not generated by any transitions in tbdeh While in the Sntactic InpuT
Events and the Herip INnpuT EvenTs Semantic options, the set of environmental input events of a
model can be identified syntactically, in thedRvep Events as ENVIRONMENTAL Semantic option,

the environmental input events of a model are determineeger big step.

As shown in Figuré_3]2, an event lifeline semantics for therenmental input events can
be chosen, regardless of the choice of the semantic optrodistnguishing the input events.
For example, if the semantics for environmental inputsésRiteiveEp EVENTS As ENVIRONMENTAL
semantic option together with the XXEent in Next SvaLL Step sSemantic option, then an input
event that is received at the beginning of a big step persigysfor the first small step of the big
step. Environmental output events have similar optionsnts/generated in either the last small
step or last combo step of a big step could be considered asemental output events.

Example 10 In Example 8, a non-distinguishing semantics was consitiéwe the model in
Figure[3.5, because evedital can be both received from the environment and generatedilpps
in the same big step. Evergdialis a genuine input. Both tHeeceivep EVENTS AS ENVIRONMENTAL
and Hysrip INnpuT EvEnts semantic options, together with thé Present IN REMAINDER event
lifeline semantics, yield a behaviour that matches the bighm specified in Exampld 8.

If the single-input assumption [46,147] is assumed, whiclues thatdial andredialare not
both received from the environment in the same big step, dfe@mannot be received from the
environment at the beginning of a big step and generatedars#ime big step.

3.4.2 Interface Events

Some BSMLs structure a model as a setomponentseach of which is a compound control
state. The components of a model communicate with each tittargh theirinterface events
according to arinter-component communication mechanidtigure[3.1b refines the taxonomy
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Table 3.4: Diferentiating environmental input events from internal ésen

| Options

Definition

| Characteristics |

Examples

SyNTAcTIC INPUT EVENTS

Only syntactically dis-
tinguished events ar

treated as environmen

tal inputs.

_from environment
(-) Usually diferent
semantics for dier-
ent event types

e(+) Separates system

Esterel[14]

REeceiveD EVENTS AS EN-
VIRONMENTAL

Any event that is re-
ceived at the beginnin
of a big step is consid
ered an environmenta
input event.

(+) Treats input ang
internal events unij
formly
(-) No boundary be-
tween system an
environment

J

A

=

statecharts [86
and
RSML [63]

HysBrID INPUT EVENTS

Only “genuine” inputs
that are received fron
the environment at th
beginning of a big stej
are treated as enviror

5 (+) Distinguishes
| between internal an
;genuine input events
l_(-) Complex

|

\*2)

mental inputs.

N/A

—
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Input Output Interface Internal

Figure 3.15: A taxonomy of events for inter-component comioation.

of Figurel3.14 by including interface events as a subseteétimtrolled events of a model. Con-
ventionally, an interface event is generated only by onepmoment, called aending component
A component that accesses an interface event redsiving componentAs such, the interface
events of a model are partitioned into sets, shown by dasheslih Figuré 3,15, each of which
is generated by one component.

Table[3.5 lists the three possible inter-component comoation semantic options for inter-
face events. In the1®onG SyncHroNous EVENT Option, a generated interface event is sensed as
present throughout the big step in which it is generatedn fitee beginning of the big step (sim-
ilar to the Resent In WHOLE Semantic option for internal events). In theeMd SyNcHroNoUS
Event option, a generated interface event is present in the bjgistevhich it is generated,
but only after it is generated (similar to thed#ent v RemainDER Semantic option for internal
events). In the Avncaronous Event option, a generated interface event is present in the next
big step, from the beginning of the big step. The®&ic Syncuronous Event and the Wk
SvyncHrRONOUS EvEnT Semantic options have similar advantages and disadvanésg@e Resent
v WaoLE and REesent IN REMAINDER Semantic options, respectively. TheyvAicHroNous EVENT
semantic option is unique in that a generated event in a big cin influence the behaviour
of the model in the next big step. A modeller or an analyst &h&eaep track of the generated
events in the previous big step to understand the behavidhea@urrent big step. This seman-
tics for interface events can potentially be a source of dmapon for a modeller because it
is at odds with the semantics of other kinds of events in a sdo% i.e., internal events and
environmental inpybutput events, whose statuses cannot persist beyond antchigestep. In
the AsyncHronous EVenT semantics, a generated interface event in a big step adlarsiman
environmental input event in the next big step. As such, thexéaronous Event semantics is
modular with respect to interface events, because anatedvent, similar to an environmental
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Table 3.5: Semantic options for interface events.

| Options | Definition | Characteristics | Examples |
SrrRoNG  SyncHroNOus | A generated interface Modularit “Hybrid Seman-
Event event of a big step is (+) Modularity tics” [60]

n{+) Unique sta-
tus for an inter-
face event during
a big step

(-) Non-causality

sensed as present fro
the beginning of the big
step.

WEak  SyncHroNous | A generated interfacs
EVENT event of a big step is
sensed as present in tk
shapshot after it is gen
erated.

¢] . N/A
: (+) Causality f

1é-) Unclear sta-
_tus of an interface
event during a big
step

ASYNCHRONOUS EVENT A generated interfact “Output” events
event of a big step is _ _|in RSML [63]
sensed as present in thd”) Previous bigl 5 «gaL s [89]

next big step after it is St€P dfects cur-
generated. rent big step

- (+) Modularity

input event, is either present from the beginning of a big steis not present at all.

There are several BSMLs that support the notion of interfmament event communication.
The “hybrid semantics” of Huizing and Gerth [50], which disfuishes between “local” and
“global” events, treats the “global” events of a model adoog to the Srong SyncHRONOUS
Event semantic option. The semantics of “output” events in RSMB] [®llows the Asyn-
cHroNoUS EVENT Semantics; an “output” event is generated by a componerd Y$&ND” com-
mand, and can be received by a component VRESEIVE” event in the next big step. Similarly,
the semantics of “registered” events in Esterél [1] folldtws Asyncaronous EvENT Semantics.
In “globally asynchronous locally synchronous (GALS)” ¢arages/[19, 89], the communication
of events within “local” components of a system follows tleenantics of the Rsent In WHOLE
option, and the “global” communication of events betweemponents follows the semantics of
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the AsyncHroNous EVENT Option.

Example 11 The model in Figuré-3.16 shows a door controller system, wisicesponsible for
unlocking the door to an industrial area only if the temperatinside the area is not above
40°C. The system has two componehtgsk and Thermometerseparated by the thick dashed
line. The two components communicate via two interfacetemgmecktempand heat There
are three environmental input eventsck, open andreset Eventunlockis the environmental
output event of the model. Consider the snapshot in whichrtbéel resides in itsdle and
Measurecontrol statestemp= 99, and evenbpenis received from the environment. If theke
Many big-step maximality semantics, tBevcLE concurrency semantics is chosen together with
the Srrong SyncHrONOUS EVENT Semantic option, then the big stéft;}, {te}, {t3}) is the only
possible big step, which, correctly, does not open the ddfahe Weak Syncaronous EVENT
semantic option is chosen, then additionadlys}, {t>}, {ts}) is a valid big step, which opens the
door although the temperature is 99°C. If tAeyncHroNOUS EVENT Semantic option is chosen,
the only possible big step i$t1}, {to}, {ts}), in which evenheatis sensed in the next big step,
after the door has already been opened.

3.5 Enabledness Memory Protocol

Theenabledness memory protoadla BSML determines the values of variables that a transitio
readsfor its guard condition (GC). Table 3.6 shows the three pmssinemory protocols: (i)

in the GC Bg Srep option, a read of a variable returns its value from the begupof the big
step; (ii) in the GC &aLL Srep option, a read of a variable returns its value from the bagoof

the small step; and (iii) in the GCdmBo Srep option, a read of a variable returns its value from
the beginning of the current combo steps such, in the GC B Srep, the GC SiaLL Srep, and
the GC @wmso Srep semantics, the lastrite of a value to a variable, via an assignment, during
the current big step, the current small step, and the cuoambo step, respectively, becomes
the value returned bym@ad of that variable in the next big step, next small step, and cembo
step, respectively.

6As shown in Tabl€3]6, in SCR[46.47], both the G& Brepr and GC S$iaLL Srep memory protocols are used,
but in different syntactic constructs of the language, namely in therigtables” and “condition tables”, respectively.
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Figure 3.16: Door controller system: using interface esbpatandchecktemp
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Table 3.6: Enabledness memory protocols.

| Options

Definition

Characteristics

Examples |

GC BiG Srep

The value of a variablg
during a big step is ob
tained from the begin
ning of the big step.

[ (+) Non-
| interference
(+) Modularity
)
sequentiality
small steps

Non-
in

statecharts[[45, 86]
SCR [46,[47], and
reactive modules [3]

GC SuaLL Srep

The value of a variabl¢
is its up-to-date value
obtained from the be
ginning of the small
step.

E(+) Sequentiality in
' small steps

(+) Straightforward
traceability

(-) Interference

and

Esterel [14]
SCR [46/47]

GC ComBO Srep

The value of a variablé
during a combo step i
obtained from the be
ginning of the combg@
step.

'3(+) Some  non-
interference
(+) Some sequen
tiality in small steps
) Complicated
traceability

Statemate [43]
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Traceability: Inthe GC Bg Srep semantics, the value of a variable at a snapshotin a bigstep i
obtained from the beginning of the big step, but the assignste the variable need to be traced
so that its value is updated for the next big step. In the G&LSSrer semantics, the value
of a variable at a snapshot in a big step is determined byngeali of the assignments to the
variable since the beginning of the current big step. In tke@wmso Srep semantics, the value
of a variable at a snapshot in a big step is determined byngaali of the assignments to the
variable since the beginning of the current combo step irbthestep. But a big step may have
several combo steps, which, compared to the other memotgqmis, could make the tracing of
the value of a variable complicated.

Modularity with respect to variables: In general, a semantics is “modular” if it treats the be-
haviour of a new concurrent part of the model the same as thevimur of the environment [50].
Originally, “modularity” was defined with respect to evefi§)], but, in the same spirit, | extend
its definition for variables. The GCi8 Srep is modular with respect to variables because even if
a new concurrent part of a model assigns new values to vasathle new values are visible only
at the beginning of the next big step, just like new environtakvalues. The other semantic
options are not modular because the behaviour of an adddiam existing model, unlike the
environment, fiects the intermediate snapshots of a big step.

Non-interference vs. sequentiality in small steps: The GC Be Step option isnon-interfering

an earlier small step of a big step does nfiect the read value of a later small step. Non-
interference is useful because it relieves a modeller omaiyat from considering the accumu-
lated dfect of assignments to a variable during a big step. The G&iSStep option, which is

an “interfering” semantics, is useful for specifying a seqce of computations where each small
step reads the values from the previous small step. Sealignis useful because it enables a
modeller to decompose a computation into parts that eadrigd out by a separate transition.
The GC @wmso Srep option enjoys non-interference inside a combo step andeseiglity of
combo steps. In the GCduso Step option, a big step could consist of multiple combo steps,
which a modeller needs to keep track of each of their scopes.

Variable operators: A BSML may provide avariable operatorthat obtains a value of a vari-
able that is dierent from its value according to its memory protocol. T&hlglists some com-
mon operators together with a brief description of their getics. It also specifies whether each
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Table 3.7: Variable operators.

| Operator | Obtains Value From | Memory Protocols | Total |
pre (e.g., [63]) big-step source snapshot | GC SuaLL Srep v
cur (e.g., [45]) small-step source snapshot| GC Big Srep v
new (e.g., [3]) small-step source snapshot| GC Bic Srer and GC X
SMALL STEP
new_small small-step destination GC SuaLL Srep v
(e.g., [85]) snapshot

operator igotal or not. A non-total operator maylock until it can be evaluated. As specified in
the table, each variable operator is relevant for certa@bkainess memory protocols.

Operatorpre returns the values of variables from the beginning of a bap,sthus it is
relevant for the GC @aLL Step enabledness memory protocol. Operater returns the up-to—
date values of variables, thus it is relevant for the GG S&ep enabledness memory protocol.
Operatomew is different fromcur in that it can be evaluated only if its operand has already bee
assigned a value during the big step, which means it reqaiféataflow” order for the execution
of small steps within a big step (cf., Sectlon]3.7). Thusrafmnew can be relevant for both the
GC Bic Srep and the GC &aLL Step enabledness memory protocols.

Operatomew_small returns the value of its operand at the end of the currentl sitequl. It is
used in the GC &aLL Srep enabledness memory protocol to look ahead the value of ablari
A variable in the GC of a transition that is prefixed with thew_small operator requires an
evaluation ordelbetween the transitions of the small step, in order to olitemewly assigned
value of the variable at the end of the small step. If a vagiabInot assigned a value during
a small step, then its value when prefixed with te@_small operator returns the value of the
variable at the source snapshot of the small Bté’wo transitions can creatgyclic evaluation
order by using thenew_small operator over variables that are assigned values by onbemot

Example 12 The following sequence of arrows shows a sequence of two Sieyad,

"It is possible to define a non-totaéw_small operator that returns a value for a variable, only if it isgssd a
value in the current small step. Such an operator would Hesigpirit of the “next” operator in SMV languade [58],
which is an input language for a family of model checkers \hita same name. However in the semantics of SMV,
unlike in BSMLs, even if a variable is not assigned a valuardpa small step, it is assigned a non-deterministic
value, which makes the “next” operator a total operator.
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t1:/vii=va+1 to:/Voi=vi+1

7

9

when v = v, = v3 = 0 at the beginning of the sequence.

Let us also consider a third transition,
tz: [(Ve+ Vo + V3) > 2]/V3 = Vy + Vp,

which is intended to be executed after the execution of theeatwo small steps.

If the GC SuaLL Srep enabledness memory protocol is chosen, after the exeaftipandt,,
the values of variables that are used to evaluat@sevill be vy = 1, v, = 2, and = 0. Thus,
gc(ts) is true andt; can be executed. #f is changed tds; : [(V1+ Vo +new_small(Vz)) > 2]/vz =
Vi + Vo, gdts;) will be true because of the evaluation ¥ 1, v, = 2, andnew_small(vs) = 3.
However, ift; is changed tds, : [(pre(vi) + pre(Vs) + pre(vs)) > 2]/vs := vy + Vo, gd(tso) will
be false because of the evaluatire(v,) = O, pre(v,) = 0, andpre(vs) = 0.

If the GC Bic Step enabledness memory protocol is chosen, after the execatibnand
t,, the values of variables that are used to evaluatésyavill still be v; = 0, v, = 0, and
vz = 0, from the beginning of the big step. Thus(tgccannot be executed. #f is changed to
tas : [(cur(vy)+cur(vy)+cur(vs)) > 3]/vs := Vi+V,, gQ(t33) will be true because of the evaluation
cur(vy) = 1, cur(v;) = 1, and cur(vs) = 0. If t3 is changed to transitiofs, : [(new(vy) +
new(V,) + new(vs)) > 3]/vs := V; + Vo, gQ(t34) cannot be evaluated becausew(vs) could have
been evaluated only ikwould have been assigned a value by the previous small steps.

Example 13 In Exampld 8, on pade b1, tleC SuaLL Srep enabledness memory protocol was
used. If the same semantic options that led to an incorrdeatieur in that example are used,
but the guard condition of transitiotg is changed to [new_small(c)< |p[]]” and its generated
event to eventdial(digit(newsmall(c)+ 1, p))’, then the model behaves correctl{ts}, {to, te},

{ta, te}, - - -, {ta}, {ts, t}).

The operators in Table 3.7 are not relevant for the G&#6 Srer memory protocol, but they
can be extended to be used in the context of G&iES Ster memory protocol. For example, a
version ofcur operator for the GC @uso Step semantic option would return the current value
of a variable considering all of the assignments to the Bégiaince the beginning of the current
combo step. Similarly, aew_small operator can be defined for the GGecBSrer memory
protocol.
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3.5.1 External Variables

As with events, it is useful to distinguish syntacticallytween the variables of the model that
can be modified by the environment and the variables of theeirtbdt can be modified by the
system[[79, 101]. Figufe 3.4, which depicts a taxonomy ehéy, also represents the taxonomy
for distinguishing environmental variables. Térvironmental output variablesxdenvironmen-
tal input variablesof a model are the sets of the variables of the model that caedzfrom
and written to by the environment, respectively. Tiernal variablesof a model are those vari-
ables that do not communicate with environmegfithe union of the set of environmental input
variables and the set of environmental output variablesobdel is its set oéxternal variables
The union of the set of environmental output variables ard#t of internal variables of a model
is its set ofcontrolled variableswhich is the set of variables that can be written to by the sys
tem. Many modelling languages, including some BSMLs, piewyntax to distinguish between
different types of variable5][3, 46,147, 79]. Unlike for everttg, motion of “non-distinguishing
BSMLs" (cf., Sectiori 3.4]1) is not relevant with respect &migbles, because most BSMLs either
syntactically distinguish between environmental inputatsles and controlled variables, or they
do not support the notion of environmental input variabkesll(i.e., variables are not assigned
values by the environment).

When external variables are distinct from the internalatalgs, the memory protocol seman-
tic aspects described in Sectidns] 3.5 3.6 specify thars#ra of internal variables. The
notion of memory protocol for environmental input variabie not relevant because they are
never assigned a value by a transition; they keep the same traloughout the big-step. Nor-
mally, an output variable is not read by the model, therefareption has been included for itin
the feature diagram. If an output variable is read by the madlde semantics of environmental
output variables can be any of the memory protocols, but itld/mot likely be the Bs Srep
semantics.

3.5.2 Interface Variables in GC

Some BSMLs allow a component of a model, which is usually asg@ayly distinct part of
the model, to communicate with another component of the inadenterface variables Fig-

8Internal variables are often called “private variablesheTterm “internal variables” is adopted to keep the
terminology of variables consistent with that for events.
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ure[3.15, which depicts the taxonomy of events includingriace events, can also describe
the taxonomy of variables including interface variabless f8r interface events, convention-
ally, an interface variable can be written to by only one comgnt (thesending componeht
but can be read by multiple components (teeeiving components The semantics of inter-
face variables, similar to memory protocols for internaiafles, specifies when a change to an
interface-variable value becomes the value returned bgcaéthat variable.

Table[3.8 lists the possible inter-component communioasiemantic options. In the GC
SrroNG SyNcHRONOUS VARIABLE Option, a write to an interface variable during a big step loan
read by the GC of a transition right from the beginning of tame big step; i.e., if an interface
variable is assigned a value, only this new value is reachdutie big step. In the GC Wk
SyNcHRONOUS VARIABLE Option, a write to an interface variable can be read aftewvdr@able is
written to, but the variable can also be read before it istamito, in which case it returns its
value from the previous big step (similar to the G&a&. Srer semantic option). In the GC
AsyNcHRONOUS VARIABLE Option, a write to an interface variable can be read by the Génhg
transition in the next big step (similar to the G@EBrer semantic option).

Blocking read vs. communication delay: The GC SronG SyncHrRONOUS VARIABLE Semantics is
compatible with the “zero-time computation” principle bétsynchrony hypothesis [10,/14]: The
value of an interface variable is exchanged between two ocoens in “zero-time”. However,
there should exist a “dataflow order” (cf., Sectionl 3.7) edwthe small steps of a big step so
that the value of an interface variable is read only afteag bheen assigned. A component that
is waiting for the new value of an interface variable is saith¢blocking It is possible for two
transitions to block cyclically on each other creating deekl In the GC Wak SyncHrRONOUS
VARIABLE Semantic option, a read operation on a variable never bldckst may return atale
valueof the variable from the previous big step or a newly assigradde from the current big
step. In the GC AvncHroNous VARIABLE Semantic option, a read operation on a variable never
blocks, but there is a delay of one big step between writingvavalue to a variable and reading
the new value.

Modularity with respect to interface variables: The GC SronG SyncHroNous VARIABLE and
GC AsyncHroNous VARIABLE Semantic options are modular with respect to interfaceabtes
because the value of an interface variable in these semaittie same throughout the big step,
similar to an environmental input variable. In these two aetits, the behaviour of a component
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Table 3.8: Semantic options for interface variables.

| Options | Definition | Characteristics | Examples |
GC Smwrong  Syn- | Either an interface varit : Composition
CHRONOUS VARIABLE able is not written to (+) MOdUI"fI”ty in reactive
during a big step, or all ) Blocklng read modules|[[3]
of its reads happen 611_and cyclic dataflow
ter it has been written to order
and it returns the newly
assigned value.
GC WAk Syn- | An interface variable . N/A
CHRONOUS VARIABLE can be read before cr(+) Non-blocking
after it is written to; read
in the latter case it () Stale values foi
returns the newly as_mterface variables
signed value.
GC Asyncaronous | The value written to ar : “Output”
VARIABLE interface variable durt (+) ~ Non-blocking variables in
ing a big step can be read RSML [63]

read in the next big
step.

(+) Modularity
(-) Delayed read
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that is added to an existing model is perceived as that ofriieament, when it comes to the
interface variables in the GC of transitions of the existimgdel. The GC Wak SyNcHRONOUS
VARIABLE Semantic option is not modular with respect to interfaceaddes because the value of
an interface variable may change during a big step, unligevetiue of an environmental input
variable.

Example 14 The model in Figuré_3.17 is similar to the model in Exaniple Wt has been
modified: (i) to use the interface variabfeat instead of interface eveheat and (ii) the func-
tionality of Locking the door is separated from the functionalities of entrollerof the lock
and theThermometerto allow for the lock to work with dierent controllers.

Let us consider the snapshot where the model residesluigsReady andMeasurecontrol
states, the door is closetemp= 99, heat= false, and eventpenis received from the environ-
ment. Also, let us choose tlsentacTic big-step maximality semantics, tBeveLE concurrency
semantics, th@resent INn REmainDErR event lifeline semantics, tHeC (and RHS) SviaLL Srep
enabledness (assignment) memory protocols, anGthé&rong SyncHrRONOUS Event interface
event semantics. If th@C Srrone SyncHRONOUS VARIABLE Semantic option is chosen, then the big
step({ty}, {ts}, {to}, {tg}, {t3}) is the only possible big step, which correctly does not operdbor.

If the GC Weak SyNcHrRONOUS VARIABLE Semantic option is chosen, then the big stgg, {te},
{t7}, {to}, {t2}) is also possible, which opens the door although the tempexad 99°C. Reversing
the order of{te} and{t,} yields another big step that opens the door. If B€ AsyncHrONOUS
VARIABLE Semantic option is chosen, then theevalue ofheatis only sensed in the next big step,
and thus the door is opened.

3.6 Assignment Memory Protocol

Theassignment memory protoani a BSML determines the values of variables that a transitio
reads when evaluating the righthand side (RHS) of an assghnitxactly the same semantic
options as those of the enabledness memory protocol ext3: B Srep, RHS SuaLL Srep, and

RHS Gomso Step. (Their names are prefixed with “RHS” instead of “GC”.) Thebledness and
assignment memory protocols of a BSML need not be the sage SR [46] 477]).In SCR_[46,

47], the RHS SiaLL Step assignment memory protocol is used together with a combimatf

the GC Bg Srer and GC SiaLL Srep enabledness memory protocols. The same advantages and
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disadvantages as the semantic options of the “enabledreasmy protocol”, in Table316, apply
to the corresponding semantic options of the “assignmentomgprotocol” semantic aspect, so
they are not repeated in this section.

Variable operators: The same four variable operators listed in Tdblé 3.7 can bd irsthe
RHS of assignments. However, when usingribe_small operator in an assignment expression,
it may be impossible to find an “evaluation order”. For exagpgbr two assignmentsy :=
new_small(b)-1 andb:=new_small(a)+2, which have a cyclic evaluation order, the valuaof
andb cannot be evaluated.

Example 15 The model in Figuré_3.18, which is adopted from an exampl@&®j,[is meant to
specify a computation that maintains the invariant taab has the same value before and after
the execution of a big step. Consider the snapshot where dldelmesides in its control states
S, andSy, a= 7, andb = 2. Let us choose th&nGLE concurrency semantics. If tHake Many
big-step maximality semantics together with RidS Bic Step assignment memory protocol are
chosen, then the end result would #e- 21 andb = 16, which maintains the invariant that
a—b has the same value before and after the big step. IRIH& SiaLL Srep sSemantic option is
chosen, then the model can create a big step that does notaimathe invariant; for example,
the execution of the big stéfi,}, {t}, {t3}, {t4}) results ina= 75andb = 18.

69



3.6.1 Interface Variables in RHS

Similar to the using of interface variables in the GC of tiioss, as described in Sectibn 315.2,
interface variables can be used in the RHS of assignmenite dfansitions of the élierent com-
ponents of a system. Exactly the same semantic options ss tbointerface variables in GC of
transitions can be used for the semantics of interface basan the RHS of assignments, but
their names prefixed with “RHS” instead of “GC”: RHS®¥NG SyncHroNous VaRrIABLE, RHS
WEak SyncHroNous VariABLE, and RHS Aynchronous VariaBLe. The interface variables in GC
semantics of a BSML need not be the same as its interfaceblesian RHS semantics. Similar
to the GC SronG SyncHrONOUS VARIABLE Option, a cyclic dataflow order might arise when the
RHS SronG SyncHrRONOUS VARIABLE Semantic option is chosen. The same advantages and disad-
vantages as the ones for the semantic options of the intepaoent variable communication, in
Table[3.8, are relevant for the corresponding semantioonptf the interface variables in RHS
semantic aspect. Therefore, they are not repeated here.

3.7 Order of Small Steps

Ata snapshot, whenitis possible to execute more than onksieyabased on the enabledness of
transitions with respect to guard conditions and evengéig, some BSMLs non-deterministically
execute one (the &ke option), while others order their executions either by agtic means (the
ExpLicir OrDERING Option) or bydatafloworders (the RrarLow option), as shown in Table_3.9.
Stateflow is an example of thexkLicit OrpERING OptiOn because the transitions of a model are
executed according to the graphical, clockwise order df tnrenas([22]. A dataflow order al-
lows only those sequences of small-steps where a trangitairwrites to a variable is executed
before a transition that reads the variable. The dataflowrartla model can be specified by an
explicit partial order between its variables (e.g., SCR lH), or via variable operatarew, as
described in Sectidn 3.5, to determine data dependencigsr@active modules][3]). In the stat-
echarts semantics of Pnueli and Shalev [86], the booleammtypassigned is used in the event
trigger of a transition to determine whether a variable sgsed a value during a big step or
not, which, in éfect, induces a dataflow order between small steps of the dyg Jthe ExpLicit
OrperING and DxrarLow options can be used to avert undesired non-determinismsiayi@living

9The GC SronG SyncuHroNous VariaBLE and RHS S$ronG SyncaroNous VARIABLE Semantic options for interface
variables, described in Sectibn 315.2 and Se¢fion[3.6speaively, can also introduce dataflow orders.
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Table 3.9: Order of small steps semantic options.

| Options | Definition | Characteristics | Examples
NoNE Small steps are nat S statecharts
ordered. (+) Simplicity [41,[45]
(-) Non-determinism T
ExpLicIT Execution of small . Stateflow [22]
ORDERING steps is ordered syr-(+) Control over ordering
tactically. (+) Control over non-
determinism
(-) Possible unintended order-
ing
DATAFLOW Small steps are or- . | SCR [46, [4T],
dered so that an as;-(+) Natural for some domaInSreactive mod-
signment to a varij (*) Control over  nony yes 31 and
able happens beforedéterminism statechartg [86]
it is being read. (-) Possible cyclic orders

the execution of the small steps that do not satisfy the orgeronstraints. In the BarLow
semantic option, each big step of a model might havefferdint dataflow order. ThexkLicir
OrpErING Option can be diicult to use because a modeller may introduce an unintenakst or
of transitions. The BrarLow semantics can be fiiicult to use because a modeller might create
a cyclic dataflow order, either directly or by transitivifjhe DstarLow semantics is compatible
with the domain of some synchronous hardware systems where is an inherent distinction
between the value of a variable at the beginning of a big step,when the clock ticks, and
during a big step when a value might be assigned to a variable.

Example 16 Consider the semantic options in Examigle 8, on pagde 51, ¢aatto an incorrect
behaviour. One way to fix the incorrect behaviour is to motfieymodel by moving the*:= Ip”
assignment frory to t,, changing the GC ag to “c¢ < [new(p) — 17, and its event generation to
“ dial(digit(newsmall(c)+ 1, p))’. Such a model then behaves correctiifts}, {to}, {ts}, {t3, ts},
-+, {ts}, {t4, t7}), because the dataflow order does not alligwandts to be executed together.

Example 17 In Example[8, theMany concurrency semantics was chosen together with the
Present INn NExT SuvaLL Step event lifeline semantics, which lead to an incorrect bebawi If
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the SingLE concurrency semantics would be chosen, then the model veoedde both a cor-
rect big step, and an incorrect, non-terminating big steg(€{ts}, {t2}, {ts}, {ts}, - - -)), non-
deterministically. However, if thExpLicit OrpERING Order of small steps semantics according to
the graphical, clockwise order of the arena of transitiormad be chosen, then the model would
always behave correctly{ts}, {t2}, {te}.{t3}, {ts}, {ta}, - - -, {t7}, {ta}).

3.8 Priority

At a snapshot of a model, there could exist multiple setsasfsitions that can be chosen non-
deterministically to be executed as its small step. Takl€ 3hows three common ways for
assigning a priority to a transition to avert non-detersmmi A set of transition$; has a higher
priority than a set of transitionk,, if for each pair of transitiong € T, andt, € T, eithert; has

a higher priority than, or they are not comparable priority wise.

The HerarchicaL option is a set of priority semantics that use the hieraathstructure
of the control states of a model to compare the relative pyi@f two enabled transitions. A
HierarcHICAL priority semantics is defined by itmsis which is one of the three valuesy&ce,
DestinaTioN, Scopg, and itsschemewhich is either Rrent or CuiLp. For example, &Pe-PARENT
is a priority semantics that gives a higher priority to a siion whose scope is the highestin the
hierarchy of a composition tree.

If a BSML semantics supports neither theo&:-CriLp nor the Sope-Parent priority seman-
tics, the semantic option dNPrioriTy is used to characterize it. In theoNPriorITY SEmantic
option, all transitions of a model have the same prioritye No PrioriTy Semantic option could
introduce undesired non-determinism because if more tharransitions are enabled at a snap-
shot, any of them can be taken. The RrioriTy Semantic option is useful when a modeller is
interested in using the hierarchy tree of a model only as aeadistinguish between the gen-
eral and the specialized elements of the behaviour of arsy$ig using high-level and low-level
control states of the model, respectively, without giviegtiner element of the behaviour a higher
priority than the other.

The ErLicit PrioriTy priority option explicitly assigns priority to the transihs of a model (e.g.,
by assigning numbers to transitions and giving a greater®ura higher priority([75]).

The Necarion or TriGGERs Option is not an independent way to assign priority, but wkes
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Table 3.10: Priority semantic options.

| Options | Definition | Characteristics | Examples |
HierarcHicAL | The source and destinatign o ScopPE-PARENT
control states of transitions(+) Simplicity _ in Statem-
determine priority. (-) Incomplete prior-| 4t [43]  and
Itization Source-CHILD N
Rhapsodyi[42]
ExpLicIT Each transition is given an ex- . .| Used in[75]
PRIORITY plicit, relative priority. (+) Exhaustive pri-
oritization
(-) Tedious to use
NecatioN  ofF | A transition is given higher : . | statecharts 6
TRIGGERS priority than %]';motherg by (+.) . Ex_haustwe P™ Esterel [[Iﬂ],ugn(]j
strengthening the event trig-or't'zat'on . Argos [68]
ger of the second transition(*) No additional
such that it is not enabledsymaxl
when the first transition i () Tedious to use
enabled.
No PRrIORITY All transitions have equal hit statecharts [41]

erarchical priority.

(+) Avoid unin-
tended priority
(-) Non-determinism
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notion of “negation” to assign prioritie$; can be assigned a higher priority thiaiyy conjoining
the negation of one of the positive events in the triggds @fith the events in the trigger of.

Exhaustiveness vs. simplicity: The HerarchicaL option can be easily understood by a mod-
eller, but may render many transitions as priority incomapé. The Epricit PrioriTy Option
provides greater control over specifying the relative gfyoof a set of transitions, but can be
tedious to use. For example, a wrong relative priority fora@ pf transitions can be deduced
transitively, although a modeller may not have been awamioh an indirect, transitive prior-
itization in herhis model. In the Ncarion oF TriGGers and ExprLicit PrioriTY Options, it can
be dificult to identify the pair of transitions where it is necegstr assign a relative priority
because whether two transitions are both enabled or notmmadl step depends on the source
shapshot, and not merely on the syntax of a model. But in jplicit is possible to specify a
priority scheme for a model exhaustively.

Combination of priority semantics: It is possible to use more than one priority semantics in
the semantics of a BSML, as shown in the feature diagram iarEi.2. In such a BSML, if two
transitions are not comparable according to the first gyi@@mantics, then they are compared
according to the second semantics, and so on. By the defimfienabledness, if theddarion

of TRIGGERS IS used in a BSML, its semantics overrides the other pri@gyantics.

Example 18 In Examplé_B, on pade #4, if tf@~GLe concurrency and th&cope-ChiLbp priority
semantics are chosen together, then the model always eséftu}) as its big step, allowing the
call to go through.

Example 19 In the model in Figuré_3]5, on pa@el38,is assigned a higher priority than by
conjoining the original event trigger df, dial(d), with the negation of the event trigger Bf
dial(d) A redial resulting int; having the event triggetial(d) A —redial The gfect is thatt, will
be chosen when thredialevent occurs instead bof.

Example 20 In Exampld_1ll, on pade b8, if transitidgis given a higher priority thar, explic-
itly, then the choice of th@&Veak Syncaronous EvENT Semantic option always yields a correct
behaviour (i.e., the door is not opened when the temperasuadove 40°C). Similarly, in Ex-
ample14, if transitiorg is given a higher priority thart; explicitly, then the choice of th&/eak
SyNcHRONOUS VARIABLE Semantic option always yields a correct behaviour.
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Remainder of thesis: In the remainder of the thesis, for the sake of brevity, ohly &ope-
Parent and Sore-CuiLp hierarchical priority semantics are considered. Howehersemantics

of other HerarcHicaL priority semantics are very similar to these two. Also, theikcir Pri-
ORITY Semantics, which is not a common priority semantics, is nasiered in the remainder
of the thesis, except in Sectibn 7.13.3, where the feagilofitormalizing this semantics is dis-
cussed. A formalization of thexieLicit PrioriTy Semantics can be found in template semantics

[73,(74].

3.9 Combo-Step Maximality

The combo-step maximality semantics specifies the exteantohtiguous segment of a big step
where computation is carried out based on the statuses ofseaedor values of the variables at
the beginning of the segment. As specified in Fiquré 3.3, timebo-step maximality semantics
is relevant for a BSML semantics only if at least one of¢henbo-step semantic optigmamely,
Present IN NExT ComBo Step, GC ComBo Srep, or RHS Gwso Srep, is chosen in the semantics.
These options describe how the statuses of events and wdiversables change (or not) within a
combo step. For example, if a BSML uses th@dent in NexT Comso Step and GC ©mBo Step
options, then during a combo step (other than the first cortdpd the big step) the statuses of
events depend on the generated events of the previous caefy@sd the values of variables in
GC of transitions depend on the assignments performed iprhwous combo step.

Table[3.11 shows the three semantic options for the comdgrsaiximality semantic aspect.
These options are similar to the three semantic optioniéobig-step maximality semantics, but
specify the scope of a combo step, instead of a big step. I@dkheo Syntactic option, a BSML
allows a modeller to designate a basic control state of a tramdacombo stableontrol state.
During a combo step, once a transitiotinat enters a combo stable control state is executed, no
other transition whose arena overlaps with the arenacah be taken during that combo step.
In the GomBo Take ONE Option, once a transitiohis executed during a combo step, no other
transition whose arena overlaps with the arenaaan be executed during that combo step. As
such, eaclOr control state can contribute a maximum of one transition ¢orabo step. The
Comso Take Many option allows a sequence of small steps to continue exegutitil there are
no more enabled transitions to be executed. In practiceB8MLs that use the @iso TakE
One option for the combo step maximality semantics use tha& Many option for the big-step
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Table 3.11: Combo-step maximality semantic options.
| Options | Definition | Characteristics | Examples |

ComBo Syntactic | No two transitions with . N/A
overlapping arena3(+) Syntactic scope for

that enter designatedcombo steps_ .
“combo stable” contro (+) SequentialOr transitions

states can be taken in|d" @ combo step -
same combo step. (-) Non-terminating combg
steps

Comso Take One | No two transitions with Terminati bo steps RSML [63]
overlapping arenas caln(+) erminating combo Steps 54 - state

be taken in a Sama(+) Unclear, non-syntactlzmatem]
scope for combo steps

combo step.
CoMBO Take | No constraint on transir ] N N/A
M ANY tions that can be taken(H) SeaquentialOr transitions

in a combo step
(-) Unclear, non-syntacti¢
scope for combo steps
() Non-terminating combg
steps

in a combo step.

maximality semantics (e.g., RSML [63] and Statemate [43p specified in Figuré 3l3, the
ComBo TAkE Many combo-step maximality semantics cannot be chosen togeiliethe Take
One big-step maximality semantics, because a combo step camutotle more small steps than
its big step. The same advantages and disadvantages asth®othe semantic options of the
big-step maximality semantic aspect are relevant for thieesponding semantic options of the
combo-step maximality semantic aspect.

Scope of a combo step: In the Gomo Syntactic Semantic option, the end of a combo step can
be traced syntactically, which can be helpful for consingcend understanding a model. The
scope of a combo step when themMgo Take OnNe or the Gwmeo Take Many is chosen is more
difficult to determine. For example, if thedf@sBo Take Many combo-step maximality semantics,
along with the Resent v Next ComBo Step and GC @mso Step semantic options, are chosen,
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t1: swaptwice/a:=b; t: swaptwice/b:=a;

“swapa “swapb
A J
i t3. swapa/a:=b; ' t4: swapb/b:=g;

Figure 3.19: Swapping andb twice, using combo steps.

(S /

then a combo step of a big step continues until there are ne tnansitions that are enabled
with respect to the generated events and the assignmethts pfevious combo step. In such a
semantics, it is far from clear what the possible combo stepd thus big steps, of a model are,
based on mere review of the syntax of the model.

Example 21 The model in Figur€_3.19 is meant to swap the values of vargdhnd b twice
during a big step, maintaining their original values. Letalsoose th&Como Take ONE Option

for the combo step maximality semantics, Taee Many option for the big-step maximality se-
mantics, theSInGLE concurrency semantics, and the semantics that the statfiseents and the
values of variables are fixed during a combo step (i.e. RS Gomso Step, and thePrESENT IN
Next ComBo Srep sSemantic options). Upon receiving the environmental igwaintswaptwice,

the model executes transitionsandt,, at which point the first combo step concludes. The sec-
ond combo step starts by first considering tlfeas of the transitions of the first combo step,
l.e., the gfect of swapping the values afand b and the @ect of generating eventsvapa and
swapb, and then executing transitiorig andt,. At the end of the second combo step the big
step concludes and the valuesadndb are the same as their values at the beginning of the big
step. If the gect of the assignments of the transitions are not hidden émenanother during a
combo step, the correct behaviour cannot be achieved. Fimple, depending on whethigror

t, is executed first, bothandb are assigned the initial value &for a, respectively.
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Choosing theTake Many big-step maximality semantics, tMany concurrency semantics,
the Present IN Next ComBo Step event lifeline semantics (or tHeresent IN REMAINDER event
lifeline semantics), and tiRHS SuaLL Step assignment memory protocol, also yields the correct
behaviour. While such an equivalence of behaviour holdsémne models, it does not always
hold. For example, if there is a possibility for race condiits (e.g., in Example_22) or if it is
important whether a model can reach certain configurationanitrol states or not, then it is not
possible to replace th&incLE concurrency semantics with tivany concurrency semantics.

Example 22 The model in Figuré_3.20 shows a simple model of a system ¢imétots the op-
eration of a chemical plal@ The operation of the plant relies on two chemical substarces
andB. There are two processes, shown as two Or control statesessl andProcess2, which
can independently increase the amounts of substafcasd B by one unit or two units, re-
spectively. The two processes may simultaneously requeastfease; i.e., environmental input
eventanc_oneandinc_two might be received at the same big step. Variallasdb represent
the amount of requested increase for substalh@nd substanc®, respectively. Environmen-
tal output evenstartprocess(ab) instructs a physical component of the plant to increase the
amounts of substancgé and B, by amountsa and b, respectively. Internal evemrocessis
meant to instruct th€ontrollerto increase the amounts of the substances. Environmermtad in
eventend processsignifies that the requested amounts of the substances keaweshbiccessfully
increased by the physical component of the plant, at whightgbe system can process new
requests.

Consider the snapshot where the model resides in its detaulirol states,inc_one and
inc_two are received, and andb are zero. The correct behaviour is to increase the amouAt of
andB by three units. Let us choose tGemso Take O~k option for the combo step maximality se-
mantics, thel'ake One option for the big-step maximality semantics, and$heLe concurrency
semantics. The only pair of semantic options that yield asmmbehaviour are, th&RESENT IN
Next Comso Srep for the event lifeline semantics and tR&1S SaaLL Srep semantic option for
the assignment memory protocol semantics, which prodwcttlowing two correct big steps:
{ta}, {ta}, {ts}) and({{t3}, {t1}, {ts}). If, for example, th&@resent iIn NexT Comso Step event lifeline
semantics is chosen together with fRREIS Comso Srep assignment memory protocol, the same
big steps as before are produced, but the former big stegasas the amounts Afand B by

10This example is inspired by the motivating example_in [2] endhsequence diagrams are used for modelling an
aspect of the operation of a nuclear power plant.
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ts: end.procesga:=0; b:=0;

Figure 3.20: Controlling the operation of a chemical plant.

two units only, whereas the latter big step increases theusnsoofA andB by one unit only. If
the Present IN REMAINDER event lifeline semantics is chosen together withRIHS Saarr Step
assignment memory protocol, which means that there is nd teeehoose any semantic option
for the combo-step maximality semantic aspect, the adiditioig step({t,}, {ts}, {t3}) is possible,
which ignores the increase requested?rpcess2.

Example 23 In Example[7, on page b1, some possible semantics to maketimec in Ex-
ample[3 to behave correctly were enumerated. Another plessémantics is a semantics that
subscribes to th€omeo Take ONE combo-step maximality semantics, fhee ONe big-step
maximality semantics, th&ncLE concurrency semantics, and tReesent in Next ComBo Step
event lifeline semantics.

Example 24 Another way to maintain the invariant in Example 15, on pafeié to choose
the ComBo Take ONE combo-step maximality semantics, theke Many big-step maximality
semantics, and thBRHS Comeo Srep assignment memory protocol. The execution of the first
combo stepit,}, {t3}, results ina= 9 andb = 4, and the execution of the second combo dtg],

{t4}, results ina = 27 andb = 22. The order of the execution @i} and{ts}, and,{t,} and{t,}, do

not gfect the end result. If th€omeo Take Many combo-step maximality semantics is chosen,
then the invariant would be maintained, but the big step kales witha = 21 andb = 16.

79



3.10 Semantic Side Hects

In this section, a fevgide gfectsthat arise when a group of semantic options are chosen &geth
are described. Also, it is explained how these sidlects can be avoided. The choice of a group
of semantic options has a sidext when it causes a semantic complication that is not dueeto t
original design of any of the semantic options. A sitieet can sometimes be tolerated because
the benefit of having a set of semantic options in a BSML oujhvetheir caused complication.

3.10.1 Complicated Event Lifeline Semantics

Choosing the Akt ONE big-step maximality semantics when thieeR:nt v WHoLE event lifeline
semantics is used in a BSML semantics, achieves a less aatgalisemantics, as is done in
Argos [68]. The kke One semantic option introduces less complication compareti@émther
big-step maximality semantics because the status of art @varbig step can be identified by
considering at most one transition of each of the non-oppitey arenas of a model. Similarly,
| recommend to choose thake ONe semantic option, when choosing ther&vG SyncHRONOUS
Event semantic option for interface events.

3.10.2 Cyclic Evaluation Orders

To avoid a “cyclic evaluation order” when using thew_small operator, as described in Sec-
tion[3.6, a conservative well-formedness criterion camlthss small steps whose assignments
create cyclic evaluation orders. Such a well-formednassria depends on the choice of the se-
mantic options for th&mall-Step Consistency andPreemption semantic aspects. For example,
consider a BSML that subscribes to theefs OrtHoGoNAL SMall-step consistency semantics
and the ReemptivE preemption semantics. For such a semantics, a consernvagiv®rmedness
condition to avoid a cyclic evaluation order is to requiratttior every pair of orthogonal control
statesS; andS,, if the arena ot is Sy, or a descendent &, andt usesnew_small(u) in the
RHS of its assignmerd; and assigns a value to variabén assignmenég,, then there is n¢/
whose arena i§;, or a descendent @&,, and usesiew_small(Vv) in the RHS of its assignment
aj, together with assigning a valueian its assignmend,.
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3.10.3 Ambiguous Dataflow

An ambiguity arises for a dataflow order if a variable is predioy thenew operator but it is
assigned values more than once during a big step.fi#kcgnt, but not necessary, condition for
an unambiguous BarLow order of small-steps is to require thekE One big-step maximality
semantics with each variable assigned a value only by thsitrans that have the same arena, as
is done in SCRI[46, 47] and reactive modulées [3]. Similatig Take ONe Semantic option can
be chosen together with the GErB~nG SyncHrRoONOUS VARIABLE OF the RHS $rRONG SyNCHRONOUS
VARIABLE Semantic options for interface variables, to avoid amlygui obtaining the value of
an interface variable.

3.10.4 Complicated Explicit Ordering

In the ExpLicit OrRDERING SEMantic option, when the small steps of a big step are at@eword-
ing to the order of the arenas of the transitions of the big,dieing able to take two transitions
with the same arena in the same big step causes complicata®fining the semantics. For ex-
ample, if the Kke Many big-step maximality semantics is chosen, a complicatisearmhecause
a big step may consist of several rounds of small steps, sdrtieesmall steps belonging to
the same arena. To avoid a complicated semantics atkeOne big-step maximality semantics
could be required when thexkLicit OrberiNG Order of small steps semantics is chosen.

3.10.5 Partial Explicit Ordering

Frequently, the &GLE concurrency semantics is chosen with therikcir OrberiNG Order of
small-steps semantics when thepkcir Orpering Ordering allows only one transition to be
taken in each small step. However, if the ordering is partahierarchically-based, then the
MaNY concurrency semantics can also be used.

3.10.6 Inconsistent Preemption and Priority Semantics

When the ReempTIvE preemption semantics is chosen, the choice of the pricgityastics deter-
mines whether the interrupt transition has higher or lowerpy than non-interrupt transitions.
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For example, giving the highest priority to a transition whalestination control state is the low-
est in the composition tree, i.e., the choice of theiarion-CriLb Semantics, has thefect of
giving interrupt transitiort in Figure[Z.2(b) a higher priority thar, which is an intuitive, de-
sired behaviour. Similarly, thecBpe-Parent priority semantics gives transitidrin FigurelZ.2(a)

a higher priority than transitioti.

3.10.7 Conflicting Maximality

The choice of the Sractic semantic option for the big-step maximality semantics tiogiewith

the choice of the @uso SyntacTic Semantic option for the combo-step maximality semantic
aspect means that a small step may move a model to a snapsti@ thle model resides in a
pair of orthogonal control states, one bein§table control state and the othelGombo Stable
control state. In such a snapshot, it is unclear whetheruheit combo step has concluded, or
not. Alternatively, choosing theake Many semantic option for the big-step maximality semantic
aspect and thed&so Syntactic sSemantic option for the combo-step maximality semantieeisp
avoids this problem.

3.11 Validation: Specifying the Semantics of BSMLs

In the semantic framework in this chapter, a BSML is desctibg, first, describing how its
syntax can be translated to the normal-form syntax, and #rammerating its choice of semantic
options. The syntactic translation to the normal-form ayns straightforward for most BSMLs,
as briefly discussed in SectibnR.3. Tdble B.12 shows théfiagion of the semantics of some of
the BSMLs that were considered throughout the chapter. tabig validates that the semantics
of a wide range of languages can be described by enumeragngphstituent semantic options
of each. Chaptdr4 complements this validation by formadjznost of the semantic options in
my big-step semantic deconstruction.

For the sake of brevity, thExternal Output Events semantic aspect is not included in Ta-
ble[3.12. Also, some aspects have been merged; e.ggnididedness Memory Protocol for
Internal Variables in GC merged withinternal Variables in RHS semantic aspects.
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Table 3.12: Example BSMLs and their semantic options.] ((#&rel statecharts, [86]: Pnueli
and Shalev statecharts, [63]: RSML, [43]: Statemate, [E4}erel,[[68]: Argos/[46]: SCR, and
[3]: reactive modules.)

| Semantic Aspects Semantic Options

|[45] [86] [63] [43] [14] [68] [46] [3]|

SYNTACTIC v
Big-Step Maximality TAKE ONE Va4 |V
TAKE MaANY v
SINGLE v v v v
Concurrency . v v %
] SoURCE/DESTINATION ORTHOGONAL
Small-Step Consistency Amr ORtoCo v v v
NoN-PREEMPTIVE v v
Preemption
PREEMPTIVE
PRESENT IN WHOLE v v
PRESENT IN REMAINDER v v
(Internal) Event Lifeline PreSeENT IN NExT ComMBO STEP v
PRESENT IN NEXT SMALL StEP
PRESENT IN SAME
] SyNTAcTIC INPUT EVENTS v v
Environmental Input RECEIVED EVENTSs As ENv. v v v
Events
HyBRrID INPUT EVENT
STRONG SyNCHRONOUS EVENT
(Interface) Event Lifeline WEAK SyNCHRONOUS EVENT
AsYNCHRONOUS EVENT v
(Internal Variables) GC/RHS BiG Srep Va4
Enabledness Memory GC/RHS Gomeo Step v
Protocol GC/RHS SuatL Step v v v
GC/RHS SRONG SYNCH. VARIABLE v
(Interface Variables)
GC/RHS WEAK SyNCH. VARIABLE
Memory Protocol
GC/RHS AsynNcH. VARIABLE
CoMBO SYNTACTIC
Combo-Step Maximality ComBo TAKE ONE v
ComBo TAKE MaNY
NoNE v v v v
Order of Small Steps ExpLiciT ORDERING
DararLow v v v
HIERARCHICAL v
Priority ExpriciT PrioRITY
NEGATION OF TRIGGERS v v v v v v
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3.12 Related Work: Semantic Categorization and
Comparison

Compared to the related work, my deconstruction in this tdragpvers a more comprehensive
class of BSMLs and range of BSML semantics. Relative to previcomparative studies of
different subsets of BSMLs (e.g., statecharts varianis [99 30@Ichronous languages [40], Es-
terel variants[[16, 93], and UML StateMachinés|[92]), my alestruction isolates the essential
semantic aspects in a language-independent manner amthmaéthe big step as a whole.

Parts of my big-step semantic deconstruction overlap vighseminal comparison of state-
charts variants by von der Beeck [99]. Théeience here is that: (i) | consider a broader range
of languages, in addition to statecharts; (ii) the big-semantic deconstruction presents a de-
composition of BSML semantics into semantic aspects arid¢beesponding semantic options
that lend itself to formalization, as opposed to the congmericriteria in[[99], which does not
have a similar structure: it consists of a mixture of syntastemantic, and semantic-definition
method criteria; and (iii) the big-step semantic decortsion considers additional semantic con-
cepts that do not have counterparts’in/ [99]. For exampleSithall-Step Consistency semantic
aspect, the kisent INn Next SvaLL Srep and the Resent v Next Comso Step semantic option of
theEvent Lifeline semantic aspect, the enumeration of the semantic optiahe Bhabledness
Memory Protocol andAssignment Memory Protocol semantic aspects, etc. are not considered
in [99].

Maggiolo-Schettini, Adriano Peron and Simone Tini consitteee semantic variations of
events according to the semantics of statecharts by PmaBhalev([85], Maggiolo-Schettini,
Adriano Peron and Simone Tiri [66], and Philips and SchioB] & a structural operational
semantics (SOS) framework [67]. They consider a commonragyiih the form ofstatecharts
terms adopted from the syntax proposed by Uselton and SmolKa [Bbis syntax resembles
the compositional syntax of process algebras; it does mimtivariables and does not allow
interrupt transitions whose source and destinations hefereht parents: The source and des-
tination control states of a transition “must be siblingamor-state./[95] This common syntax
enables them to study and compare each of these event sesnaasied on how flerent sim-
ulation relations in process algebras, e.g., ready sinounld®], are or are not a congruent with
respect to composition operators in the syntax. In thisediaton, the aforementioned event
semantics are considered in Secfiod 3.4, in the contextrafaunal-form syntax, which is more
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expressive than the one in_[67]. Our normal-form syntax, éx@x, does not lend itself to the
analysis of the kind of congruence and pre-congruence piepeonsidered in [67], because it
Is not compositional.

Huizing and Gerth[[50] compare simple BSMLs that have onlgnés, covering most of
the event lifeline semantic options and the observabilitgu@nts among components. My de-
construction describes these options more concisely amteplthem in the context of other
semantics aspects for BSMLSs.

Comparable to thparameterandparameter values) template semantics [75,176,174], here
| have introduced semantic aspects and semantic optiongldge semantics is aimed at imple-
mentation parameters that all describe variations of sgt@fis semantics. Because | consider
a big step as a whole, my semantic deconstruction is preseta higher level of abstrac-
tion, with more understandable variation points; i.e.hegemantic aspects vs. 22 parameters
in template semantics. Furthermore, additional semaspeds, such as th@ncurrency and
Consistency, External Input Events, and theCombo-Step Maximality semantic aspects, are
considered here, which are not present in template sersadliso, for some common semantic
aspects, additional semantic options are introduced;ie.the Enabledness Memory Protocol,
the new semantic optiorrEsent v NexT ComBo Step iS introduced.

3.13 Summary

This chapter presented the big-step semantic deconstnifciimework for the family of BSMLSs.
The framework consists of eight semantics aspects and anexation of the common semantic
options of each of the semantic aspects. A BSML semanticessribed in this framework by
enumerating its semantic options. Table B.12, on pa@le 88ssthe semantic variations of a
set of common BSMLs in my framework. Furthermore, the chaptesented an analysis of
the comparative advantages and disadvantages of the sesr@gtions of each semantic aspect,
together with many example models that describe each senggation. Some combinations of
the semantic options create new BSML semantics not fourioeititerature. Lastly, the chapter
enumerated a few combinations of the semantic options teate BSML semantics that er
from side dfects. These siddiects can make the specification and comprehension of a BSML
semantics dificult.
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Chapter 4
Semantic Formalization

“Frege ridiculed the formalist conception of mathematigsaying that
the formalists confused the unimportant thing, the sigth wie
important, the meaning.” ... “Frege’s idea could be exmédgbus: the
propositions of mathematics if they were just complexesashes, would
be dead and utterly uninteresting, where as they obviowslg h kind of
life.” ... “Butif we had to name anything which is the life dfa sign,
we should have to say it was itse” [100], p.89-90]

Ludwig Wittgenstein

This chapter presents a formal, operatisgehantic definition schenfiar my big-step semantic
deconstruction framework for BSMLs. This schema is parametith respect to the BSML
semantic aspects. A particular BSML semantic definitiondtamed by instantiating the pa-
rameters of the semantic definition schema. As such, a senggftnition produced in this
framework is “prescriptivel[5,4]: The formalization ofélrsemantic options of a semantics can
be traced clearly in its semantic definition.

The formalization of the parameters covers most of the sémaptions described in Chap-
ter[3. The few semantic variations that are not covered aresiion-aware semantics. These
convolute the role of structural and enabledness semasypexrss. The diiculties of formalizing
these semantics prescriptively are discussed.

The remainder of this chapter is organized as follows. 8@l introduces the parametric
semantic definition schema together with the semantic iootélhat are used to formalize the
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Figure 4.1: Steps.

big-step semantic deconstruction. Seclion 4.2 preseatsythtactic notation that formalizes the
syntactic concepts presented in Chapter 3. Seffidn 4.3alyrmescribes how a BSML model
moves from one configuration, i.e., one set of control statesnother, upon the execution
of a small step. This semantics is common to all BSMLs. Sasfib4 and_4]5 present the
formalization of the structural and enabledness parametiethe semantic definition schema,
respectively. Sectidn 4.6 considers the related work.

4.1 Overview of Semantic Definition Schema

This section presents an overview of my semantic definitiethad by describing my semantic
definition schema and its parameters. The values of the pdeasnare described in the subse-
quent sections.

As depicted in Figure 411, copied here from pagk 24 for coievee, a big step is an alter-
nating sequence of snapshots and small steps in reactioneiavdonmental input. An environ-
mental input, which is typically denoted lbyas in Figuré 4]1, consists of a set of environmental
input events and a set of variable assignments.

Figurel4.2 shows the parametsemantic definition schentlat is used to define the seman-
tics of a BSML. The highest level predicate of the semantimd®n schema iNgjg, in line 1;
it characterizes all of the big steps of a model. Predibijgis a ternary relation consisting of
tuples each of which is a big step of the model: snapslgbis the source snapshot of the big
step;| is an environmental input; and snapslsqtis the destination snapshot of the big step,
after a sequence of small steps are executed. A snapshot®¥h Brodel consists of a set of
shapshot elements that together represent a moment in ¢oaten of the model. A snapshot

87



rese(si, 1, sp A (Fk > 0- N¥(sp sp))
A executabléoot, sp) = 0

/\ reset_el(sp@, 1, sp

1<i<n

sp=sp

3r,sp’ - Nsma(SR 7, sp’) A N¥(sp’, sp)

/\ next_el(sp 7, sP) A T € executabl@oot, sp)

1<i<n

1. Ngig(sp, I, sp)

2.rese{s, |, sp
3. N(sp sp)

4. N“(sp sp)

5. Nsmal(Sp 7, Sp)

Figure 4.2: Semantic definition schema.

element is used to model an enabledness semantic aspeetBSML. It is defined via its type,
which permits to create a set of elements of that type, arektpredicates that specify how it
changes. Theeset predicate specifies thdfect of receiving an environmental input on the
shapshot element; then predicate specifies whether a transition is enabled witheaso the
value of snapshot element in a certain snapshot; andetke predicate specifies how the value
of snapshot element changes when a small step is executedgn@pshot elements that are used
in the formalization of the semantics of a BSML depend on thabéedness semantic options
that the BSML uses. Two BSMLs that subscribe to the same edabks semantic option use
the same corresponding snapshot elements for the semaiibn.o The formal definition of
snapshots and snapshot elements are presented in $eiibn 4.

In Figure[4.2, when an environmental inpuis received at snapshatd (via predicate
“reset on line 2), k small steps are executed (via predichten lines 3 and 4), and the big
step concludes at snapsheytf, when there are no further small steps to be taken, i.e., when
executabl@oot, sg) = 0. The term ‘executabl@oot, sp” specifies the set gbotential small
stepsof the model at snapshaip that each can bexecutedas the next small step. The value
of “executabléoot, sp)” not only depends on then predicates of the snapshot elements of the
BSML, but also the structural semantic aspects of the BSMie résetpredicate in line 2, is
the conjunction of thereset predicates of the snapshot elements of the BSML semantics; i
specifies the féect of receiving the environmental inpufor the set ofn snapshot elements of
the BSML. Line 5 specifies the operation of a small step thinaihg predicatdNsy,,. Predicate
Nsmai iS the conjunction of theext predicates of the snapshot elements of the BSML semantics.
The dfect of executing a small step is captured in the destinatiapshot of the small step. The
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Figure 4.3: The structure of the semantic definition schema.

Nsman predicates are chained together via bheelation to create a sequence of small steps, as
shown in lines 3 and 4.

Figure[4.B depicts the constituent predicates of the sema@gtinition schema in Figuie 4.2.
The predicates that are parameters, i.e., their definittangin different BSML semantics, are
surrounded by a box. A rounded box corresponds teraabledness parametewxhich in turn
corresponds to an enabledness semantic aspect. A soliccpresents atructural parameter
which in turn corresponds to a structural semantic aspeRecdll that semantic aspects are
partitioned into structural and enabledness semantictses shown in Figute 3.2, on pagé 32.)
Avalue for an enabledness parameter is a set of snapshamigreach of which is characterized
by a type, and @eset, anen, and anext predicate. In Figure 4.3 snapshot elements, namely,
ely, eb, - - -, el,, are shown together with their corresponding predicateglie for a structural
parameter is one of the following two kinds of values: (iheitit is a predicate that determines
which enabled transitions can be included together in tieessmall step, in the case of the
formalization of theConcurrency and Consistency semantic aspect; (ii) or it specifies a certain
way that the hierarchy tree of a model should be traversedhwieating a small step, in the case
of the formalization of thériority semantic aspect.

In Figure[4.3B, a solid arrow specifies that the predicate énsthurce of the arrow uses the
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predicate in the destination of the arrow (the destinatiba solid arrow must be a predicate).
A dashed arrow is dierent from a solid arrow in that the destination of a dashealais not a
predicate: In the case of dynamic paramet®tg,’, the parameter refers to an already-defined
shapshot element that maintains the up-to-date valuesofahables of a model (one ef’s,

1 <i< n, snapshot elements); in the case of structural paramétettie parameter refers to the
name of the attribute grammar that is used to compute thepatemall steps.

Lastly, in Figurd 4.3, functiomn.trs returns the set of enabled transitions in a set of given
transitions; it uses predicaé&n, which determines whether a single transition is enablatbbr
These functions are described in Secfion 4.1.2.

4.1.1 Snapshots and Snapshot Elements

This section presents some notation for defining and actgeseapshots and snapshot elements.
A snapshot of a model is a valuation of the snapshot eleménteonodel. A BSML seman-
tics uses a set of snapshot elements that are determined bgnistituent enabledness semantic
options of the BSML. If two BSMLs subscribe to the same seiwganyition of an enabledness
semantic aspect, then they use the same snapshot eleméotn&dize that semantic option.
This approach is as opposed to template semantics [75]evdifégrent semantic options could
use the same “snapshot element”, but witifedtent parameters; cf., Sectibnl4.6 for more de-
tail. Each snapshot element represents an aspect of theibahaf a model. For example, a
BSML that uses variables has a snapshot element that kessal the values of variables by
maintaining a set of tuples, each of which consisting of zade name and its current value.

The following conventions are used in the formalizationrdsshots and snapshot elements.
The identifierspitself, or spwith a superscript, is used as the name of a snapshot;s@.gnd
sp. The name of a snapshot element always uses a subscriptcdssa snapshot element in a
snapshot, the snapshot element name is annotated withhkesstipt of the snapshot; e.&,
andS; access the snapshot elem8pin snapshospand snapshap, respectively.

A snapshot elemerm; is characterized by its type, and three predicates:

i reset_el(sp, |, sp), which specifies how the value ef changes at the beginning of a big
step, at a snapshat®, when an environmental input, is received, to result in snapshot

Sp
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i next_eli(sp 7, sp), which specifies how the value ef at a snapshogp, is changed when
an small stepr, is executed, to result in snapstsq; and

i en_eli(t, sp, which specifies the role @l in determining a transitiort, as enabled at a
shapshotsp.

The set of all snapshot elements that are used by a BSML smsiasitdenoted bySpEl =
{ell3 e|2, ) eln}-

In the above predicates for snapshot elensénsnapshots®, sp, andsp can be replaced
by the snapshot elements that each predicate needs at gaels@tnapshots. However, | chose
to pass an entire snapshot to the predicates to achieveanitif in dealing with the predicates
of different snapshot elements; e.g., when conjoiningetihgredicates of a set of snapshot
elements.

Thereplace operator®, replaces the value of snapshot element(s) in a snapshoawigw
value of the same type. For exampdgf @ {el,, e, - - -, el} replace=el;, el;, - - -, andel;, with
valuesel,, el , - - -, andel,, respectively.

4.1.2 Enabledness of a Transition

The enabledness of a single transition of a model is detewinry the enabledness predicates
of the snapshot elements that are used in the semantics BSié that the model is specified
in. The enabledness of a transition at a snapshot does n@rgea its execution, because, for
example, an enabled transition with a higher priority cgolaee it. The following predicate
specifies whether a transitian js enabledat a snapshogsp,

ent,sp = A en_el(t, sp.

1<i<n

Intuitively, transitiont is enabled as pif its source control state is in the set of current control
states; its guard condition is satisfied; the events iniggér that are in positive form are present;
the events in its trigger that are in negated form are absemnt;all other enabledness criteria
relevant for a single transition, such as big-gtembo-step maximality criteria are satisfied.
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Table 4.1: Syntactic notation for control states in BSMLSs.
Notation Description |
children(s) The set of control states that arleildrenof sin the hierarchy tree.
childrent(s) The set of control states that adescendentsf s in the hierarchy tree
either directly or by transitivity.
children(s) childrent(s) = childrent(s) U {s}.

defaul(s) If sis anOr control statede faul{(s) is thedefaultcontrol state of, oth-
erwise it is not defined.

bigstablés) If sis a stable control statbjgstablés) is true, otherwise it isfalse

combostablgs)| If sis a combo-stable control statymbostablés) is true, otherwise it is
false

Ica(s, ) The least common ancesta@f s and s’ is the lowest control state in the
hierarchy tree such that s € children(Ica(s, S)).

sLs Control states ands areorthogonal s L g, if neither ofsands' is an

ancestor of the other anda(s, s') is anAndcontrol state.
overlags,s) | Control states ands areoverlapping overlags, s), if s € children(s)
or s € childreni(s).

Given a set of transitionsransitions and a snapshosp, functionen trs specifies all of the
transitions in it that are enabled. Formally,

entrs(transitionssp = {t: transitions| ent, sp) }.

4.2 Syntactic Notation

Tabled 4.1l an 4.2 present the syntactic functions andaefatefined over control states and
transitions of a BSML model, respectively. Most of theserdfins were discussed informally
in Chaptef2. Some of these definitions are adopted from PaneIShalev’s work [85, 86].

4.3 The Snapshot Element for Control States

This section presents the formalization of the snapshat@i that maintains the current set of
control states that a model resides in at each point of eixecuthis snapshot element is used
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Table 4.2: Syntactic notation for transitions in BSMLSs.

| Notation | Description |

srq(t)/desft) | Thesourcgdestinationcontrol state of.

gc(t) The guard conditionof t, which is a boolean expression over the set of
variables of a model.

asnt) The set of assignmentsf t, which is a set of assignments over the set of
variables of a model.

Ihs(a)/rhs(a) | Theleft hand sidgright hand sideof assignmena.

trig(t) Thetrigger of t, which is a set of events and negations of events.

postrig(t) The set of events used irig(t) in positive form.

negtrig(t) The set of events used ing(t) in negation form.

scopét) The scope of transition t is the lowest control state such that:
srq(t), destt) € childrent(scopét))

arendt) The arena of transitiont is the lowestOr control state such that:
srq(t), destt) € childrent(arengt))

tLt Transitiongt andt’ areorthogonal t L t, if src(t) L srot’) anddes(t) L
destt).

tst Transitiong is aninterrupt for t, t4t’, if srq(t) L sro(t’) and:
either destt’) L sr(t)) A (desft) L srot’)) A (desft) L srct)), meaning
thatt exits the scope df, as shown in Figure2.2(a), on pdge 20;
or (destt’) L src(t)) A (destt) L src(t’)) A (destt) L src(t)) A (destt’) L
srq(t’)) A (destt) € childrenf(des{t’)), meaning that the source control
states oft andt’ have ditferentAnd ancestors than their destination can-
trol states, while the destination control statet @ a descendant of the
destination control state ¢f, as shown in Figure2.2(b), on pdge 20.

interruptedr) | For a set of transitions its set ofinterrupted transitionginterrupt(r) c r,

is defined asinterruptedr) = {t' e 7| dt e 7- t41'}.

If 7 is the set of transitions of a small step, then the destinatantrol
states of the transitions imterruptedr) do not have any roles in dete

mining the control states that the model would reside aftecetingr.
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by all BSML semantics.

Snapshot elemel8,, specified below, maintains the current control statesahabdel cur-
rently resides in. The type & is a set of control states. A BSML model uses at least one
control state, thus all BSMLs use the snapshot elerBgntnitially, a BSML model resides in
the default control state of its root control state. TBd$s initially populated withde faul{root)
and those descendant control states of it such that if theehmedides in af©r control state, it
resides in exactly one of its children, which is by defaidt*lefault” child; and if the model
resides in arind control state, it resides in all of its children.

Next, first, snapshot elemeBt is formally described, followed by a discussion about the
correctness of its formalization.

S. = spP.S.

S, = [Sc — (exitedr, S¢) U potenterindt))] U
enteredr — interruptedr))

sra(t) € Se

reset_S.(s, |, sp
next_S.(Sp 7, sp)

en_Sc(t, sp

In predicatereset_S.(si?, I, sp), snapshos is the snapshot at which environmental input
| is received, while snapshepis the snapshot that captures tlfieet of receiving . In predicate
next_S.(sp 7, sSP), shapshospandsp are the source snapshot and the destination snapshot of
small stepr; shapshosp captures theféect of executing-. In predicateen_Sc(t, sp), snapshot
spis the snapshot that the enabledness of a transition isaealagainst to determine whether
its source control state belongs to the current configuraéibowing the transition to be included
in a potential small step.

Predicatenext_S¢(sp 7, SP) uses functiongxited pot.entering enteredto determine the
set of control states that small stepxits could potentially enterandentersupon its execution,
respectively. To define these functions, first, auxiliamydtionssqt) andd qt) need to be defined.

The source scopef a transitiont, denoted bysqt), specifies the highest control state that
exits upon execution. Formally,

If srq(t) € childrent(destt)) sqt) = desft),

Else Ifdestt) € children’(srqt)) sqt) = srdt),

sqt) = Else sqt) = s, such thatsis the highest control
state such thatrc(t) € children(s) and
desftt) ¢ children'(s)
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Figure 4.4: A model with interrupting transitions.

Similarly, thedestination scopef t, denoted bydqt), specifies the highest control state that
t enters upon execution. Formally,

If des(t) € children*(src(t)) dqt) = srdt),

Else If sr(t) € childrenf(des(t)) dg(t) = desft),

dqt) = Else dgqt) = s, such thatsis the highest control
state such thates(t)  children’(s) and
srq(t) ¢ childrent(s)

Theset of exited control stated transitiont at a snapshosp, is then defined asxitedt, S¢) =
childrert(sqt)) N S¢, which specifies the set of control states that the modes exion the exe-
cution oft at snapshosp. For a set of transitions, exitedr, S¢) denoteg J,., exitedt, Sc).

Example 25 In the model in Figuré 414,

sqt) = {M},

sqt) = {M},

exitedt, (M, M1, M2, M11, M15}) = {M, M1, M3, M3, My},
exitedt’, {M, M1, My, M11, M15}) = {M,M1, My, M1, M5}, and
exited({t, t'}, {M, M1, M2, M13,M12}) = {M, My, M3, M11, My}

Theset of potentially entering control statega transition{, is defined agpot.enterindt) =
children‘(dgt)), and specifies the set of control states that the model tneigter; this set is
computed independently of snapsisqt
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The set of entered control states a transitiont, denoted byenteredt), specifies the set of
control states that the model enters upon the executioran$itiont. The computation of this
set, however, depends on the value of the current snapghot

The set of control statemnteredt) is defined through the following two conditions. A control
states belongs teenteredt) if one of the following conditions holds.

Condition 1: This condition deals with the case when the destinatiorrobstate of transition
t is nested in a compound control stdtt).

A control states belongs toenteredt) if s € pot.enterindt) and one of the following three
conditions holds,

i desft) € childrent(s); or
[Ancestors of det) that belong to d&) also belong to entergd).]

ii there exists a control stat € (enteredt) N pot.enterindt)) such that,

(a) eithers is anAnd control state and e children(s’), or ' is anOr control state and
s=defaul(s), and
(b) Ica(s, desftt)) is not anOr control state; or
[There is already an’sn enteredt), thus the appropriate children of that none of them

is a descendant of dg€st should also belong to enter@yl so that the model enters a
consistent set of control states.]

iii there exists a control stat € (enteredt) N pot.enteringdt)) such that,

(a) eithers is anAnd control state and e children(s), or ' is anOr control state and
s=defaul(s), and
(b) s € children‘(destt));
[There is already an’dn enteredt), thus the appropriate children of that each is either

desf{t) or a descendent of dgstshould also belong to enter@diso that the model enters
a consistent set of control states.]
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Condition 2:  This condition deals with the cases wheso pét) is anAnd control state, which
requires the control states §¥t) to be not only exited but also entered.

A control states belongs toenteredt), if scopét) is an And control state,;s € C, where
C = children(sqt)), and one of the following two conditions holds,

i sis the highest control state Bgt); or
[Such an s is included as part of the next configuration beedlus execution of t does not
leave the And control state scdpe]

ii there exists a control stat € (enteredt) N C) such that eithes is anAnd control state
ands e children(s), or s’ is anOr control state and = de faul{(s)).
[Since s#t) is included in entere(d) so its appropriate children should be so that the model
enters a consistent set of control states.]

For a set of transitionsy, potenterindr) and enteredr) denotel J,., potenterindt) and
Ui, €nteredt), respectively.

Example 26 In the model in Figur€ 414,

dqt)
dqt’)
pot enterindt)
pot.enteringt’)
enteredt) =
enteredt’) =

N},

N},

N, N1, N2, N11, N2g, Noo},
N, N1, N2, N11, N21, Noo},
N, N3, N2, N13, N2o}, and
N, Nz, N2, N1, Nog}.

{
{
{
{
{
{

If the configuration where S= {B,M, M, M5, M1;, M1} is considered, when transitiah
which is an interrupt for transitiort, is executed together with transitidh) the new value of
shapshot element.$s computed as follows, according to the definition ofket_S. parame-
ter:

S, — [exited{t, t'}, &) U potenterind{t, t'})] U entered{t, t'} — {t'})]
{B,M,M1,M3,M11, M1z} — [{M, M1, M2, M11, M12} U {N, N1, N2, N11, N1, Noo}] U
{N’ Nl3 N23 Nll, N22}

{B’ N’ Nl’ NZ’ Nll’ N22}'
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The next example demonstrates a model in which conditiontBesnteredfunction, which
deals with theenteredfunction for a transition whose scope is And control state, is used.
When the scope of a transition,is anAnd control state, the control statessg(t) are not only
exited, but also, are entered, so that the default contavéstof theOr control states irsgt)
are entered. Furthermore, the set of potential enteringralostatespot enteringt) needs to
be removed first, becausenay enter a child of a®r control state other than the one that it
currently resides in.

Example 27 If the model in Figuré 415, which is copied from the model igufe[3.8 on page
[@99, resides in configuration,.S= {Counter Bit,, Bit,, StatusBit; 4, Bit,,, Counting, then

sqts)

ds(ts)

exitedts, sp
pot enterindt,)
enteredt,) =

{Bita},
{Status,
{Bit,, Bit,,},
{

{

StatusCounting Max}, and
StatusMax, Bit,, Bity}.

Executingt, would then result in a new value for,S

S, = S¢-[exited{ts}, Sc) U potenterind{ts})] U entered{ts})
= {CounterBit,, Bit,, StatusBit,4, Bit,,, Counting —
[{Bit,, Bityy} U {StatusCounting Max}] U
{StatusMax, Bit,, Bityq}
= {CounterBit4, Bit,, StatusBit;4, Bit,;, Max}.

Proposition 4.1 For any BSML model, at any of its snapshots, the set of costadés in snap-
shot element Salways includes aalid set of control states, where a valid set of control states is
defined as a set that: includes the root control state of théehaf an And control state belongs
to the set, then all of its children belong to the set; and ifGxmcontrol state belongs to the set,
then exactly one of its children belongs to the set.

Proof Idea. When the model is in its initial state, the above claim holgshe definition of the
initialization of a BSML model.

The root control state always belongsSpbecause by the definition of thext_S. relation,
copied below for convenience,
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Counter

Bit; ' Bit, ' Status
~ I ~ i ~
Bitll : @ : @
tr: tkotky !
1 tho 3 ta: thy 3 ts: reset
Bit1» 3 Bity, 3 Max
| ty: tk{‘dope
! |
I I

Figure 4.5: The revised two-bit counter, copied from dade 43

next_S¢(spr,sP) = S, =S - [exitedr,S;) U potenteringr)] U
enteredr — interruptedr)),

the root control state can be removed fr&gonly if there is a small ste, such that the set of
control stateséxitedr, S.) U pot.enterindr)” includes the root control state; however, this is a
contradiction because it is not possible for the root cdstiate to be entered or exited.

Also, by the definition of thewext_S, relation, if anAnd or anOr control state is removed
from S, allits children are also removed because of the definitbdtiseexitedandpot_entering
functions. Similarly, if anAnd control state is added t8, all its children are also added &
because of the itenis i, ilia, ahd ii in the definition of ftino entered and if anOr control is
added tdS., exactly one of its children is added %, again, because of the iteind [ia Jiiia, 4Ad ii
in the definition of functiorentered and also because of item that would add the destination of
a transitiont, to S, if desft) is a child of anOr control state. Therefore, since Andor anOr
control state is added consistently3g S, always consists of a set of valid control stateso

4.4 Structural Parameters

This section presents the structural parameters and tbssile values. Each of the structural
semantic (sub)aspea®ncurrency, Small-Step Consistency, Preemption, andPriority corre-
sponds to a structural parameter, whiéieets the definition of predicatxecutabléoot, sp) in
the semantic definition schema in Figlrel4.2. Fiduré 4.6esstime as the feature diagram in
Figure[3.2, on pade B2, except that it excludeshthierity semantic options that are not included
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in my formalization, as described in Sectlon|3.8. The exetupriority semantics useoSrce or
Destivation Of control states as the basis of a priority semantics, @sté S opk.

This section is organized into three subsections that easbritbes one of the hierarchical
Priority semantics. In my semantics formalization, the choice ohtkearchical priority seman-
tics in a BSML dtects the parsing mechanism used for formalizing the seosotithe BSML.

As such, the structural parameter for #réority semantic aspect consists in: (i) determining the
parsing mechanism of a BSML, and (ii) specifying the mecérary which the set of potential
small steps of a model are computed. Sedfion #.4.4 dischesethe formal semantics presented
in this chapter can be generalized to include other pricgtyantic options.

The BNF in Figuré 4]7 represents abstract syntaf69] for BSMLs.This syntax is dferent
from the BNF in Figuré 213, on pagel21, in that it does not idelall the derivations rules there,
and furthermore, it associates the transitions of a modéltheir scopes, as opposed to having a
separate set of derivation rules for transitions, as the BNfrigurel2.8. Thus, this representation
of BSML syntax is suitable for the specification of the hietacal priority semantic options
that are based on the scope of transitions: i.e., teeSCuip and the Sore-Parent semantic
options.

4.4.1 Sope-PAreNT Priority Semantics

Figure[4.8 shows an attribute-grammar-like formalism tmahputes the set of potential small
steps of a model at snapshe according to the &pe-Parent in attributeexs(root, sp); i.e.,
the value ofexecutabl@oot, sp) in the semantic definition schema in Figlrel4.2 is the vafue o
exp(root, sp) in the hierarchical computation in Figure ¥.8. The streaitparametefl, shown

in Figure[4.3B, denotes the name of the attribute in the atgilgrammar whose value in the root
control state is the set of potential small steps; in cas@®fXore-ParenT priority semantics,
the value of1 is ex.

In the specification of the attributes in Figlrel4.8, if a ierminal symbol is used in both
sides of a rule, such as in rule 3, | use the subscripts “0” dfidd' refer to the instance of the
symbol on the left-hand-side and the instance of the symbthe right-hand—side of the rule,
respectively. For example, in line 3c, “states-@fers to the right-hand-side of the rule whereas
“states-@” refers to the left-hand—side of the rule. Therefore, licenB2ans that the value of the
exp attribute for the non-terminal in the left-hand-side is@do the value of thexe attribute
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Figure 4.6: BSML semantic aspects and options: Solid boreetha structural semantic aspects,
while rounded boxes are the enabledness semantic aspects.
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(root) (Orstate
(Orstate .= Or (states-®(transition$

(states-p = (states-p(state | (state
(Andstate = And (states-a(transition$
(states-a = (states-a(state | (state
(Basicstatg ::= Basic

(state := (Orstate | (Andstate | (Basicstate

Figure 4.7: The abstract syntax for BSML syntax based on¢bpesof transitions.

for the non-terminal in the right-hand—side unioned by thkeig ofexe attribute for control state
state.

The computation in Figufe 4.8 uses two classes of attribtttpgndexp, for the non-terminal
elements of a BSML model. Thep attributes arenheritedattributes, while thexs attributes
aresynthesizedttributes|[59]. To enforce that a transition with a highmebas a high priority, a
control state, through itep attribute, passes the possible combinations of the enatlesitions
that can be executed from the higher scope in the hierarebytarits children control states. The
exp attributes collect the set of high-priority transitionsaifbottom-up manner, starting from the
Basiccontrol states, to compute tlegs(root, sp), which is the set of potential small steps of the
model at snapshatp. The computation of both thep attributes and thex attributes follow
the structural semantic options of the BSML. Next, the raestructural parameters and their
values in computing the attributes of control states in FeégL8 are described.

The binary,concurrencyoperator,||, used in line 6c¢ is responsible for collecting the con-
tribution of the children of arAnd control state to the set of potential small steps, using thei
correspondingxe attributes. If the SGLE concurrency semantics is chosen, then the concur-
rency operator specifies that either its first operand oreit®isd operand can be chosen to be
the next small step. If the My concurrency semantics is chosen, then the concurrencgtoper
combines the set of sets of transitions in one of its operaitidl the set of sets of transitions
in its other operand to create a new set of sets of transitidhs first part of Table4l3 is the
formalization of the values of the structural parameterd he operands of thg operator are
written in a special font to denote that each is of type seetd of transitions.

For the|| operator to work correctly, the computation of ttug attributes must consider
that whether the ScLe or the Many concurrency semantics is chosen in a semantics, so that
in the latter case only singleton sets of high-priority &i¢ions are passed down the hierarchy
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1. (root)
a.top(Orstatesp)
b. exp(root, sp)

2. (Orstate
a. top(states-osp)
b. exp(Orstatesp)

3. (states-p
a. top(states-@, sp)
b. top(state sp
c. exp(states-g, sp

4. (states-p
a.top(state sp
b. exp(states-0sp)

5. (Andstate
a. top(states-asp)
b. exo(Andstatesp)

6. (states-a
a. top(states-a sp
b. top(state sp
c. exp(states-g sp)

7. (states-a
a.top(state sp
b. exp(states-asp)

8. (Basicstate
a. exp(Basicstatesp)

9. (state
a.top(Orstatesp)
b. top(Andstatesp)
c. top(Basicstatesp)

d. exp(state sp)

(Orstate

0

exp(Orstatesp)

Or (states-p(transition$
top(Orstatesp) ® entrs(transitionssp)
exp(states-0sp)

(states-p (state

top(states-g, sp)

top(states-g, sp

exp(states-@, Sp) U exp(state sp
(state

top(states-osp)

exo(state sp)

And (states-a(transitions
top(Andstatesp) ® en.trs(transitionssp)
exo(states-asp)

(states-a(state

top(states-g sp

top(states-g sp

exo(states-a sp) || exe(state sp
(state

top(states-asp)

exo(state sp)

Basic

top(Basicstatesp)

(Orstate | (Andstate | (Basicstatg
top(state sp)

top(state sp)

top(state sp)

exp(Orstatesp), exe(Andstatesp),
exp(Basicstatesp)

10. T®T = ((TLUT)T1eTAT CT/A
(VU (TLUT) -t e (T'-T") & Jte (TLUT”) - =C(t, 1) A =P(t', 1)) }

Figure 4.8: Computing potential small steps in theis-Parent priority semantics.
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Table 4.3: Structural parameters fGoncurrency, Small-Step Consistency, andPreemption
semantic aspects.

| Semantic Option | Parameter Value |
Concurrency
SINGLE T|T =TuT
MaNY TIT ={T,UT]|TieTAT; €T}
Small-Step Consistency [C(t,t") = false when SvcLE concurrency semantics.]
ARENA ORTHOGONAL C(t,t") = arendt) L arendt’)
SoURCE/DESTINATION ORTHOGONAL Ctt=tLt
Preemption [P(t,t") = false when SNGLE concurrency semantics.]
NoN-PREEMPTIVE P, t') = (t4t) v (' 41)
PREEMPTIVE P(t,t') = false

tree and in the former case the high-priority transitioress @mbined as they are passed down
the hierarchy tree. The structural paramet&sand P, which correspond to th&mall-Step
Consistency and thePreemption semantic aspects, respectively, enforce the above sarmanti
These parameters, formalized in the middle and the bottats paTable 4.8, respectively, by
being false when therssLe concurrency semantics is chosen, ensure that no two ti@arsdre
allowed to be combined together.

The mergeoperator,®, defined in line 10 of Figure_4.8, and used in lines 2a and 5a use
predicate<C and P to combine a set of sets of transitions, denoted by pararfieteith a set
of enabled transitions, denoted By, to compute théop attributes of compound control states.
ParametefT is in a special font because its type is set of sets of tramstias opposed to set
of transitions, ag’ is. Each set of transitions ifi is combined with a subset gt to create a
new maximal set of transitions. The result is maximal beeaighe if-only-if predicate in the
definition: A transition,t’, is not included in the merge resuff there is a transitiont, that is
already included in the merge result, anahdt’ can neither be included together according to
the small-step consistency semantics (paran@}teror according to the preemption semantics
of the BSML (parameter).

In the bottom-up computation of theee attributes, there is no need to check for the small-
step consistency and preemption semantic constraintsibethese have already been checked

in the top-down traverse. Line 9d uses “,” to represent teemarate equalities, each of which
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corresponds to one of the right-hand-side alternativeis@d.

The formalization of the parameter values for theC and P structural parameters follow
their English descriptions in Sectibén B.3.

Example 28 Figure[4.9 shows a BSML model, with its root control statevamexplicitly. If
the model resides in snapshot sp, whege=Sroot M, A, A1, A11, Az, Az}, and the BSML sub-
scribes to theMany, Source/DestiNatioN OrTHOGONAL, and Non-PreempTIVE concurrency and
consistency semantics, together with 8sere-Parent priority semantics, then Table 4.4 shows
the values oéx> andtop attributes for each control state of the model at snapshofl$ye value
of exp for root control state determines the set of potential srsi@ps of the model.

s N
root
s
M
A B
<
Ay t B
Anx Ag2 ™ Bu
A2 t2 Bz
i3 \
A21 A22 BZl
L L J
J

Figure 4.9: Computation of potential small steps for an gxaer8SML model.

Table 4.4: The values of attributes for the model in Figu& dccording to the &®pe-Parent

priority semantics.
Control State| top | ex | Control State| top | exe |
root 0 {{t1, to}} Az {{t1, t2}} {{ts, t2}}
M {{ts, t2}} {{ts, o} Az {{ts, to2}} {{ts, t2}}
A {{ts, t2}} {{ts, o} B {{ts, to2}} {{ts, t2}}
Aq {{t1, to}} {{ts, o}} B {{t1, to}} {{t1, to}}
A1z {{t1, 1o}} {{t1, Lo}} Bi1 {{t1, 1o}} {{t1, 1o}}
A1 {{ts, t2}} {{t1, t}} B> {{t1, t2}} {{ts, t2}}
A, {{ts, t2}} {{t1, t}} B21 {{t1, t2}} {{ts, to}}
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Transitiont; does not have a chance to be a member of a potential small stgpube it has a
lower priority than transitiort,. The reason is that, according to the computation in Fiquis 4
to compute attribute top([A-], sp” using line 4a, where a pair of square bracket “[ ]” is used
to distinguish the syntactic part of an expression, theealii‘top(JA 1, As], sp)”, using line 5a,
should be computed:

top([A1, Az], sp top([And A1, Az], sp) ® entrs({ts}, sp),
{{t1, t2}} ® {ta},

{{ts, t}},

which does not allow; to be added to sdt;, t,} because the small-step consistency would be
violated.

4.4.2 Sope-CHiLp Priority Semantics

Figure[4.1D presents the hierarchical computation of thefgeotential small steps according to
the Sore-CHiLp. Here only one attribute is necessary, which is computedotmm-up manner.
The value offl is exc. The merge operator remains the same as in Figute 4.8. Line&®a","

to represent three separate equalities, each of whichspmnels to one of the right-hand-side

alternatives in line 9.

Example 29 Let us consider the model in Figure 4.9 in Exaniplke 28 againthia time with the
Scope-CHILD priority semantics, instead of tf&ope-Parent priority semantics. Table 4.5 shows
the values o&x: for each control state of the model at snapshot sp. The véleg-ofor root
control state determines the set of potential small steplseomodel.

Transitiont, does not have a chance to be a member of a potential small stgube it has
a lower priority than transitionts. The reason is that, according to the computation in Figure
[4.10, the value of éxc([M, {t1, t5}], sp)” is computed as follows:

exc([A, B], sp ® entrs({ty, tz}, sp),
{{ts}} ® {t1, 1},
{{ts, t3}},

eXC([M s {tl’ t2}]’ Sp)

which does not allows to be added to the potential small step because its sourteisame as
t, and it is also not an interrupt fots; t;, however, is added because it is an interrupttior
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1. (root) .= (Orstate

a. exc(root, sp = ex:(Orstatesp
2.(Orstatée = Or (states-p(transition$
a. exc(Orstatesp) = ex:(states-psp) ® entrs(transitionssp)
3. (states- .= (states-p (state
a.exc(states-g,.sp =  exc(states-@ sp U ex:(statesp)
4. (states-p = (state
a. exc(states-osp = exc(statesp
5. (Andstate = And (states-a(transition$
a.exc(Andstatesp =  exc(states-asp) ® entrs(transitionssp)
6. (states-a .= (states-a(state
a.exc(states-gasp =  exc(states-a sp) || exc(state sp)
7. (states-a = (state
a. exc(states-asp) =  ex(statesp
8. (Basicstatg := Basic
a.exc(Basicstatesp = 0
9. (state .= (Orstate | (Andstate | (Basicstate
a. exc(statesp = ex:(Orstatesp), exc(Andstatesp),
exc(Basicstatesp)

10. T®T = ((TLUT)[TLeTAT CTA
(V' (TAUT) -t e (T'=-T") & Jte (T, UT”) - =C(t, 1) A =P, 1)) }

Figure 4.10: Computing potential small steps in tkhers-CuiLp priority semantics.
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Table 4.5: The values of attributes for the model in Figu& 4ccording to the &pe-CHiLb
priority semantics.

| Control State| ex | Control State| exc |
root {{ts, t3}} A 0

M {{ts, t3}} Az 0

A {{ts}} B 0

A1 0 B: ]

All 0 Bll 0

A, 0 B, 0

A {{ts}} B21 0

4.4.3 No Priorrry Semantics

To specify the semantics that no hierarchical semantidsdsen, i.e., the dPrioriTy, a similar
computation to the one in Figure 4110 can be used, exceptithaterge operator is defined as,

TOT = {((Ti-TYUTTLeTAT,CTLAT CT/ A
(VU (TLUT) -t e(T'-T") & Jte (Ty=T,UT") - =C(t’, t) A ~P(t’, 1)) A
(Vt: (TLUT)-teT, o at e T ~Ctt) A -P(t, 1)) }.

The above merge operator idférent from the one used for thedse-Parent and Sope-
CuLp semantic options because all combinations of merging shioellconsidered, instead of
giving precedence to transitions with higher or lower sspas in the &pe-Parent and Sope-
CuiLp semantic options, respectively. Thus, the merge operhtarld perform two tasks. First,
a maximum set of enabled transitions at the current contaté should be added to each of
the sets of set of transitions received from the childrenhef ¢ontrol state, in a manner that
the concurrency and consistency semantics of the BSML dreiolated. Second, the enabled
transitions at the current control state should be constity replace the transitions in each of
the sets of set of transitions received from the childremefdontrol state, again in a manner that
the result is maximal: no more transitions can be added withiolating one of the concurrency
and consistency semantics of the BSML. The above two tagksrabodied in the definition of
merge operator above. The second and the third lines in thetde of the merge operator
above enforce the maximality of the resulting merge.
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Example 30 Let us consider the model in Figure 4.9 one last time, this tivith theNo Prioriry
semantics. Table 4.6 shows the valuesxpfwhich determine the set of potential small steps for
the No PrioriTy Semantics, for each control state of the model at snapshot sp

Table 4.6: The values of attributes for the model in Figuf 4ccording to the dl PrioriTy
semantics.

| Control State | ex | Control State | ex |
root {{ts, t3), {t, }} | Aoy 0

M {{ts, 3}, {te. t2}} | A 0

A {{ts}} B 0

A 0 B 0

Aql 0 B11 0

Ao 0 B, 0

A {{ts}} B21 0

Transitiont, has a chance to be a member of a potential small step becauoaa teplace
transitionts. The reason is that, according to the merge operator in 8agti4.3, the value of
“ex([M, {t1, t2}], sp” is computed as follows:

eX([M s {tl’ tZ}]’ Sp) eX([A’ B]’ Sp) & en-trs({tl’ t2}’ Sp)’
{{ta}} ® {ta, ta,

{{tl’ tz}’ {tl’ t3}}

4.4.4 Other Priority Semantics

Other hierarchical semantic options can be defined sintldré¢ Sore-Parent and Sope-CHILD
semantics, but using flierent parsing mechanisms. For example, to formalize theseos of
Source-Parent and $urce-ChiLp priority semantics, mentioned in Section|3.8, the set af-tra
sitions in “transitions” in the BNF in figure_4.7, should besttransitions whose source control
states are the control state that “transitions” is assediaith. The formalization of thexevicir
priority semantics is not hierarchical, and is independért parsing mechanism. The decision
that whether a potential small stép, has a higher priority than another potential small st€p,
can be only made when the two sets are entirely compuielalas a higher priority thaf” if
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there is a transition iff that has a higher priority than all transitions‘lh‘@ The formalization
of the Negarion oF TriGGERs Semantics is manifested in the formalization of the enat#ed of a
single transition, as was described at the end of Secfiad.4.1

4.5 Enabledness Parameters

In this section, the formalization of the semantic optiohthe enabledness semantic aspects is
described.

Some of the semantic options of the enabledness semangictagpe out of the scope of the
formalization in this dissertation. These semantic of#tiare transition-aware semantic options.
The feature diagram in Figute 4111 is the same as the featageadh in Figurd 416, except
that the transition-aware semantic options are signified 9¥” on their righthand sides. The
WhHotE event lifeline semantics is an example of a transition-awamantic option. To determine
whether a transitiort, whose trigger includes a negated event, is enabled in adg is should
be ensured that the negated event is not generated by ang wéttsitions of the big step, even
the transitions that are executed aftes executed. The formalization of the transition-aware
semantic options require, at each snapshot, being ablédoiee the enabledness aoideffect
of the execution of other transitions in the immediate oufetsmall steps. A transition-aware
semantic option convolutes the role of enabledness setrasytiects, which are supposed to be
formalized by only using snapshot elements, and the rol¢roftsiral semantic aspects, which
use predicates over the transitions of models.

A semantic option of an enabledness semantic aspect is lisedeby a set of snapshot
elements. For each semantic option, | introduce snapseotezlts of varying names. | use the
following naming convention for these snapshot element$tei\formalizing an enabledness
semantic option, the name of the semantic option, or itseaudation, is used in the name of one
of the snapshot elements that formalize the semantics. ¥eon@e, Eg.yoex 1S the snapshot
element that models the&kRRent In REmamnDer event lifeline semantics. Also, by convention, if
the enabledness predicate of a snapshot element is notiepgeitimeans it is equivalent to true.

For each of the semantic aspeEtgent Lifeline, Enabledness Memory Protocol, andAs-

lIn Section[Z.R, where the semantic definition of synchrawjig-step modelling languages (SBSMLs) is
described, it is shown how the semantics of theikcir priority semantics can be also formalized using a similar
semantic definition schema as the one for the synchronizgigtep modelling languages.
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Figure 4.11: Transition-aware semantic options are siphiliy a ‘¥” next to them. As in

Figure[4.6, the boxes with bold, solid frames representtituetsiral semantic aspects.
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signment Memory Protocol, first, the formalization of their semantic options for theer-
nal eventgariables is presented, followed by the formalization af thxternal and interface
eventgvariables.

4.5.1 Big-Step Maximality

The semantics of each of thexsactic and Take ONe Semantic options is specified by a snapshot
element. The Ake Many semantic option does not introduce any snapshot elements.

SYNTACTIC

During a big step, snapshot elemeag,...... collects the control states such that each is either
the arena or a descendant of the arena of an executed warthiit enters a stable control state.
Predicateen_Ms,..ric(t, SP) determines whether a transitidf),has already been executed during
the big step that has entered a stable control ssgteuch thatrendt) € children(arengt’)),

in which casd cannot be taken in the current big step.

reset—MSYNTACTIC(SFj), l, Sp) MSYNTACTIC = @

next_ MSYNTACTIC(S R7,S Fj)

/ —_—
MSYNTACTIC - MSYNTACTIC U

Uie-{S| s € children‘(arendt)) A bigstablédestt))}
arendt) ¢ MSYNTACTIC

en.M SYNTACTIC (t’ S p)

TAKE ONE

During a big step, snapshddr,. o collects the control states such that each is either the
arena or the child of the arena of an executed transitiondi€at en_Mr,.. ox:(t, SP deter-
mines whether a transitioti, has already been executed during the big step suclatbait)
childrert(arengt’)), in which casé cannot be taken in the current big step.

MTAKE ONE — 0
’
MTAKE ONE

Uie.{S| s € children‘(arendt))}
arendt) ¢ MTAKE ONE

reset_Mr: on(SP, 1, SP
next_Mru: one(SR 7, SP)

= MTAKE onve U

en_ MTAKE ONE (t’ S p)
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45.2 EventLifeline

This section presents the formalization of the event hielsemantics for internal events, fol-
lowed by examples of the formalization of external and ifiaste® events. The snapshot elements
used in this section are all of type set of events. First, sootation for the formalization of the
notion of combo step are presented.

The semantics of therBsent v Same event lifeline semantics can be formalized using a
synchronization capability, as will be described in Chajpte

Combo-Step Semantics

A combo-step semantic optioor acombo-step semantids an event lifeline or memory proto-
col semantic option whose semantics determines the scape cbmbo-steps of a model; e.g.,
the Resent IN Next ComBo Srep event lifeline semantics. In formalizing a combo-step sema
tics, the last small step of a combo step must be identifiedthabthe values of the necessary
snapshot elements are adjusted at the end of the combo stegx&mple, in the &:sent In
Next Comso Srep event lifeline semantics, at the end of each combo step téteses of events
are adjusted by setting them to the collected events dun@gurrent combo step. To identify
the last small step of a combo step, however, all semantiormpthat are combo-step semantics
must be known because otherwise it is not possible to determhether there is any transition
enabled at the destination snapshot of the small step. asksdan be achieved by identifying
the snapshot elements that must be adjusted at the end obcsteiis. The set of all snapshot
elements used in the formalization of the combo-step semapitions of a BSML semantics are
its combo-step snapshot elemerdenoted byCs As such, the formalization of a combo-step
semantics requires knowledge about the formalization loéroenabledness semantic aspects,
and thus indirectly depends on them. The formalizationdvefdombo-step semantics are the
only cases that introduce such cross-cuttings in the fopatabn.

PRESENT | N REMAINDER

The snapshot elemeBk.....oex COllECtS the set of generated events of a big step. At thebegj
of each big stepravanoex 1S INitialized to the set of environmental input events reeé from the
environment. A transition is enabled accordindg,...o:x, If the positive literals in its trigger
are iNErgqyanoe, DUL NOL its negated literals.
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Erevanoer = |.€VENES
ERevamoe = ERevamoee U gEN(T)
(postrig(t) S Erevnoe) A
(negtrig(t) N Erevanom = 0)

reset—EREMAINDER(S Fp’ l, Sp)
neXt—EREMAINDER(S Rp7,S U)
en—EREMAINDER (t’ S p)

Functiongen(r) denoteg J;., gent).

If the variation of global consistency semantics in an openal way [66], as discussed on
pagd 49, is desired, then the following snapshot elemefgdasreeeded.

EGIobaIConsistency: 0
EélobalConsistency: Esiobalconsistency N€GLrig(7)
ger(t) N EGIobaIConsistency: 0

res:'et—EGIobaIConsistenc((S Fj), l,sp
next—EGlobaIConsistenc((S p T, spP)
en—EGIobaIConsistenc((t, sp

Functionnegtrig(r) denoteg J;., negtrig(t).

PreSENT IN NEXT COoMBO STEP

Two snapshot elements are used to model thsdRt IN Next Comso Step semantics. Snapshot
elementEcqect COllects the generated events during a combo step, to makedkailable in the
next combo step. Snapshot elemert,, cs. is the set of generated events collected from the
previous combo step that are considered as present in thentaombo step. Snapshot element
Ecolect has no role in the enabledness of a transition. When glageRr IN Next ComBo Srep
semantic option is chosefEnex: c.s» Ecolectt € CS, WhereCsis the set of combo-step snapshot
elements, as described earlier in this section.
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Enexrc.s. = |.events
Efurcs = if EndC then
Ecoliect U gen(r)
else

reset—ENEXT C.S.(SFP’ I ’ Sp)
neXt—ENEXT C.S.(s p T, Sp)

ENEXT C.S.
(postrig(t) € Enexrcs) A
(neg_trlg(t) N ENEXT CS.= @)

en—ENEXT C.S.(t’ S p)

reset_Ecoliect(S Fp, l,sp = Ecollect =0
next_Ecoect(Sp 7, SP) = El e =If EndC then
1]
else

Ecollect U gENT)
And, EndC= (A" - v € executabl@oot, sg @ C9)).

The EndCpredicate above identifies the last small step of a combo #&egefinition relies on
the set of combo-step snapshot eleme@ts,which is the set of snapshot elements that specify
the notion of combo step in a semantics. The replace opératpdescribed in Section 4.1.1,
modifies a snapshot in the first operand, by replacing thogs sfapshot elements that each has
a corresponding new value in the second operand.

PRESENT N NEXT SMALL STEP

Snapshot elemerty,,; ss. is equal to the set of generated events in the previous shegl] s
except at the beginning of a big step wheg.,, s.s.is equal to the set of environmental input
events.

Enexrs.s. = |.events

E,NEXT SvALL StEP ger(T)
(pos-trlg(t) - ENEXT S.S) A
(negtrig(t) N Enexrs.s.= 0)

reset—ENEXT S.S.(SFP’ l, Sp)
neXt—ENEXT S.S.(S p T SU)
en—ENEXT S.S.(t’ Sp)
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Transition-Aware Event Lifeline Semantics

The non-operational, globally-consistent variation @& Bresent In REMAINDER Semantics [86],
as well as the WoLe semantics, are transition-aware semantic options becausder for the
negation of an event to trigger a transition there should ¢pgagiantee that it is not generated by
any of the transitions that can generate it. Similarly, imapshot, an event should be sensed
as present if it is generated by a transition in a future sstelb. Thus, transitions need to be
awareof each others’ executions in a structural way to accomneothegt above scenarios. The
PRESENT IN SAME Semantic option is also transition-aware, but can be defimexigh a notion
of synchronization, as described in Chagter 6. Unlike thesiRt v Same semantic option,
however, the non-operational, globally-consistent vemmof Present iIn REmainper and the
WHoLE semantics cannot be modelled by synchronization, becaus®nization is relevant
for the transitions within one single small step, whereaslifieline of the events in these two
semantic options is beyond a single small step.

External Events

In the above formalization of therPsent IN REMAINDER, PrEsenT IN NExT ComBO Srep, and
Present IN NexT SmaLL Srep event lifeline semantics, a non-distinguishing BSML isuesed:
The input, internal, and output events are not distingulstyatactically, as describEd 34.1. Such
a formalization means that the same semantics are congdiftermternal events and the events
received and sent to the environment. For example, in kageRr IN NexT SvaLL Step sSemantic
option, the environmental input events received from therenment, i.e.|.events persist for
one small step. As shown in the feature diagram in Figurel, 4dgardless of a BSML being
non-distinguishing or distinguishing, the input and odtpuents can have semantic options of
their own, independent of the internal events. Next, twangas of formalizing the semantics
of external events, one for distinguishing BSMLs and onenfan-distinguishing BSMLs, are
presented.

SvntacTic INpuT EVENTS  The Sentactic InpuT EVENTS SEmantic options is a semantic option for
external input events for a distinguishing BSML: Externatmits of a model are distinguished
syntactically from the internal events. The following falzation assigns a’@sent IN REMAIN-
per-like semantics to the environmental input events of a maddlthe Resent IN Next ComBo
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Srep semantics to the internal and output events of the modehdrallowing formalization, the
environmental input events of a model are denote&by.

reset_Enercssie(SP 1, Sp Enexr c.s[sig)= 0
next_Engxr C.S.[SIEKSps T, Sﬁ) = ;\IEXT C.S[SIE] = if EndC then

ECollect U ger(r)

else
ENexr c.s[SIE]
((postrig(t) — EnV) € Engrc.sisig) A
((negtrig(t) — EnV) N Enexrc.ssig)= 0)

en—ENEXT C.S.[SIEKt’ S p)

reset—ECollect(SFP, l,sp = Ecollect=0
next_Ecolect(Sp 7, SP) = El e =If EndC then
0
else

Ecoliect U geN(r)
And, EndC= (A7 - v € executabl@oot, sp @ C9)).

EREMAINDER[ENV] = Env

reset_Erpunoeen (SP. 1, SP)

next_EruunomeEv](SB T, SP) = Efinomen] = ERevanoer(Eny]

en_Erpvamoer[en] (T, SP) ((postrig(t) N ENV) C Erevano(ew]) A
((negtrig(t) N EnVY) N Erevianoexen) = 0)

In the above formalization, it should be the case theentsC Env. Snapshot elemeificgject

is exactly the same as in Section 415.2. Snapshot eleBgnt s sig is different from snapshot
elementEyn: c.s. in that its “en” predicate checks only for presence and absence of internal
events. (SIE stands for $&racTic InpuT Events”. Similar abbreviations are used in the following
formalizations.)

HyYBRID | NPUT EVENTS

In the Hverip INpuT EVEnTS SEMantic option, which is relevant for non-distinguisH8g®MLs,
an event that is received at the beginning of a big step isetless an environmental input event
only if it is a genuine input of a model, meaning that it is nehgrated by any transition in the
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model. The following formalization assigns a#enT INn Remainper-like semantics to the gen-
uine input events and thekRRent INn NExT SmvaLL Step semantics to internal and output events.
In the formalization, the set of genuine events of a modetlareted byGenuine

reset Enerssmie(SH, |, sp
next_Enexrssmie(SR 7. SP)
en_Enexr s.s i, SP

reset—EREMAINDER[G] (S ﬁj, I ,S p)
neXt—EREMAINDER[G] (S R7,S p)
en._ EREMAINDER[G] (t’ S p)

Enexrs.s.nig; = |.events- Genuine

Eexr s.5.mig) = 9€M(7)

((postrig(t) — Genuing C Enexrs.sHiE) A
((neg-t”g(t) - GenUine N ENEXT S.S.[HIE] = 0)

Erevanoe(c] = |.€VENtSY Genuine

E,REMAINDER[G] = EREMAINDER[G]
((pOS_trlg(t) N GenUine c EREMAINDER[G]) A

((negtrig(t) N Genuing N Erevamoexfc] = 0)

In the above formalization,.eventsmight include received input events other than the ones in
Genuine which are treated according to the event lifeline semamidnternal events.

Interface Events

The following snapshot elements together specifyresft IN REmaNDER-lIke semantics for
input events according to theverip INpuT EvEnts semantics, the ®sent IN NExT SmaLL Step
semantics for internal events, and therAcaronous Events semantics for interface events. The
set of genuine and interface events of a model are denoté&khbyineandInter face respec-

tively.
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ENexr S.S.[HIE-ASYN] = |.events- Genuine

B 5.5 HiE-asyn = 9€M(7) — Inter face
(postrig(t) — Genuine- Inter face

reset_Eners.s mie-asyn(SH, 1, sp
next_Enexr s.sHiE-asyn(SR T, SP)

en_Eneer s s Hie-asynft SP)

C Enexr s.5.[HIE-ASYN] A
(negtrig(t) — Genuine- Interface N

Enexr s.s.[HIE-ASYN] = O

reset_Erpuoe(c) (S 1, SP Erewanoexic] = |-€vents) Genuine

1’leXt—EREMAINDER[C':‘] (Sp’ T Sp) = E’REMAINDER[G] = EREMAINDER[G]
en—EREMAINDER[G] (t’ Sp) ((pOS_trlg(t) N GenUine - EREMAINDER[G]) A
((negtrig(t) N Genuing N Erevanoexic] = 0)

reset. EASYNCHRONOUS EVENTS(S d)’ I »S p) EASYNCHRONOUS Events = S FP ECOIIAsyn
’

neXt—EASYNCHRONOUS EVENTS(S p 7,S U) = EASYNCHRONoUS Evenrs EASYNCHRONOUS Events
en—EASYNCHRONOUS EVENTS(t’ S p) ((pOS_tng (t) - GenUine N Inter f ace -

EA syncuronous Events 7\

((negtrig(t) — Genuing N Interfacg N

EASYNCHRONOUS EVENTs — 0

I'eset—ECoIIAsyn(sFP, l,sp = ECoIIAsyn =0
neXt—ECoIIAsyn(sp 7, Sp) = E,CoIIAsyn = ECoIIAsyn U (ger(r) N Interfacg

In the above formalization, it is assumed tha&ventamight include received input events other
than the ones iGenuine which are treated according to the event lifeline semandfanternal
events. Snapshot elemdBs.....ixc) IS defined the same as in Section 4.5.2. Snapshot element
Ecoiasyn COllects the generated interface events of a big step to ¢ insthe next big step, by

EASYNCHRONOUS EvenTs*

Similar to the transition-aware semantic options of indérevents, discussed in Section
4.5.2, on pagé 116, ther&n~c SynchroNous Evenr lifeline semantics for interface events is
a transition-aware semantic option.
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4.5.3 Enabledness Memory Protocol

This section presents the formalization of the semantimoptfor theEnabledness Memory
Protocol. First, the formalization of the memory protocols for imtak variables is presented,
followed by examples of formalizing the semantic optiongntdérface variables.

The snapshot elements used in the formalizatioBmdbledness Memory Protocols need
to know about the snapshot element that keeps track of valugariables according to the
Assignment Memory Protocol, denoted byV ,qn, in order to adjust the values of variables in the
shapshot element that the GC of transitions are checkedsig#it the beginning of a big step
and before a small step is executed, the snapshot elemerivihaefers to is used to initialize
the snapshot elements that models an enabledness memtwygbrdn Sectio 4.514, as part of
the formalization of the semantics of assignment memoryopads, the value ofV .5, for each
of the assignment memory protocols is specified.

Before presenting the formalization of the enablednessongprotocols, some notation for
formalizing a notion of store are presented.

A storeis a set o variable, value pairs. It is a total function from the set of variables of a
model to their values. The type of all of the snapshot elemeséd in this section is store.

Theoverride operatoyw, replaces some pairs of a store with new pairs whose firsteglem
are the same as the replaced ones. For exampte{(vary, val), (var,, val), - - - , (var,, val,)}
replaces the values of variablear,, var,, - --, andvar, in storex; with valuesvaly, val,, - - -,
andval,, respectively.

A variable expressiots an arithmetic or boolean expression over the variablesBSML
model, possibly with some variables being prefixed with aade operator. All variable ex-
pressions are assumed towell-typed i.e., the operand of operators are of the expected types.
Furthermore, it is assumed that the subexpressions of arssipn are unambiguously parsed,
which can be interpreted as the subexpressions of all esipresbeing parenthesized. Function
evaluate formalized below, receives two explicit inputs, an expres and a store, and returns
the evaluation of the expression with respect to the stdr@n expression uses a variable oper-
ator, then its evaluation needs extra stores each of whiepskgack of the values of variables
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according to the semantics of the operator. Formally,

evaluaté(exp * exp), V)

evaluatéexp, V) ® evaluatéexp, V),

evaluatév, V) = V(v),

evaluatépre(v), V) = Vrusa.s(V),
evaluatécur(v), V) = Vrusss(V),
evaluaténew(v), V) = Vrusss(V),

wherex is the syntax for an arithmetic or a boolean operator @nslan operator representing
the semantics of. For example, it is addition over integers variables, therrepresents the
semantics of addition over integer values. Snapshot el&Weps g.s. andVgruys s.s, used for the
formalization of the RHS B Srep and the RHS SaLL Step semantic options, are defined in
Sectiorf4.54, where the formalization of assignment mgmuostocols are presented.

The execution of a small step of a model includes capturiagdtlects of the assignments of
the transitions of the small step and storing them in theimgsdn snapshot of the small step.
Using theevaluatefunction, the semantics of assignment in a BSML can be defiRadation
assign formalized below, has four parameters: a set of assigrspanthe snapshot element
that captures thefiects of assignments so far in computativn, the snapshot element that the
RHS of assignments are evaluated agaisgtand the snapshot element that captures fileets
of executingA, Vs;. Snhapshot elementg;, V,, andV; are all stores and are defined over all
variables of a model; i.e., the size of each store is the giteecset of the variables of the model.
In the absence of any race condition, relata®signis a function that receives, V,, andV,, and
determined/; deterministically. If race condition is possible, i.e.itifs possible that more than
one assignments iA assign values to a variable, thssignis not a function, because it chooses
one of the values assigned to the variable non-deternaalkti Formally,

assigrfA, V1, Vo, V3) = [Y(v,val) e Vi -v ¢ lhs(A) = (v,val) € V3] A
[Vv e lhs(A)-Jae A-(v=Ilhs(@) A
(val = evaluatérhs(a), V,)) A (v, val) € V3],

wherelhs(A) = [ Jaea Ihs(a).

The “new_small” variable operator leads to a transition-aware semardics) in the absence
of cyclic evaluation order as described in Secfiod 3.6. Ttoblem is that in the presence of a
“new_small(v)” in the GC of a transitiont, whethert is enabled or not depends on whetliés
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assigned a value by another transitibnwhich may or may not be enabled or executed in the
current small step.

GC Bi1G Srep

Snapshot elemeMgc g s, throughout a big step, maintains the values of the varsatfl@ model
the same as at the beginning of the big step. As describei@redhle snapshot element that
“Vasn refers to provides the values of variables at the beginnfray lng step according to the
Assignment Memory Protocol.

VGC B.S.— (vasn

reset Vocps(sf. |, sp
next_Vece.s(Sp 7, SP)
en_Veces(t, sp

Vices. = Vacss.
evaluatégd(t), Vecs.s)

GC ComBO SrEP

Snapshot elemenc c s.is a store for the variables of a model that maintains the satues

for the variables during a combo step. At the beginning oheammbo step (including the first
combo step), the values of variables according to the asgghmemory protocol of the BSML,
which are stored in the snapshot element that, refers to, are assigned ¥;ccs. When a
small step is executed, using predickiedC, it is checked whether the current combo step ends,
in which case the value &fsc c s.is updated. The definition &ndCis the same as the definition
of EndCused in the formalization of therBsent IN NexT ComBo Step event lifeline semantics.
When the GC GmBo Step semantic option is chosen, thegccs.€ Cs

reset Voccs(SP.1,Sp = Veccs = Vas
next Voccs(SR7,SP) = Vicces =If EndC then
Vl’thodate
else
Veces.

en_Veccs(t, sp evaluatégc(t), Vec c.s)
And, EndC= (A7 - v € executablgoot, sp & C9).

(vasn
aSSigmUteT asr(t), VUptodate (vasrb Vl/thodate)

reset Vupioda S, |, SP)
nex't—VUptodate(S R, SpP)
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GC SMmALL SrEP

Snapshot elementsc s s.is a store for the variables of a model that maintains theougate
values for the variables during a big step. At the beginnihgach big step, the values of
variables according to the assignment memory protocol ®B8ML, which are stored in the
shapshot element thdf,q, refers to, are assigned Y@c s s.

Vecss.= Vasn

assigi{Uie, asn(t), Voc s.s, Vasn Vic s o)
evaluatégd(t), Vac s.s)

reset_Vocss(sP. 1, sp
next_Vecs.s(Sp T, sp)
en_Vecss(t, sp

Interface Variables in GC

The following snapshot elements together specify the @&G.SSrep semantics for internal vari-
ables and the GC AncHroNous VARIABLE Semantics for interface variables. The set of interface
variables of a model that are used in guard condition of ttians are denoted bintVarsGC
SetA determines the set of assignments to the interface vasiaBienilar to internal variables,

in order to specify the values of interface variables at #gitming of a big step, the snapshot el-
ement that maintains the values of variables accordingg@#isignment memory protocol must
be known; this snapshot element is denotedVas, . Snapshot elemeMgc s s (avwe) SPECI-
fies the enabledness memory protocol of internal variaklbsreas th&/sc A v, determines the
enabledness memory protocol of interface variables.

Ve s.siave] = Vasn

reset Vacs.s awe(SPs |, SP
neXt—VGC S.S.[AvNcH] (S R, SU) aSSigr(A, VGC S.S.[AvncH] » ((Vasn U (Vasnlnt), VéC S.S.[ASYNCH])

en_Vec s.s avwe(t, SP evaluat€ga(t), (Vec s.s(awa] YU Vecav))
And, A={a dte r-aeasnt) Alhs(a) ¢ IntVarsGQG.

reset_Vgc A,\/,(Sﬁ), l,sp = Vecav. = Vasnint
next_Vecav(Sp T, sp) = Vicav = Vecav

Similar to the SronG SyncuroNous Evenr for interface events, the GCrigoNG SYNCHRONOUS
VariABLE enabledness memory protocol for interface variables ismsttion-aware semantics:
The value of a variable assigned later in a big step shoulébgesl by a snapshot earlier in the
big step, so that it can enable transitions according tovllae, rather than a stale value.
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4.5.4 Assignment Memory Protocol

This section presents the formalization of the semanticoptfor theAssignment Memory
Protocol semantic aspect. First, the formalization of the memoryqmals for internal variables
is presented, followed by examples of formalizing the sermaptions of interface variables.

RHS Bic Srep

Snapshot elemeMgys g s. maintains the values of the variables the same throughoigt stép,
and is used to evaluate the RHS of assignments accordinget®HS Bc Srep semantics.
Snapshot elemencrent keeps track of the values of variables, as assignments areccaut
through a big step, to deliver these new values to the nexdteig It is initialized witiVrps s,

which, in turn, is initialized by V2 ... ¢ |.asns. When the RHS B Srep semantics is chosen,

Vasn= VrHsB.s:

—\/0
VRHsB.S.= VCurrent wl.asns

reset_Vgrusas(SP, 1, sp
next_Vruse.s(SP 7. sSP) = Viuses.= VRHSBS.

VCurrent = VRHS B.S.
aSSigr(UtET asr(t), VCurrent, VRHS B.S» V(’:urrent)

I'ese't—VCurrent(S FP’ l,s p)
nex't—VCurrent(S Rp7,S p)

RHS ComBo SteP

Snapshot elemeigys c.s.maintains the values of the variables the same during a catemo
which can be used to evaluate the RHS of assignments acgotalithe values of variables
at the beginning of the current combo step. When the Rid@s€ Srep semantics is chosen,
“Vasn= Vrus c.s.andVgrys c.s.€ Cs The definition ofEndCis the same as the definition BhdC
used in the formalization of#sent IN NexT ComBo Step event lifeline semantics.
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VRHS CS.— VCurCombo
Vipyscs = if EndC then

’
VCurCombo
else

reset_Vruscs(SP, 1, sp
next_Vruscs(Sp 7, SP)

Vruscs.
And, EndC= (A7 - v € executablgoot, sp @ C9).

0
VCurComboLﬂ l.asns

aSSignIUter asr(t), VCurCombe VRHS C.S: V(’ZurComb()

I'ese't—VCurCOmb((S Fp’ L Sp)
nex't—VCurCOmbc(Sp’ T, Sp)

RHS SvaLL Step

Snapshot elementrys s s keeps track of up-to-date values of variables, which candeel to
evaluate the RHS of assignments according to the up-tovdies of variables. When the RHS
SmaLL Step semantics is chosef/asn = Vrus s s

Vrusss.= Viuss st l.asns
assigrflUi, asnt), Vrus s.s: Vrus s.s: Vips s s)

reset Vrusss(sP, I, sp
next_Vruss.s(SR 7, SP)

Interface Variables in RHS

The following snapshot elements together specify the @& .SSrep semantics for variables in
GC of transitions, the RHSM3LL Srep semantics for internal variables in RHS of assignment,
the GC Weak SyncHronous VARIABLE Semantics for interface variables in GC of transitions, and
the RHS AsyncharoNous VARIABLE Semantics for interface variables in RHS of assignments. Th
set of interface variables of a model that are used in the GCRifS of assignments of tran-
sitions are denoted datVarsGCandIntVarsRHS respectively. Seté and B determine the
set of assignments to the non-interface and interfaceblasarespectively. Snapshot elements
Vac s.s rovivmeresce] QN0 VRHs s s ovivmereace] SPECITY the enabledness and assignment memory pro-
tocols of internal variables, respectively. Snapshot el&sVgc wsv. andVgpys av. Specify the
enabledness and assignment memory protocols of intertatables, respectively. In this se-
mMantics,Vasn = Vrus s.s.poxintereace] @NAdVasnint = VRHs A v.-
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VGC S.S.[NONINTERFACE] — (Vasn
aSSigr(Aa VGC S.S.[NDNINTERFACE] »
((Vasn U (Vasnlm),

reset_VGc S.S.[NNINTERFACE] (SFP’ I S p)
nQXt—VGC S.S.[NONINTERFACE] (S BpTS g)

VéC S.S.[N)NlNTERFACE])
evaluatfégc(t), VGC S.S.[NONINTERFACE] U VGC W.S.V)

en—VGC S.S.[NONINTERFACE] (t’ S p)

Vras S.S.[NNINTERFACE] = VIgHS S.S.[NONINTERFACE] ¥ l.asns
aSSigl‘(A, VRHS S.S.[NONINTERFACE] » ((Vasn U (Vasnlm),

’
VRHS S.S.[N)N|NTERFACE])

I“eset—VRHS S.S.[NONINTERFACE] (S dj, l ) Sp)
neXt—VRHS S.S.[NONINTERFACE] (S R, SU)

And, A={a dte r-aeasnt) Alhs(@) ¢ (IntVarsGCuU IntVarsRHS}.

Vecw.s.v. = Vasnint
aSSigﬂiB, VGC W.S.V> ((Vasnlnt U (vasn), V(’BC W.S.V.)

reset_VGc W.S.V.(S FP, I ) Sp)
next_VGC W_s,\/,(sp, T,S p)

reset_Vrusav(s@, |, sp = Vrusav. = VRusay W l.asns
next_Vgrusav(SR 7, SP) assigriB, Vrus avi, (VasnintY Vasn)s Vius av)

And, B={a|3dter-aec asnt) Alhs(a) € (IntVarsGCuU IntVarsRHS}.

The RHS SronG SyncHroNoUS VARIABLE assignment memory protocol for interface variables,
similar to the GC SronG SyncHroNous VARIABLE enabledness memory protocol for interface
variables, is a transition-aware semantics: The value @raable assigned later in a big step
should be sensed by a snapshot earlier in the big step, sththataluation of the RHS of an
assignment is done using the new value.

4.5.5 Order of Small Steps

This section presents the formalization of theizcir OrbeErING and DxrarLow Semantic options.
The None semantic option does not require any snapshot elements.
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ExpLiciT ORDERING

The EerLicit OrpERING Order of small steps is relevant for the transitions witia scope of an
Andcontrol state. The execution of transitions whose scopewahin anAnd control state are
ordered according to their graphical order. As discusse&keitior 3.10, the fpLicit OrRDERING
semantic option should be chosen together with tkeLs concurrency semantics and thexE
OnE big-step maximality semantics, otherwise, the notion alleoing according to a graphical
order of control states does not make sense. In the formializbelow, it is assumed that the
SingLe and the Rke ONe semantic options are chosen together with tlRevieir OrberING Se-
mantic option in a BSML semantics, as it is the case in State#2], which subscribes to the
ExpLicit OrRDERING SeMantics. Before presenting the formal semantics of kireid&zr OrRDERING
semantic option, some notation are introduced.

For eachAnd control state s, the graphical orderof its compound children is denoted by
go(s), which is a sequence of control statés, - - - , Sy). If the scope of a transition, is nested
inside more than onAnd control states, then it will be ordered by all tho%ed control states.
A transition,t;, graphically precedeanother transitiortp, if according to theAnd control states
that order the two transitions must execute before. Because of theiScLe and the Rke
On~Ee semantic options, however, such two transitions need t@bgared only according to the
graphical order of the lowegtndcontrol state that is an ancestor of the scopes of both transi
For a transitiont, its graphical predecessoyslenoted bygpregt), is the set of all transitiong
that graphically precede

Snapshot elemerdg,,, ., declares a transitiont, as enabled if it is its turn to be executed
according to the graphical order of thed control states it belongs to; i.e., either the graphical
predecessors dfhave been executed already, or they are not enabled. Theotygepshot
elementOg,,,; IS a set of transitions each of which specifies whether aitran®f the model,
discarding the EpLicit OrpERING SEMANtics, is enabled or not. The set of snapshot elemeats of
BSML is denoted bySpEl= {el;, eb, - - - , el,}.

reset_Oprrcir(SP 1, SP = Ofguier = {t ] /\ en_eli(t, sp)}

1<i<n

eli #Ofxpuicr
next Opgruzcr(SRT.SP) = Ofyr = 1t1 /\  enel(t sp))
1<i<n
eIi #OExPuclT
en—OEXPLICIT(ta OEXPLICIT) = OEXPLICIT N g prdt) = 0
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The en_Og,..:c:r predicate checks whether any of the graphic predecessagrahsition are
enabled. If a graphical predecessor transition of the itianshas already been executed, it
cannot be enabled at the current snapshot, because ofgh®©fe semantics.

The above formalization would work only if the definitionstbe snapshot elements @s
are adjusted so that they do not refer to snap€hgf . in their “next” predicates. Instead, for
example, these definitions could refer to the value of srapslemenOg,,, ., at sp, instead of
sp, or entirely discard the role of snapshot elem@gt,,.... Both solutions are fine since the
ExpLicit OrRDERING SEMantic option has no role in determining the end of a big stea combo
step; instead, when there are enabled transitions to beitexkdt orders them.

DATAFLOW

Snapshot elemertdp,,.ow declares a transitiort, as enabled if all variables ipre fix_-new(t)
are assigned values during the current big step, wperéix_ newt) returns the set of variables
prefixed bynew that are used igc(t) or in the RHS of an assignmentasn(t).

reset—ODATAFLoW(SFp’ I, Sp) = ODATAFLOW =0
neXt—ODATAFLOW(Sp T, Sﬁ) = O/DATAFLOW = UteT Uaeasr(t) |hS(a) U ODATAFLOW
en—ODATAFLOW (t, Sp) = pre f |X_neV\(t) - ODATAFLOW = @

4.5.6 Combo-Step Maximality

The formalization of the semantic options of tiembo-Step Maximality semantics is related
to the formalization of the combo-step semantics, as desttrin Sectioi 4.512. As such, the
shapshot elements involved in formalizing thembo-Step Maximality semantics belong to the
combo-step snhapshot elemefits The predicateendCused in this section, which determines
the end of a combo step, is the same as in the formalizationhelr @ombo-step semantics.
Similar to theTake Many big-step maximality semantics, thef@so Take Many semantic option
does not introduce any snapshot elements.

CoMBO SYNTACTIC

During a combo step, snapshB..:o sivmaenc COllECts the control states that each is the arena
or a child of the arena of a transition that enters a combdestadntrol state. The predicate
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en_Ceowso srmeric(ts SP) determines whether a transitian,has already been executed during the
combo step that has entered a combo stable control stateh thatirengt) € children'(arengr),

in which casd cannot be taken in the current big step. When the#6 Syntactic semantic op-
tion is ChoserCCOMBO SYNTACTIC CArenaColIectSyne Cs

r eset—CCOMBO SYNTACTIC(S Fp’ I »S p) CCOMBO SYNTACTIC — 0
next_Ccovso syvmeric (SR 7, SP) C! = if EndC then

CoMBO SYNTACTIC

CArenaCoIIectS yr+~J A
else

CCOMBO SYNTACTIC

arendt) ¢ CCoMBo SYNTACTIC

en—CCOMBO SYNTACTIC (t’ S p)

rESEt—CArenaCOIIectSyﬁs fj)’ l, Sp)
HEXt—CArenaCOIIectS yﬁs R7,S Fj)

Carenacollects yn— 0
C, = if EndC then

ArenaCollectSyn—
0

else

CArenaCoIIectS yr+J A

And, A = |,..{s| s e children‘(arengt)) A combostabl@estt))}, and
EndC= (A7 - v € executabl@oot, sg @ C9))

CoMmso TAke ONE

During a big step, snapsh™c..:o Tac: o COllECtS the control states that each is the arena or
the child of the arena an executed transition. The pred@at®lc ;o Tac: oxe(t, SP) determines
whether a transitionf, has already been executed during the big step suchatleaigt) <
children(arendr), in which case cannot be taken in the current big step. When to&so
Take ONe semantic option is ChOSEltyso Taxe Ones Carenacoliectone€ CS
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CCOMBO Take ONE — 0
C/ = if EndC then

ComBo TAKE ONE
CArenaCoIIec:tOneU B

reset—CCOMBo TAKE ONE(S Fp’ I > Sp)
neXt—CCOMBO TAKE ONE(S p 7,S p)

else

CCOMBO Take ONE
arendt) ¢ CCOMBO Take ONE

en—CCOMBo Take ONE (t’ S p)

reset_CarenacollectonéS Fp, l,sp Carenacollectone= 0

neXt—CArenaCollectOnéSn T, SU) ,/O\renaCo”ect()ne: If Endc then
0

else

CArenaCoIIec:tOneU B

And, B = | J,..{s| s € children(arengt))}, and
EndC= (A - v’ € executabl@oot, sg @ C9)).

The Structure of a BSML Semantics A complete BSML semantics can be instantiated by
choosing the desired semantic options of the semantic &spkinterest. The chosen semantic
options of the structural semantic aspects of the BSML s#iosgdetermine a parsing mecha-
nism (when a hierarchical semantic option is chosen), teggetith values for the corresponding
predicates of structural parameters. The chosen semattane of the enabledness semantic
aspects determine a set of snapshot elements that implémoesetsemantic options.

4.6 Related Work: Semantic Formalization Methods

My semantic formalization is influenced by the formalizatia template semantics [[75,]74]. In
particular, (i) lines 1-5 in Figure_4.2 are adopted from tledirdtion of macro stepn template
semantics; and (ii) the notion of snapshot elements in tategemantics is adapted to model
the enabledness parameters of BSML semantics. In tem@atargics, a snapshot element has
a type and a set of thrggrametersreset next andenabled which can be instantiated with a
value from a pre-determined, extensible set of values. Thera &ired, but extensible, number
of snapshot elements that can be instantiated to obtain ardes While the snapshot elements
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in template semantics are the semantic variation pointhegnselves, in my framework, the
semantic variation points are semantic aspects and sangpitons; snapshot elements are a
mechanism to formalize these semantic variations. A samaption may require multiple
shapshot elements for its formalization.

Template semantics has a notion of composition operatoichmMhdo not need, because:
first, some of the characteristics of the composition opesatan be modelled usingfiérent
structural semantic options; and second, as Chhpter 6 @attribe, the semantics of many com-
position operators can be specified using the synchronizatiechanism introduced in Chap-
ter[8. | also introduce the notion of combo step, which wasoasidered in template semantics.
The main divergence in my semantic definition framework fitemplate semantics is that my
proposed framework produces a semantic definition whoseeglts corresponds to the seman-
tic aspects and the semantic options. To the best of my kugelethe approach presented in
formalizing the semantic aspects of the deconstructiohadfitst one that defines disjoint pa-
rameters in a manner that matches the factoring into thetstal semantic aspects from the
high-level big-step semantic deconstruction.

My work is comparable witliool-support generator framework$ GFs), which by accept-
ing the definition of a notation, including its semantics,igsut, generate tool support, such
as model checking and simulation capability, as output BBI1[25, 28/ 65, 16, 38]. TGFs dif-
fer in the semantic input formatéSIF) they use, and the procedure by which they obtain tool
support for a notation. An SIF, by its function, is a semadgdfinition language, and thus can
be potentially compared with our semantic definition fraragww Some TGFs adopt an existing
formalism as their SIF; for example, higher-order logicl,[2&], structural operational seman-
tics [28], graph grammars][6], and forwarding attributengnaars [38]; others devise their own
SIFs; for exampleexecution ruleg81], which defines a semantics via ggsabling matching
andfiring rules, and template semantic¢s |65], which defines a semanticsdbgritiating values
for semantic parametemnd choosing or defining a set cdmposition operatorswWhile TGFs
strive for flexibility and extensibility, to accommodatewaotations, | have strived to create a
systematic semantic definition framework that clearly defia BSML semantics.

A precise comparison of my semantic definition frameworkwtite SIF of a TGF requires
knowledge about the range of semantics that the SIF cansxpyeis meant to express. How-
ever, the range of semantics that an SIF can express is y$efilas unspecified, or under-
specified. | think that this is not accidental, and is a restilbmbiguity about the domain of
notations that a TGF is designed for. | argue that for a fawfilyotations, a task similar to what
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| undertook for BSMLs should precede the attempt to develds& for them. Otherwise, it
is not possible to determine the range of the family of notetithat the TGF supports, unless a
TGF aims for universality. Furthermore, the users of the T@&fnot fully benefit from it, unless
they independently discover the expressiveness of thef3hed GF. However, discovering this
is not straightforward: SIFs are designed with flexibilitydaextensibility goals in mind, rather
than systematicness and clarity.

The mere choice of a SIF will not likely address théidulty of reconciling the flexibility
and extensibility of a TGF with the systematicness and tylar its SIF, as described above.
For example, choosing a general SIF, such as structurahtipeal semantics [28] or forwarding
attribute grammars [38], might seem a good idea becausevtdas a certain level of system-
aticness and clarity, and hopefully flexibility and extdmxilgly would follow. But | observe that
researchers either report about supporting a limited sabt#tions (e.g., variations of “Lotos
subset”, without variables [28]), or report abouffidulties with extensibility (e.g., dliculty in
modelling the semantics of “events”, because the semagtiicition is “not trivial” and becomes
“verbose” [38]). Conversely, devising a specific SIF, sustfexecution rules”[[81] and “tem-
plate semantics’[ [65], might seem a good idea because iiges\lexibility and extensibility,
and hopefully systematicness and clarity would follow. Buatbserve that the flexibility and
extensibility in such a framework is with respect to its SARd does not necessarily translate
to clarity andor systematicness for users. As an example, the ability fioe&la semantics that
is a mixture of the semantics of statecharts and Petri neds iextensible wayi [81], does not
necessarily mean that a user of the TGF would perceive itsaSIgystematic, and a resulting
semantics as clear.

The dynamicsemantic concepts in the graph-transformational semegfinition approach
for UML statecharts by Varrg [98] is similar to the notionk enabledness semantic aspects
and enabledness parameters in my semantic definition scheangd’s approach, however, is
only considered for one language with a simple syntax thppasrtis a simple kind of control
states and asynchronous events. $taticsemantic concepts in his approach are comparable to
the syntactic helper functions in Taljle 4.1 and Tablé 4. ddaph-transformational semantic
definition approach can be considered as a prescriptiverganafinition method, because each
of the dynamic and static semantic concepts correspondstmcli graph transformation rules.
However, this method is applied to a single semantics, ansl ttie scope of the languages that
it can support is not clear. In particular, in the presenceaoiables and our structural semantic
aspects, it would be interesting to investigate whethesdlreles can be extended to cover a
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range of diferent semantics, and yet maintain a prescriptive semagifiicition method.

My semantic definition framework shares the same goals & gdneral semantic definition
methods that advocate clarity and systematicriess [73Jd8ction semantic§/3], a semantic
definition can be organized as a hierarchyraddulesand sub-modulesFurthermore, concep-
tually, a semantic definition can be decomposed across tes: &es of informationwhich
distinguish betweelransient scopedstable andpermanentata; andacets of actionswhich
distinguish betweeibasic functional declarative imperative and communicativgrocessing
modes, each of which is designated to process a spégjfec of information Similar to ac-
tion semantics, my definition framework msodularin that a semantics can be incrementally
defined by specifying its éfierent aspects. Thenifying theory of programmingims for the
vision of the unification of dterent paradigms of programming languages and their secsanti
which “can be described atftirent levels of abstraction” [49]. A notion tieorydescribes an
aspect of computation, such as non-determinism or regurgidheory is described in terms of
its alphabets, signatures, relations, functions, andnagioMore primitive theories anefined
to derive more specific ones. The link betweefliedent theories can be defined throuigiking
theories The unifying theory of programming is a general vision taerstand the dierent
paradigms of computation and their relationships, rathan ta particular method for semantic
definition. My proposed semantic definition framework is sistent with the vision of a unify-
ing theory of programming in that it introduces semanticeaspthat lend themselves to the kind
of analysis advocated in the unifying theory of programmiflgo, at a high level, perhaps, the
basic BSML semantics could be considered as a theory, whiclbe related to various BSML
semantics through the semantic aspegitisons linkings.

Lastly, my work is comparable to that of Huizing and Gefth][5Bluizing and Gerth cat-
egorize and specify the semantics of simple BSMLs that oalyelevents. In comparison, my
semantic definition framework considers a more advancetsaeform syntax, resulting in con-
sidering a wide range of semantic aspects and options, iti@udtb the event lifeline semantics.

4.7 Summary

This chapter introduced a formal semantic definition mettad uniformly formalizes most of
the BSML semantics of the big-step semantic deconstructibis semantic definition method is
bases on a semantic definition schema that is parametria@ggect to the semantic aspects of
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the big-step semantic deconstruction. A semantic defmiica BSML produced in this method
is prescriptive in that the manifestation of the constitisamantic options of the BSML, accord-
ing to the big-step semantic deconstruction, can be clédelytified in the semantic definition.
The semantic definition schema can define most of the BSML seesaf the big-step semantic
deconstruction, except those that are transition aware. ttansition-aware semantics, the en-
abledness of a transition depends on the execution of tharger®in the current or future small
steps.
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Chapter 5

Semantic Quality Attributes of BSMLs

“Languages dter essentially in what theyustconvey and not in what
theymayconvey.” [53, p.141]

Roman Jakobson

While a BSML provides a modeller with the convenience of diéstg the reaction of a system to
an environmental input as the execution of a set of tramstitacilitating the decomposition of a
model into concurrent components, it also introduces theaxtexity of dealing with the semantic
intricacies related to therdering of these transitions. In this chapter, ths@mantic quality
attributesfor BSMLs are introduced, each of which identifies a deseagmantic characteristic
for BSML semantics that exempts a modeller from worryingutsmme of the complications of
ordering in the sequence of the small steps of a big step.

For each semantic quality attribute, the necessary afiitismt constraints over the choices
of the BSML semantic options are specified so that the regudiemantics each has the semantic
quality attribute. As opposed to the advantages and disaayas of each semantic option, which
were discussed in Chapfér 3, the characterization of a deneality attribute is a cross-cutting
concern over dferent semantic aspects.

The remainder of this chapter is organized as follows. 8effil presents the terminology
that is used throughout the chapter. Seclion 5.2 formakgsenmts the three semantic quality
attributes for BSMLs, together with examples that desctit®role of each semantic quality
attribute. Sectioh 513 specifies the set of BSML semantaissiditisfy each of the semantic quality
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attributes, together with proofs of the correctness of egudtification. Section 5.4 describes

how a semantic quality attribute can be achieved througkhbee of a set of semantic options

together with a set of syntactic well-formedness criteniailanguage. Sectidn 5.5 discusses
related work.

5.1 Quantification over Big Steps

This section describes terminology to quantify over theo$dtig steps of a BSML model and
to declaratively access parts of a big step. This terminofagilitates the specification of the
semantic quality attributes, as well as the proofs of theemtness of the characterization of the
semantic quality attributes.

Figure[5.1, similar to Figure 4.1, on page 87, depicts thecsire of a big step: After re-
ceiving an environmental input, k small steps are executed to arrive at snapsipgt. In this
section, a big step is represented formally as a tufldength b’), whereb is the beginning
snapshot of theig step,lengthis the number of small steps in the big step, bhid the destina-
tion snapshot of the big step, as usual. As an example, fdsithstep in Figuré5]1T.b = sp',

T.length= k, andT.b’ = sg**, where the operator “.” is used to access an element of a.tuple

Compared to the formal semantics in Chapier 4, the formaéssmtation of a big step used in
this chapter adopts twofiierent conventions. First, unlike in Figure 4.1, the begigrinapshot
of a big step includes thefect of receiving the environmental input of the big step, pgosed
to the “source” snapshot of the big step in the previous d@rapthich needs to be “reset” with
environmental inputs. And second, unlike the formal semaraf combo-step semantics in
Chapte 4, here it is assumed that once a combo step endsaibgstioned explicitly to a new
shapshot that is the start of the new combo step. This appricaas opposed to the formal
semantics of combo-steps in the previous chapter where detatting the last small step of
a combo step, by using predicdgdC the adjustments to start the new combo step happens
together with the execution of the last small step of theemtrcombo step. The above two
conventions are adopted to simplify the formalization amel presentation of semantic quality
attributes. It is straightforward to rephrase and re-fdizeathe content of this chapter if these
conventions are not assumed.

The set of potential small steps of a model at a snapspistdenoted by xecutabléoot, sp),
as usual. For the sake of brevity, | writeXecutablésp)” instead of ‘executabléoot, sp)”
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Figure 5.1: Big sted@ = (sph, k, spL).

because the first parameter of this function is not relewvattie formalization presented in this
chapter. Theath small step of a big stefd;, where 1< i < T.length is denoted byl'. Each
small step itself is represented as a tupger, '), wheresands’ are the source and destination
snapshots of thensall step, respectively, andis the set of transitions that are executed by
the small step. For example, the destination snapshot of thesmall step of big stef is
obtained byT'.s. ForallT', 1 < i < T.length T'.t € executabl€l'.s). Also, T!.s = Ti*ls

for 1 < j < T.length For a BSML modelM, the set of all its possible big steps is denoted
asbigstepgM). This set includes all big steps in response to all envirema inputs at all
possible snapshots. As usual, in examples, a big step isagef® by the sequence of the sets of
transitions of its small steps, which is surrounded by & pair.

The set of big steps at a snapshot is determined by the eiglarge aspects of BSMLs, as
described in Figure 5.2. Recall that in the previous chaptegse aspects were partitioned into
two categories:

e Enabledness semantic aspects deal with the semantics o# lsivgle transition can be
included in a big step and what thifext of its execution; and

e Structural semantic aspects deal with how a set of enaldaditions can be taken together
in a small step.

To describe the semantic quality attributes, the set ofledaless semantic aspects are parti-
tioned further into two subcategories:

e Transition-basedemantic aspects, which determine how the semantics of alB&ds
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End of Big-step: — Sectiofi 36)
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Legend

[ ] structural semantic aspects
[[] Transition-based semantic aspects

B Coordinative semantic aspects

Figure 5.2: Operation of a big step through its structunangition-based, and coordinative
semantic aspects.

the modelling constructs of the language, namely its végglevents, and control states;
and

e Coordinativesemantic aspects, which determine how the execution ofénsitions of a
big step of a model are ordered and grouped across a big step.

From a modelling point of view, a transition-based semaasipect is dierent from a co-
ordinative semantic aspect in that the corresponding simapdements of a transition-based
semantic option maintain information about the values efgintactic elements of the transi-
tions, whereas the corresponding snapshot elements ofrdicative semantic option maintain
information about the history of the execution of the tréinas in a big step.

The flowchart in Figure5l2 is similar to the one in Figuré 8 pagé 30, except that it shows
the partitioning of aspects into these categories. Theestafithe flowchart with clear elements
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represent the structural semantic aspects of the ope@tmbig step; the other stages represent
the enabledness semantic aspects of the operation of aglpig Be light gray elements of the
flowchart represent the transition-based, enablednesargenaspects of the operation of a big
step. The dark gray elements of the flowchart represent tbelzmtive, enabledness semantic
aspects of the operation of a big step. Thent Lifeline, Enabledness Memory Protocol,
andAssignment Memory Protocol semantic aspects are transition-based semantic aspéets. T
Big-Step Maximality, Combo-Step Maximality, andOrder of Small Steps semantic aspects are
coordinative semantic aspects. As an examplektat Lifeline semantic aspect is a transition-
based semantic aspect in that it determines how a generagrtidd a transition, i.e., a syntactic
element of a transition of a model, triggers the transitiohshe model, while theBig-Step
Maximality semantic aspect is a coordinative semantic aspect in tdatetrmines the limit on
the number of transitions in a big step.

With this partitioning, the definition of the enabledness dfansition, from Sectidn 4.1.2, on
pagd 91, is divided into two parts, one for each set of enalelesisemantic aspects,

ready(t, sp) A fireablgt, sp),
en_X(t, sp), and

XETransitionBased (SPE)
enX(t, sp),
XECoordinative(SPE)

en(t, sp
ready(t, sp

fireablg(t, sp)

whereSpE| as before, is the set of snapshot elements used in the sesnaha BSML, and
TransitionBased (SPE) and coordinative(SPE) are the sets ofransition-basedand coordinative
shapshot elements that are used in the definition of theiti@mdased and the coordinative
semantic aspects, respectively. By definition, the snapsment that maintains the current set
of control states that a model resides in, i.e., snapshotarieS, described on pade P2, belongs
tO TransitionBased (SPE).

For a transitiont, at a snapshosp, if ready(t, sp) is true, it is called aeady transition,
and otherwise amnreadytransition. Similarly, if fireablg(t, sp) is true,t is called afireable
transition, and otherwise amfireabletransition. If bothready(t, sp) and fireablgt, sp) are true,
tis called an enabled transition, as usual.

A transition, t, at a snapshotsp is calledexecutable denoted byexecutablé, sp), if it
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belongs to at least one potential small step in that snapBbanally,
executablé, sp) = 3r € executablésp At e

Figure[5.8, which depicts the structure of a semantic dafimgchema from the previous chapter,
is the same as the one in Figlrel4.3, on fhage 89, except thanihdtated to show the partitioning
of the parameters of the formal semantic definition schemactionen trs, described in Section
[4.1.2, receives a set of transitions and uses predécatereturn the set of enabled transitions in
the set. By definition, in Chaptel 4, and as can be traced ifighee, if executablé, sp) is true,
so isready(t, sp) andfireablgt, sp); i.e.,

executablé, sp) = ready(t, sp) A fireablg(t, sp), (5.1)

but, in general, not vice versa, because ofRhierity semantic aspect, which corresponds to the
“IT” parameter. A transition might be ready and fireable, buehalower priority compared to
another transition that can replace it in all potential $retdps. The three sub-aspects of the
Concurrency and Consistency semantic aspect, which correspond to parametgrs C”, and
“P’, each has a role in determining the set of potential smafistby combining a set of ready,
fireable transitions into a small step. However, these sémamb-aspects do not have any role
in determining whether a ready, fireable transition is etedale or not: The priority semantics
eventually determines that. If theoNPrioriTY priority semantics is chosen, however, i.e., if
neither the Sore-Parent nor the Sope-ChiLp semantics is chosen, then

executablé, sp) & ready(t, sp) A fireablg(t, sp), (5.2)

which means that if a transition is both ready and fireablelibibgs to at least one potential small
step, and vice versa.

If a transition is not executable, it is calledexecutable

Lastly, a transitiont, is priority-ready, at a snapshosp, denoted bypriority ready(t, sp),
if: (i) tis ready, and (ii) discounting the coordinative semantjgeasts,t would belong to a
potential small step. By definition, friority ready(t, sp) is true, therexecutablé, sp) is true
only if fireablgt, sp) is also true. Conversely, by the definition of an executatalesition, if
executablé, sp) is true, it should be the case that bgthority _ready(t, sp) and fireablgt, sp
are true. Formally,
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executabl@, sp) & priority_ready(t, sp) A fireablg(t, sp). (5.3)

Predicaté 5]3, as opposed to prediaté 5.2, which is truafBISML semantics without a hier-
archial priority semantics, is true for all BSML semantiegardless of their priority semantics.

Table[5.1 summarizes the terminology presented so far sregtion.

Table 5.1: Summary of terminology for semantic aspects.

form a small step.

Structural semantic aspectsleal with how a set of transitions can be executed together

to

Transition-based, enabledness semantic aspectsal with how a BSML uses the syntac-
tic elements of a transition.

TransitionBased (SPE) | The set of snapshot elements that model the transitiondbase
abledness semantic aspects of a BSML.
ready(t, sp Transitiont is ready atsp, and can be taken according to the snap-

shot elements inransitionBased (SPE).

Coordinative, enabledness semantic aspecateal with how the execution of transitions
are coordinated across a big step.

Coordinative(SpED

The set of snapshot elements that model the coordinatiad) e
ness semantic aspects of a BSML.

fireablgt, sp

Transitiont is fireable atsp, and can be taken according to the
shapshot elements tvordinative(SPE).

Enabledness

ent, sp

Transitiont is enabled asp if and only if bothready(t, sp) and
fireablgt, sp) are true.

Executability

executablé, sp

\ Transitiont is executable atp it is enabled and has a high priorit

<

Priority Readiness

priority _ready(t, sp

Transitiont is priority-ready atsp, if t is ready and discounting the

coordinative semantic aspects, it would be executable.

5.1.1 Priority-Related Definitions

This section presents notation for comparing the priorityransitions as well as the priority of
sets of transitions. Two transitiortgndt’, arepriority comparableif they can be compared with
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respect to the priority ordering of the semantics, in whiakectheir priorities can be compared
by prefixing the name of each transition wighi and using the normal comparison operators
“>" "< and=. If two transitions are not comparable, they are cafpeidrity incomparable
which can be expressed using the>" operator.

When the Sope-ParenT priority semantics is used in an SBSMpri(t) > pri(t’), pri(t) <
pri(t’), andpri(t) = pri(t’) mean, respectively, that the scopd & higher, lower, or the same as
the scope of’ in the hierarchy tree. If the scopestaindt’ are not comparable (i.e., they belong
to different branches of the hierarchy tree), then(t) <> pri(t’). Similar definitions for the
Scope-CHILD priority semantics can be defined, by swapping the desengtof the comparison

operators £” and “>".

When the Ncarion oF TriGGERs priority semantics is used in a BSMlpri(t) > pri(t),
pri(t) < pri(t"), andpri(t) = pri(t’) mean that the trigger df is conjoined with some of the
positive literals in the trigger df, the trigger oft is conjoined with some of the positive literals
in the trigger oft’, and neither of the transitions has any of the positivedltepf the trigger
of the other in its trigger in the negated form, respectivdfyboth t andt’ have some of the
positive literals of one another’s triggers in the negatedifin their triggers, they are priority
incomparable; i.epri(t) <> pri(t’).

In this chapter, as discussed in Secfion 3.8, only #weSParent, the Sope-CuiLp, and the
NEGATION OF TRIGGERS priority semantics are considered. If a BSML semantics atiltrss both
to a hierarchical priority semantics and thearion or TriGGERs priority semantics, then the
NEeGATION OF TRIGGERS priority semantics overrides the hierarchical prioritynsmtics: Firstt
andt’ are compared according to thexddrion or TriGGERs priority semantics; if they have an
equal priority or they are not priority comparable, then linerarchical semantics is used as the
secondary criterion to compare their priorities.

Priority Comparison Between Sets of Transitions. For two sets of transition§ andT’, the
operands ®”, “ <”, and “=" compare the priority of the transitions of the two sets. Tdi®wing
definitions formalize these operators:

T>T = @teT-I eT -prilt) > prit) A=A e T -IteT - pri(t’) > pri(t)),
T<T = @eT - eT -prift) <prit)) A-@A e T’ - It T - pri(t’) < pri(t)), and
T=T = a(T<T)A=(T>T).
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If T>T', T<T’,orT =T, itis said thafl has ahigher priority, lower priority, orequal priority;
respectively, compared {©'. Intuitively, T = T’, if it is not the case thal has a transition that
has a higher priority than a transition i without T having such a transition, and also not
vice versa. As opposed to the comparison of the priority dividual transitions, two sets of
transitions are always “priority comparable”.

By definition, all potential small steps at a snapshot of a B$Mbdel that uses a hierarchical
priority semantics have an equal priority. This is becaddb®formal semantics of thec&ee-
Parent and Sope-CuiLb Semantic options, specified in Figlrel4.8, on dage 103, ana&4. 10,
on pagd 107, respectively, which, by definition, each givesegedence to include a higher-
priority transition than a lower-priority transition in asll step.

5.2 Semantic Quality Attributes for BSMLs

In this section, the three semantic quality attributes f8MR_s are introduced. Theon-cancelling
semantic quality attribute guarantees that if a transibecomes executable during a big step, it
does not become mistakenly disabled. Pierity consistencysemantic quality attribute guar-
antees that higher-priority transitions are chosen oweetepriority transitions. Thedeterminacy
semantic quality attribute guarantees that all possildersrof small steps in a big step have the
same result. Various modelling examples are presenteéxhdiit the presence and the absence
of each semantic quality attribute.

5.2.1 Non-Cancelling

In a non-cancellingBSML semantics, once a transition of a model becomes exgeuia a
big step, it remains executable during the big step, unliéssitaken by the next small step, it
remains priority-ready unless it becomes unfireable, asdtge is entered or exited by a taken
transition in the next small step. The second case requiags & transition becomes executable,
it cannot become unexecutable unless it also becomes WiérédaBSML semantics that is not
non-cancelling iscancelling A non-cancelling BSML semantics is useful since it exengts
modeller from worrying about an enabled transition of iaggmistakenly becoming disabled.
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Figure 5.4: A fire alarm system.

Example 31 Figure[5.4 shows a model of a fire alarm system. The systemrperftwo tasks:
() when it detects smoke, it turns on the emergency lightsta@ danger sirens; and (ii) when
it detects excessive heat, in addition to the actions int(dpens the valves of the extinguish-
ing fountains. The model consists of four Or control statésntrol statesSmokeDetectoand
FireDetectormodel the interaction of the system with the smoke and fiectieh devices, re-
spectively. Control stateEmergencySmokand EmergencyFirecontrol the operation of the
emergency devices. The environmental input evemiskeand heatspecify the detection of
smoke and excess heat. The output ev@regg.on, lights_on, andvalve openturn on the danger
sirens on, turn on the emergency lights, and open the valvégea@xtinguishing fountains, re-
spectively. The output eversisen off, lights_off, andvalve closedo the opposites. The internal
eventx_s_on (emergency sioke @) ande_f_on (emergencyife on) activate the emergency op-
erations of theEmergencySmokand EmergencyFirerespectively. The internal everdss_off
ande_f_off do the opposites upon receivingset

When the model resides in its default control sta§sg,F;, ES;, EF}, and both environmen-
tal input eventsmokeandheatare present, if th&ncLE concurrency semantics and tReesent
IN Next SmaLL Step event lifeline semantics are chosen, then only the follgwivo big steps
carry out the intended behaviour of the system (i.e., tgoim the danger sirens and the flashing
lights, and opening the extinguishing valvesg;, ts, ts, t;) and (i3, t7, ts, t5>El Additionally, the
model can create an incorrect big steps, ty, ts), in which transitiont;, which opens the extin-
guishing valves, is not executed becaadgeon persists only one small step and is absent after
t; is executed. The last possible big stép,t7, ts), although it does not execute transitity

1The system behaves correctly even if the output events_sineand lightson are generated more than once.
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luckily behaves correctly because @ghc gen(t;). This semantics, which is cancelling, would
have been a suitable semantics onlgrnifokeandheatcould not be received together.

If the Many concurrency semantics is chosen instead o8ikeéLe concurrency semantics, the
resulting BSML semantics is non-cancelling. The only fbs&iig step would bét,, t3}, {ts, t7}),
which carries out the intended behaviour of the system.

Definition 5.1 A BSML semantics ison-cancellingf for any BSML model, M,

VT € bigstep$M) - Vi (1 < i < T.length - Vt-executabl@, T'.s) =
(te T'.7) v (fireablgt, T'.s) = priority_ready(t, T'.s)) v (A’ € T'.7 - conflict(t, ")),

where
conflict(t,t’) = [srdt) € exitedt’) v srt) € enteredt’)] v

[des(t) € exitedt’) Vv des(t) € enteredt’)].

The above predicate requires that if a transition, t, is exable in the source snapshot of a small
step, T, (i.e., itis in a potential small step at'B): it is either taken in T.r (the first disjunct), or
ifitis still fireable in s, itis also priority-ready in §(the second disjunct), or there is a transition
t’ € T'.r that cannot possibly be taken together with t (the thirdutis}).

Two explanations about Definitidn%.1 are in order.

First, the second disjunct, i.e.fiteablgt, T'.s) = priority_ready(t, T'.s)”, cannot be re-
placed with ‘executabl@, T'.s)”. This is because if an executable transitibnin a big step
becomes unfireable, that transition is not of interest irt thg step any more. Therefore,
the second disjunct requires only a transition to remaircaedble if it is still fireable. (Note
that if both fireablgt, T'.s') and priority_ready(t, T'.s) are true, according to predicdie]5.3,
on pagd 142executablé, T'.S) is also true. Thus, the second disjunct can be replaced with
“fireablgt, T'.s') = executablé, T'.s)".)

Second, the third disjunct recognizes the case that an @&tgedransitiont, cannot be taken
together with a transitiort, in the same small step. Such’aither enters, exits, or both enters
and exits control statsrc(t) or control statedes{t), whereenteredand exitedfunctions are
defined on page 92. In such a case, it is natural to considezxbeutability oft anew. An
example of such # is a self transition whererc(t’) = des{t’) = srg(t). The execution of such
at’ could maket disabled, and the third disjunct exempt® remain enabled after such’as

146



‘ AIarmSystemImprove4|

SmokeDetector | FireDetector | Emergency = tg: e_foff
| | ~{sirenoff,

|t (e-s.on A —e_f_on)
' {sirenon,
' lights.on}

lights_of f
valveclosg

te: e.s.off

g et
esoff | ~ !
t1: smoke i t3: heat e-foff I t ef
e.son | Te_fon ,z{.s i;eé FS)TL
lights_on,

valveopent

Figure 5.5: An improved fire alarm system, compared to theiofégure[5.4.

executed. Other examples of sucti are a transition whererc(t) = srct’), a transition where
srq(t) = desft’), and a transition wherges{t) = src(t’). Again,t cannot be taken together with
neither of these transitions, while its source controlestatexited, in the first case, its source
control state is entered, in the second case, and its distim@ntrol state is entered in the third
case. (In the last case, the source and the destinatitued children of two orthogonal control
state, otherwisécould not have been executable in the first place.)

5.2.2 Priority Consistency

In a priority-consistenBSML semantics, higher-priority transitions must be clmoseexecute
over lower-priority transitions. The set of big steps of thedel cannot include two big steps,
T andT’, whereT includes transitions that are all of lower or incomparablengy thanT’. A
semantics that is not priority consistenpisority inconsistent

Example 32 The model in Figuré 515 is similar to the model in Figlrel5.4ept that control
statesEmergencySmokand EmergencyFiren Figure[5.4 are represented by only one control
state in Figurd. 5.6, namely, themergencycontrol state. The new model, as opposed to the
model in Figurd 5.4, generates at most one instance of eatttesfrenon, lights_on, siren.off,
andlights_off events during a big step, to avoid any damage to the emergbnaiges.

When the model resides in its default control staf8s,F, E; }, and both environmental input
eventsmokeandheatare present, the intended behaviour of the system is thatahger sirens
and the flashing lights should be turned on and the extingugstalves should be opened; i.e.,
t; should be executed and nigt Transitiont; has a higher priority tharts according to the
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NEGATION OF TRIGGERS priority semantics because t(ig) consists ok_s_on plus the negation of
trig(t7). If a BSML semantics is chosen that subscribes t@th@ e concurrency semantics and
the Present IN RemanDER event lifeline semantics, then only the following threedtaps carry
out the intended behaviour of the system; ts, t7), (t3, t7,t1) , (3, t1, t7). Additionally, the model
can create an incorrect big stefty, ts, t3), in which transitiont;, which opens the extinguishing
valves, is not executed becauses executed befor. This semantics is priority inconsistent
becausd;, which has a higher priority that, is not included in all big steps.

If eventse f_on, e f_off, e s on, ande_s off are interface events and follow tB&yncHrONOUS
Event semantics for interface events, the resulting BSML semarduld be priority consistent.
Two big steps are possiblét;, t3) and(ts, t;), each of which can be taken non-deterministically.
The execution of the second big stép), carries out the intended behaviour of the system.

Definition 5.2 A semantics ipriority consistentf for any BSML model M,

¥T1, T, € bigstep$M) - (T:.b=T,.b) =

(U 1<i;1<T1.length Tlll 7)= (U 1<i><To.length lez 7),

Where “=” operand, defined in Sectidn 5.1.1, requires that it is n@ tase that T executes a
transition that has a higher priority than a transition irp Without T, having such a transition,
and also not vice versa.

A big step may include the execution of the same transitionentioan once, but it sfices to
consider one representative of them (i.e., no need to ustsets). The relative priority of two
transitions is independent of the number of times they agewed.

5.2.3 Determinacy

In adeterminatdBSML semantics, in response to the same environmental,ifffpwo big steps

of a BSML model execute the same (multi) set of transitiordifferent orders, their destination
shapshots arequivalent An equivalence relation, denoted by™ can be defined with respect
to any subset of the snapshot elements, but it is usuallyatebrer the corresponding snapshot
elements of the transition-based semantic aspects. A BSvhaastics that is not determinate is
non-determinate
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Figure 5.6: A timer.

Example 33 The model in Figuré 516 is a clock that keeps track of the curtiene by using the
frequency of a timer signaick, which is received as an environmental input event every @Dt

a second. The variables¢ min, andhourrepresent the second, minute and hour of the current
time, respectively. There are three control states thattgthese variables, using the number
of times the signaick is received, which is maintained by varialdelnitially, all variables are

0. The unary operator ! returns 0 if its operand is a non-zero integer and 1 othemvighe
binary operator “mod’ returns the remainder of the division of the first operandthg second
one. Every hour, i.e., when sigrnadk is received 36000 times, variahtas reset to 0.

At the snapshot where the environmental input eviektis received,c=35999 sec=59,
min=59, andhour= 18, the expected behaviour of the system after executing adpgssto reach
the snapshot where=0, sec=0, min=0, andhour=19. If the BSML semantics that subscribes
to the SingLE concurrency semantics, thiake One big-step maximality semantics, tfRHS
SuaLL Step assignment memory protocol is chosen, 24 big steps arelpesisy permutating the
order of the executiohy, t,, t3, andt;. However, only those big steps that start withsuch as
(t1, 1, 13, 14), yield the expected behaviour. For example, execulifnd, ts, t4) results inc=0,
sec=59, min=0, andhour=19.

Example 34 Let us consider the model in Fig. 5.6, so that:

ty: tick/c := ((c + 1) mod 36001} (!(c mod 36000)) and
t4: hour = (hour+ (c mod 36000)) mod 24

In this new model: firstt; resetsc to 1, instead of resetting it to 0, and also, wheis 36000,
instead of whert is 35999; and second, incrementshour whenc is 36000, instead of when
whenc is 0.
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In the new model, similar to Example] 33, the snapshot wheretiironmental input event
tick is received,c = 35999 sec= 59, min = 59, and hour= 18 is considered. However, this
time, instead of th&HS SuaLL Step assignment memory protocol, tR&S Bic Step assignment
memory protocol is chosen. Again, there are 24 big stepsilpesdut this time all of them
behave similarly, reaching the snapshot where3600Q sec=59, min=59, andhour=18. In
the next big step, whetick is received, again 24 big steps are possible, all of whicltiethe
snapshot where = 1, sec= 0, min =0, andhour= 19. Using this determinate semantics, the
model behaves correctly if variabtas initialized with value 1, instead of 0 as in Examiplé 33.

Definition 5.3 A BSML semantics determinatef for any model, M,

¥T1, T, € bigstepgM) - [(T1.b = T2.0) A (Wi, <1y iengtn T1-T = Wicip<Toiengin 20 =
Tl.b’ = Tz.bl,

where “4)” is the multiset sum operator. Each of the two multiset summgecollects the transi-
tions of the small steps of one of the two big steps in the pageli A transition may be executed
more than once, by glerent small steps of a big step. Determinacy is relevantiorhig steps
only if the multisets representing their transitions are game.

To have determinacy, a BSML must allow ordiyngle assignmenhodels.

Definition 5.4 A big step,T, is single assignmernt there are no two transitions in the big step
that assign values to the same variable. Formally,

Vi, to € (H‘Jlging.lengthTi-T) -V, € asr(tl) -VYa, € asr(tz) ‘hEt = |hS(a]_) * |hS(a2),
where “#” is the multiset inequality operator. Note that if &and t refer to the execution of the

same transition in two @ierent small step, then # t,.

A BSML model, M, isingle assignment all big steps Te bigstep$§M) are single assign-
ment.

A crude condition to guarantee single assignment models redquire that: (i) only one
transition of a model assigns a value to each variable; andditwo transitions with overlap-
ping arenas are executed infdrent small steps of a big step (i.e., thexd One maximality
semantics), there by ensuring that a transition is not égeanore than once in a big step.
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5.3 Semantic Instantiation for Quality Attributes

In this section, for each of the three semantic qualitylaites, all possible combinations of the
semantic options that satisfy the semantic quality atteélare enumerated. (I do not include
transition-aware semantic options because, as was d&tirgd.5, these semantic options con-
volute the role of structural and transition-based semampect. Thus, these semantics were
not formalized in Chaptér 4.)

Figure[5.7 once again shows the deconstruction of BSML s#asainto structural and en-
abledness semantic aspects, but this time with the trandithsed and coordinative semantic
aspects distinguished by aransition —Based” and a “coordinative” 0N top of them, respectively.
The transition-aware semantic options are not includedigfeature diagram.

In the formalization for the semantic instantiation of teemntic quality attributes, the name
of a semantic option is used as a proposition that specifi&SAlL semantics that support the
semantic option. For example,¥Rent IN NExT SmaLL Step”, as a proposition, specifies the set
of all BSML semantics that subscribe to theekinT In NexT SuaLL Step event lifeline semantics.
The fact that only one semantic option of a semantic aspedbe@hosen in a BSML semantics
is implicit in the formalization. The only exception is thatthe Priority semantic aspect, the
NEeGATION OF TRIGGER Semantics option can be chosen together with one of¢tbe:SCHiLp or the
Scope-ParenT semantic options.

The logical connectives, such as conjunctioxi, ‘are used to create a predicate that specifies
a set of BSML semantics. For example, the predicates$#r IN NExt SvaLL Step A TAKE ONE”
specifies all BSML semantics that subscribe to tReskr In NexT SmvaLL Step event lifeline
semanticand the Take OnE big-step maximality semantics. The negation of a propmsitias
the usual meaning: prefixing the name of a semantic optiorpigedicate that specifies the set
of all BSML semantics that doot subscribe to that semantic option. For example, the predica
“~Take ONE = Source/DEestiNaTioN OrTHOGONAL” Specifies all BSML semantics that each, if
it does not subscribe to thesde One big-step maximality semantics, then it subscribes to the
Source/DEestiNaTioN OrTHOGONAL SMall-step consistency semantics.

If a BSML does not support the related syntax for the corredpw semantic option of
a proposition, the semantics of that BSML is not includedhia $et of BSML semantics that

°Note that the dference between the term “transition-based” semantic &sffq the discussion on palge138)
and the term “transition-aware” semantic options (cf.,dlseussion on pade 110).
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the proposition represents. For example, propositiatesir In Next SvaLL Step” does not
include the semantics of a BSML that does not supportehents syntax. The syntactic fea-
ture of BSMLs were presented in Chapfér 2, on page 21. Usinggation prefix before a
syntactic feature specifies the set of all BSMLs that do nppsu that syntax. For example,
“—Event Triggers” specifies the set of all BSML semantics that do not suppahetriggers in
transitions.

As specified in the dependencies in Figuré 3.3, on pagje 34¢hthiee of a semantic option
of a semantic aspect for a language could depend on the sgrfeatures used in the language.
For example, according to the first dependency in Figurei®3,“Events & Event Lifeline”,
the semantic options of thevent Lifeline semantic aspect can be chosen in a language only if
theEventssyntactic feature is also chosen, and vice versa. All of g#peddencies in Figuke 3.3
are implicitly conjoined with any predicate specified insteection. In this section, the syntactic
features are used only in a negated form and only to preclueie torresponding semantic
aspects from a predicate and not to enforce a well-formedtrésrion.

To avoid long predicates, if neither the name of any of theas#in options of a semantic
aspect nor the name of the corresponding syntactic featuhe @emantic aspect in the negated
form are used in a predicate, the predicate admits any BSMiasgcs that satisfies the explicit
constraints of the predicate, and additionally, (i) eithilbscribes to one of the semantic options
of the semantic aspect, or (ii) does not support the correfipg syntactic feature of the semantic
aspect. As an example, the predicat@e$nt IN NexT SmaLL Step A Take Ong” refers to all
BSML semantics that each subscribes to thesfr In NexT SvaLL Srep event lifeline semantics
and the Kke Onk big-step maximality semantics, and, for example, to eittmer of the semantic
options of theEnabledness Memory Protocol semantic aspect, or provide no syntax for GC in
transitions.

Next, for each of the semantic quality attributes, iniyiathe semantic specification of all
BSMLs that subscribe to it are presented, without considettie role of external and interface
events and variables. Each of these specifications is themaed by considering the role of
external and interface events and variables.

5.3.1 Non-Cancelling Semantics

Recall from Definitiol 5.1l that in a non-cancelling BSML senties, an executable transitian,
does not become disabled or low-priority, unless it is talkemas conflict with another transition,
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t’, in the immediate small step. Formally, a BSML semanticis-oancelling if for any BSML
model,M,

VT < bigstep$M) - Vi (1 < i < T.length - Vt - executabl@, T'.s) =
(te T'.7) v (fireablgt, T'.s) = priority_ready(t, T'.s)) v (3t’ € T'.7 - conflict(t, t")).

The first disjunct in the above predicate states that suchk taken by the immediate small step.
The challenge, however, is to achieve a non-cancelling BSktantics when dealing with the
cases that is not taken by the small step, for example, because of nterrdaism. In these
cases, at least one of the two remaining disjuncts in theeapmdicate must be true to achieve
a non-cancelling semantics.

This section presents necessary anfligant constraints over the choices of the semantic
options of a BSML that guarantee that if the first disjunct\a& not true for an executable
transition, at least one of the other two disjuncts is trubese constraints are organized into
two sets. The first set corresponds to the BSML semanticatiaéve a non-cancelling BSML
semantics because the execution of a transtticannot possibly make an executable transition
t disabled or low priority. The second set corresponds to tB®B semantics that achieve a
non-cancelling BSML semantics by forcing suchandt’ to be executed together in the same
small step, unless there is a conflict between them. The ficstlze second sets of constraints
above correspond to the second and the third disjuncts iprédicate above, respectively.

Next, a formal specification of these two sets of constraanéspresented. Initially, for the
sake of clarity, the roles of the external and interface &s/and variables are not considered.

For BSMLs that do not support external and interface everdsariables, the disjunction of

the following two predicates determine the class of noncellimg BSML semantics:

Big_Semanticy CombaSemantics

Nmaximizer = MANY A

NSteady

[=(Take ONE V ComBo TAKE ONE) = SoURCE/DESTINATION ORTHOGONAL] A
[(—=(Take ONE V ComBo TAKE ONE) A No PriorITY) = NON-PREEMPTIVE],
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where,

Big_Semantics = [(GC Bic Srep vV =Guard Conditions) A =Event Triggers] A
[(Take ONE V No PrioriTY) A =DararLow], and
CombaSemantics = [ (=GC SuaLL Step V =Guard Conditions) A
(P.I. Next ComBo Srtep V —Event Triggers) | A
[(ComBo Take ONE V No PrioriTy)].

For the sake of brevity, instead of prefixkiBent IN”, “P.I.” is used in the formalization above,
and in the rest of this chapter. These predicates do not tefdre semantic options of the
Assignment Memory Protocol semantic aspect because these semantic options, as withlve s
later in the section, do not have anfjiext on determining a BSML semantics as non-cancelling.

Predicate§Nsieady aNdNyaximizer COrrespond to the second and third disjunct in Definitioh 5.1
respectively. Predicaf¥saqy €nsures that if an executable transition is not taken inrtimeedi-
ate small step, it does not become unready or low prioritgsmit also becomes unfireable, as
required in the second disjunct. PredicBig_Semanticgorresponds to the semantics in which
the statuses of events and the values of variables remasathe, thus an executable transition
remains ready and high priority. Predic@embaSemanticgorresponds to similar semantics,
but in the context of combo steps. Predicadég SemanticeandCombaSemanticgharacterize
mainly disjoint sets of BSML semantics. PredicBlg.imizer SPECIifies the necessary constraints
on the choices of the semantic options of @encurrency and Consistency semantic aspects
to ensure that as many executable transitiomseasssaryare taken together in a small step: The
second and third conjuncts of thaximizer Predicate only require the more inclusive semantic
options of the small-step consistency and preemption stonaspects, respectively, if not re-
quiring these semantic options can leave an executablsitiamunready or low priority, but
still fireable at the destination snapshot of the small dRepdicateNyaximizer dO€S NOt enforce a
constraint over the choices of the semantic options for thllsstep consistency or preemption
semantic aspect if the second disjunct of Definifion 5.1 isrgnteed to be true. These will be
discussed in more detail in the examples and the proofsitatee section.

The two examples below show how the above predicates araatgdl for a BSML. If a
BSML semantics subscribes to the G&ss. Step enabledness memory protocol, the PixN
Comgo Srep event lifeline semantics, theafe One big-step maximality semantics, thevi@so
Take ONE cOmbo-step maximality semantics, and thenM concurrency semantics, then predi-

155



cateNyaximizer Will be true, and thus the BSML has a non-cancelling semantiote that only
the Many semantic option is necessary to achieve a non-cancellifglBs®mantics, according
to the Nuaximizer Predicate, but not theosrce/DestiNnaTioN ORTHOGONAL OF the NoN-PREEMPTIVE
semantic options. The reason that these semantic optiensoamecessary is that thex@o
Take ONE combo-step maximality semantics ensures that any exdeutansition that is left
out of the small step, becomes unfireable at the destinatiemall step, satisfying the second
disjunct of DefinitiorL 5.L. An example of a BSML semanticsttisanon-cancelling through sat-
isfying the predicat®saqyis @ BSML semantics that subscribes to the GESep enabledness
memory protocol, the Ake Many big-step maximality semantics, and the Rrioriry seman-
tics, and does not support events in triggers of transitioas “—~Event Triggers” is true. In this
semantics, an executable transition never becomes unoedaly priority.

Example 35 Figure[5.8 shows examples of how if the constituent semaptions of a BSML
violate predicateNsieady V Nmaximizer, @ cancelling behaviour results. For all three models in
Figure[5.8, they reside in their default control states;iemwmental input everitis present in the
second and the third model; axd=y=0 in the third model.

In the BSML model in Figure 5.8(a), if the BSML is a non-condbep semantics that sub-
scribes to theSiNnGLE concurrency semantics, theake Many maximality semantics, and the
Scope-PARENT priority semantics, transitioty andtz are initially executable, but if the first small
step executes, t, becomes executable abhdand t; become unexecutable, because(tpyi>
pri(ty) and pri(ts) > pri(t3), which is a cancelling behaviour. The constituent semauyittons
of the BSML do not satistysieady V Nmaximizer - First, Big-Semantics and Comb®emantics are
both false because their second conjuncts are false. Sedbaxmizer is false because its first
conjunct, i.e., Many”, is false.

Let us adjust the BSML model in Figurel5.8(a) so that:

t1:/vi=1,
ty: [new(v) = 1], and
t3: /v =2,

with transitiont, being removed from the model; the BSML subscribes t®therLow semantic
option. If the same semantic options as above, plus3GeBic Step enabledness memory pro-
tocol are considered, when the model resides in its defaurtrol states, big stefty, t3) is one
of the possible big steps. In this big step, after the exeoudfty, t, is executable, but onde is

156



Al Ar2 B, h C
-
t1:-a b t1: [x < 1]
B]_]_ BlZ C11 / C12
y:=
Bz Cz

~
i a tri/x=1
B21 B22 Ca2

(b) ()

Figure 5.8: Examples of cancelling behaviour.

executedt, becomes disabled, which is a cancelling behaviour. Ag¥éady V Nmaximizer iS NOt
true for this BSML because of the same reasons as above.

In the BSML model in Figure 5.8(b), if the BSML subscribeh®SiNnGLE concurrency se-
mantics, theP.l. Remanper event lifeline semantics, and tAake ONe maximality semantics,
transitiont; is initially executable, but if the first small step executed; becomes unready,
which is a cancelling behaviour that is confirmed by the faet predicateNsieady V Nwmaximizer
is false. However, if th@.1. Next ComBo Step event lifeline semantics together with tGemso
Take ONE cOmbo-maximality semantics are chosen instead oPtheRemamper event lifeline
semantics, a non-cancelling semantics is achieved: Twasteigs,{(t;, tz)) and ((tz, t1))), are
possible, where the scope of a combo step is identified byrawswuding “( )”. This latter BSML
semantics is non-cancelling becau$geaqy is true through Combd&emantics being true.

In the model in Figuré 518(c), if th8ingLE concurrency semantics, tl@C SvuarL Srep en-
abledness memory protocol, and fhexe O~k big-step maximality semantics are chosen, tran-
sition t; is initially executable, but executirtg makest; unready. If theGC Next ComBo Srep
enabledness memory protocol together with@emso Take ONe combo-maximality semantics
are chosen instead of th@C SuaLL Step enabledness memory protocol, a non-cancelling se-
mantics is achievedt; andt, are executed in the same combo step. The latter semantics is
non-cancelling because its semantic options satisfy pegdiComboSemantics.
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The Role of External Communication

The role of theExternal Input Events semantic sub-aspect in determining a BSML semantics
as non-cancelling is similar to the role of tBeent Lifeline semantic aspect. As shown in the
feature diagram in Figufe 5.7, &xternal Input Events semantics is instantiated by an option
that determines which events are considered as input eaadtby an option belonging to the
“Event Optionsthat determines the extent that an environmental inpubepersists in a big
step. It is only the second option, which belongs to tBwent Option% that has a role in
determining a BSML semantics as non-cancelling or not. Tis¢ diption, by itself, does not
have any &ect on determining the enabledness of a transition: It gpécies which events in
the trigger of a transition should be considered as enviasrtial input events, in a given big step.
As such, to extend the class of non-cancelling BSML semsitdicnclude external input events,
it suffices to adjust predicat@&g_SemanticandCombaSemantic®y conjoining them with the
following two predicates, respectively:

XBig Semantics (X.P.I. Remanper V —=Environmental Input Events), and
XCombaSemantics = (—=X.P.l. SuarL Step V —Environmental Input Events),

where the prefix “X” for semantic options above refers to theng lifeline semantic options of
external input events.

In the X.P.I. RmalNDER Semantic option, as opposed to the PdmRNDER SEmMantic option,
an environmental event is either present or absent thraughbig step. Thus, while the P.I.
RemaINDER Semantic option cannot be used in M&eaqy predicate, the X.P.l. Rianper semantic
option can be used.

The Role of Interface Communication

The roles of thenterface Events and thelnterface Variables in GC semantic aspects in deter-
mining a BSML semantics as non-cancelling are similar toBbent Lifeline and theEnabled-
ness Memory Protocols semantic aspects, respectively. A majoffetience is that interface
events and variables do not have combo-step semantic epthsisuch, to extend the class of
non-cancelling BSML semantics to include interface evantsinterface variables, it fices to
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adjust predicat®ig_Semantic®y conjoining it with the following predicate:

IBig_Semantics = [Asyncaronous Event V —Interface Eventg A
[GC Asyncharonous VArIABLE V —Interface Variables in GCJ.

Similar to theAssignment Memory Protocol semantic aspect, thiaterface Variables in
RHS semantic aspect does not have any role in determining a B&itlastics as non-cancelling.

Proofs

Next, after presenting a few lemmas, a proposition aboutdiesctness of the above character-
ization of the non-cancelling BSML semantics is presented.

Lemma 5.1 The choice of a semantic option for each of #gernal Output Events and the
Assignment Memory Protocol semantic aspects of a BSML has rife€et in determining it as
non-cancelling.

Proof Idea. These semantic aspects are not relevant because they dfieubttiae readiness,
fireability, or the priority of a transition. ThExternal Output Events determines the lifeline of
external output events, and not the triggering events diréimesitions. ThéAssignment Memory
Protocol specifies the values of variables on the RHS of an assignimanot the values of the
variables used in the GC of a transition. |

Lemma 5.2 If in a BSML semantics an executable transition in a snapsaontbecome unready
or low-priority but fireable after the execution of the imregd small step, requiring predicate
Maximizer is the weakest constraint over the choices af@scurrency and Consistency se-
mantic options to guarantee a non-cancelling BSML semantic

Proof Idea. The Nyaximizer predicate is copied below for convenience,

Nmaximizer = MAaNY A
[=(Take ONE V ComBO TAKE ONE) = SOURCE/DESTINATION ORTHOGONAL] A
[(—=(Take ONE V ComBo TAKE ONE) A No PriorITY) = NON-PREEMPTIVE].
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To prove this claim, two points should be shown. First, reqgipredicateNyaximizer Can
modify a cancelling BSML semantics to a non-cancelling BS8#imantics. And second, none
of the constraints in predicaldyaximizer Can be relaxed.

To prove the first part of the claim, it will be shown that giverancelling behaviour in a
BSML model, if the concurrency and consistency semantimaptof the BSML are changed so
that they satisfy th&yvaximizer Predicate, then a cancelling behaviour does not arise. rélotg
to Definition[5.1, a cancelling behaviour arises in a modedmtiere is an executable transition,
t, at a snapshot and thé&ect of taking the immediate small step that does not inctudaekes
t unready or low-priority, but still fireable, althoudtloes not have any conflict with any of the
transitions in the small step. To avoid such a cancellingbietur, predicat®Nyaximizer, through
predicate Mny, its first conjunct, tries to force suchtao be taken by the immediate small
step. Iftis included in the small step, a non-cancelling behavioaciseved, according to the
first disjunct in Definitior 5.1.. However, the My concurrency semantics in a BSML does not
guarantee that sucht avill be taken by the small step. If that is the case, howetwern the second
and the third conjuncts of theyaximizer Predicate ensure that the third disjunct of Definifiod 5.1
is true; i.e., the immediate small step includes a transitipsuch thatonflict(t, t’) is true.

If both the S urce/Destination OrTHOGONAL and Non-PrReempTIVE Semantic options are cho-
sen, such # is guaranteed to exist: If such’adoes not exist, thetrcould have been taken by the
small step, which is a contradiction. The antecedents afeleend and the third conjuncts, how-
ever, recognize the cases that requiring ex8e/DestiNaTION ORTHOGONAL and NoN-PREEMPTIVE
semantic options are not necessary to achieve a non-dagcBIEML semantics. If the an-
tecedent of the second conjunct is false, it means thatrettleeComo Take ONe combo-step
maximality semantics, theake O~k big-step maximality semantics, or both, have been chosen
in a BSML semantics, in which case evet i left out of the small step, it becomes unfireable,
making the second disjunct of Definitibn b.1 true, throughaittecedent being false. Similarly, if
the antecedent of the third conjunct is falseijll become unfireable. The antecedent of the third
conjunct of theNvaximizer Predicate has an extra conjunct compared to the anteceiet €ec-
ond conjunct that does not require theNNPreempTIVE Semantic option if one of the hierarchical
semantic options are chosen: If a hierarchical priority a&etics is chosen, an interrupted and
an interrupt transition need not be taken together throbgh\bn-PreempriveE SEmantic option
because one has a higher priority than the other.

So far, the first part of the proof has been presented: it has bkeown that the constraints
of the Nyaximizer Predicate together ayficientto ensure a non-cancelling BSML semantics.
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However, it should also be shown that these constrainteegessaryA concurrency and con-
sistency semantic option is not unnecessarily requirectohmsen by th&lyaximizer pPredicate.
To show this, it is enough to inspect the role that other séimaspects could have in relaxing
the Nvaximizer Predicate. The transition-based, enabledness semapgctasneed not be con-
sidered because they correspond to the readiness of atimansvhich is not relevant in this
claim (the lemma already assumes that a transition couldrbedlisabled). The coordinative
enabled semantic aspects are of interest so far as they hafeet in making unfireable in the
destination of the immediate small step, to make the secmuhdt of Definition 5.1 true. The
Nuaximizer Predicate already considers the roles of Bigp Step Maximality and theComb-Step
Maximality semantic aspects. The semantic options ofdhder of Small Step semantic aspect
order the execution of the transition of a model, howevenenaf them can make an executable
transition unfireable unless it is executed in the small.stépis, thedrder of Small Step cannot
relax any of the constraints of the predicBl@aximizer- Lastly, the Nigarion or TRIGGERS priority
semantics is not relevant in tidyaximizer predicate since its choicefacts the readiness of a
transition, which is not relevant in this claim. Thus, tRgaximizer Predicate is not only a $ii+
cient condition for turning a cancelling BSML semanticscharacterized in the lemma, into a
non-cancelling one, but also is a necessary condition. O

Proposition 5.3 A BSML semantics is non-cancelling if and only if its constitt semantic op-

tions satisfy the predicatd = N’Steadyv Nmaximizer ,» Where,

Nsieaay = (Big-Semantice\ XBig Semantics\ |Big_-Semanticpv
(CombaSemantice. XCombaSemanticp

Proof Idea. To prove this claim, it should be shown that predichteharacterizes all non-
cancelling BSML semantics and only them. First, it will beoaim that any BSML semantics
whose semantic options satisfy predichités a non-cancelling BSML semantics. And second,
it will be shown that the semantic options of any non-cameglBSML semantics satisfies pred-
icateN.

If the semantic options of a BSML satisfy predicétethen eitheNg,,,q,, Nmaximizer, OF both
are true. IfNg.q, is true, then either theBjg-Semantics\ XBig Semantics\ |Big_Semantics

predicate or theGombaSemantice\ XCombaSemanticgpredicate is truE,Which means that

3|f the BSML neither supports events nor variables syntaenthoth predicates can be true.
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an executable transition remains priority-ready during ¢lrrent big step or combo step, re-
spectively. Thus, a non-cancelling BSML semantics is agde This is because if the first
predicate is true, the statuses of events and the valuegiables remain the same throughout
the big step, thus the transition remains ready; since th€driry semantics is chosen, then
the transition is priority-ready. TheAsrLow semantic option should not be chosen, because a
ready transition can become unready if a variable is asdigr@e than once during a big step,
as described in Examplel35, on pagel156, where the origindehio the example is changed

to use thenew operator. Similarly, if the second predicate is chosen, rz¢ancelling BSML
semantics is achieved. If predicd@aximizer IS true, regardless of whethNgteadyis true or not,

a non-cancelling BSML semantics is achieved, accordingemmal5.2. If botiNg,, and
Nuaximizer @re true, then the BSML is non-cancelling because eachqatedseparately attempts

to satisfy one of the disjuncts of Definitibn b.1, and theserapts never cancel each other.

Conversely, if a BSML semantics is non-cancelling, theraiisdies predicat®l. Two cases
are considered based on whether thexiiconcurrency semantics is chosen or not.

If the BSML does not support the My concurrency semantics, i.e., it subscribes to the
SINGLE concurrency semantics, and an executable transition datesectome unready or low
priority, then predicat®,.,,, must be true. INg,,,, is not true, itis always possible to create a
counter example model with a cancelling behaviour, sinidahe ones in Example B5: A model
can be constructed in which the guard condition or the eviaggdr of an executable transition,
t, is forced to become false after the execution of the imntedimall step, which executes a

single transition because of thev& e concurrency semantics.

If the BSML supports the Miny concurrency semantics, and would have not been a non-
cancelling BSML semantics if it would have supported the:S: concurrency semantics, then
the original BSML semantics must satisfy predicBti@yimizer, @ccording to Lemm@a5.2. Lastly,
if the BSML would have been a non-cancelling BSML semantiesef it would have supported
the SnGLE concurrency semantics, then the original BSML semantiosilshalso satisfy predi-

cateNg,.,q,, @s described in the previous paragraph. O
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5.3.2 Priority-Consistent Semantics

First, the BSML semantics that subscribe to either @S Parent or the Sope-ChiLp semantic
options are considered, followed by the ones that substwitiee Negarion oF TriGGers. Lastly,

the BSML semantics that subscribe to both a hierarchicabstéimoption and the darion or

TRrRIGGERS Semantic option are considered.

Hierarchical Priority Semantics

Any priority-consistent BSML semantics according to oneh&f hierarchical semantic options,
i.e., the Sopre-Parent or the Sope-CHiLp Semantic option, must subscribe to the&d One max-
imality semantics. Otherwise, no constraints over theahof the other semantic options can
result in a priority-consistent behaviour. For examplegewkhe kke Many maximality seman-
tics and the Sope-ParenT priority semantics are chosen together, it is not possithbose the
transitions of a current small step in such a way that a mddelyas reaches a control state that is
the source of a transition with the highest scope. Formidé/following predicate should hold,

Phierarchicas = TAKE ONE.

Example 36 Figure[5.9(a) shows a model that demonstrates an examplevotline violation of
predicatePyierarchical F€SUILS in a priority-inconsistent behaviour. The modelassidered when it
resides in its default control states and environmentalitrgvent is present. If a BSML seman-
tics that subscribes to thiglany concurrency semantics, tiake Many maximality semantics
(which violateSPyierarchical ), the Scope-Parent priority semantics, and th&C SuaLL Srep en-
abledness memory protocol is considered, then two big stépsts}, to, ts) and ({ty, t4}, t3, ts)
are possible. The former big step includes transitignwvhich has a higher priority than transi-
tion ts in the latter big step.

Itis possible to create a similar model that neither usesieaor uses variables but exhibits
a similar priority-inconsistent behaviour. The model ig&re[5.9(b) shows a BSML model that
has a priority-inconsistent behaviour, when it residesantrol stateB;, and a BSML semantics
is chosen that subscribes to tlieke Many maximality semantics and th&ore-Parent. Two
big steps are possibl€t;, to, t3) and(ty, tp, t4), with the latter big step including,, which has a
higher priority than transitiorts in the former big step.
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Figure 5.9: Examples of priority-inconsistent behavioorr the Sope-Parent or Scope-CHILD
priority semantics.

Proposition 5.4 A BSML semantics that subscribes to the priority semai8iose-Parent or
Scope-CHiLp, but not theNecarion oF TRIGGERS, IS priority consistent if and only if it satisfies
predicatePHierarchical .

Proof Idea. If a BSML semantics subscribes to thekE One big-step maximality seman-
tics, a priority-inconsistent behaviour cannot arise wtiesm Sope-Parent or the Sope-CHiLD
semantic option is chosen. This is because, by virtue oivadig eachOr child of anAnd con-
trol state to take maximum one transition during a big stiee,dossibility of a model to arrive
at different configurations to have the choice to execute high orpioarity transitions in a
priority-inconsistent manner is precluded.

Conversely, if a BSML semantics is priority consistentiteshould subscribe to theake
One big-step maximality semantics. Otherwise, if the BSML setita subscribes to theake
Many or the Sntactic semantic option, it is always possible to create a BSML medtilar to
the one in Figure 5]19(b) that has a priority-inconsistehigvéur. O

NEGATION OF TRIGGERs Priority Semantics

None of the transition-awarievent Lifeline semantics for internal events, i.e., none of the event
lifeline semantics for internal events that are considenethe scope of the formalization in
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Chaptef #1, support a priority-consistent behaviour adogrth the Nigarion or TRIGGERS priority
semantics. Thus, the following predicate is needed to guieeaa priority-consistent behaviour,

Pnegaion = —Negated Events

where “-Negated Events predicate refers to all BSML semantics that do not suppayraax
for negated events in the trigger of a transition, which aticny the constrairitl5 in Figufe 3.3,
on page 34, refers to all BSML semantics that do not supperiNHaarion or Events priority
semantics.

Variables have no role in determining the class of priocityrsistent BSML semantics above,
because, unlike events that are used in thesNon or TrRiGGERS priority semantics, variables are
used only to determine the readiness of a transition.

Example 37 Figure[5.10 shows an example of how the violation of pre@iPatgaton results in

a priority-inconsistent behaviour according to tNeGarion or TRIGGERS priority semantics. The
model in Figurd 5.70 is considered when it resides in its diéfeontrol states and the environ-
mental input event i is present. If a BSML semantics that@ities to theSingLE concurrency
semantics, théecarion oF TRIGGERs priority semantics, and th€.l. Remainoer event lifeline
semantics, which violat&Byegaion, IS considered, then four big steps are possillig; to, ts) |
(to, 11, tg) (11, 4, t2), @and(t,, t3, t;). However, this is a priority-inconsistent behaviour besathe
last big step executes transitidg) although pr{ts) < pri(ts). Similar priority-inconsistent be-
haviour arise when th@.l. Next SuaLL Srep semantic option is chosen. Again, four big steps
are possible:(ty, to, t3) , (i, t3, t1), (to, t1,14), and(ty, t4, to). And again, a priority-inconsistent
behaviour arises: The first two big steps include the traosit; whereas the last two big steps
include the transitior,, while pri(ts) < pri(ts).

If the Many concurrency semantics is chosen, instead of SiveLe concurrency seman-
tics, for both theP.l. Remamnper and theP.l. Next SuaLL Step event lifeline semantics, the only
possible big step would have been, F ({t;, t}, t4), which is a priority-consistent behaviour.
However, in general, th®lany concurrency semantics cannot resolve this priority incstesicy
problem. For example, if transitioty, such that sr(t}) = A,;, des{t;) = Az, and geift;) = c,
is added to the model, an additional big step, F ({t;,t}}, t3), is possible, which results in a
priority-inconsistent behaviour: Jlincludest; instead ot in T, while pri(t3) < pri(ts).

Similar priority-inconsistent behaviour arise when tRg. Nexr ComBo Srep semantic op-
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Figure 5.10: Examples of priority-inconsistent behavifmurthe Negarion or TRIGGERS priority
semantics.

tion is chosen. For example, consider a BSML model similéihéomodel in Figuré5.10, except
that it has an extra transitiofty, such that sr@’) = A1, des{t}) = A, and geit}) = c. Again,
the model is considered when it resides in its default costates and the environmental input
event i is present. If a BSML semantics that subscribes t&ith@e concurrency semantics,
the NeGation oF TRIGGERS priority semantics, and the.l. Next ComBo Step event lifeline seman-
tics is considered, then four big steps are possikil@gi, to), (ta)) , ((tz, ta), (ta)), ((t;, t2), (ts)),
and ((t,, t7), (ts)), where the scope of a combo step is identified by a surrourdjj. This
behaviour is priority inconsistent because the last twodigps include; and the first two big
steps includdy, while pri(t3) < pri(ts). If the Many concurrency semantics is considered in-
stead of theSingLE concurrency semantics, then two big steps are possiliies t2})), (ts)) and
(({t}, 23], (t3)), where the former big step includes includgsstead oft; in the latter big step,
while pri(ts) < pri(ts).

The Role of External Communication A BSML semantics that supports &xternal Input
Events semantics with the X.P.l. #uambper event lifeline semantics can accommodate for a
priority-consistent behaviour, regardless of the sencaition that determines how an external
event is distinguished from an internal event, as specifielable[3.#4 on page 55. When a
BSML semantics subscribes to the X.P.EeMRINDER Semantics, an input event that is received
from the environment at the beginning of a big step perdstaighout the big step, thus priority
inconsistency according to theedhrion oF TRIGGERS priority semantics cannot happen. The
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following predicate characterizes the constraint overisiraantics of the external input event,
PXEvent = X.P.l. Remanper V —=Negated External Events

where the “Negated External Events predicate refers to all BSML semantics that do not sup-
port a syntax for negated external events in the trigger ddirasition, precluding the possibility
of implementing the Ncarion or TRIGGERS priority semantics using external events.

Example 38 The model in Figuré 5.11 shows a BSML model that uses envaotamninput
eventsiy, i, andisz. Transitionts has a higher priority than transitioy andts, according to
the NeGation oF TrIGGERs priority semantics. Next, the behaviour of the model is yread when
it resides in its default control state8;1, A,;, andAsy, andiy, i, andiz are present.

If a BSML semantics is used that subscribes toXHel Remamnper event lifeline semantics
for external events and th&nGLE concurrency semantics then the following four big steps are
possible:(ts, te), (s, t3), {t4, ts), and(ts, t4), which exhibit a priority-consistent behaviour.

If a BSML semantics is used that subscribes toXtiel Next ComBo Step event lifeline se-
mantics for external events, instead of ¥1€.| Remainber Semantics, then the following eight big
steps are possible: 1= ((ts, te), (t2)), T2 = {(ts, ta), (t1)), Tz = ((ta, ta)), (t2)), Ta = {(ts, t3), (t2)),

Ts = ((ta, t6), (ta)), Te = ((t, ta), (ta)), T7 = ((ta, te), (t2)), and T = ((ts, ), (tz)). This be-
haviour is priority inconsistent because, for examplg>TTs, since pr{ts) > pri(ty).

If a BSML semantics is used that subscribes toXtiel Next ComBo Srep event lifeline se-
mantics for external events, instead of ¥1€.1 RemainbeEr Semantics, and thi any concurrency
semantics, instead of ti8GLE concurrency semantics, then the following four big stepspas-
sible: Ty = (({ts, ts}]), (t2)), T2 = (({tz, te}), (t2), T3 = (({ta, te}), (t1)), and Ty = {({ts, te}). (t2))),
which exhibit a priority-inconsistent behaviour, becaugge> T, since pr{ts) > pri(ty).

The Role of Interface Communication A BSML semantics that supports &iterface Events
semantics with the &vncaronous Event event lifeline semantics can accommodate for a priority-
consistent behaviour: A generated interface event in thectbig step will be only present in
the next big step right from the beginning, similar to the. K Remamper event lifeline semantics
for external events. The following predicate states thisas&ic characterization,

PIEvent = Asy~cHroNous Event V —Negated Interface Events
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Figure 5.11: Priority consistency and the semantics ofraatesvents.

where the -=Negated Interface Eventspredicate refers to all BSML semantics that do not sup-
port a syntax for negated interface events in the triggertadrasition, precluding the possibility
of implementing the Ncarion or TRIGGERS priority semantics using interface events.

The Interface Variables in GC semantic aspect, similar to tlabledness Memory Pro-
tocols semantic aspect, is not relevant for the priority-consisgesemantics, because, unlike
events, interface variables do not correspond to a prisgtgantics.

Proposition 5.5 A BSML semantics that subscribes to fh@arion or TrRIGGERS priority seman-
tics, but not to theScope-ParenT Or the Scope-CHiLp priority semantics, is priority consistent if
and only if it satisfie® ., = Pegaion A PXEvent PIEvent.

Proof Idea. If a BSML semantics satisfies predicd®g, ., it is priority consistent according
to the Negarion ofF TRIGGERS priority semantics. First, since it does not support iriéevents,
because oPyegaiion, ONly the roles of external and interface events, represeby predicates
PXEventand PIEvent respectively, need to be considered. Predié&d&ventcharacterizes
priority-consistent BSML semantics for external events: g@avironmental input event is either
present throughout a big step or is not present at all. Thus,saapshot of a model, either a
lower-priority transition or a higher-priority transiticof a model, but not both, can be included
in different big steps of the model that are initiated from that shap Similarly, predicate
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PIEventcharacterizes priority-consistent BSML semantics foeiifséice events: An interface
event is either present throughout a big step or is not ptegeti, precluding the possibility of a
priority-inconsistent behaviour. Finally, the conjurmctiof the predicateByegaion, PXEventand
PlEventeffectively determines all priority-consistent BSML semastihat use dierent kinds
of events.

Conversely, if a BSML semantics is priority consistent witspect to the Bkarion oF TriG-
GERs priority semantics, it satisfieBy ..., Otherwise, at least one of thegaion, PXEvent
and PIEventpredicates does not hold. However, if any of these predicates not hold, an
example model can be constructed, as shown in Exdmple 37xardid 38, that has a priority

inconsistent behaviour. ThuB; holds in a priority consistent semantics. O

Negation

Hierarchical and NEcaTioN oF TRrRIGGERS Priority Semantics

A BSML semantics might subscribe to both a hierarchical sgmaption, i.e., one of thecsre-
ParenT Of the Sope-CHiLp priority semantics, and theddarion or TRIGGERS priority semantics.
As described in Sectidn5.1.1, in such a BSML semantics, sitbed in Section 5.11.1, when the
priority of two transitions can be compared both accordmthe N:garioN oF TRIGGERS priority
semantics and according to the hierarchical priority seéimogrthe comparison according to the
NEGATION OF TRIGGERS priority semantics has precedence.

Proposition 5.6 A BSML semantics that subscribes to a hierarchical pricsgynantics together
with the Necation oF TRIGGERS priority semantics is priority consistent if and only if &tssfies
P = Phierarchical A P;\]egaﬁon'

Proof Idea. If a BSML semantics satisfid3yicrarchicar and P,’\legaﬁon, in order for it to be priority
inconsistent, it should be the case that a model specifigdsBSML could create two big steps
T, andT, such thafl, > T,. But that means that there exist &xecuted by, and at, executed
by T, such thatpri(t;) > pri(t;). However, such & andt, cannot exist. It; andt, are priority
comparable according to the hierarchical priority sentantbut not the NsarioNn oF TRIGGERS
semantics, thefy should have been executed in the first small step,pbr otherwise the Ake
One big-step maximality semantics would not have allowed itécelzecuted (since its scope is
a parent of the transitions in the first small step). But ifteen the first small step af,, which

is initiated from the same snapshot as the first small stelp,oéhould have includet], either
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instead oft, or together witht, (if the concurrency and consistency semantics allows.that)
either case, it cannot be the case that T,: In the former case, both big steps execute the high-
priority transitiont;, while in the latter casel; should also includé,, or a similar transition of

the same hierarchical priority, in additiontto If t; andt, are priority comparable according to
the NecartioN oF TRIGGERS priority semantics, then i, could have been takety, could not have
been taken because the triggetofvould have been present throughout the big step. Thus, if a
BSML semantics satisfid®yierarchical A P, it is priority consistent.

Negation’

Conversely, if such a BSML semantic is priority consistédrghould also satisfPhierarchical A
P’Negaﬁon. If any of the conjunct is not satisfied, SByierarchicar 1S NOt Satisfied, a counter-example
model can be constructed that has a priority-inconsistelmdour according to the hierarchical
priority semantics, as described earlier in the chaptexaniple 36. Thus, the BSML semantics,

Indeed, Satlsf|e§H|erarch|Ca| A P;\legation' O

5.3.3 Determinate Semantics

First, the determinate BSML semantics with respect to Wemare identified, followed by the
ones that are determinate with respect to events. LasdyB8ML semantics that subscribe to
both semantic options are considered.

Determinate with Respect to Variables

A BSML semantics is determinate with respect to variablessingle-assignment models if it
either follows the RHS B Srep assignment memory protocol, or follows thexE One big-
step maximality semantics and theaM concurrency semantics, or does not support variable
assignments at all. Formally,

Dvarianles = [—Variable Assignmentsv RHS Bic Srep] V
[(RHS SuaLL Srep V RHS Gomso Step) = (TAKE ONE A MANY)].

Example 39 Figure[5.12 shows an example model of how the violation adlipage Dyariaples
results in a non-determinate behaviour. The model is cansitiwhen it resides in its default
control states. It is meant to do two things: First, it shoaidap the values of integer variables
x andy; and second, it should compute the values of the sum and ffegedice ofx andy
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Figure 5.12: Examples of (non-) determinate behaviour vé#ipect to variables.

according to their initial values at the beginning of the Isigp. If a semantics that subscribes
to the SINGLE concurrency semantics, thieake Many big-step maximality semantics, and the
RHS SuaLL Srep assignment memory protocol, which violalBg;iapies, 6 big steps are possible,
with two djferent outcomes, none of which achieves the intended behaWor example, big
step(ty, t3, t, t4) assigns the value of to x but not vice versa, and furthermoreym= 2 x y
anddiff =0. If the RHS Bic Srep assignment memory protocol, instead of Ri¢S SaaLL Srep
assignment memory protocol, is chosen, again there are tbjas possible, all of which achieve
the intended behaviour.

In the model in Examplie 39, if a BSML that subscribes to thesM any maximality seman-
tics, the RHS &aLL Srep assignment memory protocol, and theast concurrency semantics is
chosen, which violateByariapies, ONlY big step({ty, t}, {ts, t4}) is possible, which exhibits a deter-
minate behaviour but calculates the wronfiefiencediff =y— x, instead ofiff =x-Yy. It might
be tempting to replace the consequent of prediDgiganes With only “M any”, but the new con-
sequent does not always result in a determinate behavibiernéxt example demonstrates this
problem.

Example 40 The model in Figure 5.13 shows a model of a system that caritreloperation of
a chemical plant. The environmental input eventsoneandinc_two indicate that the amount
of a chemical substance should be incremented by one or agpgectively. If the two events
are received simultaneously, the intended behaviour isdeement the amount of the chemical
substance three units. The model is considered when: dlessn its default control states,
inc =inc_1 =inc_2 = 0, and the environmental input evente_oneand inc_two are received
simultaneously. The model is single-assignment only if@mwental input eventesetcannot
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Figure 5.13: An example of a non-determinate behaviour.

be received neither together withc_onenor together withinc_two. If a BSML semantics that
subscribes to th&ake Many maximality semantics, thRHS SuaLL Srep assignment memory
protocol, theP.l. Remainper event lifeline semantics for internal events, ¥@.1. Next Comso
Srep event lifeline semantics for external events, andiih@y concurrency semantics is chosen,
two big steps are possibléty, ts, {ts, t7}, ts, t4) and(ts, ts, {t4, t7}, {1, t2), with the value oinc being

1 in the former big step and 2 in latter big step, which is a mi@terminate behaviour.

The following lemma explains why the semantics in the abowarle is not determinate,
as opposed to when thade One maximality semantics is chosen.

Lemma 5.7 In a BSML semantics that subscribes to Taee One maximality semantics and the
MaNY concurrency semantics, if two big steps, T andor a single-assignment model consist of
the same sets of transitions, then they are the same.

Proof Idea. The above claim can be proved by inductively arguing ovessthall steps of such
two big stepsT andT’. Starting from snapshoficb andT’.b, which are the source snapshots of
T andT’, and are the same, their first small stepsandT’%, should be the same. If not, let us
assume that there existd,asuch that € (T1.7 — T'1.7), meaning that is executed by the first
small step ofT but not the one off’. However, such & does not exist: Transitioncan only
be not taken byl ! if it is replaced by & € T'! such thatonflict(t,t’). But if that is true, T’
can never executebecause the ske Onk big-step maximality semantics disallows suchta

be taken aftet’ has been taken, and thus it is not possible Thand T’ have the same set of
transitions, which is contradiction. Thus, it should be ¢hase thaff .z = T .z. Similarly, it
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should be the case that dlI's andT"’s, such that 1< i < T.lengthand 1< i < T’.length are
the same. Therefore andT’ are the same. |

The Role of Interface Variables The role of thenterface Variables in RHS semantic aspect

in determining a BSML semantics as determinate is simildhab of theAssignment Memory
Protocol, described by predicatd3,.iiapes - The below predicate specifies the corresponding
constraints over the choice of the semantic options ofritezface Variables in RHS:

DIAssign = [-Interface Variables in RHS vV RHS AsyNcHRONOUS VARIABLE] V
[RHS WEAk SyNcHRONOUS VARIABLE = (TAKE ONE A MANY)].

Proposition 5.8 A BSML semantics is determinate with respect to variablesd only if its
constituent semantic options satisfy the predi€}g,,, s = Dvariables A DIASSIgN.

Proof Idea. If a BSML semantics satisfids;,_ . ... it is determinate because each of its con-
stituent assignment semantic options falls into one of tflewing categories: (i) the semantic
option uses the values of variables at the beginning of atejgfer assignments, i.e., the RHS
Bic Ster and RHS AvynchuroNous VARIABLE Semantic options, meaning that the order of the as-
signments in two big steps with the same set of transitiors cha¢ dfect their final outcomes;

or (i) the semantic option is used in a BSML semantics thtisBas the “=hke ONE A MaNY”
predicate, which, by Lemnia 3.7, means that two big stepsstimg of the same transitions are

indeed the same. In both cases, however, the BSML semastietarminate.

Conversely, if a BSML semantics is determinate with respectariables it must satisfy
Dl srianies: Otherwise, a counter example model, similar to the onesantple 39 and Example
[4Q, can be constructed that has a non-determinate behaviour ]

Determinate with Respect to Events

A BSML semantics is determinate with respect to eventsgfftlowing predicate is true about
it,

Devents = [—Generated Eventsv P.l. ReMAINDER] V
[(P.I. NexT SmaLL Step V P.l. Next ComBo Step) = (TAKE ONE A MaNY)].
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Figure 5.14: Examples of (non-) determinate behaviour vé#ipect to events.

If events with parameters are considered, then it is alsoimed that the combine function for
parameters, which determines the value of a parameter ofet when it is generated more
than once during a big step, to be both commutative and ags@ci

Example 41 Figure[5.14 shows an example of how the violation of pre@iBatcn results in

a non-determinate behaviour with respect to events. Theehsdaonsidered when it resides
in its default control states. The model in Figlire .14 isikinto the model in Figuré¢ 5.13 in
Exampld4D. It represents a system that controls the omerati a chemical plarfi. There are
two processes, modelled by control stagsandB,, which increment the amount of a chemical
substance in the plant by one or two units, respectivelyigleathe environmental input events
inc_one and inc_two are received simultaneously, the intended behaviour is\tocement the
amount of the chemical substance three units. If a BSML strsdhat subscribes to thfanGLE
concurrency semantics together with A& Next SuaLL Srep event lifeline semantics is chosen,
which violatesDg,ents, there are two big steps possiblés;, t;) and (i, to), with the former big
step resulting inprocess(1while the latter big step resulting iprocess(2)at the end of their
corresponding big steps. If thel. Remamper event lifeline semantics is chosen, instead of
the P.I. Next SmaLL Srtep, the same two big steps are possible but the result wouldya\ke
process(3) If the Many concurrency semantics is chosen, instead ofSieLe concurrency
semantics, together with thel. Next SuaLL Srep, only one big step is possiblgf, to}), which
results inprocess(3)

The Role of External Events The role of theExternal Output Events semantic sub-aspect
is similar to the role of thé&vent Lifeline semantic aspect for internal events in determining

4This model is adapted from a model in [36], which in turn ispined by the motivating example inl[2].
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a BSML semantics as determinate. As shown in the featureatiagqn Figurd 5.7, aExternal
Output Events semantics is instantiated by an option that determinestwévients are considered
as output events and by an option belongingEgent Options which are exactly the same set
of options as for th&vent Lifeline semantics for internal events but withférent names, and
determine the extent that an environmental output evestgisiin a big step. Itis only the second
option, belonging to theEvent Option§ that has a role in determining a BSML semantics as
determinate or not. To extend the class of determinate BS&thasitics to include external
output events, it dtices to conjoin predicateg,ents above with the below predicate,

DOEvent = [-External Output Events v O.P.l. RiMAINDER] V
[(O.P.I. Next SvaLL Step V O.P.I. Next ComBo Step) = (TAKE ONE A MANY)].

where the prefix “O” for semantic options above refers to tenelifeline semantic options of
external output events, which are shown Bgént Optionsin Figure[5.7.

The External Events semantic aspect is not relevant in determining a BSML seicsaat
determinate because it specifies the semantics of inputevether than the events that are
generated during a big step.

The Role of Interface Events The role of thdnterface Events semantic aspect in determining
a BSML semantics as determinate is similar to that ofEkent Lifeline semantic aspect. The

below predicate specifies the corresponding constrairgstbe choice of the semantic options
of the Interface Events semantic aspect:

DIEvent = ftrue,

where, ‘true” here means any non-transition—aware semantic option efrlerface Events
semantic aspect.

Thelnterface Variables in GC semantic aspect has no role in determining a BSML semantics
as determinate because, similar to Er&bledness Memory Protocol for internal variables, it
only determines the readiness of a transition but not theegabf variables.

Proposition 5.9 A BSML semantics is determinate with respect to variablesdf only if its
constituent semantic options satisfies the prediBatg,,. = Devens A DOEvent.
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Proof Idea. If a BSML semantics satisfie; .., it is determinate because each of its con-
stituent event lifeline semantic options falls into one loé following categories: (i) the event
lifeline semantics accumulates events throughout a bjg steaning that if two big steps have
the same sets of transitions, they accumulate the samefgetasitions; and (ii) the event life-
line semantics is used in a BSML semantics that satisfies Thee"One A Many” predicate,
which, by Lemmd5]7, means that two big steps consisting @fstime transitions are indeed
the same. In both cases, however, the BSML semantics isndegge. In the latter case, the
set of generated events of a BSML model at the end of each bigtstep is equal to the set of
generated events by its last combo step or small step, basttk @hoice of the event lifeline
semantics for a particular kind of event. If events with paeters are used, as long as a com-
mutative, associative combination function is used to dombhe values of events, the BSML

semantics will be determinate.

Conversely, if a BSML semantics is determinate with respectariables it must satisfy
D!, ianes: Otherwise, a counter example model, similar to the onescantple[41, can be con-
structed that has a non-determinate behaviour m|

Determinate with Respect to Variables and Events

The following proposition states the constraints over thei@es of the semantic options of the
class of determinate BSML semantics, with respect to bottalbkes and events.

Proposition 5.10 A BSML semantics is determinate with respect to variablesesents if and
only if its constituent semantic options satisfies the @D = D, ., cs A Divents:
Proof Idea. If a BSML semantics satisfids, in order for it to be non-determinate, it should be
the case that a model specified in this BSML could create tgateipsr, andT,, from the same
source snapshot, that have the same set of transitionfidyuihaive dierent values for variables
andor have diterent statuses of events at their corresponding destmatiapshots. But such

a pair of big steps cannot exist: The values of variables aab@ diterent at their destination
snapshots because the BSML satisis. ... and because of Propositiobnb.8; also, the statuses
of events cannot be filerent at their at their destination snapshots because tMiL.B&tisfies

176



Dt ents @Nd because of Propositibnb.9. Thus, the BSML semanticstésminate with respect

to variables and events.

Conversely, if a BSML semantics is determinate, its comstit semantic options should
satisfyD. Otherwise, depending on whether it violal&g, ... andor D¢, .., counter example
models similar to the ones in Examplel 40, and Exarhple 41 eatsjely, can be constructed,
which show the semantics is not determinate with respecatiabies angr events. Thus, the

BSML semantics satisfids3. O

5.4 Quality Attributes and Syntactic Well-formedness

Sectiong 5.3]1, 5.3.2, ahd 5.8.3 specified the semantiacteaistics that each enumerated the
BSML semantics that satisfy one of the three semantic quatttibutes. It is, however, also
possible to use a combination of syntactic and semanter@ito specify such classes of BSML
semantics. This section presents two examples of suchatbarations. A language designer
or a modeller, based on an application or a domain, can csgatkar syntactic, semantic char-
acterization of a set of BSML semantics that satisfy a cedamantic quality attribute.

5.4.1 A Syntactic Well-Formedness Criterion for Non-Cancking

In Propositio 5.3, on pade 161, it was shown that a BSML s¢iggis non-cancelling if and

only if its semantic options satisfy predicdte= N’Steadyv Nmaximizer , Where

Nseaay = (Big-Semanticg\ XBig Semantics\ |Big_Semanticpv
(CombaSemantice. XCombaSemantick

This section shows that if a BSML model is single assignmesntlescribed in Definitidn 5.4,
on pagé 150, then predicaBég_Semanticscopied below for convenience,

Big_-Semantics = [(GC Bic Srer vV —~Guard Conditions) A —Event Triggers] A
[(TakE ONE V No PrioriTy) A =DATaFLOW],
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can be relaxed by removing the AR rLow” term, resulting in predicatBig_Semantic’s

Big_Semantics = [(GC Bic Srer V ~Guard Conditions) A —Event Triggers] A
[(Take ONE V No Priority)].

A single-assignment model is one that it does not producébangtep such that two transitions
in the big step assign values to the same variable.

Example 42 The model in Figuré¢ 5.15 is the model characterized in thedtparagraph in
Exampld_3b, on pade 166, which showed a cancelling behavithis model is not single as-
signment because when the model resides in its defaultat@tdites, big steft,, t3) is possible,
which assigns values twice to v. Furthermore, this modelkheancelling behaviour because in
the above big step after the executiortot, is executable, but ondg is executedt, becomes
disabled.

If transitionts in model in Figuré 5.I5 is changed so that,
t3: )V =2,

then the model is a single-assignment model, and a cangdikhaviour cannot happen.

A
A
AVt =1
D=
T
Ay |2 Az
[new(v) = 1]
As
- tz: /vi=2

Figure 5.15: An example model with dataflow over variable

Proposition 5.11 A BSML that only allows single-assignment BSML models iscameelling

if and only if it satisfies predicatd = Ngteadyv NMaximizer , Where

NSeaay = (Big-Semantic’sn XBig Semantics\ IBig_Semanticv
(CombaSemantice. XCombaSemantick
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Proof Idea. The proof is the same as the proof for Proposifion 5.3, on @&de except that
the part that considers the role of therk¥xL.ow semantic option needs to be removed; i.e., the
part that says, “The BarLow semantic option should not be chosen, because a readytivansi
can become unready if a variable is assigned more than omcegdubig step, as described in
Example[3b, on pade I66.” This part is not relevant for skagisignment models because for
a transition{, that uses thaew operator as a prefix of at least one of the variablegc(b), if it
becomes executable, it cannot become disabled through(i}s First, the values of variables in
gc(t) that are prefixed byew cannot change because the model is single assignment; @mtise
the values of variables igc(t) that are not prefixed bhyew cannot change because of the GG B
Srep enabledness memory protocol. |

5.4.2 A Syntactic Well-Formedness Criterion for Priority Consistency

As stated in Propositidn 3.5, on pdge 1168, a BSML semantigsadsity consistent with respect
to the Negarion oF TRIGGERS priority semantics, if and only if its constituent semardjations

satisfy predicat®| . ion = Pnegaion A PXEventA PIEvent where
PXEvent = X.P.l. Remanper V —Negated External Events
PIEvent = AsyncHroNous Event V —Negated Interface Events

Next, a syntactic well-formedness condition is introdutieat relaxes théXEventpredi-
cate above to allow more event lifeline semantic optionsefdernal events to be considered
in the characterization of the class of priority-consis88ML semantics. First, some needed
definitions are presented.

Definition 5.5 For a BSML model and a set of its transitions, T, Tha&ghbouringf for each
pair of distinct transitions,stand &, in T, their scopes are the same; i.e., sc@ipe= scopét,).

Lemma 5.12 For a BSML model, its set of transitions, T, can be partitdn®o a unique set
of neighbourhoodets of transitions d = {Tq,---, Tn}, where m> 1, such that each of /B,
1 <i <m, is a maximal set of neighbouring transitions.
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Figure 5.16: A BSML model that is not priority clustered.

Proof Idea. The set of sets of transitiolig; can be created by an algorithm that iterates through
all transitions inT and assigns a transitiof),to a set of transitions whose scopes are the same
ast’s; if such a set of transitions does not exist, a new set ofsitons is created ifg and

t is assigned to it. Once all transitions are visited, the rtlgm ends with a set of sets of
neighbouring transitiond,s: By definition, the set of transitions in each set are thesitaoms
whose scopes are pairwise the sanie. is unique because each of tligs, 1 < i < m, is
maximal. ]

Definition 5.6 For a BSML model, its set of transitions, T, and its set of hieaurhood sets of
transitions, & = {T1,---, Trn}, the model igriority clustered if for each distinct pairs of sets
of neighbourhood transitions;,IT; € Tg, their transitions do not share any positive or negated
literals in their triggers. Formally, if

Yt € Ti - Vt; € T - (postrig () U negtrig(t)) N (postrig(t;) U negtrig(t;)) = 0.
Example 43 The model in Figure 5.16, which is the same model as in Figu®,®n pagé 188,

copied here for convenience, is not priority clustered. &ample(postrig(t;) Unegtrig(ty))n
(postrig(ts) U negtrig(ts)) = {i1} # 0, although { and g are not neighbouring transitions.

180



For the class or priority-clustered BSML models, ¥ Eventpredicate can be relaxed to
the following predicate,

PXEvent = (X.P.I. Remamper V —Negated External Event$ v
[X.P.l. NexT ComBo Step A ((TAKE ONE A MaANY) V XGC)] V
[X.P.l. NExT SmMALL Step A TAKE ONE A MANY],

where

XGC = (=GC Suar Step vV =Guard Conditions) A
(GC Asyncuaronous VARIABLE V —Interface Variables in GC).

Example 44 The model in Example 5117 shows a priority-clustered BSMtehoThe model
is considered when it resides in its default control stages] when environmental input events
i1, I2, i3, andiy are all present, and variable = true. If the BSML semantics that subscribes
to the X.P.I. Nextr Comso Step event lifeline semantics for environmental input everts GC
SuaLL Step enabledness memory protocol for internal variables, arelSinGLe concurrency
semantics is chosen, which violates PXE{yghen three big steps are possible; ¥ ((t1,t4)),

T, = ((t2, ta)), and T3 = ((t4)) (t3) ). However, this behaviour is priority inconsistent; &xecutes
t; while T3 executeds, although pr{t;) > pri(ts). If the GC ComBo Srep is chosen, instead of
the GC SuaLL Srep semantic option, which satisfies PXEVettien the following four big steps
are possiblex(ty, t4)), ((t2, ta)), {(ts, t2)), and{(ts, t2)), which is a priority consistent behaviour.
Similar counter examples can be shown to exist for the moldehwhe PXEvenpredicate is
violated, for example, through its third conjunct.

The next example demonstrates the necessity of the prmusgered well-formedness crite-
ria in establishing a priority-consistent BSML semantisgg thePXEvent predicate.

Example 45 The model in Example 5118 is similar to the model in Fiquré/sid Examplé44,
except that it has an extra Or control stadg and an extra transitiors. This new model is not
priority clustered.

Again, the model is considered when it resides in its defearitrol states, and when en-
vironmental input events, i,, i3, andi, are all present, and variable = true. If the BSML
semantics that subscribes to theP.I. Next Comso Srep event lifeline semantics for environ-
mental input events, th@C Comso Step enabledness memory protocol for internal variables,
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Figure 5.17: Priority consistency in a priority-clustetf®SML model.
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Figure 5.18: Priority inconsistency in a model that is nabpty clusterred.
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and theSiNnGLE concurrency semantics is chosen, which satisfies predR&tevent, then the
following four big steps are possible; E ((t, ta), (te) ), T2 = ((t2, ta), (ta))), Tz = ((ta, ta)), (te))),
and T, = ((ts, tJ)), (ts) ). However, this behaviour is priority inconsistent because example,
T, executes$,, while T, does not execute it, but executgsalthough pr{ty) > pri(ts).

Similarly, if a BSML semantics that subscribes to ¥1B.l. Next SmaLL Step event lifeline
semantics for environmental input events, @@ SuaLL Srep enabledness memory protocol for
internal variables, and théMany concurrency semantics is chosen, which satisfies predicate
PXEvent, then the following four big steps are possible: I ({t1, ts}, ts) and T, = ({t, ta}, t6).
Again this behaviour is priority inconsistent because(fpyi> pri(ts), and T, executes,, while
T, executess.

Proposition 5.13 For a BSML that only allows priority-clustered BSML modetss priority
consistent if and only if it satisfies predica@gegaion A PXEvent A PIEvent.

Proof Idea. Using the same arguments as in the proof of Propoditidntcanibe shown that if
a BSML semantics for priority-clustered models is prioggnsistent, then it satisfies predicates
Pnegation @NdPIEvent It remains to show that it also satisfies P& Event predicate.

According to the first disjunct oPXEvent, an environmental input event is either present
throughout a big step or is not present at all. Thus, at a sl a model, either a lower-
priority transition or a higher-priority transition of a mel, but not both, can be included in
different big steps of the model that are initiated from that shap

According to the second disjunct, an environmental inp@néthat is present in the first
combo step of a big step becomes absent in the second confboHtsvever, because only
priority-clustered BSML models are allowed, meaning timat teaction of the model to an en-
vironmental input event is modelled only by a set of neighbrautransitions, and because ei-
ther the Miny concurrency semantic has been chosen or the GC of trarssieomain the same
during the combo-step, because of h&C predicate, the model has a chance to react to the
environmental inputs in a manner that respects the prioatgsistency criteria. If the My con-
currency semantics is chosen, the highest priority treomsiteach belonging to a neighbourhood
set of transitions are all executed during the first smafl sigether. The next small steps and the
next combo steps do not cause a priority inconsistent bebabiecause if a big step executes a
high-priority transition{, in its first small step, then any other big steps would eixeccute the
same high-priority transition or a transition that has thmse priority ag, which precludes the
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possibility of executing a transition with a lower priorityant, because of theake One big-step
maximality semantics. Similarly, IKGC is true, the highest priority transitions each belonging
to a neighbourhood set of transitions are all executed duhg first combo step, possibly se-
quentially. However, sincGC is true, a high-priority transition remains ready during thist
combo step. Again, a low-priority transition cannot execunless a high-priority transition is
not ready in the first combo step.

According to the third disjunct, an environmental inputm@vidat is present in the first small
step of a big step becomes absent in the second small stepn, Aggariority-inconsistent be-
haviour is not possible because a lower-priority transittan be taken in the small step after
the first one, only if a higher-priority transition has noebaeady in the first small step, which
means it cannot become enabled in later small steps either.

Conversely, if a BSML semantics is priority consistent witspect to the BkarioN oF TriG-
GERS priority semantics, it satisfieBnegaion A PXEvent A PIEvent Otherwise, at least one
of the Pnegaions PXEvent and PIEventpredicates does not hold. However, if any of these
predicates does not hold, an example model can be congtrigiteilar to the ones shown in
Example[ 3V, Example_44, and Examplé 45, that has a priorignisistent behaviour. Thus,
PNegation A PXEvent A PIEventholds in a BSML that allows only priority clustered BSML
model and is priority consistent. |

5.5 Related Work: Semantic Properties

Huizing and Gerth identified the three semantic qualityilaites ofresponsivenessnodularity,
andcausalityonly for SneLeE concurrency semantics and events [50]. Their responssgerre
terion requires that the reaction of a model to an envirortedénput be observed in the same
big step that the input is received. The semantics in thamé&work that is not responsive is
semantic®\, which corresponds to the the#curonous Event interface event semantics in this
dissertation. Their modularity criterion requires thatemerated event by a model is treated the
same as an event received from the environment, as desanilidthptef B. The two semantics
in their framework that are modular, namely, semari@dD, can be easily shown to be also
non-cancelling. Semantid3 corresponds to theake One maximality semantics together with
the WhoLe event lifeline semantics. Their causality criterion foerts has been considered in
Chaptef B; the WoLe semantic option is the only event-lifeline semantics thatat causal.
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Figure 5.19: Global consistency vs. priority consistency .

Pnueli and Shalev introducedjibally consisten¢évent semantics [86], as described on page
[49, which is the same as the P.ENRinDEr event lifeline semantics except that if the absence of
an event has made a transition enabled in an early smaltstggvent is not generated later. This
semantics introduces a notion of priority consistency wipect to the Bsarion oF TRIGGERS
priority semantics, but at the scope of individual big stépis not possible for a big step to take a
lower-priority transition earlier in the big step while taf a higher-priority transition later in the
big step. A globally-consistent semantics is not a prieciyisistent BSML semantics. For ex-
ample, in the model in Figufe 5119, if the model resides idéfault control states, environmental
inputi is present and persists throughout a big step, and a glebatigistent event semantics is
considered, the following three big steps are possibie: (11, ts), To = (t4,t1), andTs = (i3, to).

Big step(ty, ts) is not a possible big step because ewstboth generated and its absence triggers
a transition. These three possible big steps, howeverbixhpriority-inconsistent behaviour,
for example, becauset; and T, execute £, while T3 executesqt althoughpri(t;) < pri(ty).
Global consistency semantics is not relevant for the BSMhag#ics that are priority consistent
because by predicaf®\egaion, described on pade 164, priority-consistent BSML semardic
not support internal events.

Synchronous languagese used to modgdrogram reactive systems that are meant to behave
deterministically [[40]. In the deconstruction in Chafiértl3e un-clocked variations of syn-
chronous languages, such as Estérel [14] and Afgos [68tategorized as BSMLs that support
the WhoLe event lifeline semantics. A model is deterministic if itacéon to an environmen-
tal input as a big step always results in a unique destinat@pshot. Determinism is related
to determinacy: A deterministic semantics is by definiti@tedminate, but not vice versa. A
determinate semantics does not preclude the possibiléymbdel reacting to a single environ-
mental input via two big steps with fiierent sets of transitions. In the presence of variables,
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determinism can be only considered as the property of a mmdehot a semantics, because,
as opposed to events, variables can have infinite, or laagges, precluding the possibility of
handling determinism at the level of the description of aaetics. In the absence of variables,
for example, in pure Esterel .cnstructivgll3] and aglobally deterministi§93] semantics have
been developed. Similar semantics has been developeddosA68].

Similar concepts as our semantic quality attributes hawen lm®nsidered in eierent mod-
els of computation, but at the level of models instead of sgit®a For example, in Petri nets,
the notion ofpersistencd62], which requires a transition to remain enabled unti itaken, is
similar to our non-cancelling semantic quality attributa.asynchronous circuits, the notions
of semi-modularityandquasi semi-modularitgre similar to our non-cancelling semantic qual-
ity attribute, and the notion adpeed independencg analogous to our determinacy semantic
quality attribute [[17[ 90]. Janicki and Koutny introduce thotion ofdisablingin the context
of a relational model of concurrency [54], which is similardur priority consistency seman-
tic quality attribute. If the execution of a low-priorityansition,t;, disables the enabledness of
a higher-priority transitiont,, which is in parallel witht;, a disabling invariant for the system
can be specified that executge®only if t, is not enabled. Lastly, the notions pérsistenceind
determina(ﬁfor program schematfb?7] are analogous to our non-cancelling and determinacy
semantic quality attributes, respectively. A program st is a formalism to model parallel
computation of programs declaratively. In general, coragan the aforementioned concepts, (i)
our semantic quality attributes are defined for semantather than individual models; and (ii)
they are aimed at practical requirements modelling langsidggstead of models of computation.

A syntactic approach, as opposed to our semantic approactgnipare the properties of
BSMLs is considered by Eshuis [|30], where three BSMLs, ngnsthtecharts by Pnueli and
Shalev [86], Statemate by Harel and Naaniad [43], and UMLe$tathines|[[78], are inves-
tigated. A total of 17 syntactic constraints, including giegle-input assumption [46, 47] for
Statemate models, are introduced, and it is shown that thdels that satisfy these constraints
behave thesamein all three semantics. Two models have the “same” behavidbey satisfy
the samdinear, stuttering-closed, separable propert{88]: These are properties in LTL [84],
do not use the “next” operator, and aeparabl¢B0], meaning that, “itis a boolean combination
of temporal formulas each of which only refers to a sequeatimponent of the statechart.” [30]
Some of the insights of this work could be perhaps useful @miidying meaningful syntactic
well-formedness for achieving a semantic quality attebut

5| have adopted the name of my semantic quality attribute fitgework.
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5.6 Summary

This chapter presented three semantic quality attribhigsnake it possible to compare the se-
mantics of two BSMLs. A semantic quality attribute of a laage is a desired property that is
common to all models specified in that languages. Each ofdhmastic quality attribute speci-
fies a desired property about the way the sequence of smadl sta big step should be formed.
The set of all BSML semantics that support each of the threaséc quality attributes is char-
acterized. These characterization are achieved systathaty specifying the combinations of
the semantic options that satisfy each of the semantictguatributes. For each specification,
proof of its correctness is presented. Also, two syntacBd-fermedness criteria are formally
introduced that each can be used together with a set of senogmions to achieve a semantic
quality attribute.
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Chapter 6

Synchronization in BSMLs

“I believe that no single theory will serve all purposes.2[p.4]

Robin Milner

This chapter introduces a formal, systematic way to adopthspnization mechanisms for
BSMLs, which traditionally have not been equipped with $yoaization capability. Synchro-
nization is only relevant for BSML semantics that subsctd#e Many concurrency semantics,
in which multiple transitions can be taken within a smallpst&his chapter introduces Xyn-
chronization types$or a synchronization mechanism that is based on two congiiéamny roles.
The 16 synchronization types arise based on the numberavaitttons a transition can take part
in, i.e., one vs. many, and the arity of the interaction madras, i.e., exclusive vs. shared. The
chapter also introduces tlsgnchronizesyntax that can be associated with a compound control
state. A synchronizer uses a synchronization type to spméte a set of transitions according to
that synchronization type. Adopting the synchronizer ayribgether with the synchronization
types for BSMLs result in the class sfnchronizing big-step modelling langua{f@8SMLS).
SBSMLs are useful because they facilitate the specificaifaime patterns of computation in
which a set of transitions must be either taken togetherenstime small step or must not be
taken at all.

The remainder of the chapter is organized as follows. Se&i presents a motivating ex-
ample, based on the Committee Coordination probler [18ichvtiemonstrates the application
of synchronization in modelling. Sectién 6.2 introduces #lynchronizer syntax. Sectibn 6.3
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informally describes the semantics of the 16 synchrorondiipes. Section 6.4 demonstrates the
various applications of synchronizers and synchronipatypes in modelling the semantics of
many existing modelling constructs.

Chaptef¥ presents the formal semantics of SBSMLs, toguiitleproofs of how the seman-
tics of existing modelling constructs are implemented iIrSSR s.

6.1 A Motivating Example

The model in Figuré 611 is an SBSML model that is inspired by English description of
the “Committee Coordination” problerh [18]. The committemination problem asks for a
scheme to schedule the meetings dfatent committees of a university. The members of each
committee are faculty members, each of them can be a membsorefthan one committee. A
committee can convene when all of its members are ready to methe model in Figuré 611, |
have extended this problem to include that each faculty neensteither carrying out research,
teaching, or attending exactly one meeting. The model imreig.] is aspecificationof the
scheduling problem for the case of four faculty members,etied byF; (1 < i < 4), and three
committees, modelled bg; (1 <i < 3). For example, the members of commit@eareF, F»,
andFs. A meeting ofC, convenes when transitiots t;,, t,,, andt,; are executed together. The
model in Figuré 61 is specified in a synchronizing big-steulelling language (SBSML). The
transitions of the model are annotated with the labels okjfmehronizers, using the labels in a
normal or a complementary role (shown by over bars). For @@nransitiort, uses labef; in a
normal role, whereas transitiof uses labeld,, f,, andf; in complementary roles. A transition
might use a label in a normal role and dfdient label in a complementary role; e.g., transition
ts. The And control state in the model is annotated with thegachronizers A synchronizer,
such asUPEE(fy, f,, fs, f4), consists of asynchronization typee.g.,UPEE, and a set of labels,
e.g., {fy, fo, f3, f4}. As an example, the labels of synchroniZ®EE(f,, f,, f3, f4) are used by
transitiond;,, t1,, ty,, andt,;. These transitions, according to the semantid®PaE(f,, fo, f3, fa),

are either executed together in a synchronized manner,n@ ofcthem can be execu@d.

In the model in Figur€ 6l1, each faculty member is initiallysip with research and writing
(e.g.,F1isinitially in Ry doing research, represented by transitipgenerating eventyriting,),

tUnless the synchronization requirements of a transitiensatisfied through synchronization with afeiient
set of transitions, which is not the case in this example.
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but may have to give lectures (e.§4 may have to give a lecture when the guard conditiofy ,of
clasg, becomes true), or may attend a committee meeting (€;dnay attend a meeting &,

or C,, by taking transitiort, or transitiont,, respectively). Sometimes, a faculty member leaves a
committee meeting before the meeting normally ends to gieetare, in which case the commit-
tee meeting ends abruptly. For example, transitispecifies thaF; needs to leave a meeting
of C1, when conditiorclass is satisfied, requiring transitionsg, t;3, andt,s to be executed with

it according to the synchronizet®lEE(leave, leave, leave) andUUES(end, end, end). The

set of transitiongty, t13, tr3, t44} constitute a small step, and are synchronized accordingdo t
synchronizers. Committe@; is designed to give a higher priority to ending a meeting when
a faculty member needs to give a lecture than to continuiegnibeting. If the Spre Parent
priority semantics is chosets, would have a higher priority that,, thus the small step that
includests, would have precedence over the small step that incltgdes

6.2 Synchronization Syntax

Similar to a BSML model, an SBSML model consists of a hiergrithe of control states and a
set of transitions between these control states. Addilligriae normal-form syntax of SBSMLs
include syntax for synchronization. This section des&ibely the synchronization syntax of
SBSMLs. The syntax of BSMLs can be found in Secfiod 2.1. Th& BNF of SBSMLs is
presented in Sectidn 7.1.

The model in Figure 612 is used to describe the syntactic emdstic concepts of SBSMLs.
The model shows an SBSML model that characterizes a set plesisgynchronized ice skating
programs. Initially, all skaters are together, represtthtetheBasiccontrol statelogether Dur-
ing the program the skaters can split into three groups timpartheintersectionmaneuver(s),
represented by th&nd control statd ntersectio@ To avoid a clash, at each point of time, only
one of the three groups can initiate an intersection mametdve skaters can merge back to a
group, but the program can only end, by going to Exed control state, when the skaters are
split. The environmental input eventsne andCircle specify a line and circle maneuver in a
program, respectiveE/.T he environmental input evenSsplitandMergespecify that the skaters
split to three groups to perform intersection maneuvents)) that the three groups merge back

2In the intersection maneuver, the skaters in one group skateeen the skaters of another.
3In the line and circle maneuvers, the skaters of a team cagfatenation in a line or circle pattern, respectively.
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Figure 6.1: Modelling faculty members and their respotisiés, using synchronization.
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‘ Intersection {UUES (X)} ‘

ts: Split

Group | Group

to: Circle —~ ts: {X}

t14. Finish End

te: {X}
t1: Line

ts: Merge

Figure 6.2: A model for a set of synchronized ice skating paots.

into a single group, respectively. The environmental irguantFinish specifies the end of an
ice skating program.

A compound control state of an SBSML (boftnd and Or control states) can have a set
of synchronizerswhich are graphically positioned at the top of the conttates For example,
the control staténtersectionin the model in Figur@ 612 has one synchroniz@&ES(x). Each
synchronizelN (L) has: (i) asynchronization typer; and (ii) alabel sefL, surrounded by paren-
theses, instead of curly brackets. There are 16 synchiwnziypes, each of which is a string
of four letters, where a letter represents an aspect of timausgcs of the synchronization type.
The label set of a synchronizdeclaresa unique set oidentifiers(labels) that areisedby tran-
sitions that are to be synchronized by the synchronizehémiodel in Figuré 612, synchronizer
UUES(X) has synchronization tyd®@ES, and declares the identifi@nn its label sefx}.

A transition in an SBSML model can have: (i) a setrofe sets and (ii) a set ofco-role
sets Each role set is a set tdbels each of which is an identifier. Each co-role set is a set of
co-labels each of which is an over-lined identifier. For example, ia thodel in Figuré 612, the
set of role sets dfs is {{Xx}} and the set of co-role set &fis {{X}}. The well-formedness criteria
of SBSMLs, summarized at the end of Secfion 6.3.1, requakat of the labels (co-labels) of
a role set (co-role set) are associated with the identifiettssosame synchronizer. When the set
of role sets or the set of co-role sets of a transition is alsing, its curly brackets are dropped.
A role set is calledini-roleif it is a singleton angoly-role otherwise. Similarly, a co-role set is
calleduni-co—roleor poly-co—role For example, the only role set tfis a uni-role. Transitions
ts, tg, andty; can execute together because synchroriv&6(x) match their role and co-role
sets.
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Table 6.1: Synchronization types and their parametersnwbasidered for synchroniz&(L).

Index | Parameter Purpose Values for SynchronizeY(L)
U: The identifiers irL can be used
1 How an identifier can be used in the role setg @inly in uni-roles
transitions P: The identifiers in_ can be used
in poly-roles
U: The identifiers in_ can be used
5 How an identifier can be used in the co-role | only in uni-co-roles
sets of transitions P: The identifiers irL can be used
in poly-co-roles
3 How many instances of a label can appear i) E: One, eclusively
the role sets of transitions in a small step S: Many, in a $ilared manner
4 How many instances of a co-label can appeark: One, eclusively
in the co-role sets of transitions in a small stefs: Many, in a siared manner

6.3 Synchronization Types

A synchronization type consists of a sequence of four etesich of which is a value for one

of the four parameters that together create the set of 1éhsynization types. Table 8.1 de-

scribes the role of each parameter and its correspondingdssible values, when considered
for an arbitrary synchronizeY(L). The “Index” column relates the position of a letter in the
synchronization type with its corresponding parameter.

Next, the semantics of synchronization types is describetktail by specifying their role
in determining the potential small steps of an SBSML moddie Tole of structural semantic
aspects, however, need not be considered. First, the sersahtaspects afoncurrency and
Consistency, as will be shown in Section 8.4, are not relevant for SBSMesduse they are
forms of synchronization themselves. And second, for tlke s clarity, in this chapter, only
the No PrioriTy semantics is considered, but Chagter 7 considers the rbldse mther two
hierarchical semantic options. Thus, in this chapter, | Wik about the synchronization of
“enabled transitions”, which are transitions that couldddeen in a small step if only the role of
enabledness semantic aspects are considered, instedkimgf tbout “executable transitions”,
which consider the role of all semantic aspects, includimgdtructural semantic aspects. The
formal semantics in Chaptelr 7 describes the semantics of&B$ a uniform way, considering
all the semantic aspects as a whole.
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From a set of enabled transitions, determined by the enabledness semantic aspects of a
BSML, a potential small stepX, X € T, must not only satisfy the constraints of all of the
synchronizers that control transitionsTin

In a synchronizely(L), the first two letters of its synchronization typg, indicate how the
identifiers inL can be used in transitions within the scopé&@f). A Uin the first position means
that for all identifierd € L, all transitions inX that havd in their role sets| must belong to a
uni-role (i.e., a singleton role set). Ain the second position means that for all identifileesL,
all transitions inX that have in their co-role sets, must belong to a uni-co-role set. Rin
the first or second position of the synchronization type ¢dawo such constraints but only has a
different meaning from # if there are multiple identifers ih. The constraints of the first two
indices in the synchronization type can be checked syetdhtiby well-formedness constraints,
described later in this section.

As in some process algebras, such as CCS [72], a label in aetle.g.m, is matchedwith
a co-label in a co-role set that has the same identifier,meFor every transitiont, included
in X, the labels in all its role sets and the co-labels in all itg@e setsmustparticipate in a
match: For every labeln, in a role set, there must be a matching co-labglfrom another
transition included inX, and vice-versa for every co-labél, in its co-role sets. The third and
fourth indices of the synchronization type indicate how gnaansitions can participate in this
match: Hfectively, how many labelsn, can match aim and vice-versa, amongst the role sets
and co-role sets of the transitionsXin For a synchronizer with label setand a synchronization
type whose third letter ig, i.e., one of the**E* synchronization types, every identifiére L,
can appear at most once in the role sets of all transitioixs iRor synchronization types**E,
every over-lined identifier of, I, can appear at most once in the co-role sets of all transition
X. For synchronization typesS* (and***S), an identified € L can appear multiple times in
the role sets (and co-role sets) of the transitionX.in

In summary, after collecting the role sets and co-role seadl the transitions withinX that
use identifiers of., we have a set of role sets and a set of co-role sets:

R:{RI’RZ?'“} and
C:{Cl’CZ""}'

These sets should satisfy all of the following conditions:

- Every labelr € R, whereR € R, must have a corresponding co-laleet C;, such that
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Table 6.2: Examples of synchronizing transitions.

Synchronizer | Synchronizing Transitions (Non-Exhaustive)
UUEE(m) ti{my}, to: (M)
UUSE(m) t: {my}, to: {my}, t3: {m}
uuss(m) t{my, to: {my, t3: {m}, t4: (M}
UPEE(m, n) ti:{my}, to: {n}, tz: (M, N}}
UPSE(m, n) ti{m}, to: {m}, t3: {n}, t4: {n}, ts: {M, N}
UPES(m, n) ti:{my}, to: {my}, t3: (M, n}, t4: {mM, N}
UPSS(m, n) ti{m}, to: {my}, t3: {n}, t4: {n}, ts: {M, N}, te: {M, NN}
PPEE(M N, p,q) | tu:{m n},tz {p, g}, tz: {M, P}, t4: {N, T}
PPSE(M N, p,q) | t:{m.n, p,q}, t:{m, n}, tz:{p. g}, ts {M P}, t=: {1, G}
PPSS(M,n, p,q) | t:{m.n, p,q}, t: {m n}, ta:{p. }, t (M N, P, G}, ts: {M, P}, t6: (N, T)

C; € C, andr = c; and vice versa for every co-label;

- If the synchronization type i$*E*, for every co-labet € C;, whereC; € C, there is

exactly one corresponding lalrek R, such thaR € R, andc =T;

- If the synchronization type i$**E, for every labek € R, whereR, € R, there is exactly

one corresponding labele C;, such thaC; € C, andr = c; and

- Finally, the sefX must be maximal, i.e., it is not possible to add one or momsstti@n in

T and to satisfy the above constraints of the synchronizayipe.

Table[6.2 shows examples fnchronizing transitionaccording to 10 synchronizers of dis-
tinct types. The transitions in each row are enabled tramsiof a model. Intuitively, the first two
letters of a synchronization type specify the number ofraxtgons, i.e., the number of matchings
over distinct identifiers, that a transition can take payi.m, biparty vs. multipartyinteraction.
The last two letters of a synchronization type specify tligy af the interaction mechanism, i.e.,

exclusivers. sharedinteraction.

In the model in Figure 612, when the model reside&inG,;, andGs;, the set of transitions
{ts, to, t11} IS @ potential small step of the model, which satisfies thesttamts of synchronizer
UUES(X): (1) only uni-roles use; (2) only uni-co-roles usg; (3) onlytg has a role set including
x; and (4) bothts andt;; have co-role sets including The other two potential small steps
are: {tg, tg, t11} and{ts, tg, t;o}. The model neither allows two groups to initiate an intetisec
maneuver simultaneously, nor a group to initiate two irgetisn maneuvers consecutively.

195




Each pair of synchronization typ®EE andPUEE, UUSE andUUES, UPSE andPUES, PUSE
andUPES, PPSE andPPES, andUPSS andPUSS are symmetric. A synchronizer with one of these
types can be replaced with a synchronizer with the same &atdiut the symmetric type, with
the role sets and co-role sets of the transitions withindégpe swapped.

If a model has more than one synchronizer, the constrairitsedf corresponding synchro-
nization types should be considered together; i.e., th¥ abbve should satisfy the synchroniza-
tion requirements of all of the synchronizers together.

6.3.1 Well-formedness Criteria for SBSML Models

Lastly, in the semantics described above, some well-fonassl conditions are assumed. An
SBSML model iswell-formedif all of the following seven conditions hold,

i Each label uniquely belongs to the label set of exactly gmelsronizer.

ii For each labell, if there is at least one transition with a poly-role thatiiiesl, then the
synchronization type of its corresponding synchronizeust be a synchronization type
whose first letter i® (i.e., P***), otherwise it must be one of th& ** synchronization
types. Similarly, the second letter of a synchronizatigpetys specified based on the
characteristics of the co-role sets of transitions.

iii No two synchronizers of a control state have the samesyorgzation type.

iv Two labels that are associated with the same synchrooizégpe do not belong to two
different role sets or two fierent co-role sets of the same transition.

v For each labell, of a synchronizery, and each transition, | is associated with at most
one of the role sets or co-role setstof

vi A synchronizery, is associated with the least common ancestor of the sontelesti-
nation control states of the transitions that use the latieysin their role sets or co-role
sets.

vii A synchronizer)y, of a control states, cannot be split into two synchronizesg,andys,
such thaty, is assigned t@ buty, is assigned to a descendantsof

Hereafter, by an SBSML model, | mean a well-formed SBSML ntode
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6.4 Applications

This section, through examples, describes how the semsanttidiferent modelling constructs
and diferent semantic concepts can be modelled succinctly usimghsynization in SBSMLs.
Sectior 6.4.11 describes how the semantiamolti-source, multi-destination transitiofié1,[86]
can be described using regular transitions and synchnenisectior 6.4]2 describes how some
of the semantic options of the concurrency and consistezityaatic aspect can be described by
other semantic options and synchronizers, thereby allpmaltiple BSML semantics to exist
in different components of a model. Section 8.4.3 shows how therdemaf the Resent In
Same event lifeline semantics, whose semantics was not includéte semantic formalization
of Chaptef#, can be modelled by using synchronizers. Sd6tb4 describes how the seman-
tics of some of thecomposition operatorin template semantics [7'5] can be described using
synchronizers in SBSMLs. Lastly, Sectibn 614.5 shows hasvessence of some of theork-
flow patterns[96] can be captured succinctly using synchronization irsBRs. The formal
treatment of the discussions in this section are present8dadtion 7.4.

6.4.1 Modelling Multi-source, Multi-destination Transitions

Multi-source, multi-destination transitions embody anfioof concurrent, synchronized execu-
tion: When a multi-source, multi-destination transitianexecuted, it exits all of its source
control states and enters all of its destination contrdiest§41,[86]. A multi-source, multi-
destination transition of a model can be replaced with afsetgular transitions that are always
taken together by synchronizing via a synchronizer of ypeE. As an example, the SBSML
model in Figuré 63(b) is equivalent to the model in Figui®®), which has two multi-source,
multi-destination transitiong andy. Transitionx is replaced by transitions;, X,, andxz, and
transitiony is replaced by transitiong, y,, andys. From the set of regular transitions that model
a multi-source, multi-destination transition, e.g.,one of the transitions, e.gx;, adopts the
guard and trigger conditions, the actions, and the possilidesets and co-role sets wfalong
with a new co-role set with new co-labels each representiegpbthe other transitions. The other
transitions each has one singleton role set, to match theaewle set of the first transition. The
number of control states in the source and destination of l-saurce, multi-destination tran-
sition need not be the same, in which case new dummy conétalssare introduced to make the
number of source control states and destination contr@stxjual. For example, in the model
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Figure 6.3: Modelling multi-source, multi-destinatioanisitions using regular transitions.

in Figure[6.8(b), control stat®, is introduced to accommodate for the source control staxg of
and the destination control stateyaf This new control state does not change the behaviour of
the model compared to the original model becaRges the only control state dg,.

Henceforth, for convenience, | use the syntax of multi-seumulti-destination transition as
part of the normal-form syntax of SBSMLSs.

6.4.2 Modelling BSML Semantic Options

In the presence of synchronization, the BSML semantic optior theConcurrency, Small-
Step Consistency andPreemption structural semantic sub-aspects are not needed. Nexagihro
examples, it is shown how a more inclusive semantic opti@ach of these semantic sub-aspects
can be used to implement a less inclusive one. Thus a singdM&Ran include a combination
of the semantic options of these semantic aspects.
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Figure 6.4: Deriving the ScLE semantics using the My concurrency semantics.

Concurrency

Using the Miny semantic option together with a synchronizer of synchration typeUUEE,

an And control state can be constrained to execute at most one wéitsitions at each small
step: Every transition within th&nd control state is modified to synchronize with a new self
transition,t;: {a}] As an example, the model in Figure 6.4(a) can take all of itsehransitions
together in one small step, while the model in Fidure 6.4ém t@ke only one of the transitions
in each small step. Thus, using synchronization, thesMsemantic option covers thenSLe
semantic option.

Small-Step Consistency

Using the Surce/Destination ORTHOGONAL Semantic option together with synchronizers of type
PUEE, the Arena OrtHOGONAL Semantic option can be enforced. The model in Figure 6.5(b),
which is specified in the &rce/ DestinaTioN OrRTHOGONAL Semantics, has an equivalent be-
haviour to the model in Figuffe_6.5(a), which is specified i@ Akexa OrtHOGONAL SmMall-step
consistency semantics. If transitigi is included in a small step, then according to thes
OrTHOGONAL Semantics, neithest, nor st; should be included in the small step. In the model in
Figure[6.5(b), this is achieved by using a synchronizer p€BUEE that does not allovdt, to

be taken together wittt, or dts. Similarly, transitiondt, cannot be included in the same small
step thatdt, or dt; belong to. It is possible to have a hybrid semantics. For g@tanthanging
the role set of transitiondt, anddt, both to{a,} and{ay}, respectively, means that eachdi

4This transformation is analogues to hasynchronycan be derived frorsynchronyin SCCS [71[72].
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Figure 6.5: Deriving the Aexa OrtHOGONAL Semantics using theoBrce/DesTINATION ORTHOGO-
NAL Semantics.

anddt, can be taken witldts in the same small step, bdt, anddt, cannot be taken together in
the same small step. Such a hybrid small-step consistemegrgees disallows transitions that
graphically cross each other to be included in the same Stequl

Preemption

Using the M~-PreempTive Semantics together with synchronizers of tygiE, similar to the
previous section, a’RempTIVE Semantics can be derived. For example, in the model in Fig-
ure[6.6(a), transitiost, which is an interrupt transition, can be taken togetheh winsitions

st, andst; by the Non-Preemprive Semantics. Similarly, transitiost; can be taken together with
transitionsst; and st,. These transitions, however, cannot be taken togethee iRthempTive
semantics is chosen. The model in Figuré 6.6(b), which isifpd in the NoN-PrREeMPTIVE Se-
mantics, has an equivalent behaviour to the model in Figuiah when it is specified in the
PreempTIvE Semantics. In the model in Figure 6.6(b), for example, ftams dt, anddt, cannot

be taken together because only one of them can synchronizé,wi

6.4.3 Modelling the Resent IN Same Event Lifeline Semantics

The Resent IN Same event lifeline semantics, a generated event in a small steprigger tran-
sitions only in the same small step. This semantics can besheoldusing synchronizers. Some
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Figure 6.6: Deriving ReempTIvE Semantics using adw-PreempTIVE Semantics.

BSMLs, such ag-Charts [82], support a notion ofsagnalthat when generated in a small step
of a model can be sensed as present by all of the transitiahg efiodel in the same small step,
which is the same as theRent In Same event lifeline semantics if signals are considered as
events.

The Resent IN Same event lifeline semantics can be modelled by using synchessiof type
PPSS. A set of signals generated by a transition corresponds tyarple. The conjunction of
signals in the trigger of a transition corresponds to a palyrole. Since more than one instance
of an event can be generated in the same small step, thedtieddf the synchronization type is
S. Since a generated event can trigger more than one trarsitiee fourth letter of the synchro-
nization type isS (shared). To model the negation of a signal, a synchronizgmpe PUSE and
two labels can be used to disallow both a signal to be gernttlata transition and its negation
to be the trigger of a transition, in the same small step.

As an example, in the model in Figure6.7(a), when the modaeltialized and input signal
| is received from the environment, either of the potentiablbreteps{st;, sty} and {st, St}
can be taken, non-deterministically in theekEnt In SamMeE semantics. The SBSML model in
Figure[6.7(b) has the same behaviour as the one in Higu®)6L&bela, v, andw correspond to
eventgsignalsa, b, andc, respectively. Input everitis maintained in the model in Figure 6.7(b).
Labelsx, vy, z, together with labels’, y', Z, ensure that each of the signalsb, andc can be
exclusively either generated or its negation can triggeaasition, respectively. For example,
transitionsdt; anddtz cannot be taken together becatisandt, cannot be taken together, but
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Figure 6.7: Modelling the &:sent In Same event lifeline semantics.

dt; needs to synchronize with over labelx’ anddt; needs to synchronize with over labelx.

6.4.4 Modelling Composition Operators

In template semantics [75], a set of composition operatwgsrdroduced, each of which rep-
resents a useful execution pattern in modelling. This seafiescribes how the behaviour of
the rendezvousenvironmental synchronizatipandinterleavingcomposition operators can be
modelled using synchronizers. For each of the remainingpomition operators in template
semantics, there is a similarorkflow pattern96], whose semantics is considered in the next
section.
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Figure 6.8: Modelling the interleaving composition operah SBSMLSs.

Interleaving:

Composing two components via the interleaving composiizgrator has thefiect that in each
small step only one of the concurrent components can comdritransitions to the small step.
As an example, in the model in Figure6.8(a), in each smafl, stéher transitions o€; or
those ofC, should be executed. The SBSML model in Figurg 6.8(b) usesahsgnizer of
synchronization typ®USE and an additional controlling component to enforce therieéxing
semantics of the model in Figure 6.8(a), by executing eithert, in a small step, but not both.

Rendezvous

The rendezvous binary composition operator, analogousst€CS Composition operator [72],
requires one of the transitions of one of its operands to rgé@e synchronization event and
one of the transitions of the other operand to consume it aig@et, in the same small step.
If a pair of synchronizing transitions are not enabled, tbe-synchronizing transitions can be
executed in an interleaving manner. Such a semantics oetiervous composition operator,
in the context of CCS-like models, can be modelled using lssordzers of typ&UEE.

Environmental Synchronization

The environmental synchronization composition operaaglogous to the CSP Concurrency
operator[[48], requires its two operands to synchronize tramsitions that are triggered with
the samesynchronization evemeceived from the environment. At each snapshot, it is pessi
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(b) Equivalent SBSML model for the model in Hig.9(a).

Figure 6.9: Modelling the environment synchronization position operator in SBSMLSs.

that no, one, or more than one transition in each operandabletd and triggered with the
synchronization event. When all concurrent parts of theamp#s have enabled transitions that
are triggered with the synchronization event, a synchearoztypePUEE can be used to execute
all of them together in the same small step. Otherwise, wheretis an arbitrary number of
enabled transitions that are triggered with the syncheditin event, it should be ensured that a
maximal set of such transitions are taken together in theesanall step.

Figure[6.9(a) uses the environmental synchronization csitipn operator over evetto
coordinate the execution &; andC,. Each of the transitions in the model has a guard condition
on a boolean variable that is assigned a value by the envenhnirigurd 6.9(b) is an SBSML
model that has the same behaviour as the model in Flgule)6.&ach control state of the
model in Figuré 6.9(b) has a self transition to accommodatéhf execution of synchronization
transitions when not all of the synchronizing transitiorss r@ady to execute, either because the
guard condition of a synchronizing transition is false, ecéuse it has already been executed.
This transformation, however, does not consider the piisgitor a synchronizing transition to
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be taken together with other synchronizing transitionsmom@synchronizing transition. Section
[7.Z4.4, on page 257, presents a transformation scheme kieatitéio account these possibilities.

6.4.5 Modelling Workflow Patterns

Workflow patterns/[96] are used in business process modelsmwell as Web services choreog-
raphy languages, such as BPELI[77]. A workflow pattern désdirecurring pattern of execution
that is useful in modelling a wide range of systems. Therdiaedasic workflow patternf6]:

(i) sequence, which executes two activities sequentially: Once the fdtvity finishes, the
second activity starts; (iiparallel split, which starts executing multiple activities in par-
allel; (iii) synchronization, which merges multiple parallel activities into a singleiaty;
(iv) exclusive choice, which non-deterministically chooses to execute one #gtivom a
set of possible activities; and (gimple merge, which requires exactly one of the alternative
activities to finish before a next activity starts. The setitarof many of the workflow patterns
inherently deal with a notion of synchronization. For exéenp task should start only after an
earlier task has finished,; i.e., teequence pattern.

Next, through examples, it is shown how simple workflow patecan be modelled using
the expressiveness of the synchronizers. Workflow pattes general considered as abstract
modelling constructs that are manifested iffetient languages fierently. |1 use a BSML-like
syntax to specify workflow models. The following discussi@bout the semantics of workflow
patterns in the context of BSMLs are also relevant inféedent setting, because the proposed
translations focus on the “control flow” aspects of thesagpas that remain more or less the
same in diferent frameworks. | use multi-source, multi-destinati@msitions in my transfor-
mations. The model in Figute 6]10(a) uses special syntaegi@sent theequence, parallel
split, andsynchronization workflow patterns, denoted bseq, par, syn in a circle, re-
spectively. Intuitively, the model in Figufe 6]10(a) reeqsM to be executed followed by the
parallel executions oP; andP,, their synchronization once they are done, and lastlypWdid
by the execution 0. | consider entering a control state that has no outgointsitian as the
end of the activity that corresponds to that control statearallel activity ends when all of its
constituent parts end. For example, in Figure 6.10(a), tlieat M is when bothM; and M,
have been entered. The SBSML model in Fidurel6.10(b) is atpntto the intended behaviour
of the model in Figuré 6.10(a). The transformation from trarkflow patters in the model in
Figure[6.10(a) to the SBSML model in Figlire 6.10(b) follows ibove informal description of
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(b) Equivalent SBSML model for the model in Flg.6110(a).

Figure 6.10: Modelling theequence, theparallel split, andthesynchronization work-
flow patterns in SBSMLs.

the semantics of the workflow patterns. The transformasastriaightforward, thanks to being
able to use multi-source, multi-destination transitions.

In interpreting and modelling the semantics of the sequeattern above, in Figute 6J10(b),
an additional idle small step is introduced between thedasdll step of the first activity and
the first small step of the second activity. This extra smipsan be avoided by using an
non-preemptive semantics and an interrupt transitiontthasfers the control flow to the second
activity simultaneously when the last small step of the fidtvity is being executed.

Figure[6.1](a) shows a model that uses workflow pattexuence to executeP after M.
The control statebl andl, in the SBSML model in Figure 6.11(b), correspond to corgtates
M andP in the model in Figuré 6.11(a), respectively. The SBSML nmadde~igure[6.11(b)
uses three boolean variables, namalyb,, andbs, to determine the last small step at the end
of which the last transitions of all of the children Hf are executed. This last small step also
executes new transition because its guard condition will be satisfied, moving thel@ehdo
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(b) Equivalent SBSML model as in Figure 6111(a) , without intiothg any extra small step.

Figure 6.11: An alternative modelling of treequence workflow pattern without introducing
any additional small step.
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(a) A workflow model using thesequence, exclusive choice, and thesimple merge workflow patterns.

‘ DES: {UUEE(X1, X2)} ‘

(b) Equivalent SBSML model for the model in FIg-6]12(a).

Figure 6.12: Modelling thexclusive choice and thesimple merge workflow patterns in
SBSMLs.

control statd. Although not shown here, variableg, b,, andbs need to be reset to false, upon
entering control statel. This translation, however, relies on using tiee_small that in general
is a transition-aware BSML semantics.

The model in Figuré 6.12(a) shows example usage of the otleebasic workflow patterns
that are not used in the model in Figlre 6.10(a), namelye#dusive choice andsimple
merge workflow patterns. The model also uses teguence workflow pattern. The model in
Figure[6.12(b) shows an SBSML model that has an equivaldmbeur as the model in Fig-
ure[6.12(a); theequence workflow pattern is modelled using the first approach oudiabove;
l.e., using multi-source, multi-destination transitidngether with introducing an extra small
step. Control statell, P, P,, andQ correspond to control staték I, I,, andK, respectively.

The semantics of thexclusive choice workflow pattern is modelled using a synchro-
nizer of typeUUEE with label set{xy, x,}. The size of the label set depends on the number of
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choices that thexclusive choice workflow pattern can choose from; in this case it is the
non-deterministic choice of executimgor I,. In the model in FigurE 6.12(b) either transitign

or transitiont, could synchronize with transitiag or transitionts, respectively, in fect, imple-
menting the semantics of thexclusive choice. Sincets andtg cannot be executed together,
exactly one choice is made. Each of the multi-source, nadstination transitionts andt, does
not requireUUSE for their synchronization, since only one of the constituegular transitions
of each needs to synchronize, as described in Sdctiod 6.4.1.

The semantics of theimple merge workflow pattern is based on the completion of exactly
one of the alternative activities involved in this workfloatpern. By the definition of the pattern,
only one of the activities can be executed at each point dé.tiffor example, in the model in
Figure[6.1P(a), theimple merge requires that eithest; or s, but not both, to be executed.
In the model in Figuré 6.12(b), two regular transitiohsandt,, are used to indicate the end,
and merge of the activities inl; and|,, respectively. Transitiong andt, cannot possibly be
executed together.

6.5 Related Work: Taxonomies for Synchronization

The diferent synchronization types that are used in SBSMLs araratspy various process
algebras([9, 37], such as ACP [8], CCS][72], and CSP [48], dROBL [70].

My classification of synchronization types overlaps with ttassification ofnultiparty in-
teraction mechanismisy Joung and Smolka [55]. They present a novel classificdtosyn-
chronization mechanisms based on four criteria, which,yrtenrminology, can be described as:
(i) whether or not the role sets and co-role sets of all ttaors are singletons; (ii) whether or
not a transition, in addition to specifying its role sets @odrole sets, can specify a particular
transition (or transitions in a part of the hierarchy treghwvhich it wishes to synchronize; (iii-
a) whether or not the number of role sets and co-role sets m@inaition together can be more
than one; (iii-b) whether or not a control state can be the®aoontrol state of more than one
transitions that can synchronize; and (iv) whether only mimal set of synchronizing transitions
are taken at each small step or a maximal set of all synchimgniransitions should be taken at
each small step. Criterion (i) corresponds to the first tvitete of my synchronization types,
with my criteria being more distinguishing. Criterion (i§) not relevant for my framework since
it can be modelled by a naming convention for labels (Cf.] [585]). Criterion (iii), called
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conjunctive vs. disjunctive parallelisfB5], is meant to distinguish between process algebras
such as SCCS (synchronous CCS) [71], which can perform pheiltiandshakes in one small
step, and CCS, which can do at most one handshake; thisamiisrclosely related to the cri-
terion (i) [55, p.83]. Part (a) of the criterion is not reletan my framework since multiple role
sets, or multiple co-role sets, related to the same syna@eomust be merged into one role set,
or co-role set, respectively. Part (b) of criterion (iiiynst considered as a parameter since it
corresponds to a syntactic constraint in my framework,erathan a semantic concept. Lastly,
criterion (iv) is not considered, focusing on semantics moli a maximal set of synchronizing
transitions is always taken, in the spirit of the semantid2MLs, where a maximal, consistent
set of enabled transitions is always taken as a small step.

Compared to Joung and Smolka’s taxonomy, my framework @aailly considers the role of
the third and fourth letters of my synchronization typessd\ladditionally, my framework allows
multiple synchronization types in one language. In genénaltaxonomy of Joung and Smolka
“is based on issues that maffect the complexity of scheduling multiparty interactiofs5]
p.78], whereas my framework is based on issues relevaniefigding suitable modelling lan-
guages for requirements specification.

Bliudze and Sifakis introduce a semantic definition frameéwto define and compare the
meaning ofglue operatorgcompositiorisynchronization operators) in structural operational se-
mantics (SOS) [15], in the context of component-based dgveént frameworks. Their work
does not intend to present a design space of glue operatiasbead presents a general way for
how different glue operators can be compared in terms of expregsisea.g., comparing two
set of glue operators according to tlveak expressiveneasdstrong expressivenepse-orders.

In comparison, my goal is to create a parameterized framewfosynchronization mechanisms
based on relevant semantic criteria for modelling, indepenof any semantic definition mech-
anism.

The results by Bliudze and Sifak(s [15] and Joung and Sm@&E&h however, could be useful
for my work when designing tool support for SBSMLSs.

My synchronizer syntax is inspired by teacapsulation operatan Argos [68]. The encap-
sulation operator specifies the scope in which a signal carsée. My syntax is dierent in that
multiple synchronizers can be attached to the same conatel. s

A class of BSMLs called synchronous languades [40], whiatuithes languages such as
Esterel[14] and Argos [68], have been successful in theiip@iion of deterministic behaviour:
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“In contrast with traditional thread- or event-based coneocy models that embed no precise or
deterministic scheduling policy in the design formalisynchronous language semantics take
care of all scheduling decisions!” [93] The main charastariof the synchronous languages is
that the statuses afignalsof a model are constant throughout a big step, thus a trangsi
either enabled or disabled with respect to the statusesemitgvdeterministically. Synchronous
semantics, however, introduce semantigiclilties such as non-causality and global inconsis-
tency [68,40[ 14, 86]. Using the synchronization capabdit SBSMLs, it is possible to sim-
ulate the subset of the responsibilities of signals in syombus languages that deal with the
coordination of the simultaneous execution of transitioAs such, when signal-like artifacts
are not available in a domain, e.g., UML StateMachines [&&kwa bffered events mechanism,
synchronization could be used to achieve determinism in deidy constructing the model
such that each of its snapshots has a unique potential sieyall s

SBSMLs, however, as opposed to synchronous languages,tdmua@mntee determinism as
an inherent property of their semandﬂ:\i\/hen a deterministic behaviour is desired in an SBSML
model, care should be taken when using a synchronizer tisad Bgnchronization type with its
third andor fourth letter beings, which allows synchronization with an arbitrary number of
transitions. Similarly, care should be taken when usingiplelsynchronizers in a model, which
could allow multiple sets of transitions to synchronize¢cading to diferent synchronizers,
thereby creating dierent potential small steps. As an example, in the modelgn@®iZ(b), if
labelsx, y, andz are removed from the model, replacing them in the co-role G#}, t4, te with
u, v, andw, respectively, the model can create a wrong small step thatdaincludedt,, dt,,
dtz, anddt,. The wrong small step is possible because labigl dt; can match its corresponding
label int;, while labelu of dt; can match its corresponding labeldty. Similarly, dt, anddt,
can match their corresponding labeld4mnddt;, respectively.

6.6 Summary

This chapter introduced a synchronization mechanism #@fdamily of BSMLs. Syntactically,
transitions are extended with role sets, each of which ig afdabels, and co-role sets, each of
which is a set of co-labels; and control states are extendbdsynchronizers, each of which has

5A model in a synchronous language with a possible nondenéstit behaviour is conservatively rejected at
compile time.
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one of the 16 introduced synchronization types and a sebefdaSemantically, the transitions of
a model synchronize via their role sets and co-role setgditgpto the synchronizers that control
them. The result is the new family of synchronizing big-stepdelling languages (SBSMLS).
The chapter showed that SBSMLs not only have applicatiomsddelling but also can be used
to model diferent semantic variations of the big-step semantic deaaigin, as well as, the

semantics of many common modelling constructs.
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Chapter 7
Formal Semantics for SBSMLs

“A unifying theory is usually complementary to the theoribat it links,
and does not seek to replace thern.” [48, p.1]

Tony Hoare and He Jifeng

This chapter presents a formal semantics for the synchabaizsyntax described in Chapkér 6.
The semantics of synchronization is entirely orthogon#téoenabledness semantic aspects, thus
this chapter relies on the previously-stated formalizatibthe enabledness semantic aspects in
Sectiorf4.b. Th&€oncurrency and Consistency semantic aspect is not relevant in the presence
of synchronization: For each of its sub-aspects, using bite ®emantic options and synchroniz-
ers, the other semantic option can be modelled. Therefoe&Zdncurrency and Consistency
semantic aspect is not needed in this chapter.

The remainder of this chapter is organized as follows. 8egfil presents the formal syntax
of synchronizing big-step modelling languages (SBSMLs)hia form of a BNF. Sectioh 7.2
presents the formal semantics of SBSMLs, which is based emaistic definition schema sim-
ilar to the one for BSMLs. Sectidn 7.3 presents a succinch&bization of the synchronization
types that is plugged into the definition in Section 7.2, towdea complete semantic definition.
Sectiori 7.4 formally describes the transformations of rimdeconstructs, such as multi-source,
multi-destination transitions and composition opergtwrSBSMLSs. It also describes the trans-
formations of one semantic option of tB@ncurrency and Consistency semantic aspect to an-
other using SBSMLs. The proofs of the correctness of thesestormations are also presented.
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(root) .= (Orstate

(Orstate = Or (states-p(transitions (synchronizers

(states-p = (states-d(state | (state

(Andstate = And (states-a(transition$ (synchronizers
(states-a .= (states-a(state | (state

(Basicstatg := Basic

(state .= (Orstate | (Andstate | (Basicstatp

(synchronizers —  (synchronizer| (synchronizers({synchronizexr
(synchronizer — ""| (synchtype (labelset

(synchtype —  UUEE | UPEE | PUEE | PPEE | UUSE |UPSE| --- |PPSS

Figure 7.1: SBSML abstract syntax in BNF.

Sectior Z.b discusses the relevance of the semantic gattityutes, which were introduced for
BSMLs in Chaptel s, for SBSMLs.

7.1 Formal Syntax

This section presents the syntax of SBSMLs formally, folboMpy introducing syntactic notation
needed for the formalization of SBSML semantics.

7.1.1 Synchronization-Related Definitions

Figure[7.1 presents the BNF for the syntax of SBSMLs. Simidahe BNF of BSMLs, in Fig-
ure[2.3, an SBSML model is a hierarchy treefofd, Or, andBasiccontrol states, together with
transitions over these control states. Additionally, tiMFBn Figure[ 7.1 allows each compound
control state to have a set of synchronizers. A control sgateansition, or a synchronizer has a
unigue name, similar to the ones defined for BSMLs in SefidrB2on page 20. For the sake of
brevity and clarity, | have not included these names in tietrabt syntax in Figurle 4.1, however,
it is always possible to ascribe a unique name to each of #leggents of a model to identify it
(e.g., by labelling the nodes of the hierarchy tree of the@hadcording to an order of traversal).

Table[7.1 presents the accessor functions and relatioriedaglements of the syntax of an
SBSML model. These definitions were discussed informallZivaptef 6. In addition to these
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Table 7.1: Syntactic notation for SBSMLSs.
Notation | Description
syn(s) The set ofsynchronizersf control states.
syntypéy) Thesynchronization typef synchronizey.
synlabel¢y) | Thelabel setof synchronizey.
rolesetst) The set ofrole setsof transitiont, each of which is a set of labels.
corolesetf) | The set ofto-role setf transitiont, each of which is a set of co-labels.

‘ Intersection {UUES (X)} ‘

ts: Split

Group | Group

tp: Circle

t14. Finish End

t1: Line

ts: Merge

Figure 7.2: A model for a set of synchronized ice skating paots (the same as the model in
Figure[6.2).

definitions, the notation defined in Tablel4.1 and Tablé 4. BfMLs, on pagels 92 and pdg€ 93,
respectively, are also used for SBSMLs.

Example 46 In the SBSML model in Figufe 7.2, which is the same model asgaré&[6.2
copied here for convenience, gintersection)= {UUES(X)} , syntyp€UUES(x)) = UUES and
synlabel§UUES(x)) = {x}. Also, roleset@s) = 0, corolesetfis) = {{X}}, rolesetsts) = {{x}},
and coroleset@s) = 0.

As usual, the outer pair of curly brackets of a singleton sedropped; e.g., instead of
corolesetfs) = {{X}} in Figure[ 7.2 corolesetfis) = {X}.
7.1.2 Well-Formed SBSML Models

As informally described in Sectidn 6.8.1, an SBSML model theswell-formed, by following
seven well-formedness conditions. Next, these conditmagpresented formally.
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i Each label uniquely belongs to the label set of exactly gmelsronizer. Formally,

Yl - 3y;, ¥, - (I € synlabelgy;)) A (I € synlabel§y,)) = vy = y..

ii For each labell, if there is at least one transition with a poly-role thatudesl, then the

synchronization type of its corresponding synchronizeusdh be a synchronization type
whose first letter i® (i.e., P***), otherwise it must be one of th& ** synchronization
types. Similarly, the second letter of a synchronizatiopetys specified based on the
characteristics of the co-role sets of transitions. Folynal

Vs- Yy € syn(s) - VI € synlabelsy)-
(3t-3Ir erolesetst) - (I er) A (Ir] > 1) & syntypéy) € P*=*¥*),

whereP*** represents the set of synchronization types whose firstréegP. A similar
predicate for the second letter of the synchronization tffgesynchronizer is defined that
checks for the size of co-role sets of transitions, instdadle sets in the above predicate.

No two synchronizers of a control state have the same lsyorgzation type. Formally,

Vs VY1, Yo € Syr(s) - syntypéy:) = syntypéy,) = y. = Yo.

iv Two labels that are associated with the same synchrooizégpe do not belong to two

different role sets or two fierent co-role sets of the same transition. Formally,

Vs- Yy € syn(s) - Vly, |, € synlabelsy)-
(Vt-Vry,roerolesetgt) - (Iyerp) A(lzer) =>rp=r1) A
(Vt- Ve, ¢, € coroleset@) - (I, € &) A (I € &) = ¢ = ©y).

v For each labell, of a synchronizery, and each transition, | is associated with at most

one of the role sets or co-role setstoFormally,

¥s- Yy e syn(s) - VYl € synlabelgy) - Vt-
—[(3r e roleset$t) - (I € r)) A (Ac € corolesetf) - (I € ©))].

vi A synchronizery, is associated with the least common ancestor of the sonctdestina-

216



tion control states of the transitions that use the labejsiotheir role sets or co-role sets.
Formally,

V¥s-Vy e syns) - =[VI € synlabel§y) - 3s € children’(s) - Vt-
¥r € rolesetst) - (I € r) = Ica(srd(t), destt)) € children’(s) A
V¢ e corolesetft) - (I € ¢) = Ica(sra(t), destt)) e childrer(s)].

vii A synchronizer,y, of a control states, cannot be split into two synchronizesg,andys,,
such thaty, is assigned t@ buty; is assigned to a descendantsoformally,

Vs- Yy € syn(s) - =[AL c synlabelgy) - s € childrenf(s) - Vt-
Yr e roleset$t) - (r € L) = lca(srdt), desft)) € children(s) A
Ve e coroleseté) - (c € (UL 1) = lca(sr(t), destt)) e childreni(s)].

The above well-formedness constraints together ensutestioping problems, such as name
clash between the labels of two synchronizers, do not arideisemantic definition of SBSMLSs.

7.2 Semantic Definition for SBSMLs

Similar to the formalization of BSML semantics, SBSML settiesare defined using a semantic
definition schema. Figufe 1.3 is the schema that is used toad8BSML semantics, and is the
same as the one for BSMLs in Figurel4.2, on pgade 88. As uswaethof potential small steps
of a model at snapshaipis denoted asxecutablégoot, sp).

7.2.1 Semantics of SBSMLSs vs. Semantics of BSMLs

The formalization of the enabledness semantic aspectsB&Mhs are exactly the same as
for BSMLs in Sectiorl 45, because they do not have any roleérsemantics of synchroniza-
tion. SBSMLs all use the fixed semantic options ok for the concurrency semantic aspect,
Source/DestiNatioNn OrtHOGONAL for the small-step consistency semantic aspect, and the N
PreempTIVE fOr the preemption semantic aspect. The alternative secapitions for these se-
mantic aspects can be modelled using synchronizers, aslobsin Sectiorh 6.4]12 informally,
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rese(si, 1, sp A (Fk > 0- N¥(sp sp))
A executabléoot, sp) = 0

/\ reset_el(sp@, 1, sp

1<i<n

sp=sp

3r,sp’ - Nsma(SR 7, sp’) A N¥(sp’, sp)

/\ next_el(sp 7, sP) A T € executabl@oot, sp)

1<i<n

1. Ngig(sp, I, sp)

2.rese{s, |, sp
3. N(sp sp)

4. N“(sp sp)

5. Nsmal(Sp 7, Sp)

Figure 7.3: Semantic definition schema for SBSMLSs.

and as will be formalized in Sectign 7.4.2. Thus, @@ncurrency and Consistency semantic
aspect is not considered in the semantic formalization &8Bs.

The semantics of SBSMLs, howeverftdr from the semantics of BSMLs in how the poten-
tial small steps of a model are created. In a BSML model, amiaiesmall step of the model
at a snapshot is a maximal set of enabled, high-prioritysiteoms that can be taken together ac-
cording to the concurrency and consistency semantics @8ML. In an SBSML model, such
a maximal set of enabled, high-priority transitions is nptéential small step of the model if the
synchronization requirements of the transitions in thesenot satisfied.

For example, for an SBSML with a hierarchical priority series) a naive approach to en-
force the synchronization requirements of the transitafrespotential small step of a model is to
keep track of the synchronizing transitions of the modetshkierarchy tree, and its synchroniz-
ers, are traversed hierarchically. This approach wouldrogas to the hierarchical computation
for BSMLs, presented in Sectign 4.4.1 and Seclion #.4.2. é¥ew such an approach fails to
consider that: (i) the synchronizing transitions of a mattehot necessary have the same scope;
and (ii) a transition can be controlled by more than one skortkers that are associated with
different control states. Implementing the above two requinésria a hierarchical semantic def-
inition, however, is not straightforward. For example,ustconsider adapting the hierarchical
computation in Figure4.10, on page 107, for an SBSML withSdwee-CurLp priority semantics.
Let us consider the hierarchical computation when contaikss, of an SBSML model, and a
pair of transitionst; andt,, that synchronize according to the synchronization resuéants of
a synchronizer in a lower control state and are passed tottifileuge of s that keeps track of
executable transitions. If one of the transitions, &;ghas an extra synchronization requirement
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enforced by a synchronizer at the current level, but thatireqment cannot be satisfied by any
enabled transition with a scope at the current level, thesmould be removed from the set of
executable transitions. Furthermore, remouingeans that: (af) should also be removed from
the set of executable transitions; and {bandt, could possibly be replaced by some enabled
transitions from the lower levels of the hierarchy tree. ldwer, this means that the computa-
tion in Figure[4.1D should be changed in a way that is not dqugearchical any more. Similar
problems arise when thec&e-Parent or the Nb PrioriTy priority semantics is considered for
SBSMLs.

Next, a method for computation of potential small steps iI8BRS is presented, in which
the synchronization and priority constraints are only adered at the root of a model, and only
once.

7.2.2 Computing the Potential Small Steps

Figure[7.4 is an attribute-grammar-like formalism to coteptne set of potential small steps
of an SBSML model. Similar to the formalization of the senesbf BSMLs, an attribute-
grammar—like formalism is used to compute the set of paéstnall steps of a model at a
shapshotsp. The value ofexecutabléoot, sp) is equal to the value of attribuix(root, sp)

in Figure[Z.4. Attributeex(root sp computes the set of potential small steps of a model at
shapshospbased on a chosen priority semantics and the set of syncersrof the modely.
Lines 2a to 9a in the schema compute the possible potent&ll steps of an SBSML model
incrementally, as if it is a BSML model and theoNPrioriTY Semantics is chosen, similar to
lines 2a-9a of Figure 4.10, as described in Sedtioh 4.4. €hwatics of synchronization and
priority are considered in line 1a. Line 10 in Figlrel7.4 is tfefinition of the merge operator,
denoted by &”, which is similar to the definitions of the merge operatarsFigure[4.8 and
Figure[4.10, except that the@&ce/DestiNarion OrTHOGONAL and the MN-PreempTive Semantics
are hard-coded as consistency criteria in the last two cotgu

In the formalization of the semantics of BSMLSs, for each @flierarchical semantic options,
Scope-Parent and Sore-CHiLp, a separate hierarchical computation éxecutabléoot, sp) is
needed, as shown in Figure 4.8 and Fidgurel4.10, respectivelySBSMLs, however, only one
hierarchical computation is used: The priority semanticsnforced at the root of a hierarchy
tree. This approach is adopted because the enablednessanfsdion and its being a high-
priority transition does not mean that it belongs to a paatsinall step if its synchronization
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1. {root)

a. ex(root, sp
2. {Orstaté

a. ex(Orstatesp)
3. (states-p

a. ex(states-g, sp
4. (states-p

aex(states-osp)
5. (Andstate

a. ex(Andstatesp)
6. (states-a

aex(states-g sp
7. (states-a

a. ex(states-asp
8. (Basicstatg

a. ex(Basicstatesp)
9. (state

a. ex(statesp)

:= (Orstate

= PRIMAX(SY Nex(Orstatesp))]

= Or (states-d(transition$ (synchronizers

=  eX(states-psp) ® entrs(transitionssp)

.= (states-p(state

=  ex(states-g, sp U ex(state sp

.= (state

= ex(statesp

= And (states-a(transition$ (synchronizers

=  eX(states-asp) ® entrs(transitionssp)

.= (states-a(state

= {TLUT,|T; € ex(states-a sp) A T, € ex(state sp)}

= (state

= ex(statesp

»= Basic

= 0

:= (Orstate | (Andstate | (Basicstate

= ex(Orstatesp), ex(Andstatesp), or
ex(Basicstatesp)

10. T® T’

11. SYNT)

12. MAX(T)
13. PRI(T)

((TLUT)TLeTAT CT'A
VU (TLUT) e (T-T") & dte (TLUT")
tLU)AS(CEY) V(1Y) }
(T-TI(Ten)A(TcT)A A SYN(T = T') A
1<i<4
Y2 (X2 0) = - A\ SYN(T-T)uX)] ]
1<i<4
(TITETA@T €T -(T'>T))}
(TITETA@T €T (T’ >T))}

Figure 7.4: Computing potential small steps of SBSML models
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requirements cannot be satisfied by other transitions inpatgntial small step. As such, the
priority and synchronization semantics cannot be consitl@rdependently: They need to be
considered only once at the root of the hierarchy@ree.

Line 1ain Figuré 74 uses three functions, namieR), MAX, andSY N to enforce a priority
semantics, to ensure that a potential small step cannottbaded with further transitions, and
to incorporate the roles of the synchronizers of an SBSML ehoekspectively. Line 11 in
Figure[ 7.4 specifies th&Y Nfunction, whose detailed definition is presented in Sedfi&n For
each set of transition3,, theSY Nfunction computes a set of transitiofs, that can be removed
from T so that the result consists of transitions that are synechranaccording to all of the
synchronizers of the model. The fourth conjunct of the dadinj on the second line, ensures
that T’ is a minimal set. Line 12 specifies ttddAX function, which discards all computed
sets of transitions by th8Y Nfunction that are a subset of another computed set of transit
FunctionMAX is necessary, despite the fourth conjunct of ¥&Nfunction, because although
a set of transitiom — T’ computed by the&Y Nfunction is maximal, there could exist another
set of transitionR— R such that R—R’) o (T -T’). For example, ifT = {ti,t,,t3}, T" = {t3},

R = {ty, tr, 14}, R = 0, andts L t4, then RR’) > (T-T’). The fourth conjunct of th&Y Nfunction

IS not necessary, but | mention it to distinguish betweenletypes of maximality involved in
the computation of the set of potential small steps. Linedegies thePRI function. ThePRI
function allows a set of transitions to be a potential sntalb $f there is not any set of transitions
T’ that has a higher priority thafi. As described in Sectidn 5.1.1, the semantics of the “
operator depends on the choice of a priority semantics.elf\th PrioriTy priority semantics is
chosen, the®RI(T) = T.

7.3 Formalization of Synchronization Types

This section formally specifies the semantics of the synahatdion types, which, in turn, are

used to specify the formal definition of ti8 Nfunction, used in the computation in Figlirel7.4.
Recall that a synchronization type is a four-letter stingt tbpecifies how a synchronizer that
uses it can coordinate the execution of the transitionsubatthe labels in the label set of the

A similar semantic definition approach for hierarchicabpity semantics to the one used for SBSMLs in this
chapter could have been adopted for BSMLs. However, | folnedsemantic definition approach in Chagter 4
more prescriptive than the alternative because the foratadin of a hierarchical priority semantics is more clearly
manifested in a BSML semantic definition.

221



Table 7.2: Synchronization types and their parametersnwbasidered for synchroniz&(L).

Index | Parameter Purpose Values for SynchronizeY(L)
U: The identifiers irL can be used
1 How an identifier can be used in the role setg @inly in uni-roles
transitions P: The identifiers in_ can be used
in poly-roles
U: The identifiers in_ can be used
5 How an identifier can be used in the co-role | only in uni-co-roles
sets of transitions P: The identifiers irL can be used
in poly-co-roles
3 How many instances of a label can appear i) E: One, eclusively
the role sets of transitions in a small step S: Many, in a $ilared manner
4 How many instances of a co-label can appeark: One, eclusively
in the co-role sets of transitions in a small stefs: Many, in a siared manner

synchronizer. Table_7.2, copied here from page 193 for atienee, summarizes the meaning
of each letter of a synchronization type.

This section presents a formalization of the synchrorozratypes that formalizes the mean-
ing of each letter of a synchronization type as a separathigate, in a prescriptive way. This
formalization is designed based on the observation that afgeansitions are synchronizing
according to a synchronizer if the conjunction of four staats that each represents one of the
letters of the synchronization type of the synchronizerug.t For example, let us consider a
synchronizePUES(L) and a set of transitiong, that synchronize according RWES(L). Also,
let us denote the subset of labeld.ithat have been used in the role sets and co-role sets of the
transitions inr asM. Then, for each labeh € M, the following four statements must be all true:
(i) if a transitiont € T uses a labeh € M in one of its role sets,, then for any other labelv € r,

n' € M; (ii) a transitiont € r can use a labeh € M only in a uni-co—role set; (iii) a labeh e M
must be used in exactly one of the role sets of one of the transiinr, and furthermore, it
should match the over-lined label of one uni-co-role set tdéast one transition im; and (iv) a
labelm € M must be used in at least one of the uni-co—role sets of onedfdhsitions irr, and
furthermore, it should match the label of one of the role sétxactly one transition in. Each
of the above four statements corresponds to the meaningeodithe letters of synchronization
type “PUES”. Furthermore, each statement refers to a particular setositions and the labels
over which they synchronize.
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In the formalization of the synchronization types, to abdtaway from the particularities of
a certain set of synchronizing transitiomslation typesare used that each represents one of the
letters of one of the 16 synchronization types. If two syodiration types use the same letter in
the same index, then it is not necessarily the case thatriélation types are the same, because
of the interdependencies betweeffa@lient letters of a synchronization type. A relation typd tha
represents one of the letters of a synchronization type eandtantiated with a particular label
set and a particular set of transitions. The result will betao$ sets of tuples that enumerate
the acceptable patterns of interaction between the transibver the labels of the label set,
according to the letter of the synchronization type thatriation type represents. Thus, if a
set of transitions is synchronizing according to one of #igefs of the synchronization type of
a synchronizer, then the pattern of interaction of the itexms must be one of the acceptable
patterns derived from the corresponding relation type ef¢iter.

Next subsection describes how the relation types are dedinédhow they can be integrated
into the semantic definition schema presented in the preseation to derive a complete se-
mantics for an SBSML.

7.3.1 Formalization

For a synchronizey and a set of transitions 7, andr, denote the set of transitions inthat

has a role set using at least one of the labelsyinlabel§y) and the set of transitions inthat
has a co-role set using at least one of the labelsymabelgy), respectively. Conversely,y
andLj denote the set of labels Bynlabelgy) that are used in at least one of the role sets of the
transitions inr and the set of labels isynlabel$y) that are used in at least one of the co-role sets
of the transitions i, respectively.

Example 47 In the model in Figuré 712, it = {ts, ts,t11} and y = UUES(x), thent, = {tg},
Ty = {tg, t1a}, Ly = {x} and Ly = {x}.

It is important to note thaf; is equal to{x}, and not{X}, as is the case for a co-role set.

Next, some notation are introduced that capture the inierecamongst a set of transitions,
7, through the labels of a synchronizgr,Four relations are introduced that each captures these
interactions from the perspective of one of the letters efsynchronization type of the synchro-
nizer.
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Relationsis(z, y): (ry x Lj) x 7y andA4(z, y) : (7y X If;) X 1y correspond to the third and fourth
letters ofsyntypéy), respectively. Relation; specifies how the transitions that each has at least
a role set usingsynlabelgy) interact with transitions that each has at least a co-relaising
synlabel$y). Relationi, does the opposite: It specifies how the transitions that kaslat least
a co-role set usingynlabelgy) interact with transitions that each has at least a role sieigu
synlabel$y). Formally,

{(t’ I)’ t’| 1 € Urerolesemt)(r) /\I_ € Ucecoroleset@')(c) Anle Synlabel@’)}, and
{(t’ I)’t’| | € Ucecorolesete)(c) Al e Ucerolese(t/)(r) Al e Synlabel@’)}-

/13 (T’ y)
/14(7-’ y)

RelationsA(r,y) : 7y x (Lj U If;) and 22(r.y) : 7y X (Lj U If;), except for their types, are
derived fromaz and 1,4 relations, respectively. They correspond to the first andrse letters of
syntypéy), respectively. Relation; specifies how the transitions that each has at least a role set
using synlabel$y) interact through the labels used by either the role setheco-role sets of
the transitions irr. Relation, does the opposite: It specifies how the transitions that kash
at least a co-role set usirgynlabelgy) interact through the labels used by either the role sets or
the co-role sets of the transitionsanFormally,

dom(s(r,y)), and
dom(a(z, y)).

/ll(T’ y)
/12 (T’ y)

The types oft; and A, are not derived from the types d§ and 4. Instead, they require their
ranges to bel(; U L}), instead ofL] andL], respectively, in order to specify the labels used by
both the role sets and the co-role sets of the transitiorspesfied above.

Example 48 In the model in Figuré7]2, for = {te, tg, t11} and y= UUES(X),

i A3(7,y) = {((t6, X), ta), ((t6, X), t12)},
(The two tuples together specify thatuses labek in its role set to interact with botky
andt;;, which both have a co-role set that usep

“ /14(7-? y) = {((tS’ X)’ tG)’ ((tll’ X)’ tG)},
(The first and second tuples specify that transitignendt,; each uses labet in one of
their co-role sets to interact witty, which has a role set that usg9
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ii (7, y) = {(ts, )}, and
(The relation specifies that transitidgguses labek in one of its role sets to interact with
the other transitions.)

IV /12(7-’ y) = {(tB’ X)’ (tll’ X)}
(The relation specifies that transitiofgsandt;; each uses labed in one of its co-role sets
to interact with the other transitions.)

The;'s relations, 1< i < 4, are used to check whether a set of transitionsatisfies the se-
mantics of a synchronizey, For each of the four letters of a synchronization type, ati@h type
is introduced that describes the pattern of interactiont®@synchronization type according to
that letter. Tablé_7]3 specifies these relation types fan egnchronization type for an arbitrary
syntypéy) andr. For a set of transitions and a synchronizey, depending orsynchtyp§y),
A1, Ay, Az, andA4 determine the type of relationis(z, y), A2(7,Y), A3(7,y), andAu(t, y), respec-
tively. In fact, Tablé 7.8 specifies X&miliesof relation types, each family representing all of the
synchronizers with the same synchronization type, eacheo$ynchronizers considered with its
all possible sets of enabled transitions. The symbols usddble[7.B, which specify the type
of the relations, are similar to the ones used in Z notatiodewote the type of a relation or
function [91]; Tabld 7.4 specifies the meaning of each sy%bﬁohon-empty set of transitions,
7, which could be chosen as a potential small step, satisfgythehronization requirements of a
synchronizey, if

[[(7.y) € Ma(m. V)] A [22(7,Y) € Aa(T. V)] A [A3(T.Y) € As(T.Y)] A [Aa(7.Y) € Aa(TY)] ] V
[(Aa(r.y) = 0) A (A2(7.y) = 0) A (A3(7.Y) = 0) A (Aa(7.Y) = 0) ].

In the above predicate, the first disjunct specifies the deeteat least two transitions inpar-
ticipate in a synchronization according to the labelg.imfhe second disjunct considers the case
for the transitions in that do not participate in any synchronization accordintp&labels iny;
e.g.,7 could contain transitions without any role sets or co-retss

Example 49 In the model in Figuré7]2, for = {ts, tg, t11} and y = UUES(x), the following
conditions hold and thus satisfies y’s synchronization requirements (where a palr[df’ is
used to specify the set that represents a relation type):

2| have also added a few extra symbols, in the same spirit asy/thbols used in Z.
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Table 7.3: Invariants of synchronization types for a setarigitionr.

Type | Asmy) Au(t.y) Aq(z.) Ao(z.Y)
y = UUEE(L) | (ry x L)) »» 7y | (ry X L) »» 1y —» (Lj U L)) —» (Lj U L))
y =UPEE(L) | (zy X L)) » 7y | (ry X L) »» 7y —» (L U L)) « (LyuLy)
y = PUEE(L) | (ry x L)) »» 7y | (ry X L)) » 7y « (LyuLy) —» (Lj U L))
y =PPEE(L) | (z;y x L)) » 7y | (ry x LJ) » 7y « (LyuLy) « (LyuLy)
y=UUSE(L) | (ryx L)) » 1y | (7yx L)) <1y —» (LyULy) | 7y (LyuLy)
y =UPSE(L) | (ryx L)) » 7y | (1y xL]) <7y —» (LyU L)) | 7y« (LU L))
y =PUSE(L) | (zy X L)) = 7y | (1y X L) &» 7y « (LyuLy) —» (Lj U L))
y =PPSE(L) | (zy X L)) » 7y | (1y X L) &» 7y « (LyuLy) « (LyuLy)
y =UUES(L) | (7yx L)) &1y | (ry X L)) 7y —» (L U L)) — (Ly U Ly)
y =UPES(L) | (zy X L)) &» 7y | (1y X L)) 7y —» (Lj U L)) « (LyuLy)
y=PUES(L) | (z;yx L)) &1y | (ry x L)) » 7y « (LyuLy) — (Ly U LY)
y=PPES(L) | (r;y x L) &» 1y | (ry x LJ) 7y « (LyuLy) « (LyuLy)
y=UUSS(L) | (ryx L)) «» 7y | (Ty X L)) &» 7y —» (Ly U L)) —» (Ly U L))
y=UPSS(L) | (zyx L)) &» 7y | (1y X L) &» 7y —» (Ly U Ly) « (LyuLy)
y =PUSS(L) | (zyx L)) &» 7y | (1y X L) » 7y « (LyuLy) — (Ly U Ly)
y=PPSS(L) | (zyx L)) &» 7y | (1y X L)) » 7y « (LyuLy) « (LyuLy)

Table 7.4: Relations and functions types.

| Symbol| Meaning

Relation

Left-total relation

Right-total relation

Bi-direction total relation

Partial function

Injective, partial function

Surjective, partial function

Injective, surjective, partial function

Total function

Injective, total function

Surjective, total function

MMM R IR

Injective, surjective, total function
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I A3(7,y) € [({te} X {X}) « {ts, tra}],
i Aa(7,y) € [({t, taa) X {X}) = {ta}],
i A1(r,y) € [{te} > {x}], and
iV (1Y) € [{ts, t1a} = {X}].

Where the values offi(z, Y), 12(1, Y), 43(7, y), and A4(z, y) were specified in Example]48.

If 77 = {te, tg, t11} and y= UUES(x)are chosen, the first three conditions do not hold and thus
7’ does not satisfy y’s synchronization requirements. Folynal

[ /13(7-” y) = {((t6’ X)’ tll)’ ((tg, X)’ tll)} ¢ [({t6’ t9} X {X}) — {tll}],
i Aa(7’,y) = {((t12, %), t6), ((tr2, X), to)} & [({taz} X {X}) = {te, to}],
i /11(7-” y) = {(t67 X)’ (tg, X)} ¢ [{tG’ tg} —» {X}]! and

v (7, Y) = {(t11, X)} € [{ta} = {X}].

Relations1; andA,, which correspond to the semantics of the first two lettera ynchro-
nization type, are necessary to ensure that all the label€aabels of a set of synchronizing
transitions engage in a synchronization. Otherwise, afgedisitions can be mistakenly, vacu-
ously, considered as synchronizing.

Example 50 In the model in Figuré 712, for = {tg} and y = UUES(x) the following two
conditions hold forr and y,

i A3(7,y) = 0 € [({te} x {X}) < 0],

i Aa(7y) = 0 € [(0 % {X}) + {t6}].
Howeverr is not meant to satisfy the requirementdJdES(x), because,

i A(r,y) = 0 ¢ [{ts} > {x}], and

i (7, y) =0 ¢ [0+ {te}].
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Table[7.8 consists of 64 relation types: Each of the 16 symihation types is represented
by four relation types that each represents one of the $etiethe synchronization type. Each
synchronization type is uniquely identified by its set ofrfoelation types. As mentioned earlier,
if two synchronization types use the same letter in the satex, then it is not necessarily the
case that their relation types are the same, because oftdrdependencies betweerfdrent
letters of a synchronization type. The formalization of tetter of a synchronization type factors
in the dfect of other letters of the synchronization type. Next, asxample, it is explained how
the formalization of the relation types for the synchrotimatypePUES can be derived from the
English description oPUES.

Example 51 Let us consider the earlier English description of the magrof synchronization
type PUES, when considered for a synchronizeeyPUES(L) and a set of synchronizing transi-
tionst. The meaning of synchronization typgES can be described through the following four
statements that each corresponds to one of the letters aslytinghronization type:

- The third letter, i.e., E", requires that if a transition te 7, uses a label k Lj in one of
its poly-role sets to interact with another transitigret 7, through one of the uni-co—role
sets of 1, then there should not exist any transition other than t trs#s | in one of its role
sets. This description is formalized in the following redattype,

(Ty X L;) — Fw

which formalizes the above description by requiring th#tien A3(r, y) when considered
in the inverse form is a total function. Recall that relatidsfr, y) relates a pair(t, 1), such
thatt € 7y and | € L], to a transition t € 7y, if " uses | in one of its co-role sets. The
relation type requires’tto associate with at most or(g |). It requires A3(r,y) to be a
function becaus¢€ tan have only uni-co—role set d_@ and thus it can be related with
at most one transition irry. Also, the function must be total because of the ways
constructed.

- The fourth letter, i.e., $”, requires that if a transition te 7, uses a label f; in one of
its uni-co—role sets to interact with another transitidretr, through one of the poly-role
sets of, then there should not exist any transition other thathat uses | in one of its role
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sets. This description is formalized in the following redattype,
(ty x L) 1y,

which formalizes the above description by requiring thddtien 14(r, y) is a partial, sur-
jective function. Recall that relatioiy(r, y) relates a pair(t, I), such that te 7y and | If;,

to a transition t € 7y, if t" uses | in one of its role sets. Thyg)) is required to associate
with at most one’t The relation type requires,(r,y) to be a function because there must
be only one such that uses the label | in its role set. The function type isipaltecause
each transition, t, uses one of the labels, I, in one of itsamirole sets, and thus, the
function is not defined fdt, I’), where |# I’. The function type is surjective because of the
way 14 is constructed.

The first letter, i.e., P”, specifies that the labels in synlal§gl can be used by poly-roles.
This description is formalized in the following relatiormpgy

1y« (LyU L)),

which formalizes the above description by requiring th#tien 1,(r, y) when considered
in the inverse form to be a total, surjective function. Retalt relation A,(z, y) specifies
how the transitions that each has at least one role set usibgl$ in L interact through
the labels used by either the role sets or the co-role setseafansitions inr. The relation
type is total function because any label if W If; must be associated with exactly one
transition that uses it in one of its role sets. The functigretis surjective because of the
way thel; relation, and thus tha; relation, are constructed.

The second letter, i.e.,E°, requires that the labels in synlab@) can be used only by
uni-co—roles. This description is formalized in the follogirelation type,
7y — (Ly U L),

which formalizes the above description by requiring thaatien 1,(r,y) is a total, sur-

jective function. Recall that relatiofy(7, y) specifies how the transitions that each has at
least one co-role set using Iabelslf@ interact through the labels used by either the role
sets or the co-role sets of the transitionsrinThe relation type is total function because
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any transition int, has exactly one uni-co—role set with a label ipLJJ_If;. The function
type must be surjective because each labefin L} must be associated with a co-role set
of a transition for the synchronization to make sense.

The formalization of the relation types of other synchratian types are carried out in a similar
manner as in Example b1 for thBUES” synchronization type.

7.3.2 Integration with the Semantic Definition Schema

Using the characterization of synchronization types ind&m3, the definition of th&Y Nfunc-
tion used in Figuré714 can be specified. From Figure 7.4 tiom&Y Nwas defined as,

SYNT) = {T-TI(TeT)A(TcT)A /\ SYNT-T) A

1<i<4

VX2 (X £ 0) = =] N\ SYN(T -T)uX)] .

1<i<4

whereT is a set of sets of enabled transitions, dnd T’ is a maximal subset of synchronizing
transitions ofT € T.

The definitions of th&SYN, 1 <i < 4, is then defined as follows,

SYN@) = | A\ a@y) e a@y)|v| A\ ay) = 0],

yey yeY

whereY is the set of all synchronizers of the model.

As such, functior8Y Nensures that a set of enabled transitions of a model are on§jaered
as a potential small step if the transitions satisfy the ireguents of all synchronizers of the
model, some of which are vacuously satisfied, when the tiansido not use the labels of a
synchronizer. The implication in the second line of the d&fin of functionSY Nensures that
a set of synchronizing transitions cannot be extended bitiaddl enabled transitions, while
satisfying the synchronization requirements of the syoicizers inY.

Next, an example of how the above formalism works in the presef more than one syn-
chronizer is presented.
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Figure 7.5: Modelling faculty
same model as in Figure 6.1).

members and their resporisids,
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Example 52 Figure[7.5 shows the same model as in Fiduré 6.1, which isoresiple to coordi-
nate the dfferent activities of the faculty members of a departmentgasiibed in Example @.1.

Let us consider the model when it resides in the set of costatdsM1,, M1,, M1,, Ra, 11, P>,
Ps}. Also, let us consider the variabldass when it is true, meaning that the first member,
F1, of the first committeeC,, needs to leave the meeting to deliver a lecture. The setpof tr
sitionst = {t7, 113, 123, t44} Satisfies the requirements of the three synchronizers inrbeel,
UPEE(f, f5, f3,f4), UUES(end, end, end), andUUEE(leave, leave, leave).

The set of transitions is synchronizing with respect tq ¥ UPEE(f, f», f3, f4), just because
the transitions inr do not use any of the labels {f, fo, f3, f4}; therefore, the correspondingy,
Ao, A3, and A, relations are empty and vacuously satisfy the conditior®YiN function.

The set of transitionsis synchronizing with respect te ¥ UUES(end, end, end) because,

i A3(7,Y2) = {((tas, €NAL), 113), ((tas, €NA), t23)} € [({tas} X {ENAY}) — {t13, T3}],
i Aa(7, ¥2) = {((t3, €nd), tas), ((t23, €NA), tas)} € [({t1s, t2z} X {€NA}) =+ {tas}],
i A1(7, Y2) = {(tas, €nd)} € [{tss} > {€Nnd}], and

IV A2(1,¥2) = {(t13, €nd), (t3, end)} € [{t13, trs} — {end}].

The set of transitions is synchronizing with respect tg = UUEE(leave, leave, leave) be-
cause,
I A3(r,y3) = {((t7, leava), tza)} € [({t7} x {leava}) »» {taa}],
i Aa(7, y3) = {((tas, leave), t7)} € [({tas} x {leavay}) »» {t7}],
i A1(r,y3) = {(t7, leava)} € [{t;} »» {leava}], and
IV Aa(7,y3) = {(tas, leava)} € [{tas} > {leava]].
The set of transitions’ = {t7, to3, t44}, for example, is also a set of synchronizing transitions

with respect to the three synchronizers, but does not gatisf maximality requirements of the
SY N function, and thus is not considered as potential sregil s
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7.3.3 Discussion: Non-Hierarchical Computation

The computation of the potential small steps in Figuré 7rtsentirely hierarchical, because the
semantics of synchronization and priority is enforced atrtot of the hierarchy tree of a model.
This approach is dlierent from the ones for BSMLs, in Figure #.8 and Figure 4.18ens the
hierarchical priority semantics are manifested in the cotajon of the attributes of all control
states, including the intermediary control states in aanadry of control states. As mentioned
earlier, similar computations as in Figurel4.8 and Figuiél4re not possible for SBSMLs be-
cause an enabled, high-priority transition may not be ishetlin any potential small step because
its synchronization requirements are not satisfied. Siigjlehe synchronizing transitions of a
potential small step cannot be computed hierarchicallyiaoementally, because, for exam-
ple, choosing a pair of low-priority synchronizing tramsits according to synchronization type
EE** could preclude the possibility of replacing one of thesadiions with a higher-priority
transition that is higher in the hierarchy tree of the model.

The order of the application of tHeRI, MAX, andSY Nfunctions in line 1a in Figure 7.4
does matter: If th&RI function is applied first, then a potential small step migtitle included
because a potential small step including a higher-pridrapsition whose synchronization re-
quirements cannot be satisfied is favoured against anotiential small step including a lower-
priority transition whose synchronization requiremerdas ©e satisfied at this snapshot. The
converse, however, is not true: When B¢ Nand MAX functions are applied first, whichever
potential small step that is favoured according to a pya@@mantics can be taken as the next
small step (its synchronization requirements already)hold

ExpLiciT Priority

The semantic definition mechanism in this section can betadap formalize the semantics
of the Expricit priority semantics. For a BSML that follows this semantidiop, a semantic
definition schema can be created that considers the roleea@@dhcurrency and Consistency
semantic options in the same way as in the semantic defirstibemas in Figufe 4.8 and Figure
[4.10, but has only a singleRI function at the root of the hierarchy tree, similar to the aatit
definition schema in Figufe 7.4.
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Hierarchical Computation for Regular Models

An SBSML model isregular if it is only possible for a set of transitions that are pais&v
orthogonal to synchronize by a synchronizer. In a regula®8B model, only transitions that
have the same scope can synchronize via a synchronizer.

For a regular SBSML model, a hierarchical computation sintid the one for BSMLs can be
defined. For example, when thedse-ChiLb priority semantics is chosen, a similar hierarchical
computation as in Figufe 4.1.0, on page107, for BSMLs can bptad for SBSMLs, except that
the merge operator must be defined as below:

TRT = ((WUT")|TLeTAT CT A
VX1 27T X # 0 = [-SYNT U X) v
(B e X-Fte (TrUT”) - =(t L) A-(tst) v 4] ).

The set of synchronizer$8, which is used by functio®Y N is also used for the semantic defi-
nition of regular models, but hefé is only the set of synchronizers in the current control state
as opposed to the set of all synchronizers of the modelYSeted not keep track of any other
synchronizers in the model because the role sets and th@egats of a transition lower in the
hierarchy tree of the model does not have afiga on the synchronization of the transitions at
the higher level, because of the model being regular.

The first line in the above definition adds new enabled trenmsit whose scopes is the current
level of the hierarchy tree, to a set of transitions passad & lower level of the hierarchy tree;
the second line in the above definition ensures that a maetalf synchronizing transitions of
the current level are chosen, unless adding new transiti@ase an inconsistent set of transitions,
as checked in the third line.

Similarly, a hierarchical computation for thed&ge-ParenT priority semantics in SBSMLs
can be defined for regular SBSMLs, based on the computatibigime[4.8, on pade 1D3.

Interestingly, when the dlPrioriTY priority semantics is chosen, however, even if an SBSML
is regular, a hierarchical computation of small steps cabeachieved. Such a computation is
inherently non-hierarchical: A set of synchronizing triéings that have a high (low) scope do
not have any precedence over a set of transitions in a lovigin€h scope. Thus, all possible
combinations of synchronizing transitions must be consid@s potential small steps.
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7.4 Transformation Schemes and Their Verification

In this section, the transformation schemes for transfiognsiyntactic constructs and semantic
options into synchronization mechanisms in SBSMLs are &lsndescribed. Furthermore, the
correctness of these formal transformations are proved.ifflormal version of these transfor-
mations were presented in Sectionl 6.4.

In this section, the terrariginal modelrefers to the source model in a transformation, which
can be either an SBSML model or an extended SBSML model aratbtath additional syntactic
constructs that are the subject of the transformation sehérhe terrmew modefefers to the
SBSML model resulting from applying the transformationalthm to an original model.

At the end of the section, in Sectibn 7}4.6, a discussion of the synchronization schemes
affect the well-formedness of a new model is presented. It ig/slibat the well-formedness of
the resulting new models do not undermine the correctnetbgedfansformation schemes.

7.4.1 Multi-source, Multi-destination Transitions

This section presents a transformation scheme for congea@iBSML model that uses multi-
source, multi-destination transition syntax to an eq@malBSML model in which a multi-
source, multi-destination transition is replaced withulag transitions. First, a few needed defi-
nitions are presented, followed by a brief description efdtbmmon semantics of SBSMLs when
they support multi-source, multi-destination transison

Preliminaries

A multi-source, multi-destinatiomt, as opposed to a regular transition, hagtof source con-
trol states and aetof destination control states. Therefore, in this sectswoimt) anddes{mt)
return sets of control states, for both regular and multirse, multi-destination transitions.

Definition 7.1 A multi-source, multi-destination transition, mt, is widkrmed, if

i the set of control states sfmt) are pairwise orthogonal;

ii the set of control states ddgtt) are pairwise orthogonal; and

235



i Usesroqmy(Childrert(s)) N Udegesgmy (Childrert(d)) = 0.

The rational for well-formedness critefia i and ii is cledr:model cannot reside in more than
one of the children of any of it®r control states. CriterigJii disallows multi-source, niult
destination transitions that have a kind of loop, similaa tegular self transition. The discussion
on pageé 246 discusses théidulties of dealing with a special subclass of these trassti

Henceforth, by a multi-source, multi-destination traiosif | mean a well-formed multi-
source, multi-destination transition. A model is requitedhave only well-formed multi-source,
multi-destination transitions.

A multi-source, multi-destination transitiomt, is balancedif |sra(mt)| = |des{mt)|, other-
wise it isimbalanced The usual functions and relations used for regular tremsitare also used
for multi-source, multi-destination transitions; e genmt) specifies the set of generated events
of mtandrolesetgmt) specifies the set of role setsiot.

For a multi-source, multi-destination transitiant, its highest scopedenoted byhgmt), is
the highest control stath, in the hierarchy tree such that there exstssromt) andd € desft)
andlca(s, d) = h. Similarly, thelowest scop®f mt, denoted bys(t), is the lowest control state,
[, in the hierarchy tree such that there exsts srg(mt) andd € des{t) andlca(s,d) = |. For a
regular transitiont, hq(t) = Is(t) = Ica(srd(t), desft)).

The semantics of an SBSML that supports multi-source, rag@stination transitions is the
same as the semantics of the SBSML without these transixaept for theSmall-Step Consis-
tency and thePreemption semantic sub-aspects, i.e., the definitions of thedand “;” relations,
and the hierarchical priority semantics, i.e., thefs-Parent and the Sore-CuiLp semantic op-
tions. Next, a new version of these concepts is presenteldasahtey accommodate for multi-
source, multi-destination transitions.

Definition 7.2 Two transitions, mt and mitwhere either could be a multi-source, multi-destination
transition, areorthogonal denoted by mt. mt, if: (i) for any two control states € src(mt)

and 8 € sra(mt), s L s; and (ii) for any two control states @ des{mt) and deste sre(mt),
dLld.

Definition 7.3 A transition, mt, is annterrupt fortransition, mt, where either transitions could
be a multi-source, multi-destination transition, if:
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i For any two control states s srg(mt) and $ € srg(mt), s L s; and

il For any two destination control statesaldes{mt) and d € des{mt’), one of the following
conditions is true:

(a) d is orthogonal with all control states in sfj and d is not orthogonal with any
transition in sr¢t) U src(t’); or

(b) Neither d is orthogonal with any control state in @aor d' is orthogonal with any
control state in sr{t’), but d e children®(d’).

Because all source control states of a multi-source, ndektination transition are orthogonal,
as well as, all its destination control states, it is not gmedor a pair of multi-source, multi-
destination transitions to be both orthogonal and one banigterrupt for the other.

Definition 7.4 For a pair of transitions mt and mtwhere either transition could be a multi-
source, multi-destination transitions, mt hasigher prioritythan mt, i.e., priimt) > pri(mt),
according to theScope-Paren if Is(mt) is higher than I¢émt) in the hierarchy tree of the model.
Similarly, priimt) > pri(mt) according to theScope-CuiLp if hs(mt) is lower than hémt) in the
hierarchy tree of the model.

Formal Transformation and Correctness

Based on whether a multi-source, multi-destination ttéorsimt, is balanced or imbalanced, a
formal transformation scheme to turn it into a set of regugnchronizing transitions is pre-
sented.

Case 1:mtis balanced. The transformation omtto a set of regular transitions, denoted by
transtoregulatmt), is achieved by Algorithri]1. The algorithm uses varialilleand f, which
have types: set of transitions and bijective functions leetwtransitions, respectively.

Example 53 The SBSML model in Figure 7.6 (a) has a balanced multi-sqounceéti-destination
transitionx. Applying the transformtoreguléx) results in the SBSML model in Figurel7.6 (b),

with x; being the representative transition, as described in Athon[Z.5.
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Algorithm 1: transformtoregulagmt).

Input: mt

Result A balanced multi-source, multi-destination transitianis replaced bysro(mt)|
regular transitions.

if mtis a balanced transitiothen

13
14
15

16

17

18

19

20
21

22
23

T :=0;
f:=0;
Define any bijective mapping : src(mt) >» des{mt) such that,
if Scope-ParenT Semantics chosethen
\ There existsg, §) € f such thatca(s,, §) = Is(mt);
end
else if Score-ChiLp semantics choseahen
\ There existsg, §) € f such thatca(s, 5) = hgmt);
end
foreach(s, s) € f do
Create a new, regular transitignn the model such thard(t)) = s and
destt) =
T :=TuU{t};
end
Pick a transitiort, from T, as arepresentative transitiosuch that if the Sope-Parent
or Scope-CHiLp priority semantics is chosesrc(t)) = s anddestt;) = §/;
Modify t; so thatasn(t;) = asnt), ger(t;) = gent), trig(t;) = trig(t), gc(t;) = gc(t),
rolesetst,) = roleset$t), andcoroleset§;) = coroleseft);
Modify t; so that it has a new co-role set:
coroleset§,) = coroleset§;) U {ct;, cb, - - - , ct,_1}, wheren = src(t) = desft), and
the new co-role set consists of new co-labels not already nsthe model;
foreachtj e T (tj # t;) do
\ Modify it so that it has a new, distinct singleton role saiesetst;) = {{ct;}};
end
Assign the synchroniz&rPEE(ct,, cty, - - - , Ct,_1) to the control state that, according to
the well-formedness conditions, can synchronize the iians in T according to the
new co-role set and the role sets;
Add the transitions ifT to the model, and Remowat from the model;

end
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Figure 7.6: Transforming multi-source, multi-destinattcansitions into regular transitions.
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Before proving the soundness of the transformatiamarfsformtoregulagmt), the following
three lemmas need to be proven.

Lemma 7.1 For two transitions, mtand ms, which each can be either a balanced or a reg-
ular transition, they are orthogonal if and only iff{i all pairs of regular transitions it €
transtoregulafmt;) and rt, € transtoregulafmt,) are orthogonal.

Proof Idea. If mt; andmt, are not orthogonal, then there is a pair of control statessro(mt,)
ands, € srglmb) such that-(s; L ), andor a pair of control stated; € des{mt;) and
d; € des{mt,) such that-(d; L d,). In any of these cases, because of funcfipdefined on line
4 in Algorithm[d, being bijective, there would exist a pait@nsitiongt; € transtoregulatmt,)
andrt, e transtoregulatmt,) that are not orthogonal. Converselymt; andmt, are orthogonal,
by definition, all pairs of control states € src(mt;) ands, € sro(mt,) are orthogonal, as well
as, all pairs of control statel € des{mt;) andd, € des{mt,). Thus, the induced transitions by
bijective functionf are also all orthogonal because their source control séatgsheir destina-
tion control states are pairwise orthogonal. O

Lemma 7.2 For two transitions, mtand mg, which each can be either a balanced or a regular
transition, transition mt is an interrupt for my, iff for all pairs of regular transitions rf €
transtoregulatmt;) and rt, € transtoregulatmt,), rt; is an interrupt for rb.

Proof Idea. If mt; is not an interrupt fomt, then either condition i or one of the conditions
ii(@) or ii(b) in Definition[Z.3 does not hold. In any of thesases, a pair of transitions; €
transtoregulamt;) andrt, € transtoregulafmt) are created by the bijective functidn on
line[4 of Algorithm[1, such thatt; is not an interrupt fort,, according to the same relationship
between control states that announoggsnot being an interrupt fomt,. Conversely, ifmt, is
an interrupt formt,, there is no such a pair of transitiorts € transtoregulatmt) andrt, €
transtoregulafmt,) such thatt; is not an interrupt fort,. O

Lemma 7.3 At a snapshot of a model, a balanced transition mt has thedsigpriority jf all
regular transitions rte transtoregulatmt) could be included together in a potential small step.
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Proof Idea. For the Nigation oF TRIGGERS priority semantics, the above claim is true because
the resulting representative transition in Algorithin 1 Haes same trigger as the original multi-
source, multi-destination transition. The other regutansitions would also have the highest
priority, by virtue of being taken only if the representativansition is enabled. For the®e-
Parent and Sore-CHiLb priority semantics, the lowest scope or highest scope cbstate of

mt determines its priority precedence, respectively. Alsmesthe priority of the representative
transition ofmt, determined in lineBl#19 of Algorithi 1, also similarly deple on the lowest
scope or highest scope control statendfmthas a high priority at a snapshftits representative
transitions and other corresponding regular transiti@vea high priority. O

Proposition 7.4 Transformation in Algorithrall is sound.

Proof Idea. For a balanced transitiomt, if all transitions inT = transtoregulatmt) are exe-
cuted together, theirfiect would be the same as executingbecause: (i) there is one transition
in T that adoptasn(mt) andgenmt); and (ii) the destination control states thatand the transi-
tionsinT arrive at are the same. Thus, it remains to prove that lfelongs to a potential small
stepr, in the original model, it is also the case that in the new rhdtere is a similar potential
small stepr’ = 7—{t}UT. This can be proven becausis enabledft the representative transition
of T is, and because of lemmasI11,]7.2, 7.3. Thereforefdramation in Algorithm(1 is
sound. m|

Algorithm[2 repeatedly applies Algorithiph 1 to a set of traiosis.

Algorithm 2: transformal(MT).
Input: MT
Result All balanced multi-source, multi-destination transitin MT are replaced by
their corresponding regular transitions.
1 foreachmte MT do
2 \ transformtoregulagmt);
3 end

Proposition 7.5 Replacing all balanced transitions of a model using Aldurif2 results in a
new model with the same behaviour as the original one.
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Proof Idea. By Propositior 74, replacing a single multi-source, md#stination transition
is sound. Lemmas_4.L, 7.2, ahdl17.3 ensure that replacing thaneone multi-source, multi-
destination transitions does not add to or remove from thaweur of the original model. Thus,
the new model and the old model have the same behaviour. ]

Case 2:mtisimbalanced. Inthiscase, in orderto be able to create similar regulasitens as
in Algorithm[1l, extradummycontrol states need to be created. First, some necessanitide§
and notation are introduced.

Given an SBSML model and its set of transitiolsMT, C T denotes the set of imbalanced
transitions inT, andSy, = Umemt, (Sra(mt) U des{mt)). For a control states € S,,, its maximum
incoming shortagedenoted bymaxin(s), is

maxins) = max{|sra(mt)| — |destmt)| | mte MT,, - se des{mt)}.
Similarly, its maximum outgoing shortagdenoted bynaxougs), is
maxoufs) = max{ldes{mt)| —|sro(mt)| | mte MT, - s€ src(mt)}.

Functionmaxinou(s) specifies the maximum ahaxins) andmaxoufs). The maxinou(s) is
used to determine the number of dummy control states thal todge created for a control state
S.

For each imbalanced transitiomy, it suffices to create dummasiccontrol states for one
of its source or destination control statespased on which set has a smaller size. Once these
dummy control states are created, the set of source or déstircontrol states ahtis adjusted
to use them to create balanced transition. Using the valueaxinou(s), all other imbalanced
transitions with one of their source or destination constake beings can also be adjusted to
become balanced simultaneously.

Algorithm[3 uses the above idea to turn all imbalanced ttems of a model into balanced
transitions. Its input is the set of imbalanced transitioha model,MT,,, together with the set
of control statesS,,, which are the control states that could potentially berffih introducing
dummy control states. The regular transitions and balat@tsitions remain uriected by
this algorithm, however, the overall hierarchy tree of thedel changes. The algorithm uses
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variablesM7 andsS to store the values d¥1T,, andS,,, respectively, before the transformation
starts, becaus®I T, andS,, change as computation proceeds. A few other temporaryblasa
are used in the algorithm, with obvious roles.

Algorithm 3: balancéMT,, S;).
Input: MT, S,
Result M7 = MS=MT, =S, =0
1 MT = MTy;
2 §:=S,;
3 while S # 0 do
4 choose angfrom S;
5 Let MTs := {mt| mte M7 A (se srgmt) v s e destmt))};
6 Create a nevAnd control states,e,, such thathildren(s,en) = {S} U hew where
new= {ny,-- -, Nmaxinouts)} IS @ Set ofBasiccontrol states; iSis a default control state,
thende faul{paren(s)) = Siew;
7 foreachmte MTs do

8 if (se sra(mt) and |srg(mt)| < |[des{mt)|) then

9 ‘ src(mt) = src(mt) U {nl, R n|des(mt)|—|sro(mt)|};
10 end

11 if (se des{mt) and |[sra(mt)| > |des{mt)|) then

12 ‘ des(mt) = des(mt) U {nl, R nlsrc(mt)l—ldes(mt)l};
13 end

14 end

15 S =8 = Umtemr, (sTo(mt) U des{mt));
16 MT = MT — MTy;
17 end

Example 54 The SBSML model in Figute 7.7(a) is the same as model in F§d(@), on page
[198. In this model, MT = {x,y}. The SBSML model in Figure ¥.7(b) is the same as the model in
Figure[Z.7(a) except that the imbalanced transitions intthadel (a) are replaced by balanced
transitions in model (b), via applying the “balance” algthim, specified in Algorithid 3, to the
set of imbalanced transitions of model (a).

The model in Figuré 613(b), on pa@e 198, has fiedént hierarchy tree than the model in
Figure[Z.7(b). In that example, for the sake of expositianequivalent model is presented that
is not based on any particular algorithm.

Next, the proof of the soundness of the transformation iroAtgm[3 is presented.
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(b)

Figure 7.7: Balancing the imbalanced transitions, usied#iancealgorithm.
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Lemma 7.6 Given the set of imbalanced transitions of an SBSML model,,Mfd the set of
corresponding control states of MTS,,, after executing “balandMT,, S,)”, MT , = S, = 0.

Proof Idea. Algorithm[3 considers all imbalanced transitions becadsleewhile loop on lin¢ 4
and the for loop on linel7. Otherwise, if an imbalanced tiémsiis not considered, it means that
its source and destination control states do not belorftdefore the algorithm is executed,
which is not possible by the definition &,. The next claim is that for eaamt € MT,, the
algorithm balances this transition. This can be proven lspéating the body of the for loop
on line[7. Ifmtis imbalanced because the sizesof(mt) being small, it becomes balanced by
adjustingsrc(mt) so that its size is exactly the samedees{mt), as performed by the if statement
on line[8. Otherwise, imtis imbalanced because the sizedas{mt) being small, it becomes
balanced by adjustingra(mt), as performed by the if statement on liné 11. Lastly, theofithm
obviously terminates: Both the while and the for loop iteraver finite sets, whose sizes
decrease as computation progresses. As such, after exgethati AlgorithnriBMT, = S, = 0.

O

Proposition 7.7 Given the set of imbalanced transitions of an SBSML model,,Mmd the set
of corresponding control states of MTS,, after executing “balancgVT,,, S,)”, the resulting
model has the same behaviour as the original model.

Proof Idea. For an imbalanced transitiomt, and its corresponding balanced transitiont,

in the new model after applying Algorithid 8t is enabledfi mt is. Also, the &ect of both
transitions are the same becaustis only different frommteither in its source or its destination
control states. Thus, it remains to show that if two tranagimt; andmt, could have been taken
together in a small step in the old model, their correspanthiansitionsmt; andmt, could also
be taken together in a similar small step. This can be proyehdfact that: (i) the algorithm
preserves the comparative priority precedence of theitrans in the old model when they are
modified to their corresponding transitions in the new mp(i¢khe algorithm preserves the.”
relation for transitions; i.emt, L mt < mt; L mt,; and (iii) the algorithm preserves the™
relation; i.e.mt;z mt, & mt s mt,. Claim (i) above is true because the addition of dummy cdntro
states and the adjustments of the source and destinatitrokstates of imbalanced transitions
neither change the trigger of the imbalanced transitiooist{fe Negarion oF TRIGGERS priority
semantics) nor their relative scopes (for thedRt-Scope and Gip-Scope priority semantics).
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The relative scope of transitions do not change becauselthigamn of a newAnd control state,
on line[6, only adds an additional level in the hierarchy tréout assigning any transition to
that level of hierarchy. Claim (ii) above is true because ffagr of control states,; ands, are
orthogonal in the old model, their corresponding contratest in the new mode$; ands,, are
also orthogonal: 16, andor s, have become the children of né\md control state(s), through the
execution of lind 6 of the algorithm, then they would remaithogonal because an additional
And control state does noffact their being orthogonal; & andor s, have not beenféected by
line[d, they would obviously remain orthogonal. Thus, the telation is preserved. A similar
argument is in order for thes” relation. Therefore, applying thealancealgorithm to a model
does not change its behaviour. |

Proposition 7.8 For an SBSML model M if applying the “balance” algorithm (Algorithni3)
to its imbalanced transitions yields modebMnd applying the “trans formall” algorithm (Al-
gorithm[2) to the balanced transitions of,Mields M, the behaviour of M M,, and M; are all
the same.

Proof Idea. By Propositioi 7.5 and Propositibn7.7. O

Self Multi-Transitions

A multi-source, multi-destination transitiomyt, is aself multi-transitionf

Usesrqmy (Childrent(s)) N Ugedesimy (Childrent(d)) # 0.

In a self multi-transition, at least one of the source and afitbe destination control states are
ancestrally related, creating a kind of loop when presgmtibgraphically.

Algorithm[d, on pagé 238, which transforms a balanced nsadltirce, multi-destination tran-
sition into a set of orthogonal transitions, can be appled self multi-transition to create a
balanced multi-source, multi-destination transitionr Egample, the transformation of transi-
tion mtin model in Figuré_718(a) results in the model in Figurég 7)8(b
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Figure 7.8: Applying algorithntransformtoregulato a self multi-transition.

Imbalanced Self Multi-Transitions. If a self multi-transition is imbalanced, however, the
balancealgorithm, in AlgorithmB, cannot be used, when a model iHigel in the Sope-
Parent or the Sope-CuiLp priority semantics. The example models in Figurd 7.9 dertnates
the problem. The model in Figute ¥.9(a) has one self mudtidition, namelyx. Applying
the balancealgorithm to this model results in the model in Figlrel 7.9(bYhile in the first
model, according to thecBre-Parent priority semanticspri(x) = pri(y), in the second model
pri(y) > pri(x). If the No PrioriTy priority semantics is chosen, however, tieancealgorithm
could be applied soundly to self multi-transitions.

In general, there does not seem to exist any transformatioense to balance imbalanced
self multi-transitions without changing the relative piip of the transitions. This is because,
as opposed to non-self multi-transitions, the n&md control state that is created to adjust the
imbalance of a self multi-transition surrounds all souncé destination control states of the new
balanced transition, making the transitions to have a Igwierity (in the case of &pe-PaRenT
semantics) or a higher priority (in the case @b&-CuiLb semantics). For example, in the model
in Figure[7.9(b), théndcontrol state?, surrounds all control states in the source and destination
of X, as opposed to control stefg in the model in Figuré7]9(a).
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Figure 7.9: Applying thévalancealgorithm to a model that has an in-out self transiton.

7.4.2 BSML Semantic Options

This section introduces three transformation scheme®#udt represents how a semantic option
of one of theConcurrency, Small-Step Consistency, andPreemption semantic aspects can be
modelled in SBSMLs using the other semantic option of theeispt also presents the proofs of
the correctness of these transformation schemes.

Concurrency

The transformation scheme presented in this section caredaaBSML model that is specified
in the SnGLE concurrency semantics to an equivalent SBSML model thapégified in the
Many concurrency semantics. The algorithm is designed in a walyiths possible to make
parts of an SBSML model to use thex&e concurrency semantics while other parts use the
MaNY concurrency semantics.

Algorithm[4 shows how a compound control stageyf an SBSML, or a BSML, model can be
modified so that each small step at most has one transifisuch thatscopét) € childreri(s).

For a given set of transitiong,, of an SBSML model, and a control stag,Ts denotes the
set of transitionst, € T, such thasscopét) € chidlren’(s).

Example 55 Figure[7.10 shows two SBSML models that are similar to theatsad Figure 6.4,
but use dfferent names for control states and transitions. Applyirgpathm “manytoone” to
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Algorithm 4: manytoonés).
Input: s
Result At most one transition whose scope is a childsobr sitself, can be included in a
small step.
1 Create a nevBasiccontrol statesingle
2 Create a new transitiolyingie, SUCh thasrd(tsingie) = single desttsingie) = single
3 Create a nevAndcontrol states,ew, such thathildren(s,en) = {S} U {singlée;
4 foreacht € Tsdo
5 \ roleset$t) = roleset$t) U {a}, wherea is a new label in the model;
6 end
7 Setcorolset$tsinge) = {{a}};
8 Assign synchronizeWUEE(a) to Shew;

SRC DES UUEE(a)]

S S S3 ‘ Sz

S11 So1 Sa1

t t2 t3 t1: {a)

S12 S22 S42

(a) (b)

Figure 7.10: Theféect of applying Algorithni %.

control stateSRCin the model in Figur¢ 7.10(a) results in the SBSML model gukeé[7.10(b)
that can execute at most one of the transitions of the orlgimadel in each of its small step.

If the input to themanytoonelgorithm is the root control state of an SBSML model, themn th
model behaves as if it was specified in thesBe concurrency semantics, instead of thany
concurrency semantics.

A possible undesired siddtect of themanytoonealgorithm is that it disables the role of
some, or all, of the synchronizers in the original model,edefing on which control state it is
applied to. This is because, within the scope of the contaedeghat the algorithm is applied
to, at most one transition of the original model can be exatut a small step, precluding the
possibility of synchronization.
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Proposition 7.9 Given an SBSML model, its set of transitions, T, and one ofdtepound
control states, s, applying the “manytoone” algorithm,.j.Algorithm[4, to s results in a new
model whose behaviour isffirent from the original model in that, for each potential sihstep

7 in the original model, there is a corresponding potentiakdinstepr’ in the new model such
that one of the following statements is true:

i 7= (7 NnT), and there does not exist ang tr such that te T; or

i (r"NT)cr, andforeach € (r—1)NTs, there exists exactly one transitioret (' N Ts),
and there does not exists a transitiohd (r N Ts) such that prit”) > pri(t’).

Proof Idea. In the case i above, if the set of transitions,is a potential small step in the
original model, the same set of corresponding transitiehsin the new model is a potential
small step, because: (a) clearly, if a transittoa 7 is enabled, it is also enabled in the new
model; and (b) if two enabled transitiotist, € 7 satisfy the structural semantics of the SBSML
semantics that the original model is specified in, they addisfy the structural semantics in the
new model, because, firdt,andt, do not belong tdl's, unlesgr| = 1; and second, their small-
step consistency, preemption, priority, and synchrornahterrelationships are noffacted by
themanytoonalgorithm. Lastly” cannot have an extra transition thadloes not have. If there
exists a € ("N T) -7, it should be the case thiag Ts. Also, it should be the case thats not a
maximal set of transitions that can be taken in the originadleh as a potential small step, which
cannot be true by the definition of SBSML semantics.

In the case ii above, it isfiectively required thatr{ N T) = 7 — T U {t’}, such that’ € Tg
cannot be replaced with a higher-priority transiti6re Ts. Using a similar argument as for the
case i above, it can be shown that all transitions that do not belong td's also belong to a
potential small step’ in the new model. It remains to show that exactly one of thesiteons in
7N Ts can be included in’, which is clearly the case because of the transformatiotgmrigdhm
manytoonelf |[t' N T4 > 1, it means that the synchroniZ®8EE(a) is synchronizing according
to the semantics afUSE, which cannot be the case. Lasttfycannot be replaced with a higher-
priority transitiont”, because of th€RI function in the SBSML semantic definition schema in
Figure[7.4, described on paige 220. O
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Small-Step Consistency

The transformation scheme presented in this section caredaaBSML model that is specified
in the ArRena OrTHOGONAL SMall-step consistency semantics to an equivalent SBSMilehtbat

is specified in the @rce/Destination OrTHOGONAL SMall-step consistency semantics. The algo-
rithm is designed in a way that it is possible to make partsixddBSML model to use the gkna
OrrtHOGONAL SMall-step consistency semantics while other parts usSotee/DestiNaTioN Or-
THOGONAL Small-step consistency semantics. First, some notateprasented, before presenting
the transformation algorithm.

For a set of transitionsT, and one of its transitiong, € T, the set ofarena conflicting
transitions witht, denoted by functioad(t), is the set of all transitions ifi, such that,

teadt) © (' e T)A(t L) A=(arengt) L arengt’)).

For a set of transitions, allac(T) denoteg J,.t ad(t).

Given a compound control statg,of an SBSML, or a BSML, model, Algorithid 5 specifies
how transitions whose scopes are witkjm.e., the transitions ifis, can be changed so that they
follow the Arena OrTHOGONAL Semantic option, instead of the&ce/DEesTINATION ORTHOGONAL
semantic option.

If the input to thesrcdesttoarenalgorithm is the root control state of an SBSML model,
then, the model féectively behaves as if it was specified in arRefAa OrtHOGONAL Small-step
semantics, instead of @& ce/DestiNaTioN ORTHOGONAL Semantics.

Example 56 Figure[7.11 shows two SBSML models that are similar to thes améhe transfor-
mation ori 20D, except that the unnecessary renaming in €igurl (b) are avoided here. Apply-
ing algorithm “srcdesttoarena” to control stat8RCin the model in Figuré 7.11(a), results in
the SBSML model in Figule 7J11(b). In the SBSML model in EBiguEl(b),

adtz) = {ts, ts},
adts) = {tz, ts},
ac(ts) = {to, t4}, and
allac({ty, to, t3, t4, ts}) = {to, t4, ts}.

The SBSML model in Figufe 7111(b) igfdient from the SBSML model in Figure 7.11(a)

251



Algorithm 5: srcdesttoarengs).
Input: s
Result A pair of transitions whose scopes belonghildren(s) can be included in a
small step if their arenas are orthogonal.
1 Based on the size df; = allac(Ts), create a set of new labets= {a,, - - - , a,}, where
n=|Tg;
2 Define any bijective mapping : T, »» A,
3 Create a set of neBasiccontrol stateB = {By,-- - , By};
4 Create a set of new self transitiohg = {tg,, - - - , tg,}, such thasrd(tg) = desftg) = B; ;
5 foreachtg € Tg do
6 | corolesetfis) = {(a}};
7 end
g foreacht e T, do
9 \ rolesetgt) = rolesetgt) U [Unecaqy (f(M))];
10 end
11 Create a nevAnd control states,en, such thathildrens,ey) = {S} U B;
12 Assign synchronizePUEE(A) t0 Siew

in that no pair of transitions of the original model that haweerlapping arenas can be taken
together in the same small step.

Proposition 7.10 Given an SBSML model, its set of transitions, T, and one afatspound
control states, s, applying the “srcdesttoarena” algonthi.e., Algorithni b, to s results in a
new model whose behaviour igfdrent from the original model in that, for each potential $ima
stepr in the original model, there is a corresponding potentialkdinstept’ in the new model
such that one of the following statements is true:

i 7= (7 NnT),and there does not exist anyt € (r N Ts) such that{ L t, and arendt;) L
arendt,); or

i (@ NT) cr,and for eacht € (r — (' N T)), there exists a transitionte (7 N Ty)
such thati 1L t, and arendt;) £ arendt,); furthermore,r’ is maximal, i.e., it cannot be
extended with additional transitions in— 7/, andr’ has the highest priority, i.e., none of
its transitions cannot be replaced with a higher-prioritgnisition int — 7’.

Proof Idea. In the case i above, since no two transitiong ithat have overlapping arenas are
included int, all transitions ofr, including the ones inr N T, can be included in a potential
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Figure 7.11: The#ect of applying Algorithni b.

small step;’, of the new model. For a transitiong 7, if t € (r N Tg), it can synchronize with

its corresponding transition g, created on lin€l4 of the algorithm, and thus can be included
in 7’; this synchronization is possible because each of theittamsin Tg is orthogonal with all
transitions inTs. Otherwise, it € (7 — Tg), it need not synchronize with any transitionTig, and
thus it can be included i because it can be included#n

In the case ii above, if; € (r — (' N T)), then it means thaj is not included inr” because
it could not have synchronized with a transitionTig according to the synchronizer introduced
in line [4 of Algorithm[3, otherwisd; could not have belonged to either. But ift; cannot
synchronize with a transition ifig, it means that there is another transitién,e 7/, that is
synchronizing on the same label thaheeds to synchronize. But because of the way role sets
of transitions are constructed on line 9 of Algorithin 5, tisadnly possible ift, € ac(t;), which
meanst; L t, andarengt;) L arendty). Lastly, 7’ is maximal and high priority because of
the semantic definition schema in Figlrel 7.4 and the defmdfd®RI andSY Nfunctions in the
schema. ]

Preemption

The transformation that disallows two transitions that anan interrupt for another to be in-
cluded in the same small step is similar to the transformapiesented for disallowing a pair
of orthogonal transitions whose arenas are not orthogontld same small step. The idea of

253



transformation is the same in that for each transitipfirst, its set ofinterrupting conflicttran-
sitions,ic(t), similar to the set of arena conflictingg(t), described above, should be defined.
Using this syntactic information, a similar algorithm agétithm[3 can be designed that creates
new dummy control states that have self transitions whossions are to disallow a pair of
transitions that one is an interrupt for another to be exattigether, by exclusively synchro-
nizing with one or the other, but not both. To avoid duplicatithis algorithm and its proof of
correctness, which are very similar to the ones for smelp-sbnsistency transformation, are not
presented.

7.4.3 The REsent IN SaME Event Lifeline Semantics

The transformation scheme presented in this section showshe Resent IN Same event life-
line semantics can be modelled using the synchronizatipaklsbty of SBSMLs. Algorithni6
receives a BSML model specified in the#ent In Same event lifeline semantics and replace
its internal events, which follow the semantics of thed~T In Same event lifeline semantics,
with necessary synchronization instrumentation that rhttdesemantics of these events. The
input to the algorithm consists of the set of transitions ofi@del, T, its set of internal events,
{er,- -, &}, which are called signals in some BSMLs that support thesiRt In SamE event
lifeline semantics, and its root control state.

Intuitively, Algorithm tosignals in Figure[6, works as follows: For each signal, a pair
of labels are created, namely,and x’. For each signale, a new control state and two self
transitions on it, namelyt, andt&_/, are defined so that it is not possible for bettand—-¢ to
trigger transitions in the same small step. Lake$ used for synchronization of transitions that
generates, while labelx' is used for synchronization of transitions that are triggewith the
negation ofg. Lastly, for each signak, a third label];, is defined so that the generated events
of one transition is related to the trigger of another viam@céyonization mechanism. Bokhand
X are necessary so that a small step cannot have two disjdisétsy one including transitions
that generate and are triggered wghand another including transitions that are triggered with
the negation o§.

In Algorithm tosignals in Figurel®, it is assumed that: (i) there is no transitiothe model
such that it generates an event and is triggered with thetioagat the event; and (ii) there is no
transition in the model such that it is both triggered witheent and generates it.
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Algorithm 6: tosignalgT, {ey, - - - , €.}, root).

Input: T,{ey,---, ey}, root
Result Eventgsignals in the Resent IN Same event lifeline semantics are replaced by
synchronization instrumentation.

1 Create a set of neBasiccontrol stateB = {By, - - - , B,};

2 Create a set of new labe¥s= {X1, -, Xn} ;

3 Create a set of new labe¥ = {x},--- , X} ;

4 Createn new self transitiondty,, - - - , ty }, such thasrd(ty) = B;, des{ty) = B;, and

corolesetft,) = {{X}}, for1<i<n;
s Createn new self transitionsity, - - - , ty }, such thasrd(ty) = B;, des(tx) = B;, and

corolesetet)q) ={{x}},forl<i<n;

6 Create a set of new labdls= {l4,--- ,I,};

7 foreacht € T do

8 foreache € {e,--- ,€,} do

9 if ¢ € postrig(t) then

10 corolesetft) = coroleseté) U {I;} ;
11 postrig(t) = postrig(t) — {e};

12 end

13 else ifg € negtrig(t) then

14 rolesetgt) = rolesetst) U {X'} ;

15 negtrig(t) = negtrig(t) — {e};

16 end

17 else ifg € gent) then

18 roleset$t) = roleset$t) U {l;} U {x} ;
19 ger(t) = ger(t) - {e};

20 end

21 end

22 end

23 Create a nevOr control stateM, and a newAnd control states,ey, such that
children(s.ey) = rootU B andparen{s,en) = M, whereM is the new root control state;
24 Assign synchronizePPSS(L) andPUSE(X U X’) tO Syew;
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Figure 7.12: The fect of applying Algorithni B.

Example 57 Figure[7.12 shows theffect of applying the “tosignals” algorithm to the SBSML
model in FiguredC7Z.12(a). The result is the SBSML model in iE@@013(b) whose events are
replaced by synchronization instrumentation, and has émeesbehaviour as the original model.

The models in Figurie 7.12 are similar to the ones in Fiduré 6r¥pagé 202, except that: (i) the
name of events and labels are changed here to match the oramstion algorithm; and (ii) here
the model in Figuré7.12(b) is created by exactly followihg steps in Algorithin 6, as opposed
to the model in Figure 202 that is manually created, with gtslliy different set of control states.

Proposition 7.11 Given an SBSML model that uses internal events accordingel®{esent
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IN Same event lifeline semantics, applying tosigndigey, - - - , €.}, root), where T is the set of
transitions of the model, E {e,--- ,&,} is its set of events, and root is its root control state,
results in an SBSML model that has the same behaviour as ifjiearmodel.

Proof Idea. To prove the above claim, it fiices to show that for each small stepin the orig-
inal model, there is a small steg, in the new model that includes the corresponding transstio
of 7, and vice versa.

For each such a, there exists a correspondimgbecause: (i) if a transitiort, in 7 is not
triggered by an internal event, its corresponding tramsjti’, can be included in’, because
tosignalsdoes not instrument that transition; (ii) if a pair of traimis,t; andt,, are included
in T becausepostrig(ty) N ger(ty) # 0, their corresponding transitiong, andt),, can also be
included in7’ because of their synchronization instrumentation on ld80, and_1I8 ; and
(iii) if a transition, t, in 7 is triggered by the negation of an internal event that is motegated
by any transition inr, its corresponding transitiont,, can also be included i, because the
corresponding transitions of a pair of transitions that geaerates an event and the other is
triggered by its negation cannot be included in a small sfefhenew model, because of the
instrumentations on lindd 5 ahd]14 and the fact that the smikitions inX and X’, defined
on lined2 andl3, respectively, pairwise share the sameatatéte; and (iv) lastly, Algorithrinl6
does not &ect the way a set of maximal, high-priority transitions am@ugped together in the new
model compared to the original model, because: (a) it doeshamge the relative precedence of
the transitions, according to any of the priority semantasl (b) the synchronizers introduced
on line[24 do not put any restrictions on the maximality of aBstep.

Using the above lines of arguments conversely, it can algorédeen that for each’, there
exists a corresponding Thus, the original and the new model have the same behaviout

7.4.4 Composition Operators

In this section, the formal transformation of some of the own composition operators intro-
duced in template semantic¢s [T5] 74] to their equivalentiBsSare considered.

In the following transformation schemesg@amponenbr anoperandof a template semantic
composition operator corresponds to a compound contrtd sfaan SBSML. Thus, the input
to a transformation algorithm for a composition operatarsists of a set of compound control
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states, plus any extra syntactic elements, such as synzation events in the case of rendezvous
and environmental synchronization composition operathsssuch, a hierarchy of compaosition
operators of a model in template semantics can be transtbim@a hierarchy of control states
of an SBSML model. A model in template semantics that doebaat any composition operator
behaves the same as its equivalent BSML model. In templatarsics, there is no notion of
synchronizer.

In template semantics, originally, the composition opaaare considered as binary opera-
tors, but here they are considered as n-ary operators.

Interleaving

“In interleaving compaosition, only one component can exedransitions in astep[emphasis
mine]” [[75], where step has the same meaning as small stéysinissertation.

Algorithm[7 specifies how an interleaving composition oparaan be transformed into an
And control state that has the same behaviour as the compospierator. The input to the
algorithmtointerleavingis a set of control statds,, - - - , $,}. As before, for the set of transitions
of a model,T, Ty is the set of all transitions ifi such thatca(srdt), desft)) € children's.

Algorithm 7: tointerleaving{si, - - - , Sh}).

Input: {s,---, s}
Result Each small step includes the transitions of at most onesoT {f's, where
S €{s, .S}

1 Create a set of new labeds= {a;,--- , a,};

2 Create a neviBasiccontrol stateint;

3 Createn new self transitionX = {xy, - - - , Xa}, such thasrg(x) = int, des{x) = int, and
corolesetéx) = {{&}},forl<i <n;

4 Create a nevAnd control state e, such thathildren(S\ew) = {S1, -+ , S} U {int};

5 foreachs € {s,---, s, do

6 foreacht € T4 do

7 | rolesetgt) = rolesetgt) U {a;};
8 end
9 end

10 Assign synchronizeWUSE(A) to Sew;
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Int: {UUSE(ay, ap)}

(@) (b)

Figure 7.13: Theféect of applying Algorithnf.l7.

Example 58 Figure[7.13 shows that how thgfect of applying the “tointerleaving” algorithm
to a model that uses the interleaving composition operatsuits in an SBSML model with the
same behaviour. The SBSML model in Fidure7.13(b) is thdtrekltointerleaving(C,, C,)".
The models in FigurE 6.8, on pafe 203 are similar to the ondSdgnre[7. 13, except that the
model in Figuré 6.8(b) is not obtained through applying alon “tointerleaving”, in order to
obtain a simpler model.

Proposition 7.12 Given a model in template semantics with one interleavimypmusition oper-
ator “int(s, -+, S)”, replacing the composition operator with “tointerleavif{ss, - - - , Sh})”
yields an SBSML model that has the same behaviour as theatigiodel.

Proof Idea. To prove the above claim, it fiices to show that for each small stepin the orig-
inal model, there is a small steg, in the new model that includes the corresponding tramstio
of 7, and vice versa. As such, it should be proven that “only omapmment” of the original
model “can execute transitions in a” small step of the new ehodihis is true because at each
small step only one of the transitionsXj created on lin€l3 of the algorithm, can be executed,
which in turn can synchronize exclusively with the trarmi8 of one of the control states, which
each represents a component of the composition operatioe ioriginal model. Thus, the trans-
formation in AlgorithniY is sound. |
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Rendezvous

The rendezvous composition operator requires that, “Bxaoe transition in the sending com-
ponent generates synchronization everjemphasis mine] that triggers exactly one transition
in the receiving component[ [75], where synchronizatioereg of a composition operator are
unique and syntactically specified. In Section 8.4.4, a Brspmantics for rendezvous com-
position operator was considered that assumed models suttfe gorocesses in CCS, whose
semantics can be modelled using synchronizers of tyjg&. However, in the general case an
operand of a rendezvous composition operator itself cam lagkatrary control state, possibly an
Andcontrol state that can execute concurrent transitionsudh a general case, the semantics of
rendezvous composition operator in template semanticsi@adally requires that: “Transitions
that are enabled by non-synchronization events or thatrgeneon-synchronization events can
execute only in an interleaved mannel.”[[74] In the geneaakc the only syntactic assumption
made about a model is that each of its transitions can synd&@according to one rendezvous
composition operator and over only one of its synchronire¢ivents.

Algorithm[8 specifies a transformation scheme for the revoleéz composition operator for
the general case. The input to the algorithm is a set of cbsiates,{s;,---, S}, n > 2, each
of which is an operand of the rendezvous composition operatal a set of synchronization
events{e,---, ey}, m> 1. The set of labels iA in the algorithm are used to ensure that a set of
transitions in a small step that do not synchronize overlsyrgzation events belong to at most
one of the components. The set of labeld.iare used to model the synchronization events of
the rendezvous composition operator. Label@&$ used to ensure that a small step does not
include both transitions that synchronize over a synchzadion event and the transitions that do
not.

Example 59 The model in Figuré 7.14(a) shows a model that uses the regndezomposition
operator over two componen® andC,. Applying “torendezvous$C,, C,}, {e})” results in the
SBSML model in Figule 7.14(b) that is equivalent to the oraimodel.

Proposition 7.13 Given a model in template semantics with a rendezvous cotigpogperator
“ren({s;, -, S}, {€ - ,en})”, replacing the composition operator with “torendezvd{s, - - -
.S {en -+, en})” yields an SBSML model that has the same behaviour as thénatighodel.
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Algorithm 8: torendezvou$sy, - - , Sh}, {€1, - - , €m})-

Input: {sy,-- -, S}, {€r, -, €m}
Result Either a transition front € T and a transition frontf € T, 1 <i < n, such that

g € postrig(t) ande; € gent’), 1 < j < m, are included in a small step, or the
small step includes non-synchronizing transitions froomast one of thd's’s,
1<i<n
1 Create a set of new labeds= {a;,--- , a,};
2 Create a set consisting of a new lalek {o};
3 Create a set of new labdls= {l4,--- ,In};
4 Create a nevBasiccontrol stateint;
5 Createn new self transitionsX = {X, - - - , Xa}, such thasrc(x;) = int, des{x) = int, and
corolesetéx) = {{g}}, for1<i <n;
6 Create one last self transitiorig, such thasrd(t,) = int, desft,) = int, and
corolesetf,) = {{0}} ;
7 Create a nevAndcontrol states,en, such thathildren(S,ey) = {S1,- -+ , S} U {int};
g foreachs € {s;,---,s,} do

9 foreacht € T4 do

10 if gen(t) Nn{e,---,em = € then

11 rolesetgt) = rolesetgt) U {l;} U {o};

12 gent) = 0;

13 else if postrig(t) N {e;,--- ,en} = g then
14 coroleset§) = corolesetf) U {E};
15 postrig(t) = 0;

16 end

17 else

18 | rolesetgt) = rolesetst) U {a;};

19 end

20 end

21 end

22 end

23 Assign synchronizeWUSE(A) to Siew;
24 Assign synchronizeWUEE(L U O) to Sew;
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(b)

’ rend: {UUSE(ay, a2), UUEE(r, 0)} ‘

Figure 7.14: The fect of applying AlgorithniB.
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Proof Idea. To prove the above claim, it should be shown that for eachlIsstep, , in the
original model, there is a small steg, in the new model that includes the corresponding tran-
sitions ofr, and vice versa. If suchaor 7 does not exist when the other exists, it means that
the transformation algorithorendezvouss not sound. To prove the soundness of Algorithm
[8, it should be shown that in the new model either a pair ofsitaoms that synchronize over a
synchronizing event are included a small step or the triansithat do not synchronize over syn-
chronizing events and belong to one component are includéeismall step, but not both kinds
of transitions. Two transitions that synchronize over acbyanization event can be included in a
small step of the new model only exclusively, because suohttansitions synchronize accord-
ing to a synchronizer of typBUEE, and furthermore, no additional such pair of transitions ca
be included in the same small step because one of the trarssiti the first pair of transitions
also exclusively synchronizes with transitiy created on lingl6 of the algorithm, via lakel

If such a pair of synchronizing transitions is not includedismall step, the transitions of only
one of the components can be included in the small step, beaanly one of the transitions
in X, created on lingl5 of the algorithm, can be executed in eadil step. Thus, algorithm
torendezvous sound because it mimics the behaviour ofriiedezvousomposition operator
that it translates. O

Environmental Synchronization

The environmental synchronization operator requires thath components execute in the same
microsteplemphasis mine] if the executing transitions all have thaee&igger evente, which

is a designatedynchronization everjemphasis mine] (line 1), and if all components that can
react to this event participate in the step .L."|[75], whbeeterm “microstep” corresponds to the
term “small step” in this dissertation and a synchronizaggent can be received only from the
environment. Similar to the case in the rendezvous compasiperator, when synchronizing
transitions cannot be taken, “in the 'unsync’ case, nonéefexecuting transitions is triggered
by a synchronization event, so one or the other componeastalstep in isolation (interleav-
ing).” [75] In template semantics, the following well-foedness condition is assumed for envi-
ronmental synchronization composition: If a transitiotriggered by a synchronization event or
generates a synchronization event, neither it is triggesiéid any other events, synchronization
or otherwise.

Algorithm[9 specifies a transformation scheme for the emvirental synchronization oper-
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ator. The input to the algorithm is a set of control states, - - , s,}, n > 2, each of which is
an operand of the composition operator, and a set of syndation eventsie;, - - - , en}, m> 1.
The set of labels i\ are used to ensure that a set of transitions in a small stepaoh@ot syn-
chronize over any synchronization events belong to at mostod the components. The set of
labels inL are used to model the synchronization events of the composiperator.

Algorithm 9: toenvironmentd{s;, - - , Sh}, {€1,- - , €m}).

Input: {s,---, s}, {€1," ", Em}

Result In a small step, either a maximal set of transitions thathyonize over the same
environmental input synchronization event can be includethe
non-synchronizing transitions from at most one ofhés, 1 <i < n, are
included.

1 Create a set of new labeds= {a;,--- , a,};

2 Create a set of new labdls= {l4,--- ,In};

3 Create a neviBasiccontrol statejnt;

4 Createn new self transitionsX = {Xy, - - - , X3}, such thasrc(x) = int, des{x;) = int, and
corolesetéx) = {{&}},for1l<i <n;

5 Createm new self transitions? = {py, - - - , pm}, Such thasrc(p;) = int, des{p;) = int, and

corolesetép) = {{li}}, forl <i <m;

6 Create a nevAnd control states,en, such thathildren(s,en) = {S1, - - , Sh} U {int};
7 foreachs € {s,---, s, do

8 foreacht € T4 do
9

if trig(t) N {ey,---,en} = g then
10 | rolesetgt) = rolesetgt) U {I;};
11 end
12 else
13 | rolesetgt) = rolesetst) U {a;};
14 end
15 end
16 end

17 Assign synchronizelUSS(A U L) tO Shew;

Example 60 The model in Figuré 7.15(a) shows a model that uses the emaatal synchro-
nization operator over two compone@sandC,. Applying “toenvironmentd|{C,, C,}, {e1, &})”
results in the SBSML model in Figure 71.15(b) that is equiviie the original model.

The models in Figure_6.9(b), on page 204, shows an SBSML ntuatehas the same be-
haviour as the model in6.9(a). The source model does naidechny non-synchronizing tran-
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Figure 7.15: Thefect of applying Algorithni B.
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sition. The transformation used in that figure, in order toramstrate the role of poly-roles, first
identifies the maximum number of synchronization transstibat can be taken together accord-
ing to an environmental input event. If some of the transgim such a maximal set cannot be
taken in a small step, the added dummy synchronizing tiansiheed to replace them. Here, a
more general approach has been adopted that also considersynchronizing transitions.

Proposition 7.14 Given a model in template semantics with one environmegtatisoniza-
tion composition operatorénv({s;,--- , S}, {€1, - ,€n})”, replacing the composition operator
with “toenvrionmental{s;, - - - , S}, {€1, - - , €n})” Yields an SBSML model that has the same
behaviour as the original model.

Proof Idea. Similar to the proof for the soundness of the other compmsibperators, it Stices

to show that for each small step,in the original model, there is a small stefy,in the new model
that includes the corresponding transitions odind vice versa. As such, it should be proven that
a small step either includes a maximal set of transitionssyrachronize over the same synchro-
nization event or it includes the transitions that do notcéyanize over synchronizing events
and belong to one component are included in the small stemdiloth. It is not possible for
the non-synchronizing transitions offidirent components to be included in the same small step,
because of the self transitions created by [ihe 4 in the &fgor which are on the same control
state. Similarly, it is not possible for the synchronizirgisitions that synchronize ovefigrent
synchronization events to be included in the same smallstepuse of the self transitions that
are created by linkl 5 in the algorithm. Lastly, non-synchriog and synchronizing transitions
cannot be included in the same small step because theisporrding self transitions, created on
lines[4 and’b of the algorithm, cannot be executed togethieisame small step, because their
corresponding self transitions are over the same contate.sThus, algorithnoenvironmental

IS sound. |

7.4.5 Workflow Patterns

This section considers the transformation of the sequemnckfow pattern, whose name is the
same as the name of a similar composition operator in temgknhantics. The formalization
of the transformation schemes of the other workflow pattesnse of which were described
informally in Sectior 6.4]5, are not considered in this eitaion because: (i) these workflow
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patterns are not originally defined in the context of BSMLSS®&SMLs; and (ii) there is no
conclusive formal semantics for these patterns in thedlitee. However, as shown informally in
Sectiorl 6.45, the transformation schemes for the workflattepns are mainly in the same style
as other syntactic constructs, semantic variations, amgposition operators.

Sequence

When two components are connected through a sequence wogsdiibericomposition oper-
ator, “the first component executes in isolation until itmerates (i.e., reaches ifsal basic
stategemphasis mine]) and then the second component executeslation. If component one
is a composite component, then all of its basic componentt neach final basic states before
the second component can staft,”|[74] where a final basie &atither syntactically designated
in a language or is a control state of a model that has no cuggaansitions.

In Section 6.4.5 the two components of a sequence composifierator are connected via
a multi-source, multi-destination transition, which iraplents the semantics of the sequence
workflow pattern, but introduces an extra idle small stepvieen the execution of the first and the
second component. As mentioned in Secfion 6.4.5, an atteenaterpretation of the semantics
of the sequence workflow pattern, such as the one in temm@atargtics[[75], disallows the extra
idle small step. This section presents a transformatiooridhgn that neither introduces any extra
idle small steps nor uses any synchronizers. First, sonaionteed to be introduced.

Given a compound control stats, final(s) denotes the set of fin&asiccontrol states of
s. EachOr control states, has at most one final control state, such thatl(s) # defaul(s)H
There is no need to allow more than one final control state i@&anontrol state because two
final control states can be merged by directing the incomimgsitions of one to the other. The
final control states of aAnd control states is the union of the final control states ofhitdecen.

Given a control states, incomings) is the set of all transitions, such that for each of these
transitionst, Ica(src(t), destt)) ¢ childrent(s) anddestt) € childreri(s).

Algorithm[10 specifies a transformation scheme for the secgieomposition operator. The
input to the algorithm is two compound control statgss,, each of which is an operand of the
composition operator. The set of variables - - - , v} is used to determine when the final states

3If final(s) = defaul(s), perhapschildren(s)| = 1, which means th®r control state is itself virtually 8asic
control state.

267



of the first component are all arrived in, upon which, in theneasmall step, transitiotys; is
executed to move the control of the model to the control stat¢he second component. When
control states, is reentered, all variables {ny, - - - , v} are reset.

Algorithm 10: tosequends,, S,).

Input: s;, S

Result First, transitions of, are executed, followed by the onessf

Create a set of new boolean variabjes- - - , v,} that corresponds to the set of control
statesfinal(s;) = {fy,-- -, fo};

[N

2 foreach f; € {fy,---, f,} doO

3 forall the t € incomind f;) do

4 | asn(t) := asr(t) U {“v; := true’};
5 end

6 end

7 Create a nevBasiccontrol statelast;

8 Create a new transitiol),s;, such thasrd(tj.st) = last, desft.s) = S, and
gC(tjast) = (new_small(vy) A -+ A new_small(vy));

9 Create a nevAndcontrol states,en, such thathildren(s,ey) = {S1, S} U {last};

10 foreacht € incominds;) do

11 forall the v; € {vy,---,V,} doO

12 | asn(t) := asn(t) U {“v; := false'};
13 end

14 end

Example 61 The model in Figure 7.16(a) shows a model that uses the sequmrerator over
two component® and Q. The result of “tosequenéll, Q)” is the SBSML model in Figure
[7.16(b), which is equivalent to the original model.

Proposition 7.15 Given a model in template semantics with one sequence caropagperator
“seq(s1, $)”, replacing the composition operator with “tosés, s,)” yields an SBSML model
that has the same behaviour as the original model.

Proof Idea. It suffices to show that for each small stepin the original model, there is a small
step,7’, in the new model that includes the corresponding transstiaf 7, and vice versa. As
such, it should be proven that initially each small stepudek transitions frors;, and once all

final states ofs; are entered, the control is passedspafter which only small steps including
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Figure 7.16: The fect of applying Algorithni T0.
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transitions ofs, are executed. The transformation in Algorithm 10 clearlggloot allow small
steps that include transitions from bathands,. Furthermore, variables;, - - - , v, } are all true

at the end of a small step if and only if an incoming transitioreach final control states sf

has been executed. But in this last small stgpy is executed, because its guard, which checks
the values ofvy, - - - , v} variables at the end of a small step, is true, and furtherntggas an
interrupt for the last incoming transitions of the final aahtstates ofs;. Thus, once all final
control states 0§, are entered, the control is passedfoas desired. Lastly, upon reentrance to
s, the{vy, - -+, vy} variables are all reset to false afresh, through the waynit@nning transitions

to s, are modified on ling_12 of the algorithm. O

A Transition-Aware Semantics. It should be noted that the above transformation uses the
new_small keyword whose semantics is transition aware, and out of¢bpesof the semantic
formalization in Chaptdrl4. It seems that this is the pricg treeds to be paid to avoid the extra
idle small steps between the execution of the transitionkebperands of a sequence operator.
Instead ofmew_small keyword, synchronization can be used so that two comportkatsare
connected by a sequence operator synchronize when thedingtanent and all its subcompo-
nents finish their execution, after which the second compbserts its execution. However,
such an approach again creates extra unnecessary smalldstefo the synchronization nec-
essary to recognize when all subcomponents have finish@dettecution. Such an approach
is described by Milner[72, p.172-174,190-192], where h@ars how CSP sequence opera-
tor, “;”, [48] p. 171] can be translated into CCS. But this aggeh introduces extra CCS silent
actions .

7.4.6 Hfect of Transformation Schemes on Well-Formedness

To achieve a clear exposition of the transformation scheanestheir proofs of correctness in
the preceding sections, it was assumed that the changesriolésets, co-role sets, and the syn-
chronizers of a model do not violate the well-formednesgd@mns of the model, as described
in Section Z.1.2. However, a transformation algorithm cagate a non-well-formed SBSML
model. However, such a model can dm@rectedin a straightforward manner, while preserving
the intended behaviour of the model. Furthermore, it is shtivat the proofs of correctness
presented for transformation algorithms remain valid alose of the types of well-formedness
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violations and the proposed corrections.

The only well-formedness criterion that could be violatgdabnew model produced by a
transformation algorithm is the criteridnl iv of the wellrfioedness of SBSMLs, which states:
Two labels that are associated with the same synchronizfoe do not belong to two fierent
role sets or two dferent co-role sets of the same transition. The followinggpatof scenarios
can cause such a violation. A transformation scheme maydate a new singleton role set, say
{x}, for a transitiort that already has a singleton role set, 8gywhere botH x} and{y} are meant
to be synchronized by synchronizers that have the sametgpbéelongs tou***”. According
to criteriontv, {x} and{y} need to be merged, b{x, y} does not matchu***”, violating crite-
rion[iil Thus the corresponding synchronizers{xf and{y} also need to be merged to a same
synchronizer whose synchronization type belong®to*”. The merge of the synchronizer can
in turn trigger another merge with an already existing syocizer that has the same synchro-
nization type as the newly-created synchronizer. A singkttern of well-formed violation can
happen for synchronizers of synchronization typg**”. A similar correction can be applied
to this second pattern of violation scenarios by mergingstrehronizer to a new synchronizer.

The above corrective steps to transform a model to a wethéor model, however, preserve
the original behaviour. First, for example, a transitipnyith role setg{x}, {y}} that synchronize
with two different synchronizer of the same synchronization type *”, by definition, behaves
exactly the same ashaving a single role sék, y} that synchronizes with a single synchronizer
of synchronization typeP***”: In both modeld is required to have synchronization oveand
y, according to the semantics of the third and fourth lettéth® corresponding synchronizers,
which are the same in both cases. The above statement, hovdvee if the semantics of such
non-well-formed SBSML models is defined according to theas#ino definition schema on page
[220, whichis the case; i.e., evenif a model violates the-feethedness criteridnliv, its behaviour
is defined according to the formal semantics in Se(fl@@ ‘Binilarly, merging the co-role sets
of a transition that synchronize according to synchrosizbat have the same synchronization
type that belongs to*U**” does not change the behaviour of the model. Lastly, mergitg
synchronizers that have the same synchronization typegiglg to “P***” or “ *P**” does not
change the behaviour of the model. Thus, the correctivesstegined above do not change
the behaviour of a model, and therefore, the reasoning pi@s$én the proofs presented in this

4As an example of an SBSML model with an undefined semanticSE8ML model that allows a transition to
have a role s€(x, y} that synchronizes according to a synchronizer of synchatioin type U***” has a nonsensical
meaning. However, none of the transformation algorithregter such nonsensical models.
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section remain sound in the presence of the aforementigmped bf non-well-formed SBSML
models.

7.5 Relevance of Semantic Quality Attributes for SBSMLs

This section considers the relevance of each of the threarg@muality attributes introduced
for BSMLs, described in Chaptel 5, for SBSMLs.

7.5.1 Non-Cancelling SBSML Semantics

Recall that in a non-cancelling BSML semantics, once a itiansof a model becomes exe-
cutable in a big step, it remains executable during the k#g.sHowever, the non-cancelling
semantic quality attribute is not relevant for SBSMLs, hesgg as discussed in Section 7,.3.3, an
enabled, high-priority transition may not be executable sttapshot because its synchronization
requirements cannot be satisfied. As such, a notion of arutadgle transition in SBSMLs can
be only defined with respect to the executability of othemgraons, which is not consistent with
the notion of non-cancelling BSML semantics.

7.5.2 Priority-Consistent SBSML Semantics

Recall that in a priority-consistent BSML semantics, thghleir-priority transitions are chosen
to execute over lower-priority transitions during a bigpstdhe priority consistency semantic
quality attribute is also relevant for SBSMLs. Exactly tlaene semantic characterization as the
one for the priority-consistent BSML semantics holds far 8BSML semantics. The follow-
ing proposition restates the necessary arftigent conditions for an SBSML semantics to be
priority consistent, which is similar to the Proposit[olfor BSMLs, on page5l6.

Proposition 7.16 An SBSML semantics that subscribes to a hierarchical ggi@emantics to-
gether with theNecarion oF TRIGGERs priority semantics is priority consistent if and only if it
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satisfie = Phierarchical A P;\legation' where

Phierarchicask = TAKE ONE,

Plegaon = Phegation A PXEventA PIEvent

Pnegation = -Negated Events

PXEvent = X.P.I. Remanper V —Negated External Events and

PlEvent

AsvyncHroNous EVent vV —Negated Interface Events

Proof Idea. A similar proof of correctness as the one for Propositiof) 6répage 169, can be
developed for this proposition. An outline of this proof iepented below.

PredicatePhierarchicar guarantees that the execution of an SBSML model cannot pdoice
two different ways: One arriving at a configuration where a highegyidransition according
to a hierarchical priority semantics can be taken, and oneirag at a configuration where a
low-priority transition according to a hierarchical piitgrtransition can be take. (The correct-
ness proof of Propositidn 3.4, on pdgel164, can be confeorenidre detail.) Predicate, .,
guarantees that a priority-inconsistent behaviour adogrd the Negarion oF TRIGGERS Seman-
tics does not arise: Internal events are not supported ubeaafPyegation, SO it is nNot possible
for a big step to include a high-priority transition, whoseet trigger has just been generated,
while another big step includes a low priority transitioechuse the event trigger of the high-
priority transition is not generated yet. PredicaR$Eventand PIEventrequire the external
environmental input events and the interface events, ctispdy, to be either present or absent
throughout a big step, so that a lower-priority transitian e only taken if the triggering event
of a higher-priority transition is not present at the sowsoapshot of the current big step. (The
correctness proof of Propositibn b.5, on pagel 168, can biewed for more detail.)

Conversely, if an SBSML semantics is priority consisteshibuld satisfy predicate, other-
wise counter example models similar to the ones in Examgl&Ea8mpld 317, and Examplel38
can be created that exhibit a priority-inconsistent betavi(The aforementioned examples are
relevant for SBSMLs too, since a BSML model is an SBSML mod#étaut any synchronizers.)

Thus, an SBSML semantics is priority consistehitisatisfiesP. |
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7.5.3 Determinate SBSML Semantics

Recall that in a determinate BSML semantics, if two big stefpa BSML model execute the
same (multi) set of transitions inftierent orders, their destination snapshots are equivalbet.
determinacy semantic quality attribute is also relevanBiBSMLs. The same semantic charac-
terization as the one for BSMLs, in Propositlon 5.10, on fEge holds for SBSMLs.

Proposition 7.17 An SBSML semantics is determinate with respect to variadoesevents if
and only if its constituent semantic options satisfies tleelijpateD = D! A Dy, where

Variables Events’

DVariables A DlASSiQD

’
Variables

Dvariabes = [—Variable AssignmentsVv RHS B Srep] v
[(RHS SvuarL Srep V RHS Gomeo Step) = (TAKE ONE A MaNY)],
DIAssign = [-Interface Variablesin RHSV RHS AsyNCHRONOUS VARIABLE] V
[RHS WEak SyncHrRONOUS VARIABLE = (TAKE ONE A MaNY)],
DEvents = Devents A DOEvent
Devents = [-Generated EventsV P.l. ReMAINDER] V
[(P.l. Next SmaLL Step V P.l. NexT ComBo Step) = (Take ONE A Many)], and
DOEvent = [-External Output EventsVv O.P.l. ReMAINDER] V

[(O.P.I. Next SvaLL Step vV O.P.l. Next ComBo Step) = (TAKE ONE A MANY)].

Proof Idea. A similar proof of correctness as the one for Proposifio5ah pag& 176, can be
developed for this proposition. A sketch of this proof isgaeted below.

First, a similar lemmato Lemnia®’.7, on pagell172, can be siat&BSMLs: If two big steps
of an SBSML model that is specified in an SBSML semantics thiaiws the ke ONe big-step
maximality semantics and the AMy concurrency semantics have the same set of transitions,
they are the same. Predicd, ... guarantees determinacy with respect to variables because
it ensures that either the values of variables in the assegitsrare obtained from the beginning of
a big step, which guarantees determinacy, or the SBSML sreaubscribes to both thede
One and the Miny semantic options, thus if two big steps have the same seaditrons they
are the same. Similarly, tHe . .. guarantees determinacy with respect to events because eith
the events are required to accumulate during a big step BBS8ML semantics subscribes to
both the kke One and the Miny semantic options, thus if two big steps have the same set of
transitions they are the same.
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Conversely, if an SBSML semantics is determinate it shoatsy predicateD, otherwise
counter example models simile to the ones mentioned in thef mf Propositiori 5.710 can be
constructed that exhibit non-determinate behaviours.

Thus, an SBSML semantics is determindfatisatisfiesD. m|

7.6 Summary

This chapter presented a formal semantic definition metbo8BSMLSs. It also presented trans-
formation schemes, in forms of algorithms, that showed hHesemantics of various modelling
constructs, as well as, some structural semantic opti@msbe modelled in SBSMLs. For each
transformation scheme, the proof of its correctness wasepted. Lastly, the relevance of the
semantic quality attributes of BSMLs for SBSMLs was diseuass
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Chapter 8
Conclusion and Future Work

“The other point of view sees mathematics as playing prilpan active
role. According to this point of view, machines, languagex] systems
are (or should be) the computer scientists’ own creatiam$hat they can
freely choose to create them to conform to mathematicathpks
principles. The mathematics is directed toward desigrerdtian study,
and mathematics is used not so much to describe existingtslge to
plan new ones. This we call tipgescriptiveapproach.”[[5, p.283-284]

Edward Ashcroft and William Wadge

This section presents a brief summary of the dissertatimhttzen presents a summary of the
contributions followed by plans for future work.

This dissertation presents a semantic deconstructionad@range of modelling languages
that have in common that the reaction of a model specifiedamtis a big step consisting of a
sequence of small steps, each of which is the execution df af sensitions. The thesis uses
the term big-step modelling languages (BSMLS) to refer ts fdamily of modelling languages.
The semantic deconstruction distinguishes between tlaaggidges based upon eight semantic
aspects, each of which is a semantic variation point thaalsa$ of semantic options. The disser-
tation provides an analysis of the relative advantages &adidantages of the semantic options
of each semantic aspect to enable modellers and languaigeelesto compare two BSMLs and
choose one over another, based on the properties of thestiweant semantic options.
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The dissertation introduces a prescriptive semantic deimiramework for formalizing the
semantics of BSMLs. A semantics produced in this framewsnrescriptive in that the con-
stituent semantic options of the semantics of a BSML are fasteid clearly as mainly separate
parts of its semantic definition. My goal has been to prodeceastic definitions that are under-
standable and accessible to various stakeholders of a seméy the virtue of being partitioned
clearly into intuitively meaningful parts.

The dissertation introduces three semantic quality aitiey which represent useful patterns
for big steps of a model. These semantic quality attributesceoss-cutting concerns over the
semantic aspects of BSMLs. To characterize the BSMLs thiafgaach of these semantic qual-
ity attributes, the dissertation presents necessary diidisat conditions over the choices of the
semantic options of the BSMLs that guarantee that semanéittg attribute. The dissertation
presents also the outlines of the proofs of the correctniets®se characterizations.

Lastly, the dissertation presents a synchronization dhfyafor BSMLs, introducing the
class of synchronizing big-step modelling languages (SB§MIt presents a semantic defini-
tion framework for SBSMLs that is similar to the one for BSMIbsit does not need to consider
the role of the concurrency and consistency semantic spdets because one of the two se-
mantic options of each of these sub-aspects can be used tel thedother semantic option.
The dissertation also shows how SBSMLs can be used to moglasetmantics of many useful
modelling constructs, such as multi-source, multi-dediom transitions, some of the template
semantics composition operators, and some of the workflatgnpa. Algorithms are presented
that each is a transformation scheme for modelling one oatbeementioned concurrency and
consistency semantic options or modelling constructs.eaah of the transformation schemes,
the outline of the proof of its correctness is presented.

8.1 Summary of Contributions
The contributions of this dissertation can be summarizethbyollowing five statements.

e The dissertation presents a high-level semantic framewakunifies the semantics of a
large family of seemingly dierent modelling languages, namely, the family of BSMLSs.
This high-level big-step semantic deconstruction enabiesto understand the semantics
of a BSML through its constituent semantic options and in garison to the constituent
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semantic options of other BSMLs. The big-step semantic migtcaction is accompanied
by criteria to diferentiate between two semantic options so that one can elwosse-
mantic option out of the several that are possible.

To provide understandability when formalizing the bigpssemantic deconstruction, the
dissertation presents a semantic definition framework phegcriptively maps each con-
stituent semantic option of a BSML into a separate part ofsgr@antic definition. This

formalization provides a detailed account of the BSML seticarin an accessible way, so
that one can trace the formalization of a semantic optiongarticular part of a semantic
definition.

The dissertation presents three semantic quality ategiltat each distinguishes between
two BSMLs based on whether they provide a certain kind of sgiméacility for dealing
with the ordering of the small steps of a big step or not. Treratterization of these se-
mantic quality attributes reveal interrelationships ameaemingly independent semantic
options in a BSML. They also provide rationales for langudgsign decisions that other-
wise would have seemed ad hoc. For example, the specifiaattioon-cancelling BSML
semantics highlights the role of concurrency in small-gegcution, while the specifica-
tions of priority consistent and determinate BSML semantiighlight the role of limiting
the number of transitions that each concurrent componeanoddel can execute in a big
step.

To provide uniformity in dealing with various semantic cepts and various modelling
constructs that all use a form of synchronization, the diasen introduces an explicit
synchronization capability to BSMLs, resulting the new fignof SBSMLs. The disserta-
tion presents also a formal semantics for SBSMLs in a pnei$eei manner, using a novel,
declarative way to characterize the semantics fiédent synchronization types.

Lastly, the dissertation introduces transformation saethat each translates a common
syntactic construct that is not supported in the normahfeyntax of BSMLs and SB-
SMLs into a form of synchronization in SBSMLs. These transfation schemes provide
the means for a systematic way to design new compositioratqrer workflow patters,
and other syntactic constructs whose semantics can beiliBgarsing synchronization.
Similarly, the dissertation presents transformation segethat each shows how a certain
semantic option can be modelled using an alternative secr@gtion together with a syn-
chronization mechanism in SBSMLs. These transformatidrerses deem some of the
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semantic aspects of the big-step semantic deconstruativecessary when considered for
SBSMLs.

8.2 Future Work

| am interested in continuing the research reported in tissedtation in the following five direc-
tions.

8.2.1 Including More Languages

| plan to extend the BSML semantic deconstruction frameworkclude the modelling lan-
guages that support asynchronous communication, as taxpeo in Sectiof 2.214, on pagel 25.
A modelling language such as UML StateMachiries [78] can Insidered a BSML, except that
events generated in a UML StateMachine model is commumdateugh asynchronous chan-
nels. First, | plan to identify the new semantic aspectg@mskmantic options that are required
to include these languages in the semantic deconstruclibese semantic aspects rdse-
mantic options should then be integrated into the existargantic formalizations of BSMLs
and SBSMLs in a prescriptive manner. Also, the semanticityuatitributes for BSMLs should
be redefined and re-characterized to account for these mguages.

8.2.2 ldentifying More Semantic and Syntactic Criteria

The dissertation has introduced semantic criteria to coenp@o BSMLs to choose one over
another when modelling a system under study. These cradegian the form of advantages and
disadvantages of individual semantic options, as well mgheé form of semantic quality at-
tributes, which consider the collectivéect of a set of semantic options. Secfion 3.4.1 described
examples of how the syntax and semantics of a BSML can be aenesi together to achieve a
semantic quality attribute in the BSML, instead of consigigionly the semantic options. | plan
to explore more of these hybrid, syntactic and semanticacharizations of semantic quality
attributes. Furthermore, using such a hybrid approachyé¢eixto identify more semantic quality
attributes. For example, determinism can be an interebiibgd, syntactic and semantic quality
attribute to be considered for BSMLs.
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For SBSMLs, | plan to adapt the complexity results of Jound @molka [55] and extend
them for the synchronization types introduced in my disgem. It would be then possible to
provide a complexity criteria when choosing to include acsyonization type in a language or
when choosing to include a modelling construct whose sdosist based on certain synchro-
nization type(s) in a language.

8.2.3 ldentifying Non-Technical Criteria

The semantic criteria presented in this dissertation coefpa BSMLs mainly from a technical
points of view. They do not consider criteria such as usgtwfia language in modelling a system
under study. A useful research direction is to identify gatVe criteria for the semantics of
BSMLs, to diferentiate a semantic option from another, or téedentiate two BSML semantics,
based on the collectiveffects of their constituent semantic options, from one amotfide
identification and the evaluation of each of these criteria BSML, however, require designing
careful empirical experiments. In particular, these expents should consider the role of the
domain that a certain BSML is being used in. My long-term geab create a catalogue of
BSMLs and domains with the technical and qualitative daténat distinguish a language from
one another.

8.2.4 A Unifying Framework for the Enabledness Semantic Asgcts

The dissertation has shown how the structural semantiectspvhich determine how a set of
transitions can be taken together to form a small step, cambfermly described using syn-
chronization. The enabledness semantic aspects, howleveot enjoy such a unifying semantic
definition method. Currently, | am working on a semantic dein language that succinctly and
uniformly describes the enabledness semantic aspectan t@lintegrate this language into the
semantic definition schema of BSMLs and SBSMLs.

8.2.5 Tool Support

Lastly, the big-step semantic deconstruction can benefit tool support in two ways.

First, analysis tools for model checking and simulation 8MA_s and SBSMLs can be devel-
oped systematically: The operational, prescriptive seitamtroduced in this dissertation lends
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itself to an implementation that can be decomposed into comipts that each corresponds to a
semantic aspect or a semantic option of the big-step secr@gtonstruction. When developing
such tools, one of my major design goals will be to providedordtective validation of the
implementation through a rigorous method of inspectiorahpo use the experience antdicet

in similar tool suites that are developed by my colleaguepfoviding parametric tool support
generator frameworks [65, 87].

Second, the big-step semantic deconstruction, its nofomal-syntax, its syntactic features,
the semantic aspects, and their semantic options can beraafized in logic, using methods
similar to the ones previously developed for formalizing #emantics of modelling languages
[24,25,[75] 74]. Once a logical formalization of my semamtgfinition framework has been
obtained, it is possible to analyze and prove various ptaseof a BSML, including its semantic
quality attributes, formally. My goal will be to develop arfoalization framework that can not
only be extended with new syntactic and semantic featureslso strives for reuse of proofs for
languages that have syntactic gorcsemantic features in common. Similarly, the syntax aed th
semantics of SBSMLs can be formalized and analyzed. Theftranation schemes, presented
in Chaptef¥, can also be formalized so that one can proveotheatness of these transformation
schemes systematically using theorem provers.
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