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Abstract

This dissertation discusses a parameterized approach to the compiling of model-based

notations into input languages of formal-analysis tools, based on descriptions of the nota-

tions’ semantics. The semantics of a model-based notation is complex, and formalizing it in

a semantics-description language, such as structural operational semantics and higher-order

logic, can be challenging and error-prone. We propose a new approach, called template

semantics, to structure the semantics of model-based specification notations. We demon-

strate how to use template-semantics descriptions to construct notation-specific model

compilers, which ease the mapping of new notations or notation variants to analysis tools.

The basic computation model of template semantics is a non-concurrent, hierarchical

transition system (HTS), whose execution semantics are parameterized. Semantics that

are common among notations, e.g., the concept of an enabled transition are captured in

the template, and a notation’s distinct semantics, e.g., which events can enable transitions,

are specified as parameters. HTSs can be combined by composition operators to form more

complex, concurrent specifications. We provide the template semantics of seven composi-

tion operators and some of their variants; the operators define how multiple HTSs execute

concurrently and how they communicate and synchronize with each other by exchanging

events and data. The definitions of these operators use the template parameters to preserve

notation-specific behaviour in composition. By separating a notation’s step semantics from

its composition operators, we simplify the definitions of both.
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Template semantics is employed to capture succinctly the semantics of basic transi-

tion systems, CSP, CCS, basic LOTOS, a variety of statecharts notations, a subset of

SDL88, SCR, and Petri Nets. We demonstrate also that template semantics can handle

some sophisticated notation features, such as statecharts’ history states and SDL’s timing

conditions. The template-semantics description for a notation is an instantiation of the

template parameters, which focus on differences and similarities among notations. There-

fore, template semantics eases a user’s effort in understanding a notation and in comparing

notation variants.

We introduce a parameterized model compiler, which takes as input the description

of a notation’s template semantics and transforms a specification in that notation into a

transition relation, which can be checked by formal-analysis tools, such as model checkers.
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Chapter 1

Introduction

Errors in critical software systems can cause loss of life and property. Greater confidence

in software can be achieved using formal methods. Formal notations are rigorous means of

specifying software behaviour. One of the key benefits of modelling software is the ability

to detect in the model subtle errors that would be difficult and time-consuming to find in

an implementation.

Many software errors can be discovered using traditional means, such as type checking

and testing. However, synchronization errors and communication errors introduced in

concurrent systems are hard to reveal by those means. Formal analyses, e.g., reachability

analysis and model checking, are effective approaches to disclose those types of errors [39]

and have been used to check if concurrent systems satisfy certain properties, such as safety

and liveness properties. Many automated analysis tools, e.g., SMV model checker [48],

SPIN model checker [38], and Concurrency Workbench [17], have been applied successfully

in verifying formally specified software systems.

1



2 CHAPTER 1. INTRODUCTION

In this dissertation, we focus on facilitating automated analysis of software artifacts

written in model-based notations, which are formal notations that allow users to spec-

ify a system’s dynamic behaviour in terms of an abstract model. The model describes the

possible execution steps that the system can take, where a step relates two consecutive

observable points in the system’s execution. We are interested in model-based notations

because they are expressive and flexible for representing complex software systems. Ex-

amples of model-based notations are process algebras (e.g., CSP [37], CCS [51], and LO-

TOS [40]), and statecharts variants (e.g., [32, 33, 43, 56]). Model-based notations have

been widely used by practitioners to describe software systems. Software practitioners like

model-based notations because the notations’ execution semantics are relatively intuitive,

and because their composition operators provide facilities for decomposing large problems

into modules and for expressing concurrency, synchronization, and communication among

those modules.

A software system modelled in a model-based notation can be examined using a verifi-

cation method or tool, such as model checking, reachability analysis, and completeness and

consistency checking. However, model-based notations are designed to be expressive and

have sophisticated features to suit a specifier’s needs for representing different behaviours,

whereas analysis tools are often designed to have simple input languages to stay close to

primitive computation models and data structures. This dissertation tackles the problem

of the mismatch between sophisticated modelling notations and the simple input languages

of analysis tools, which impedes the utilization of analysis tools. In the next section, we

describe various existing approaches to facilitating the development of or access to analysis

tools.



1.1. AUTOMATED ANALYSIS METHODS 3

1.1 Automated Analysis Methods

Existing approaches to the use of automated analysis can be broadly categorized as (1)

construction of an analyzer for a particular notation, (2) translation from high-level mod-

elling notations to analysis tools’ input languages, and (3) mapping notations to analysis

tools based on notations’ semantics descriptions.

1.1.1 Notation-Specific Analysis Tools

An analysis tool can be developed for a particular notation, e.g., Concurrency Work-

bench [17], as illustrated in Figure 1.1. A model checker takes as input a specification

in a certain notation and some desired properties of the specified system, and checks if

the properties are satisfied by the system: if a property holds, the model checker returns

“true”, otherwise, it returns “false” with counterexamples. The development of a model

checker requires a tremendous amount of effort in pinning down the notation’s precise

syntax and semantics, designing or adapting an appropriate algorithm for the verification

process, e.g., computation of the possible previous or next states, and developing opti-

mization techniques to improve the time and space efficiency of the verification. Because a

notation tends to evolve, the customized model checker needs to be revised whenever the

notation changes.

1.1.2 Translation to an Existing Analyzer

To avoid the work of constructing an analysis tool for a specific notation and instead to

reuse existing analysis tools to verify a specification, one can translate from a notation to
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Figure 1.1: Notation-specific model checker

the input language of an analysis tool (e.g., [1, 2, 12]). However, translation still requires

effort due to the mismatch between a specification notation and a tool’s input language.

Tools’ input languages tend to be close to low-level and elegant computation models, e.g.,

Kripke structures, BDDs, and logic, whereas specification notations have high-level features

to ease the effort of specifying system behaviour. Translation needs to map high-level

features into low-level computation models. Figure 1.2 shows an example of a translator,

which translates a specification in notation M to a model checker’s input notation N. To

write a translator, one needs to parse the specification notation M and build the abstract

syntax tree for a model written in M; to determine the rules for the translation based on

the semantics for both the specification notation M and the input notation N; and finally

to translate the internal representation of the model into a model in the format of notation

N.

To reduce the number of translators for mapping multiple notations into different anal-

ysis tools, researchers have introduced intermediate languages, such as SAL [3], IF [9], and

Action Language [11], which are designed to be elegant yet expressive target languages

that ease translations between notations. In the case of SAL and IF, there exist transla-
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Figure 1.2: Translation from a specification notation to a model checker

tors between several specification notations and the intermediate language, between the

intermediate language and the input languages of several verification tools, and vice versa.

These approaches allow the specification to be analyzed using multiple verification tools.

In general, however, translators suffer from the same problems as customized analyzers:

whenever the notation changes, the translator needs to be revised.

1.1.3 Semantics-Based Approaches

To help alleviate the problems of translators, we and others [22, 24, 60] propose semantics-

based approaches (as shown in Figure 1.3) that take the semantics descriptions of notations

as input rather than hard-coding a notation’s semantics in the translation. In these ap-

proaches, the semantics of notations are defined in a language that can be viewed as a

semantics-description language, such as higher-order logic, structural operational seman-

tics, and hypergraph rules. Such an approach can map specifications in different notations

to their transition relations or reachability graphs. Transition relations form the basis of

most analyzers, so a transition-relation representation of the specification can be checked

using many automated analysis tools, such as model checkers. Various state-space analysis

techniques, such as simulation and reachability analysis, can be applied to check reacha-
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Figure 1.3: Semantics-based approach

However these approaches require a user to provide as input the semantics description

of the specification notation. The semantics of model-based notations are complex, and

formalizing them in a semantics-description language is challenging, error-prone, and ob-

structing to the utility of current semantics-based approaches. This dissertation aims at

developing an approach that automates and eases the mapping of specification notations

to analysis tools by simplifying the expression of notations’ semantics.

1.1.4 Terminology

Throughout the dissertation, we use the following terms to represent different forms of

transformation from one notation into another one.

• Translation from notation M into notation N is a heavy process that requires users to

understand the semantics of both notations, to determine the rules for the translation,
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and to transform both the syntax and semantics of notation M in the format of

notation N. Translation should be automatable.

• Transliteration from notation M into notation N requires users to represent a model

in M in the format of notation N. The term literally means to express or represent in

the characters of another alphabet. Thus, ideally transliteration is a syntactic one-to-

one mapping without abstraction, flattening of composition, or semantics evaluation

involved. Transliteration can be automated.

• Model compilation from notation M into notation N requires users to understand

the semantics of notation M and to write a program to transform a model in notation

M into an equivalent model in a more primitive notation N, e.g., logic, which can

be executed or analyzed. Model compilation is similar to translation but different

from transliteration, in that a target model in notation N may not keep the structure

of its source model in notation M due to the possible flattening of composition and

semantics evaluation. A model compiler may take as input the semantics description

of a notation.

• Embedding notation M in notation N is a process that requires users to understand

the semantics of notation M and to encode the semantics in terms of notation N.

There are two approaches to embedding a notation: shallow embedding and deep

embedding. In a shallow embedding, notation M’s syntactic constructs are repre-

sented as functions in N. In a deep embedding, notation M’s syntactic constructs

are represented as types in N, and the user defines the semantics of M as functions

in N that take elements of M’s syntactic representation as a type in N and return
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functions in N.

We use terms transform and map as general terms for expressing the process that

turns one representation of a specification into another representation.

1.2 Thesis Overview

We propose a template-based approach called template semantics [53, 55, 54] for de-

scribing the operational semantics of model-based specification notations. The template

captures the common behaviour of different notations and parameterizes notations’ distinct

semantics. We define composition primitives as constraints on how components execute

together and exchange information. The execution semantics of a particular notation is ex-

pressed as an instantiation of the template by providing notation-specific parameter values

and composition-operator constraints.

Template semantics forms the theoretical foundation for a parameterized approach to

semantics-based model compilation, which we call Metro1. A model compiler compiles a

specification, written in the compiler’s input language, into a primitive representation, such

as a transition relation, which can be checked by model checkers. This dissertation proposes

an approach to building a parameterized model compiler that transforms model-based

notations with their template-semantics descriptions into a transition relation in logic,

which can be analyzed by a symbolic model checker. The template-semantics description

for a notation is defined by a set of template-parameter values and composition operators.

1Metro is an environmentally friendly system for rapid transit between disparate places. By analogy,
our approach aims to ease the transit between specification notations and verification environments.
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Our approach eases the effort required for mapping new notations or notation variants to

analysis tools: as a notation evolves, the human analysts need only to modify the definition

of the notation’s template semantics, which is taken as input by the model compiler, to

reflect the notation’s changes.

Thesis Statement: Template semantics are succinct semantics definitions of model-

based notations and are structured so that notation-specific semantics can be ex-

pressed as parameter values. Template semantics is useful for representing the se-

mantics of many different model-based notations in a form that can be used as an

input to parameterized model compilation. A parameterized model compiler can

compile specifications in multiple notations into their transition relations, which can

be checked by a symbolic model checker.

In the following two subsections, we describe template semantics and our parameterized

model compiler based on template semantics.

1.2.1 Template Semantics

The dissertation work presents template semantics to structure the operational semantics

of model-based specification notations. To develop template semantics, we surveyed seven

popular specification notations: basic transition systems (BTSs) [47], CSP [37], CCS [51],

LOTOS [40], and several variants of statecharts [32, 33, 43]. We captured the essential

aspects of each notation’s semantics into attributes of a nonconcurrent, composable, hier-

archical transition system (HTS). The concept of HTS is adapted from basic transition

systems [47] and statecharts [32, 33]. An HTS has a set of hierarchical control states, a
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set of transitions between control states, a set of events, and a set of typed variables. A

transition is enabled by events or conditions. The execution of an enabled transition trans-

forms an HTS from one set of states into another set of states, generates new events, and

assigns new values to variables. We also identified seven well-used composition operators:

parallel, interleaving, rendezvous synchronization, environment synchronization, interrupt,

sequence, and choice. Composition operators can be used to combine basic components

(HTSs), or composed components (composed HTSs, or CHTSs), or both into larger com-

posed components. These composition operators encompass different means for expressing

concurrency, synchronization, and communication among components.

In template semantics, the operational semantics of an HTS defines a specification’s

behaviour, indicating which transitions are enabled and how the execution of an enabled

transition affects the system. A parameterized template pre-defines behaviour that is

common among notations, e.g., the concept of enabling transitions. Several factors, i.e.,

the states, events, and variables, involved in determining which transitions are enabled are

orthogonal to each other. Based on this observation, template semantics structures the

execution semantics into template definitions, which are instantiated using the smaller,

orthogonal template parameters, e.g., state-related, event-related, and variable-related

parameters. For example, parameters that specify enabling states, enabling events, and

enabling variable values instantiate the template definition of enabled transitions to create a

notation-specific function for determining which transitions are enabled in a given execution

state.

We define composition operators separately, as relations that constrain how collections

of HTS components execute together, transfer control to one another, and exchange events
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and data. The operator’s definition uses the template parameters to ensure that the

semantics of composition is consistent with the components’ execution semantics.

The semantics of a model-based notation can be represented using template seman-

tics by instantiating the template with template-parameter values, and by mapping the

notation’s composition operators to already defined composition operators or by defining

new composition operators. The specification of a new composition operator is not hard,

because our template semantics provides a pattern and because we have defined a set of

macros to help users define how the components’ semantics are overridden by the operator.

We have used template semantics to compare notations’ semantics. Template seman-

tics reduces the problem of comparing notations’ semantics to the problem of comparing

template-parameter values. Thus, the essential differences and similarities among different

notations can be more easily and quickly identified than if the notations were defined using

different semantics-description languages, such as pseudo-code. In this way, template se-

mantics reduces the effort required for specifiers to understand and compare model-based

notations before they use them to model software systems.

1.2.2 Parameterized Model Compiler

Our template-based approach facilitates the construction of a parameterized model com-

piler for mapping multiple notations to analysis tools. Template semantics provides the

theoretical foundation for a parameterized semantics-based model compiler. To implement

a parameterized model compiler using template semantics, we need to codify the parame-

terized template definitions and use or develop a tool to execute these definitions. The tool

shall expand the template definitions with a notation’s semantics description, represented
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as a set of parameter values, and a specification, written in the notation, and produce a

more primitive, equivalent form of the specification, such as a transition relation.

The existing tool suite Fusion [20, 21] is a natural choice to implement our parameterized

semantics-based model compiler Metro, because the input language, S+, for Fusion, a

higher-order-logic language, is general and expressive for representing template definitions.

In addition, the symbolic functional evaluation (SFE) [22] inside Fusion takes as input a

description of a notation’s semantics embedded in logic and uses it to expand the meaning

of an S+ specification into its transition relation. Fusion’s BDD-based model checker can

then be used to analyze the transition relation.

Figure 1.4 describes the structure of our parameterized model compiler Metro using

a data flow diagram. We have codified the parameterized template definitions and the

composition operators, expressed in logic and set theory, in higher-order functions. For ex-

ample, there is a parameterized predicate that identifies the set of enabled transitions, and

another parameterized predicate that updates a specification’s execution with the effects

of an executing transition. These and similar functions and predicates implement the com-

mon semantics of model-based notations. Composition operators are defined as predicates

over the execution semantics of the operator’s two components. We have implemented the

composition operators as logic constraints that constrain which components are enabled

and execute, and how the components exchange events and variables.

The specification in notation M must be transformed into a CHTS. For most of the

well-used model-based notations, this transformation is a transliteration, which is a simple

mapping between the two notations’ syntactic constructs without involving any abstrac-

tion, flattening of composition, or semantics evaluation. The semantics of a notation M
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is expressed by a set of template-parameter values, which apply to all HTSs in the speci-

fication, and by a set of composition operators, which are either pre-defined composition

primitives or new composition operators.

In Metro, SFE takes as input all of these definitions in S+, symbolically evaluates and

expands the specification, and produces as output the specification’s transition relation,

which can be checked by Fusion’s symbolic model checker. The transition relation can also

be transliterated into the input languages of existing model checkers, such as SMV.

If a model-based notation changes its syntax constructs, the transliteration into an HTS

specification needs to be revised with no change to its template-semantics description.

It is also possible that changes to a notation’s syntax cause changes to its semantics,

in which case the template-parameter values need to be revised to reflect the changes.

The template semantics for model-based notations simplifies the expression of notations’

semantics, therefore, the effort required for mapping a new notation or a notation variant

to analysis tools is reduced by using our parameterized model compiler.

To make the better use of well-established model checkers, such as SMV [65] and

NuSMV [15] whose performance has been optimized, Lu et.al. [44, 45] developed a template-

semantics-based translator from model-based notations directly into the input language of

the SMV family of model checkers. The translator, called Express (Figure 1.5), takes as

input a specification, the semantics description of the specification notation expressed as

template parameters, and produces an SMV model of the specification. This parameterized

translator supports a fixed set of parameter values and pre-defined composition operators,

so it can be used to check specifications written in many different existing model-based

notations and variations of those notations. These notations’ semantics are defined by
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In Express, the template semantics is hard-coded, and the template-parameter val-

ues and composition operators that Express supports are fixed. Therefore, the translator

needs to be revised, that is, the translation of new parameter values and new composi-

tion operators have to be implemented, to accommodate new parameter values or new

composition operators. In contrast, in Metro, the common semantics, parameterized by

user-provided parameter values and composition operators, are embedded in higher-order

logic. Whenever a notation’s semantics changes or a new notation is introduced, only the

template-parameter values need to be revised to reflect the changes rather than modify-

ing Metro itself. Express translates specifications into the well-established model checker

SMV, which provides more efficient analysis than Fusion’s model checker. However, the

SMV model produced by Express is highly stylized and structured to support the easy

introduction of new template-parameter values. As such, Express’s output is less suitable
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to be transformed to the input languages of other analysis tools. Metro produces a tran-

sition relation in logic, a more primitive form of specification, which can be transliterated

to other tools.

1.3 Contributions

The dissertation proposes a new template-based approach to structure the operational

semantics of a model-based notation. Template semantics is a useful, parsable input lan-

guage for parameterized model compilation, which can compile specifications in multiple

notations.

We implement a parameterized model compiler based on template semantics. The

model compiler can compile a CHTS specification and its template-semantics description

into a transition relation expressed in logic, which can be checked by a symbolic model

checker. A parameterized model compiler eases the translation of new notations or notation

variants to analysis tools. The model compiler does not need to be reconstructed whenever

the notation’s semantics evolves; rather, users need modify only the parameter values or

define new composition operators to reflect the notation’s changes.

We use template semantics to document most of the semantics of ten existing model-

based notations, BTSs [47], CSP [37], CCS [51], LOTOS [40], Harel’s original state-

charts [32], STATEMATE [33], RSML [43], SCR [35], SDL [41], and Petri Nets [52, 58].

The key feature of template semantics is its separation of concerns among aspects of

notations’ semantics: the common execution semantics are pre-defined as a template of

parameterized definitions; notation-specific behaviours are defined by the user in the form



1.4. THESIS VALIDATION 17

of parameter values; and composition operators are defined separately as parameterized

constraints on the ways in which components execute and share information. This sep-

aration makes template semantics easy to understand and to parse in that it is possible

to consider individual aspects of the semantics mostly in isolation from each other and a

user’s input is relatively small.

1.4 Thesis Validation

The thesis was validated as follows.

We developed template semantics by attempting to capture the common semantics of

the seven model-based notations of our initial survey list. In doing so, we considered not

only the effects of these seven notations on the template definitions, but we also tried

to hypothesize new and synthesized variants of these notations, and to consider how the

variants would be expressed using the template. We show that template semantics can

be used to describe succinctly a variety of notations and it is particularly well-suited to

notations with control states and events – the semantics of such a notation is represented

as a set of parameter values, each of which is a simple and small logic formula on the order

of less than ten primitives, plus a set of selected composition operators provided in the

template.

Template semantics’ approach of structuring notations’ execution semantics into tem-

plate definitions that are parameterized by a set of smaller and simpler template-parameter

expressions makes it easier to document the semantics of notations. Because the template

parameters focus on differences among notations, we demonstrate that template seman-
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tics can be used to compare notation variants, such as statecharts variants (Harel’s original

statecharts [32], Maggiolo-Schettini et.al.’s statecharts [46], RSML [43], STATEMATE [33],

and UML state models [56]).

The main goal of this work is to provide a framework for constructing a semantics-based

model compiler to facilitate the mapping of different notations to analysis tools. We have

implemented a parameterized model compiler, which is a program that takes the template-

semantics description of a notation and compiles a specification in the notation into an

underlying primitive representation that can be checked using model checkers. We use

specifications of a heating system and a single-lane-bridge system as two examples to show

that template semantics is a parsable input language to the parameterized model compiler.

We demonstrate that using template semantics, multiple notations can be compiled by the

same parameterized model compiler. This approach is verified by using model checking

to show that the transition relation produced by the model compiler preserves certain

properties of the original specification.

The correctness of template semantics is validated by model checking two case studies

with both a hand-generated SMV model and an SMV model generated using the template-

semantics-based tool, Express. We show that both models satisfy the same set of properties.

In addition, the creation of Express shows that template semantics can be used to construct

different types of model compilation to facilitate the mapping of multiple notations to

analysis tools.
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1.5 Overview of Dissertation

This rest of the dissertation is organized as follows. Chapter 2 discusses related work.

Chapter 3 presents the basic computation model, hierarchical transition systems, behind

template semantics and presents our template for defining notations in terms of HTSs. In

Chapter 4, we use template parameters to define a set of composition operators. Chapter 5

outlines our template-semantics-based parameterized method for model compilation and

discusses the implementation of the parameterized model compiler. In Chapter 6, we

evaluate the parameterized model compiler on two case studies, which are specified in

different notations and exercise a broad range of composition operators, and show that

template semantics can express the semantics of multiple model-based notations. We

summarize and conclude in Chapter 7.





Chapter 2

Related Work

This chapter discusses related work on automated analysis of model-based specifications.

There are many well-established methods and tools for automatically verifying specifica-

tions written in model-based notations: an analyzer can be customized for a particular

notation, a translator can be written from the notation to the input languages of one or

more existing analyzers, or a semantics-based approach can be developed to map a notation

to analysis tools automatically from the description of the notation’s semantics. Formal-

izing the semantics of specification notations is a first step towards mapping notations to

analysis tools. We examine these different approaches in the following sections.

2.1 Semantics of Model-Based Notations

There has been substantial related work on formalizing the semantics of individual specifi-

cation notations, such as defining the operational semantics of SDL [27], STATEMATE [33]

21
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and LOTOS [40]. An operational semantics describes the meaning of a notation by specify-

ing how it executes on an abstract machine [69]. In other words, an operational semantics

computes a system’s possible next execution steps using a set of semantics rules. Usually,

the purpose of such work is to document a language’s precise semantics, possibly as a first

step towards developing reasoning and verification tools. Such formalizations tend to be

language-specific, making it difficult to compare the formal semantics of different languages

and to generalize the semantics to accommodate multiple languages.

There has been work on informally classifying the semantics of specification languages,

(e.g., [14, 68]), the most famous of which is von der Beeck’s comparison of statecharts vari-

ants [67]. In von der Beeck’s work, many existing statecharts dialects are compared based

on 19 criteria concerning the execution semantics of statecharts notations, e.g., instanta-

neous states, causality, and durability of events. These issues cover almost all aspects in

which statecharts variants differ from each other. Wieringa [68] discusses different aspects

of the execution semantics of state-transition diagrams, and Chou [14] describes the se-

mantics of different composition and communication operators. Compared to these works,

our template semantics is a more formal definition of a more fine-grained classification of

semantics, expressed as a set of parameters, i.e., states, events, and variables as orthog-

onal factors. The catalogues of composition operators (parallel, interleaving, etc.) and

communication operators (synchronous, asynchronous, etc.) identified in [14] and [67] are

similar to ours, but we go further and define formally how each operator affects a model’s

behaviour.

To the best of our knowledge, there has been no comparable attempt to classify formally

the step-semantics and composition semantics for model-based notations. We also express
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variations in step-semantics as parameters, which makes it easier to define new notations

and to identify both major and subtle differences among notations’ semantics.

2.2 Automated Analysis of Model-Based Notations

There are many analysis tools developed for automated checking of specifications written

in particular model-based notations, such as Concurrency Workbench [17] and STATEM-

ATE [33].

The Concurrency Workbench is a verification tool set customized for the CCS nota-

tion. The tool set transforms a CCS model into a labelled-transition system and pro-

vides different types of analyses. The equivalence-checking and preorder-checking tools

examine if there are bisimulation relations between two labelled-transition systems. The

model-checking tool determines if certain μ-calculus properties hold in a labelled-transition

system. STATEMATE is a commercial tool suite for verifying statecharts models. STATE-

MATE provides tools for simulation and consistency checking of statecharts specifications.

Algorithms for analyzing a model-based specification are very similar in their core:

they compute the possible previous or next states to explore exhaustively a specification’s

reachable state space. Because a customized analyzer is finely tuned for a certain notation,

e.g., algorithms are optimized for the notation’s constructs and composition operators, it

is usually more efficient than a general-purpose tool. However, to analyze specifications

using customized analysis tools, analysis tools would need to be written for each notation

and rewritten whenever the notation’s semantics evolves.
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2.3 Translation from Notations to Analysis Tools

To reuse existing analysis tools to verify a specification, researchers developed translation

approaches to map notations to the input languages of analysis tools without having to

manually rewrite the specification in the input languages for those tools.

2.3.1 Translation Between Two Notations

Atlee and Gannon [1] developed a translator from SCR to the input language of the MCB

model checker [10], so that an SCR specification’s safety properties and liveness properties

specified in Computational Tree Logic (CTL) [16] could be verified. Chan et.al. [12] devel-

oped a translator from the RSML notation [43] to the input language of the SMV model

checker [48].

A number of researchers have proposed translating specification notations into more

fundamental modelling notations, such as first-order logic [70, 71], hierarchical state ma-

chines [50], labelled-transition systems [6], and hybrid automata [2]. Such notations are

general enough to represent a variety of specification notations and can even accommodate

specifications written in multiple notations. The verification tools and techniques associ-

ated with the target notation can be applied to the translated specification. People are

familiar with the well-defined fundamental notations, so that the effort required for the

translation could be eased. However, translating into these notations may not preserve the

structure of an original specification.

Cheng and her group [8, 13, 49] have done intensive research on formalizing and trans-

lating Object Modelling Technique (OMT) [64] and UML models into formal notations,
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such as LOTOS and Promela (the input language to SPIN [38]). They have developed

automated frameworks based on sets of rules, which encode both the syntactic and seman-

tic mapping, to transform the syntactic constructs, e.g., states and events, of the source

notations to the syntactic constructs, e.g., processes and gates in LOTOS, of the target

notations. The advantages of this rule-based translation approach are that it simplifies the

translation process by separating concerns, it enables reuse, and it keeps the structure of

an original specification. Cheng et.al. [13] have used this work to facilitate the integration

of specifications comprising three different OMT models (object, functional, and dynamic

models).

Translation is a heavy process that transforms both the syntax and semantics of a

notation into the form of the target notation. As a notation evolves, the translator is

hard to change because semantics changes. Changes to the semantics of composition

operators may affect multiple translation rules and may be dispersed in many modules in

the translator.

2.3.2 Intermediate Languages

To reduce the number of translators from notations to the input languages of analyzers,

researchers have introduced intermediate languages, such as SAL [3], IF [9], Action Lan-

guage [11], Bandera Intermediate Representation (BIR) [19], OMML [30], and CDL [42].

These intermediate languages are designed to be elegant yet expressive target languages

that ease translations between notations. In most of these cases, there exist translators

that map from several specification notations to the intermediate language, and there are

translators that map to and from the intermediate language and the input languages of
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verification tools.

SAL is designed as an intermediate language, such that different languages (e.g., Java

and Verilog) can be translated to it. SAL has been translated to PVS and SMV. SDL

and LOTOS are intended input languages for the intermediate language IF. IF has been

mapped to different tools, such as the SPIN model checker [38]. CDL is the intermediate

language developed for the VeriTech project, which aims at easing the translation between

the input languages of SMV, SPIN, Murphi, etc. BIR is an intermediate notation for Java

programs, and has been translated to the input languages of PVS, SMV, and SPIN. RSML

and SCR can be translated to Action Language, which can be analyzed using the connected

model checker at the back-end. OMML [30] is an XML-based language, established for

representing different requirements-specification languages. Translators between SCR and

OMML and between P-EBF [29] and OMML have been developed. Intermediate languages

usually are designed to be expressive for not only their target notations, but also notations

that have similar features. These intermediate-language approaches allow the specifications

to be analyzed using multiple verification tools.

Bogor [63] is a parameterized model-checking framework. Borgor is developed to con-

struct domain-specific (for different software artifacts, such as designs and code) model

checkers using its well-defined, easily-extended, model-checking-algorithm modules and

optimization modules. The Bogor framework provides an architecture as a guideline for

constructing optimized model checkers. Different from other translators we mentioned, Bo-

gor is a parameterized back-end framework, which produces for the intermediate language

BIR customized model checkers by choosing options of the modules.

Intermediate-language approaches reduce the number of translators between specifi-
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cation notations and analysis tools. However, intermediate languages solve none of the

problems of the translation approach: a translator needs to be built for each specification

notation and needs to be continuously modified as the notation’s semantics evolves.

2.4 Semantics-Based Approaches

More recently, to alleviate problems of translation, researchers have been working towards

semantics-based mapping from notations to analysis tools, using the descriptions of nota-

tions’ semantics as input. This approach is the goal of the work of Day and Joyce [22],

Pezzè and Young [59, 60], and Dillon and Stirewalt [24, 23, 66].

2.4.1 Fusion

Day and Joyce [22] embed the semantics of a notation in higher-order logic and automati-

cally compile a next-state relation for a specification using symbolic functional evaluation

(SFE) of the notation’s semantics definitions. Embedding avoids the translation step and

the effort to construct and maintain translators because embedding represents the seman-

tics of a notation in logic rather than hard-coding the semantics in a translator. Thus, to

change the semantics, the user needs to change only the input data rather than the imple-

mented tool. SFE expands a specification’s definitions and its semantics definitions into a

transition relation that refers only to built-in constants, e.g., “∧” and “∨”, in higher-order

logic. After an abstraction step (if necessary) on the transition relation, various automated-

analysis methods, such as completeness and consistent checking and model checking, can

be applied to verify the specification. The advantage of Fusion is that it is fully automated.
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Notations have also been embedded in the theorem prover PVS [57], and PVS’s model

checker has been used to analyze these specifications.

2.4.2 Hypergraph

Pezzè and Young [59, 60] embed the semantics of model-based notations into hypergraph

rules, which specify how enabled transitions are selected and how executing transitions

affect the specification’s hypergraph model. A hypergraph, a Petri-Nets-like notation,

represents the execution semantics of a model-based notation using three different types of

hypergraph rules: enabling rules, matching rules, and firing rules. Enabling rules determine

the set of enabled transitions; matching rules find subsets of transitions, at most one

from each component, that are mutually compatible to execute together; and firing rules

determine the next state, based on the effects of the executing transitions. A state-space

analyzer for a notation can be constructed based on the notation’s semantics in hypergraph

rules. A manual transformation takes as input a specification in a model-based notation

and produces an internal representation of the given specification in terms of hypergraphs.

Various state-space analysis techniques, such as simulation and reachability analysis, can

be applied to check hypergragh specifications.

A hypergraph model defines not only the execution semantics of components written

in a particular specification notation but also the semantics of the composition of compo-

nents specified in different notations, e.g., the composition of a Petri Net and an Ada task.

Each component uses its own enabling and firing rules to determine the execution step

and the next state. The composition of two components, described using matching rules,

constrains which transitions from the two components may execute concurrently. Thus,
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the hypergraph enabling rules and firing rules are similar to our pre-defined template def-

initions for enabling conditions and post-conditions, respectively; and the matching rules

are similar to our composition operators’ definitions. But our template definitions are pa-

rameterized by a set of smaller parameter definitions, and our composition operators are

defined separately as predicate constraints. The hypergraph approach is limited to state-

space exploration analysis, e.g., generating reachability graphs, of specifications without

variables, and the transformation from a specification into an internal representation (hy-

pergraph) is not automated. Our parameterized model compiler Metro is implemented to

transform automatically a specification into a transition relation, which can be checked by

model checkers.

2.4.3 Amalia

Dillon and Stirewalt [24, 23, 66] propose an approach called Amalia for mapping the

structural-operational-semantics [61] description for a specification notation, e.g., process

algebra and temporal-logic notations, to a tool called a step analyzer. The user defines

the structural operational semantics for a notation, and semi-automatically translates the

semantics description into a step analyzer. The step analyzer accepts a specification in that

notation and generates for the specification an inference graph, which is a data structure

that determines the possible next steps. The step analyzer uses this inference graph to cal-

culate all of the specification’s possible next steps, expressed as specifications, which in turn

can be fed back into their tool to produce their respective inference graphs. Exhaustively

repeating this process explores the specification’s state-space.

Similarly, Cleaveland and Sims [18] have incorporated a Process Algebra Compiler
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(PAC) into the front-end of the Concurrency Workbench [17]. PAC takes as input the

abstract syntax of a process algebra and its semantics description in structural-operational-

semantics rules, and produces a state-space analyzer. The state-space analyzer can accept

a process-algebra specification and generate an internal representation that can be input

to Concurrency Workbench, a verification tool suite for the CCS notation.

2.5 Summary

In this chapter, we examined existing approaches for writing analysis tools or transla-

tors for particular notations, and mapping specification notations to analysis tools from

descriptions of the notations’ semantics. A translator or a customized analysis tool for

a notation can be efficient and fully automated, but needs to be revised whenever the

notation evolves. Semantics-based approaches can alleviate this problem, however, the

semantics of a notation is complex and formalizing it in a semantics-description language,

such as higher-order logic or hypergraph rules, is challenging.



Chapter 3

Hierarchical Transition Systems

(HTSs)

In this chapter, we introduce hierarchical transition systems (HTS) as template-semantics’

computation model for model-based notations. An HTS is a hierarchical, extended finite-

state machine with no concurrency – in statecharts terminology, an HTS supports OR-

state hierarchy but not AND-state hierarchy. Its syntax is adapted from basic transition

systems [47] and statecharts [31], and its semantics is parameterized. Concurrency is

introduced by the composition operators, which are defined in the next chapter.

3.1 Syntax of HTSs

We present the syntax of HTSs in this section, along with functions for accessing parts of

an HTS.

31
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DEFINITION 3.1 (HTS Syntax)

A hierarchical transition system (HTS) is an 8-tuple, 〈S , S I , SF , SH ,E ,V ,V I ,T 〉, where

• S is a finite set of control states. Each state s ∈ S is either a super-state, which

contains other states, or a basic state, which contains no other states. Each super-

state has a unique default child state, which is entered if the super-state is the

destination state of a transition.

• S I is a predicate describing multiple possible initial sets of control states.

• SF specifies the set of final basic states. No transition can exit a final state.

• SH is a state hierarchy. It defines the partial ordering on states with respect to their

ancestor super-states. Basic states are all maximal elements and there are no other

maximal elements. There is a unique minimal element called the root state.

• E is a finite set of events including both internal and external events.

• V is a finite set of typed data variables.

• V I is a predicate describing the possible initial values of the variables in V .

• T is a finite set of transitions.

We use the identifiers of the 8-tuple in definitions throughout the thesis to refer to their

respective HTS elements. We assume that the names of states, events, and variables that

are local to an HTS are unique within a specification.
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DEFINITION 3.2 (HTS Transition)

Each transition in T has the form,

src
name: trig, [cond], ^gen, /asn, #prty

dest

where

• src, dest ⊆ S are the transition’s sets of source and destination states, respectively.

We use sets of sources and destinations to cover notations that allow transitions to

have zero or multiple source or destination states.

• name is the name of the transition.

• trig ⊆ E are zero or more triggering events.

• cond is a predicate over V .

• gen ⊆ E are zero or more generated events (a transition may generate multiple

events).

• asn are a sequence of assignments to some data variables in V .

• prty is the transition’s explicitly-defined priority.

Depending on the notation, some transition elements may be optional.
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We assume that a specification represented as an HTS conforms to its original notation’s

well-formedness conditions. A typical well-formedness condition would be one that pro-

hibits a transition from having multiple destination states or making multiple assignments

to the same variable.

Figure 3.1 shows an example HTS, in which S0, S1, S2, and S3 are super-states, and

the others are basic states. The top state S0 is the root state of the HTS, and its default

state is S1, as indicated by the small arrow pointing to S1.

S0

S5

S6

S2S1

S4

S7

S8

t1

S3

t3
t4 t2

t5
S9

Figure 3.1: Example showing state hierarchy in an HTS

Throughout the thesis, we use the helper functions described in Table 3.1 to access

information about an HTS. The functions above the double line are accessor functions

on transitions, whereas the functions below the double line are functions on states. All

functions implicitly take an HTS as an argument. For example, the function ancest takes
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Function Signature Description

src(τ) T → 2S source states of transition τ

dest(τ) T → 2S destination states of transition τ

trig(τ) T → 2E events that trigger transition τ

cond(τ) T → exp transition τ ’s predicate guard condition

gen(τ) T → 2E events generated by transition τ ’s actions

asn(τ) T → 2[V×exp] variable-value assignments in transition τ ’s actions

prty(τ) T → N transition τ ’s priority value

parent(s) S → S parent state of state s

children(s) S → 2S immediate child states of state s

type(s) S → {super , basic} type of state s

default(s) S → S default state of state s

ancest(s) S → 2S ancestor states of state s

entered(st) 2S → 2S states entered when a set of states st are entered,
including all ancestor states of the states in st and
all relevant descendants’ default states

scope(τ) T → S lowest common ancestor state of transition τ ’s
source and destination states

rank(s) S → N the distance between state s and the root state,

rank(s) = rank(parent(s)) + 1

where rank(root) = 0

exp: represents an expression

2x : represents the power set of the set x

N: represents the set of natural numbers

Table 3.1: HTS accessor functions
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as input a state and returns the set of its ancestor states. In Figure 3.1, the ancestor states

of state S8 are {S0, S1, S3}. The function entered takes a transition’s set of destination

states and returns all of their ancestor states and the relevant descendants’ default states

that are also entered1. The destination set of states, defined by function dest , of transition

t1 is {S2}, and all of the states entered, when S2 is entered, are {S0, S2, S5}, where S0

is the ancestor of S2, and S5 is the default state of S2. The scope of transition t4 is state

S3 and the scope of transition t5 is state S1.

The helper functions are defined for a single state (or a set of states in the case of the

function entered) and a single transition, but we will also apply them to sets of states and

sets of transitions. When applied to a set of states or a set of transitions, the function is

applied to each element of the set: functions that return a set of results will return a set

of sets of results, one for each element in the argument; the functions that return a single

result will return a set of results.

3.2 Semantics of HTSs

We define the semantics of an HTS as a snapshot relation. A snapshot is an observable

point in an HTS’s execution, and a snapshot relation relates two snapshots ss and ss ′

if the system can move from ss to ss ′ in a step. We define two types of steps between

snapshots: a micro-step is the execution of a single transition, and a macro-step is a

sequence of zero or more micro-steps. Our definitions for micro-step and macro-step are

parameterized with notation-specific parameter predicates and parameter functions whose

1The definition of entered is not standard in the literature. We will use this definition throughout this
thesis.
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values reflect the semantics of a particular notation. In this section, we describe the

semantics definitions that are common to all HTSs, and in Section 3.3, we describe the

parameters used in these semantics definitions.

3.2.1 Snapshots

A snapshot stores information about the current status of an HTS. This information de-

termines which transition is enabled. The snapshot contains information about several

aspects of an HTS. These aspects are orthogonal to one another as regards the identifica-

tion of a set of enabled transitions. This orthogonality allow us to separate the execution

semantics into smaller concerns.

DEFINITION 3.3 (Snapshot)

A snapshot is formally defined as an 8-tuple 〈CS , IE ,AV ,O ,CSa , IEa ,AVa , Ia〉, where,

• CS is the set of current states (CS ⊆S). If s∈CS, then so are all of s’s ancestors.

• IE is the set of current internal events (IE ⊆E).

• AV stores current variable values. The set AV is a function that maps each data

variable in V to its current value.

• O is the current outputs to be communicated to concurrent components and to the

environment (O⊆E).

• CSa ,AVa , IEa and Ia are auxiliary elements that accumulate data about the states,

the variable values, and the internal and external events, respectively, that were used

or generated in past transitions.
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The template parameters use the eight snapshot elements to derive the sets of enabling

states (states that can trigger transitions in the current snapshot), of enabling variable

values (variable values that are used when evaluating guard conditions of transitions in

the current snapshot), and of enabling events (events that can trigger transitions in the

current snapshot); these sets in turn determine the transitions that are enabled in the

current snapshot, and we call such transitions enabled transitions.

Most model-based notations use only a subset of the snapshot elements (e.g., some

process algebras have no variables). The unused snapshot elements can be simply set to

be empty sets2. Throughout the thesis, we use notation ss .XX to refer to the value of

snapshot element XX in snapshot ss : for example, ss .CS refers to the value of the CS

element in snapshot ss .

A specification in a model-based notation usually reacts to external inputs I , which

may be external events (represented as I .ev), variable-value assignments (represented as

I .var) , or both. I is not part of the snapshot because it lies outside of the system. Instead,

the template parameters must record input events and data in the snapshot elements if

the events and data will be used.

3.2.2 Micro-Step Semantics

The micro-step relation Nmicro(ss , τ, ss
′) means that the HTS can move from snapshot ss

to a next snapshot ss ′ by executing transition τ . Because an HTS is non-concurrent, only

2In practise, unused elements are removed from the snapshot so that they do not affect the state space
of the model in analysis.
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one transition can execute in a micro-step.

DEFINITION 3.4 (Micro-Step)

Nmicro(ss , τ, ss
′) ≡ (τ ∈ pri enabled trans(ss ,T )) ∧ apply(ss , τ, ss ′)

Predicate Nmicro(ss , τ, ss
′) is satisfied if τ is an enabled transition of the highest relative

priority and ss ′ is the snapshot resulting from applying the effects of τ in ss . Nmicro is

defined in terms of two definitions, pri enabled trans and apply , which are common to all

notations.

DEFINITION 3.5 (Priority-Enabled Transitions)

pri enabled trans(ss ,T ) ≡
pri({τ ∈ T | en states(ss , τ) ∧ en events(ss , τ) ∧ en cond(ss , τ)})

Function pri enabled trans(ss) returns a subset of an HTS’s transition set T that are

enabled and have the highest relative priority, and we call such a subset the set of priority-

enabled transitions, where

• Template parameter pri is a function that finds the maximal subset of enabled tran-

sitions with the highest relative priority. If pri returns a set with more than one

transition, then any of these transitions can be taken in a micro-step, meaning that

the specification is nondeterministic. pri is a user-provided template parameter and

is described in more detail in Section 3.3.
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• Template parameters en states, en events, and en cond are predicates that spec-

ify when a transition τ is enabled with respect to its source state(s), its triggering

event(s), and its enabling condition, respectively. These predicates are user-provided

template parameters that are defined in terms of the snapshot elements. Different

notations make different decisions about which states, events, and variable values

can trigger transitions and when. Possible values for these parameter predicates are

described in Section 3.3.

• The set {τ ∈ T | en states(ss , τ) ∧ en events(ss , τ) ∧ en cond(ss , τ)} is the subset

of an HTS’s transition set T that contains enabled-transitions in a snapshot ss .

DEFINITION 3.6 (Apply)

apply(ss , τ, ss ′) ≡
let 〈CS ′, IE ′,AV ′,O ′,CS ′

a , IE
′
a ,AV ′

a , I
′
a〉 ≡ ss ′ in

next CS (ss , τ,CS ′) ∧ next CSa(ss , τ,CS ′
a)

∧ next IE (ss , τ, IE ′) ∧ next IEa(ss , τ, IE
′
a)

∧ next AV (ss , τ,AV ′) ∧ next AVa(ss , τ,AV ′
a)

∧ next O(ss , τ,O ′) ∧ next Ia(ss , τ, I
′
a)

Predicate apply constrains the possible next snapshot ss ′ based on a current snapshot ss

and the actions of executing transition τ . Predicate apply works by calling on user-provided

template parameters next XX , which specify how each snapshot element is updated when

a transition executes, according to the notation’s semantics. These template parameters

are described in Section 3.3.
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3.2.3 Macro-Step Semantics

A notation’s step-semantics is its macro-step semantics, which defines how many micro-

steps an HTS executes in response to a set of external inputs, before sensing the next set

of external inputs. External inputs I may be external events, variable-value assignments,

or both. We have identified two macro-step semantics, which we call simple and stable. A

simple macro-step is equal to at most one micro-step. A stable macro-step is a maximal

sequence of micro-steps, such that the sequence ends only when there are no more enabled

transitions. Stable macro-step semantics capture the synchrony hypothesis [5], which as-

sumes that the system can always finish reacting to external input before the environment

changes the inputs’ values. Both of our macro-step relations Nmacro are total, that is, for

every snapshot ss , there is a next snapshot ss ′ by executing a macro-step.

A macro-step starts with the snapshot that ends the previous macro-step. We define

function reset that removes from this snapshot accumulated information about transitions

that executed in the previous macro-step (e.g., events generated).

DEFINITION 3.7 (Reset Snapshot)

reset(ss , I ) ≡
〈 reset CS (ss , I ), reset IE (ss , I ), reset AV (ss , I ), reset O(ss , I ),

reset CSa(ss , I ), reset IEa(ss , I ), reset AVa(ss , I ), reset Ia(ss , I ) 〉

Function reset returns the initial snapshot of the macro-step, calling, for each snapshot

element XX , a user-provided template parameter reset XX , which is a function that re-

moves information about transitions that executed in the previous macro-step, as per the
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notation’s semantics. Template parameters reset XX are described in more detail in Sec-

tion 3.3.

In simple macro-step semantics, an HTS takes at most one micro-step per macro-

step in reaction to a set of external inputs I . Notations differ as to whether they favour

taking an enabled transition over stuttering, i.e., taking no transitions. In a diligent [47]

simple macro-step, an HTS takes a micro-step if a transition is enabled, and otherwise

makes no change to the reset snapshot:

DEFINITION 3.8 (Diligent Macro-Step)

N diligent
macro (ss , I , ss ′) ≡
let ss i = reset(ss , I ) in

if (∃ τ . τ ∈ pri enabled trans(ss i ,T ))

then (∃ τ . Nmicro(ss
i , τ, ss ′))

else (ss i = ss ′)

In nondiligent simple macro-steps, idle steps have the same priority as diligent steps:

DEFINITION 3.9 (Nondiligent Macro-Step)

N nondiligent
macro (ss , I , ss ′) ≡
let ss i = reset(ss , I ) in

(∃ τ .Nmicro(ss
i , τ, ss ′)) ∨ (ss i = ss ′)
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In stable macro-step semantics, a macro-step is a maximal sequence of micro-steps

that execute in response to a single set of external inputs. A macro-step ends when no

transitions are enabled in the current snapshot:

DEFINITION 3.10 (Stable Snapshot)

A snapshot with no enabled transitions is called a stable snapshot.

stable(ss) ≡ pri enabled trans(ss ,T ) = �

When a stable snapshot is reached, a new macro-step starts with a new set of external

inputs I .

Figure 3.2 depicts a macro-step of three micro-steps that execute three transitions t1,

t2, t3, respectively. SS0 is the starting snapshot of the macro-step i.e., the stable snapshot

of the last macro-step, and SS3 is the stable snapshot marking the end of the macro-step.

At the beginning of the macro-step, functions reset XX are called to initialize snapshot

elements XX in SS0 with a set of inputs I : the results are recorded in SS0i . In the first

micro-step, transition t1 is one of the priority-enabled-transitions in SS0i, so it is chosen

to execute, and its actions are used to update snapshot SS0i to snapshot SS1. In the next

micro-step, transition t2 executes and is used to update each snapshot element XX in SS1

to SS2.XX as showed in Figure 3.2. In the third micro-step, transition t3 executes and

the HTS reaches the snapshot SS3, which is a stable snapshot, and the HTS is ready to

sense a new set of inputs to start another macro-step.

We formally define the stable macro-step semantics using a relation N k , which is true

for a pair of snapshots if there is a sequence of k micro-steps from the first snapshot to the

second.
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N 0(ss , ss ′) ≡ (ss = ss ′)

N k+1(ss , ss ′) ≡ (∃ ss ′′, τ . Nmicro(ss , τ, ss
′′) ∧ N k(ss ′′, ss ′))

DEFINITION 3.11 (Stable Macro-Step)

A stable macro-step N stable
macro(ss , ss

′) is defined as a finite sequence of micro-steps, terminat-

ing in a stable snapshot ss ′.

N stable
macro(ss , I , ss ′) ≡
let ss i = reset(ss , I ) in

if ¬stable(ss i)

then (∃ k > 0 . N k(ss i , ss ′) ∧ stable(ss ′))

else (ss i = ss ′)

This definition assumes ss is a stable snapshot.

Some notations, such as RSML [43], do not guarantee that there is a finite number of

micro-steps that make up a macro-step. It is not possible to write a well-founded recursive

definition that matches their semantics.

In practise, an analyst, for the purpose of verifying a given specification, would not

implement the above definition of a stable macro-step. Rather, the analyst would use the

micro-step relation as the next-state relation for the system, and would check properties at

the macro-step level by prepending the stable predicate as an antecedent to their properties;

this is how macro-level properties were model checked against the RSML specification for

TCAS II [12].
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SS0i

Input (I)

SS1 SS2 SS3

reset_CS (SS0, I)

reset_IE (SS0, I)

reset_AV (SS0, I)

reset_O (SS0, I)

reset_CSa (SS0, I)

reset_IEa (SS0, I)

reset_AVa (SS0, I)

reset_Ia (SS0, I)

t1 t2 t3

next_CS (SS1, t2, SS2.CS)

next_IE (SS1, t2, SS2.IE)

next_AV (SS1, t2, SS2.AV)

next_O (SS1, t2, SS2.O)

next_CSa (SS1,t2,,SS2.CSa)

next_IEa (SS1, t2, SS2.IEa)

next_AVa (SS1,t2, SS2.AVa,)

next_Ia(SS1, t2, SS2.Ia)

A macro-step

A micro-step

SS0

Figure 3.2: A stable macro-step of an HTS
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3.2.4 Initial Snapshots

An HTS starts executing from a set of possible initial snapshots ss I , whose definition is

the same for all macro-step semantics.

DEFINITION 3.12 (Initial Snapshot)

ssI ≡ { 〈CS ,�,AV ,�,�,�,�,�〉 | AV |= V I ∧ CS |= S I }

V I and S I are predicates on the HTS’s initial sets of states and of variable assignments,

respectively. The sets of internal events and output events are initially empty. This

definition allows there to be multiple possible initial snapshots. In future sections, we use

ssI to refer to a snapshot at the beginning of the system’s execution and ss i to refer to a

reset snapshot at the beginning of a macro step.

3.3 Template Parameters

The six definitions Nmacro, Nmicro, reset, pri enabled trans, apply, and stable described

above constitute the common semantics in our template. These definitions are parameter-

ized by functions and predicates that, for a notation, specialize how to determine which

transitions are enabled in a snapshot, how to select an enabled transition to execute, and

how to calculate the effects of a transition’s actions on a snapshot. As such, these param-

eters capture the semantic differences among notations.

The list of template parameters is provided in Table 3.2. The reset XX template pa-

rameters listed in the column labelled “Start of Macro-step” specify how the value of each
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snapshot element is updated at the beginning of every macro-step. Their main purpose is

to clean out data accumulated in the previous macro-step, e.g., resetting the set of current

internal events to be empty. The column labelled “Micro-step” lists template-parameter

predicates next XX that specify how each snapshot element XX is updated by the actions

of the executing transition in a micro-step. These predicates are passed the entire snapshot

because they may refer to other snapshot elements. Primed arguments, e.g., CS ′, refer to

values of snapshot elements in the next snapshot ss ′. Predicates en states , en events , and

en cond specify which states, events, and variable values recorded in snapshot ss can be

used to enable transitions. Parameter macro semantics specifies the type of macro-step

semantics (simple or stable, and whether diligent transitions have priority over idle tran-

sitions in micro-steps). Parameter pri specifies a priority scheme over a set of transitions

by defining the subset of highest-priority transitions.

The template parameters are organized in Table 3.2 by language construct. For ex-

ample, the seven event-related parameters work together to determine which events can

enable transitions and how event information is updated:

• reset IE, reset IEa , and reset Ia update IE , IEa , and Ia , respectively, with input I

at the beginning of each macro-step. Their main purpose is to clean out event-related

data accumulated in the previous macro-step, e.g., resetting the set of current internal

events to be empty, and recording the environment’s input I in snapshot element Ia .

• en events determines how event information in IE , IEa , and Ia is used to enable

transitions.

• next IE, next IEa , and next Ia determine how transition τ ’s actions affect the possi-
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Affected Snapshot Element Start of Macro-step Micro-step

reset CS(ss , I ) next CS(ss , τ,CS ′)
states reset CSa(ss , I ) next CSa(ss , τ,CS ′

a)
en states(ss , τ)

reset IE(ss , I ) next IE(ss , τ, IE ′)
events reset IEa(ss , I ) next IEa(ss , τ, IE

′
a)

reset Ia(ss , I ) next Ia(ss , τ, I
′
a)

en events(ss , τ)

reset AV(ss , I ) next AV(ss , τ,AV ′)
variables reset AVa(ss , I ) next AVa(ss , τ,AV ′

a)
en cond(ss , τ)

outputs reset O(ss , I ) next O(ss , τ,O ′)
additional macro semantics
parameters pri(Γ) : 2T

Table 3.2: Parameters to be provided by template user

ble values for next current internal events (IE ′), next auxiliary internal events (IE ′
a),

and next recorded input events (I ′
a).

Similarly, the five state-related parameters work together to determine which states are

active to enable transitions, and how the executing transition changes the state information

in CS and CSa . The five variable-related parameters work together to indicate which

variable values are used to evaluate enabling conditions of transitions, and how to update

the variable values after a transition executes. The output-related parameters specify how

to update the output after a transition executes.

The following five subsections describe how a specifier can use these parameters to define

the step-semantics for some popular notations. Tables 3.3–3.6 provide sample definitions.

Abbreviation “n/a” means “not applicable”, in which case the predicate always returns
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“true” and the function on the snapshot element is not used because the notation does not

use that snapshot element.

3.3.1 States

In RSML and STATEMATE, a transition is enabled if its source states are a subset of

the current states. These semantics allow infinite loops in a macro-step. Harel et al.’s [32]

original formulation of statecharts avoids infinite loops by allowing each non-concurrent

component, i.e., each HTS, to execute at most one transition per macro-step: the sequence

of micro-steps that makes up a macro-step can execute multiple transitions, each of which is

from a different HTS. We express this semantics by using snapshot element CS to maintain

the set of current states, by using element CSa to maintain the set of enabling states, and by

setting CSa to the empty set after the HTS takes a step, to disallow additional transitions

from the same HTS in the current macro-step. We can envision an alternate state semantics

that allows an HTS to take multiple micro-steps in a macro-step, and prevents infinite loops

by prohibiting states being exited more than once in a macro-step.

Table 3.3 shows examples of definitions for the state-related template parameters. In

the following, we describe some example values for the state-related template parameters.

• reset CS (ss , I ) specifies the value of CS at the start of a new macro-step. This

value depends on the current value of CS in snapshot ss (ss .CS ). Example values

are ss .CS , meaning that the value of CS does not change at the start of a macro-step;

and “n/a”, meaning that the notation has no concept of control states.
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Parameter statecharts [32] RSML, STATEMATE

reset CS(ss, I ) ≡ ss.CS

next CS(ss, τ,CS ′) ≡ CS ′ = entered (dest(τ))

reset CSa(ss, I ) ≡ ss.CS n/a

next CSa(ss, τ,CS ′
a) ≡ CS ′

a = � n/a

en states(ss, τ) ≡ src(τ) ⊆ ss.CSa src(τ) ⊆ ss.CS

Table 3.3: Sample definitions for state-related template parameters

• next CS (ss , τ,CS ′) specifies how the value of snapshot element CS is updated to CS ′

when transition τ executes. CS is affected by τ ’s destination states, dest(τ), if the set

of control states is not empty. Example values are CS ′ = dest(τ), meaning that the

set of current states becomes the executing transition’s destination states dest(τ);

CS ′ = entered(dest(τ)), meaning that the set of current states CS ′ becomes the

executing transition’s destination states dest(τ), plus the destination states’ ancestor

states and its descendants’ default states; and “n/a”, which means that the notation

has no concept of control states.

• reset CSa(ss , I ) specifies the value of CSa at the start of a new macro-step. Example

values are ss .CS , meaning that the value of CSa is equal to the set of current states

ss .CS at the start of the macro-step; and “n/a”, which means that the snapshot

contains no extra state information.

• next CSa(ss , τ,CS ′
a) specifies how the value of snapshot element CSa is updated to

CS ′
a when transition τ executes. Example values are CS ′

a = �, meaning that the value

of CS ′
a is empty after a transition executes, which means at most one transition in
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an HTS can execute in a macro-step; and “n/a”, which means the snapshot contains

no extra state information.

• en states(ss , τ) specifies which states stored in state-related snapshot elements (CS

and CSa) can trigger transitions. Different notations make different decisions about

which states can trigger transitions and when. Parameter en states is a predicate

that compares the source states of a transition τ with the values of the state-related

snapshot elements in snapshot ss , and decides whether the snapshot’s state-related

elements enable τ . Example predicates are src(τ) ⊆ ss .CS , meaning that τ ’s source

states must all be states stored in CS ; src(τ) ⊆ ss .CSa , meaning that τ ’s source

states must all be states stored in CSa ; and “n/a”, which means that the notation

has no concept of states.

3.3.2 Events

Table 3.4 shows examples of definitions of event-related template parameters. These events

can be internal and/or external events. Process algebras such as CCS use only external

events. Statecharts-based notations have both internal and external events. For nota-

tions that differentiate syntactically between internal events and external events, we use

intern ev(E ) to mean the set of internal events and extern ev(E ) for the set of external

events.

In STATEMATE and RSML, only internal events generated in the previous micro-

step can trigger a transition, whereas in the original statecharts semantics, internal events

generated by transitions remain enabling events throughout the macro-step.



52 CHAPTER 3. HIERARCHICAL TRANSITION SYSTEMS (HTSS)

Parameter CCS statecharts [32] RSML STATEMATE

reset IE(ss, I ) ≡ n/a �

next IE(ss, τ, IE ′) ≡ n/a IE ′ = ss.IE ∪gen(τ)
IE ′ = gen(τ) ∩

intern ev(E )
IE ′ = gen(τ)

reset IEa(ss, I ) ≡ n/a n/a n/a n/a

next IEa(ss, τ, IE ′
a) ≡ n/a n/a n/a n/a

reset Ia(ss, I ) ≡ I .ev

next Ia(ss, τ, I ′a) ≡ true I ′a = ss.Ia I ′a = �

en events(ss, τ) ≡ trig(τ) ⊆ ss.Ia trig(τ) ⊆ ss.IE ∪ ss.Ia

reset O(ss, I ) ≡ �

next O(ss, τ,O ′) ≡ O ′ = gen(τ) O ′ = ss.O ∪ gen(τ)

O ′ = ss.O ∪
(gen(τ) ∩
extern ev(E ))

O ′ = gen(τ)

Table 3.4: Sample definitions for event-related template parameters

In all statecharts variants, the external input events I .ev are enabling events at the start

of each macro-step. In RSML and STATEMATE, external events can trigger transitions

only in the first micro-step of a macro-step. In statecharts, external events remain enabling

events throughout the macro-step. We can also imagine a notation in which an external

event remains an enabling event until it triggers a transition or until the macro-step ends.

Statecharts accumulate as output all of the events generated during the micro-step.

RSML accumulates all of the generated external events. STATEMATE only considers as

output the events generated in the last micro-step of the macro-step.

In the following, we describe some example values for the event-related template pa-

rameters.
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• reset IE (ss , I ) specifies the value of IE at the start of a new macro-step. Exam-

ple values are �, which means that all previously generated events are discarded;

and “n/a”, which means that the notation has no concept of internal events. Be-

cause IE records the current internal events, it does not record events I .ev from the

environment.

• next IE (ss , τ, IE ′) specifies how the value of snapshot element IE is updated to IE ′

when transition τ executes. IE may be affected by the events that τ generates,

gen(τ). Example values are IE ′ = ss .IE ∪ gen(τ), meaning that, events generated

by executing transition τ are added to the events already in IE and no events are

removed; IE ′ = gen(τ) ∩ intern ev(E ), meaning that, only those events that are

designated as internal events and that are generated by executing transition τ are

present in IE ′, and all events previously in IE are discarded; and IE ′ = gen(τ),

meaning that, only those events generated by executing transition τ are present in

IE ′. The last option is used to specify that only events generated in the last step can

trigger transitions in the next step.

• reset IEa(ss , I ) specifies the value of IEa at the start of a new macro-step, when the

system senses new events I .ev from the environment and prepares to react to them.

Example values are �, meaning that IEa is reset to be empty at the start of every

macro-step (all previously accumulated event information is discarded); and “n/a”,

which means that the snapshot contains no extra event information.

• next IEa(ss , τ, IE
′
a) specifies how the value of snapshot element IEa is updated to

IE ′
a when transition τ executes. IEa may be affected by τ ’s generated events, gen(τ).
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The value of IE ′
a may also depend on values in the snapshot, e.g., ss .IEa . Example

values are IE ′
a = ss .IEa ∪ gen(τ), which means that events generated by executing

transition τ are added to the set of events already in IEa ; and “n/a”, which means

that the snapshot contains no extra event information.

• reset Ia(ss , I ) specifies the value of Ia at the start of a new macro-step, when the

system senses new events I .ev from the environment and prepares to react to them.

An example value is I .ev , which means that Ia is set to be the new events sensed

from the environment (I .ev) at the start of every macro-step and all previous input

events are discarded.

• next Ia(ss , τ, I
′
a) specifies how the value of snapshot element Ia is updated to I ′

a when

transition τ executes. I ′
a may be affected by the events that τ generates, gen(τ), and

may also depend on values in the current snapshot, e.g., ss .Ia . Example values are

“true”, which means that the value of Ia in snapshot ss ′ is not relevant; I ′
a = ss .Ia ,

which means that throughout the macro-step, Ia always keeps the external events

from the start of the macro-step; and I ′
a = �, which means that the value of I ′

a is

always set to be empty. In the last case, external events can trigger only the first

transition of a macro-step.

• en events(ss , τ) compares the triggering events of transition τ with the values of the

snapshot elements in snapshot ss , and decides whether the snapshot’s event-related

elements enable τ . Example predicates are trig(τ) ⊆ ss .Ia , which means that τ ’s

triggering events must all be events stored in Ia ; trig(τ) ⊆ ss .Ia ∪ ss .IE , that is

τ ’s triggering events must all be events stored in either Ia or IE ; and trig(τ) ⊆
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ss .Ia ∪ ss .IEa , which means τ ’s triggering events must all be events stored in either

Ia or IEa . IEa is used in some notations to record extra event information to help

derive enabling events, e.g., it is used in statecharts to record negated events, which

are described in Chapter 6.

Table 3.4 also shows how the outputs for a micro-step are determined.

• reset O(ss , I ) specifies the value of O at the start of a new macro-step, when the

system senses new events I .ev from the environment and prepares to react to them.

An example value is �, which means that O is reset to be empty at the start of every

macro-step (previous output is discarded).

• next O(ss , τ,O ′) specifies how the value of snapshot element O is updated to O ′ when

transition τ executes. O may be affected by τ ’s generated events, gen(τ). The value of

O ′ may also depend on values in the current snapshot, e.g., ss .O . Example values are

O ′ = gen(τ), which means only those events generated by executing transition τ in

the current micro-step are present in O ′ and all events previously in O are discarded;

O ′ = ss .O ∪gen(τ), which means that events generated by executing transition τ are

added to the events already in O ; and O ′ = ss .O ∪ (gen(τ) ∩ extern ev(E )), which

means that only those events that are generated by executing transition τ and that

are designated as external events are added to the events already in O .

3.3.3 Variable Values

Table 3.5 shows examples of definitions for variable-related template parameters.
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In most notations, transitions’ enabling conditions are evaluated with respect to the

current variable values. In contrast, in the original statecharts semantics, conditions and

expressions are evaluated with respect to variable values that hold at the start of the

macro-step, except for expressions within a cr operator, which are evaluated with respect

to the current variable assignments. Thus for statecharts, we use snapshot element AV to

maintain the set of current variable values, and use element AVa to maintain the variable

values from the start of the macro-step; and we evaluate enabling conditions and assign-

ment expressions with respect to both snapshot elements. Variable values are updated by

overriding current value assignments with the transition’s variable assignments using the

function assign described in Table 3.5. In STATEMATE, if a transition makes multiple

assignments on the same variable, only the last assignment to the variable has an effect.

RSML and statecharts do not allow transitions to make multiple assignments to the same

variable.

Some notations, such as the SMV input language [48], allow variable assignments to

refer to values that hold at the start of the next micro-step. Because the next AV param-

eter is a predicate that takes the next snapshot’s variable values as an argument, we can

accommodate such forward-referencing semantics for notations.

In the following, we describe some example values for the variable-related template

parameters.

• reset AV (ss , I ) specifies the value of AV at the start of a new macro-step, when the

system senses new input variables from the environment. This value may depend

on the current value of AV in snapshot ss (ss .AV ) and input variables (I .var). An
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Parameter statecharts [32] RSML STATEMATE

reset AV(ss, I ) ≡ assign(ss.AV , I .var)

next AV(ss, τ,AV ′) ≡ AV ′ = assign(ss.AV ,

eval((ss.AV , ss.AVa), asn(τ)))

AV ′ = assign(ss.AV ,

eval(ss.AV , asn(τ)))

AV ′ = assign(ss.AV ,

eval(ss.AV , last(asn(τ))))

reset AVa(ss, I ) ≡ assign(ss.AV , I .var) n/a

next AVa(ss, τ,AV ′
a) ≡ AV ′

a = ss.AVa n/a

en cond(ss.AV , τ) ≡ ss.AV , ss.AVa |= cond(τ) ss.AV |= cond(τ)

eval(ss.AV , a): evaluates assignments a using variable values in ss.AV

eval((ss.AV , ss.AVa), a): evaluates assignments a using variable values in ss.AV and ss.AVa

assign(X ,Y ): updates assignments X with assignments Y ; ignores assignments in Y

to variables not in X

last(a): chooses the last assignment to each variable in the sequence of assignments a

Table 3.5: Sample definitions for variable-related template parameters
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example value is assign(ss .AV , I .var), which means that at the start of a macro-

step, the environment variables in AV read values from the input variables I .var ,

and their previous values are discarded.

• next AV (ss , τ,AV ′) specifies how the value of snapshot element AV is updated to

AV ′ when transition τ executes. AV is affected by τ ’s actions, asn(τ). Example val-

ues are AV ′ = assign(ss .AV , eval(ss .AV , asn(τ))), which means that AV is updated

by the assignments in τ , asn(τ), where the assignments are evaluated with respect

to the values in the current snapshot ss (ss .AV );

AV ′ = assign(ss .AV , eval((ss .AV , ss .AVa), asn(τ))), which means AV is updated

by the assignments in τ , where the assignments are evaluated with respect to values

in either the snapshot element (ss .AV ) or the snapshot element ss .AVa ; and

AV ′ = assign(ss .AV , eval(ss .AV , last(asn(τ)))), which means AV is updated by the

assignments in τ , which are evaluated with respect to the values in the current snap-

shot (ss .AV ), and if τ makes multiple assignments to the same variable, only the last

assignment is considered.

• reset AVa(ss , I ) specifies the value of AVa at the start of a new macro-step, when

the system senses new input variables from the environment (I .var). This value

may depend on the current value of AV in snapshot ss (ss .AV ) and input variables

(I .var). Example values are assign(ss .AV , I .var), meaning that at the start of a

macro-step, the environment variables in AVa read values from the input variables

I .var , and the other variables are set to be equal to variable values in ss .AV ; and

“n/a”, which means that the snapshot contains no extra variable information.
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• next AVa(ss , τ,AV ′
a) specifies how the value of snapshot element AVa is updated to

AV ′
a when transition τ executes. Example values are ss .AVa , meaning that through-

out the macro-step, AVa always maintains the variable values from the start of the

macro-step; and “n/a”, which means that the snapshot contains no extra variable

information.

• en cond(ss , τ) specifies which variable values stored in variable-related snapshot el-

ements (AV and AVa) can be used to evaluate the guard conditions of transitions.

The parameter predicate en cond(ss , τ) computes the condition cond in τ using the

values of the variable-related snapshot elements in snapshot ss , and decides whether

the variable values enable τ (in which case, the cond evaluates to “true”). Exam-

ple values are ss .AV |= cond(τ), meaning that the guard condition of τ is evaluated

using variable values stored in AV ; ss .AV , ss .AVa |= cond(τ), which means that the

condition of τ is evaluated using the variable values stored in both AV and AVa (all

the conditions will be evaluated to the variables values in AVa , except expressions

within a cr operator); and “n/a”, which means that the snapshot contains no extra

variable information.

3.3.4 Priority

Table 3.6 shows examples of definitions for template parameter pri , which returns the

subset of transitions of highest priority. STATEMATE prioritizes transitions by the ranks

of their scope, where rank and scope are described in Table 3.1 on page 35. The priority

of transition t2 in Figure 3.1 on page 34 is the rank of scope(t2)= S1, which is 1. Lower-
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ranked scopes have priority over higher-ranked scopes, which means that super-state be-

haviour is favoured over sub-state behaviour. UML[56] prioritizes transitions by the ranks

of their source states. In this case, the priority of transition t2 is the rank of src(t2)= S3,

which is 2. Transitions with higher-ranked source states have priority over transitions with

lower-ranked source states, which means that sub-state behaviour overrides super-state

behaviour.

Parameter STATEMATE UML [56]

pri(Γ) ≡ {τ ∈ Γ | ∀ t ∈ Γ. rank(scope(τ))

≤ rank(scope(t))}
{τ ∈ Γ | ∀ t ∈ Γ. rank(src(τ))

≥ rank(src(t))}

Table 3.6: Sample definitions for priority template parameter

3.4 Summary

This chapter defines the syntax and the semantics of an HTS. We present three different

macro-step semantics that are parameterized by 21 template parameters. We describe

these parameters and their possible values in detail. These template parameters and an-

other template parameter, resolve, are used in Chapter 4 to help define the semantics of

composition operators.



Chapter 4

Composition Operators

In this chapter, we describe the template semantics of a number of widely-used composition

operators found in process algebras, statecharts variants, basic transition systems (BTSs),

and SDL. Process algebras have a simple step semantics but a rich collection of composition

operators, e.g., interleaving, rendezvous, choice. Statecharts have only two composition

operators (parallel and interrupt), but they have more complex step semantics.

4.1 General Aspects of Composing Components

In template semantics, a composition operator specifies how multiple HTSs execute con-

currently. The operands of a composition operator are components, where a component

is either a basic component, i.e., an HTS, or a collection of components, i.e., composed

HTSs (CHTS), that have been composed via some composition operator(s). We define

our composition operators by specifying how the components’ snapshots change when the

61
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components take a step. The template-parameter values are common for all HTSs in a

specification and are used by composition operators to ensure that their definitions are

consistent with the specification’s execution semantics. Composition operators are repre-

sented as constraints on how to override the components’ snapshot relations, rather than

as a new machine that would enumerate the sets of transitions (at most one transition

for each HTS in each set) that can execute together. Using this approach the structure

of the composition is not lost. Therefore, abstraction techniques such as partial-order

reduction [26] can examine the basic components.

4.1.1 Composition Hierarchy

In template semantics, multiple HTSs are combined into a composition hierarchy via a

collection of composition operators. Because all composition operators are binary, the

composition hierarchy is a binary tree. Figure 4.1 shows an example of a composition

hierarchy for a specification, which includes five basic components (HTSs) as leaves and four

composed components as nonleaf nodes. HTS1 and HTS2 are composed into a component

com2 by composition operator op2 ; HTS4 and HTS5 are composed into a component com4

by composition operator op4 ; HTS3 and com4 are composed by composition operator op3

into com3 ; and finally com2 and com3 are combined into a system (component com1 )

by op1. Because each HTS has its own set of transitions, the sets of transitions of a

specification is also a tree structure that matches the composition hierarchy.

Figure 4.2 presents an example specification for component com3 in the above compo-

sition hierarchy, where the dashed line is a composition, whose operator is named in the

line’s center circle, and whose two operands are the boxes that lie on either side of the line.
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op1

op2

HTS1 HTS2

op3

HTS3

op4

HTS4 HTS5

com2 com3

com4

com1

Figure 4.1: An example composition tree
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s5 t3: a

t4: [x=1], ^b
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HTS3

t1: a

t2: /y:=0

s1 s2
op3

com3

Figure 4.2: An example CHTS
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4.1.2 Snapshot Hierarchy

Each HTS has a local snapshot. For a specification that contains more than one HTS,

the specification’s snapshots are organized into a tree structure matching the composition

hierarchy of that specification. Figure 4.3 shows a snapshot tree for the example specifi-

cation in Figure 4.2. A snapshot tree ss com3 for component com3 in Figure 4.1 includes

two snapshot subtrees ss3 and ss com4, for HTS3 and com4, respectively, where ss3 is a

leaf node, and ss com4 includes two snapshot subtrees (snapshot leaves) ss4 and ss5, for

HTS4 and HTS5, respectively.

op3

ss3

CS={s1}

AV={(y,1)}

IE={a}

O=

Ia={d}

op4

ss_com3

ss_com4

ss4

CS={s3}

AV={(x,1)}

IE={a,b}

O={b}

Ia={d}

ss5

CS={s7}

AV=

IE={a,b}

O={a}

Ia={d}

Figure 4.3: A snapshot tree for component com3

In defining the semantics of composition operators, we use vector notation �ss , to rep-

resent a snapshot tree. Notation
−−−−→
ss .XX refers to a tree of snapshot elements XX within
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a given snapshot tree �ss , where each leaf is the snapshot element XX in an HTS’s snap-

shot. For example,
−−−−−−−−→
ss com3.CS is a tree of snapshot elements CS , which includes ss3.CS ,

ss4.CS , and ss5.CS as leaves.

We overload the notation � to mean an empty set or an empty tree. Two snapshot

trees are equal if their corresponding leaf snapshots are equal, and we compare snapshot

trees only if they have corresponding composition hierarchies.

The helper functions from Table 3.1 are also generalized to apply to trees of transitions

and trees of states. For example, function gen(�τ) returns a tree of sets of generated events

�Ev , where each leaf set of events Ev (can be �) is generated by a leaf transition τ of the

tree �τ , respectively. In Figure 4.2, gen(�τ4), where the tree of transitions �τ4 contains two

leaf transitions t4 and t6, returns two sets of generated events {b} and {a} that forms a

tree of event sets �Ev .

To override its components’ micro-step or macro-step semantics, a composition opera-

tor applies template parameter predicates reset XX and next XX thereby resetting and

updating the components’ snapshot elements (this is described in detail in section 4.3).

When applied to trees of snapshots and to trees of transitions, the template parameters,

next XX (�ss , �τ ,
−−−−→
ss ′.XX ), define how snapshot elements XX in corresponding leaf snapshots

in �ss change values due to the execution of the transitions in the transition tree �τ . Sim-

ilarly, the parameter functions, reset XX (�ss , I ), define how snapshot elements XX clean

up information about transitions that executed in the last macro-step and add information

from the input I in the leaf snapshots in the snapshot tree �ss .
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4.1.3 Initial Snapshots

In all cases, except interrupt composition, the initial snapshot tree for the composed ma-

chine comprises the component machines’ initial snapshot trees (
−→
ss I = (

−→
ssI

1 ,
−→
ss I

2 )). We

assume that initial values of shared variables are consistent among components.

4.2 Micro-Step Composition Semantics

We define micro-step composition operators as parameterized, composite relations that

relate pairs of consecutive snapshot trees. For example, the composite micro-step relation

for an operator op that composes two components component1 and component2 is

N op

micro((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)).

It takes as arguments the two current snapshot trees �ss1 and �ss2 for the two components

component1 and component2, respectively; two trees of transitions, from component1 and

component2, respectively; and the two next snapshot trees. The composite micro-step

describes the relations between snapshot trees �ss1 and �ss ′1, and between �ss2 and �ss ′2, when

component1 and component2 execute their respective transition trees �τ1 and �τ2 in the same

micro-step.

The step semantics of each composition operator, N op

micro, is based on the micro-step

semantics of the two components, which we will call, N 1
micro and N 2

micro. The components’

micro-step semantics are defined in terms of each component’s composite operator (if it is

a composed component) or its HTS semantics (if it is a leaf component). For example, the

semantics for composition operator op4, which composes HTS4 and HTS5 (Figure 4.1),
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is defined by the step semantics for HTS4 and for HTS5, and plus constraints on how

to overwrite HTS4 ’s snapshot and HTS5 ’s snapshot as appropriate for the composition

operator.

Each composition operator specifies when its components execute, how the changes in

each component are shared, and when transfer of control from one component to another

can occur. The operator must ensure that assignments to shared variables made by any

component machine are reflected in all appropriate snapshots. In addition, the compo-

sition operator is responsible for “message passing” among components, making events

generated by one component visible to the other component, either for the current step,

e.g., rendezvous, or the next step.

We use a set of macro definitions to facilitate the specification of the transfer of control

and the exchange of variables and events in definitions of composition operators. We

explain these definitions in the following subsections.

4.2.1 Substitution

A composition operator uses substitution to override its components’ behaviour: that

is, to override the assignments to snapshot elements of their components’ micro-steps or

macro-steps. For example, the sequence composition operator wipes out a component’s

states when control is transferred out of the component. We represent the override of an

assignment using substitution notation:

ss ′ = ss |xv
which means that snapshot ss ′ is equal to ss , except for element x , which has value v .

Substitutions over a tree of snapshots (�ss ′ = �ss |xv ) defines substitutions for all corresponding
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pairs of snapshots at the leaves of the trees �ss and �ss ′. For example, in substitution

(�ss ′ = �ss |CS
�

), snapshot tree �ss ′ is equal to snapshot tree �ss , except that the sets of current

states CS in all leaf snapshots of �ss ′ are empty.

4.2.2 Step Abbreviations

Composition operators use step abbreviations to collect expressions of common substitu-

tions. We introduce predicates bothstep (Figure 4.4) and comp1steps (Figure 4.5), which

combine predicates that commonly occur in the definitions of composition operators. Pred-

icate bothstep captures the case in which both components take a micro-step: the com-

ponents’ next snapshots should satisfy the components’ next-step semantics N 1
micro and

N 2
micro, except for the values of shared variables and events.

bothstep((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∃ �iss1, �iss2.

⎡
⎢⎢⎢⎢⎢⎣

∧
∧
∧

N 1
micro(�ss1, �τ1, �iss1) ∧ N 2

micro(�ss2, �τ2, �iss2)

communicate( �iss1, �ss1, �τ1 ∪ �τ2, �ss ′1)

communicate( �iss2, �ss2, �τ1 ∪ �τ2, �ss ′2)

communicate vars((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2))

⎤
⎥⎥⎥⎥⎥⎦

Figure 4.4: Predicate for both components taking a step

Predicate comp1steps captures the case in which one component takes a micro-step,

and the other component’s snapshots are simply updated to include the shared events and

variable assignments generated by the executing component’s transitions. Many of the

composition operators can be defined using these two step abbreviations, combined with

additional predicates that reflect each operator’s unique pre- and post-conditions. These
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comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∧
∧

N 1
micro(�ss1, �τ1, �ss ′1) ∧ �τ2 = �

update(�ss2, �τ1, �ss ′2)

communicate vars((�ss1, �ss2), (�τ1,�), (�ss ′1, �ss ′2))

Figure 4.5: Predicate for component 1 taking a step

macros are defined in terms of six predicates:

• N 1
micro reflects component1 taking a micro-step, executing transition tree �τ1. We

introduce intermediate snapshot tree �iss1 to reflect purely the micro-step semantics

for component1 .

• N 2
micro reflects component2 taking a micro-step, executing transition tree �τ2. We

introduce intermediate snapshot tree �iss2 to reflect purely the micro-step semantics

for component2 .

• communicate( �iss1, �ss1, �τ1 ∪ �τ2, �ss ′1) defines most elements of the next snapshot tree

�ss ′1, taking much from intermediate snapshot �iss1, but overriding intermediate snap-

shot’s event-related elements to reflect the communication of shared events. In this

predicate definition, we overload the operator ∪ to mean the combination of two

trees �τ1 and �τ2, which matches the structure of the composition of component1 and

component2 .

• communicate( �iss2, �ss2, �τ1∪�τ2, �ss ′2) defines most elements of the next snapshot tree �ss ′2,

taking much from intermediate snapshot �iss2, but overriding intermediate snapshot’s

event-related elements to reflect the communication of shared events.
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• communicate vars((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) defines the variable-related elements

in next snapshots �ss ′1 and �ss ′2, so that variables shared among multiple snapshots all

reflect the assignments made by all transitions executing in both components, and

so that the final values of all shares variables are consistent.

• update(�ss2, �τ1, �ss ′2) defines the event-related elements in the next snapshot tree �ss ′2,

which reflect the shared events generated and consumed by transitions �τ1 in the

executing component.

Predicates communicate and communicate vars are defined separately because they

are used to handle two sets of orthogonal snapshot elements, event-related elements and

variable-related elements, respectively.

4.2.3 Update, Communicate, and Communicate vars Predicates

In this subsection, we describe predicates update, communicate, and communicate vars ,

which are used in predicates bothstep and comp1steps and in the definitions of the compo-

sition operators to describe how components communicate internal events and variables.

Predicate communicate vars defines the final variable values in the components’ next snap-

shots �ss ′1 and �ss2 and resolves conflicts. Predicates update and communicate define the

final values of all other snapshot elements. All three predicates, update, communicate, and

communicate vars , use the template parameters, so that they adhere to their components’

semantics for updating snapshot elements.

When a composition operator allows only one of its two components to execute, e.g.,

interleaving, the nonexecuting component uses the predicate update, defined in Table 4.1,
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Snapshot Element update(�ss , �τ , �ss ′) ≡ communicate( �iss , �ss , �τ , �ss ′) ≡
CS �ss ′.CS = �ss .CS �ss ′.CS = �iss .CS

CSa �ss ′.CSa = �ss .CSa �ss ′.CSa = �iss .CSa

IE next IE(�ss , �τ , �ss ′.IE ) next IE(�ss , �τ , �ss ′.IE )

IEa next IEa(�ss , �τ , �ss ′.IEa) next IEa(�ss , �τ , �ss ′.IEa)

O �ss ′.O = �ss .O �ss ′.O = �iss .O

Ia next Ia(�ss , �τ , �ss ′.Ia) next Ia(�ss , �τ , �ss ′.Ia)

Table 4.1: Predicates for event communication

to specify how its snapshot tree are affected by the shared events generated and consumed

by transitions �τ from the executing component: the event-related snapshot elements, IE ,

IEa , and Ia , in the nonexecuting component are updated by the executing transitions �τ ,

as defined by template parameters next IE , next IEa , and next Ia , respectively. The

snapshot elements CS , CSa , and O in the nonexecuting component are not affected by the

executing component.

The predicate communicate, defined in Table 4.1, is used when both components ex-

ecute, to specify how the snapshots of each executing component may be affected by the

shared events generated and consumed by the other executing component. The predicate

communicate starts from an intermediate snapshot ( �iss) that reflects the effects of the

component’s own transitions via the component’s micro-step relation Nmicro. The predi-

cate constrains �ss ′ to keep �iss ’s values for those snapshot elements that are unrelated to

shared events or variables: CS , CSa , and O . However, communicate changes �ss ’s values for

shared-event-related snapshot elements, IE , IEa , and Ia , starting with their values in the

snapshot collection �ss , and applying the effects of all executing transitions �τ using template
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parameters next IE , next IEa , and next Ia . The predicate communicate is provided with

the executing transitions from both components, so that a rational ordering among all

the transitions’ generated events, if desired, can be collected into the event-related snap-

shot elements. If communicate were instead to start with the event-related elements in

�iss and attempt to update those with the other component’s generated events, we would

not be able to rely on template parameters, next IE , next IEa , and next Ia , to update

the event-related snapshot elements because some parameter values overwrite values (thus,

communicate might lose a component’s generated events when incorporating the remote

component’s events) whereas other parameter values accumulate events (thus, communi-

cate might duplicate events if updating intermediate snapshot elements with events from

all executing transitions). Moreover, the composition would not be commutative if each

component updates its snapshot with its local events first.

Predicates communicate and update have no effect on a snapshot’s variable-related el-

ements. These elements are constrained by predicate communicate vars . Conflicts among

the assignments to shared variables must be resolved, so that all components have the same

value associated with a variable. At the composition level, we introduce a new template

parameter,

resolve(AV1,AV2, asnAV )

by which a user can specify a notation’s policy for resolving conflicts among variable-value

assignments. Predicate resolve specifies how two sets of assignments
−−→
AV1 and

−−→
AV2 made

by transitions executing in two different components can be resolved to a single set of

variable-value assignments asnAV .
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Predicate communicate vars, defined in Figure 4.6, uses template parameter resolve

to update the components’ snapshots with a consistent variable assignment that reflects

assignments made by transitions executing in both components:

communicate vars((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡
∃−−→AV1,

−−→
AV2, asnAV , τ .

next AV(�ss1, �τ1,
−−→
AV1) ∧ next AV(�ss2, �τ2,

−−→
AV2) ∧

resolve(
−−→
AV1,

−−→
AV2, asnAV ) ∧ asn(τ) = asnAV ∧

next AV(�ss1, τ,
−−−−→
ss1.AV ′) ∧

next AV(�ss2, τ,
−−−−→
ss2.AV ′) ∧

next AVa(�ss1, τ,
−−−−−→
ss1.AVa

′) ∧
next AVa(�ss2, τ,

−−−−−→
ss2.AVa

′)

Figure 4.6: Predicate for variable communication

where
−−→
AV1 and

−−→
AV2 are the unresolved variable values after the execution of transitions

�τ1 in component one and transitions �τ2 in component two, respectively; asnAV is a con-

sistent set of variable-value assignments based on the assignments in
−−→
AV1 and

−−→
AV2 and

on resolved assignments to shared variables, as determined by template parameter resolve;

and τ is a dummy transition that is created, whose actions consist of the resolved variable

assignments. Template parameters next AV and next AVa use the dummy transition τ

to update snapshot elements in both components. By using communicate vars, we ensure

that each component receives the same variable assignments and yet is able to treat the

assignments as per the notation’s semantics. Predicates communicate vars and update (or

communicate) can be applied to the same snapshot collection �ss without conflict, because

the predicates constrain complementary snapshot elements.
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4.3 Macro-Step Composition Semantics

A notation’s macro-step semantics (for an HTS), which can be either simple or stable,

defines how a sequence of zero of more micro-steps react to a set of inputs. For most

composition operators, we define an operator’s behaviour at the micro-step level, and we

infer its semantics at the macro-step level as a sequence of zero or more micro-steps of the

composed component. This allows components to communicate events and variable values

with each micro-step. If a notation’s macro-step semantics allows an infinite sequence of

micro-steps, then macro-step composition for that notation also allows an infinite sequence

of micro-steps.

For operators where components share information only at the end of their macro-

steps, e.g., some cases of parallel and interleaving used in SDL and BTSs, respectively,

share events only at the end of a macro-step, we explicitly define a composition operator

whose composed steps are defined in terms of its components’ macro-steps. At the start

of such a macro-step, each component’s outputs from the previous macro-step are added

to the inputs sensed by the other component.

In the following subsections, we describe three kinds of inferred macro-step compositions

and the stable snapshot trees for a composed component.

4.3.1 Inferred Macro-Step Composition

Depending on the notation, an inferred macro-step composition operator N op
macro(�ss , I , �ss ′)

can be simple (diligent or nondiligent) or stable. In a simple macro-step composition,

which is similar to a macro-step for an HTS, the component senses a set of new inputs I



4.3. MACRO-STEP COMPOSITION SEMANTICS 75

from the environment; resets its snapshots with I; and takes at most one micro-step.

In a stable macro-step, the component takes a maximal sequence of micro-steps in

response to a single set of external inputs I . Figure 4.7 defines a stable macro-step com-

position N op
macro in a manner similar to the definition of a macro-step for an HTS, given

in Chapter 3. At the beginning of a macro-step, the snapshot trees are reset with the set

of new inputs I (line 1). If the reset snapshot trees are not stable, i.e., can enable some

transitions, (line 2), the composition takes a sequence of micro-steps until the snapshot

trees are stable (line 3), otherwise the composition takes an idle step (line 4).

N 0((�ss1, �ss2), (�ss ′1, �ss ′2)) ≡ (�ss1, �ss2) = (�ss ′1, �ss ′2)

N k+1((�ss1, �ss2), (�ss ′1, �ss ′2)) ≡
(∃ (�ss ′′1, �ss ′′2), (�τ1, �τ2) . N op

micro((�ss1, �ss2), (�τ1, �τ2), (�ss ′′1, �ss ′′2)) ∧ N k ((�ss ′′1, �ss ′′2), (�ss ′1, �ss ′2)))

Nop
macro((�ss1, �ss2), I , (�ss ′1, �ss ′2)) ≡
let �ss i

1 = reset(�ss1, I ), �ss i
2 = reset(�ss2, I ) in (* line 1 *)

if ¬stableop(�ss i
1, �ss i

2) (* line 2 *)

then (∃ k > 0 . N k ((�ss i
1, �ss i

2), (�ss ′1, �ss ′2)) ∧ stableop((�ss ′1, �ss ′2))) (* line 3 *)

(* a maximal sequence of micro-steps *)

else (�ss ′1, �ss ′2) = (�ss i
1, �ss i

2) (* an idle step *) (* line 4 *)

Figure 4.7: Stable macro-step composition

4.3.2 Stable Snapshot Trees

The snapshot trees for a composed component are stable if no more transitions are enabled

in the snapshot trees. Two components, composed via composition operator parallel,

interleaving, choice, or sequence are stable if both of their snapshot trees are stable:
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stable(�ss1, �ss2) ≡ stable(�ss1) ∧ stable(�ss2)

For the other composition operators, environmental synchronization, rendezvous, and in-

terrupt, whether the composition’s snapshots are stable does not depend only on the sta-

bleness of the two components’ snapshot trees. Those definitions are presented in the

following section, along with their composition operators’ semantics.

4.4 Composition Operators

In the following subsections, we describe seven composition operators: parallel, interleav-

ing, environmental synchronization, rendezvous, sequence, choice, and interrupt. Although

many of these operators can be defined at both the macro-step and the micro-step levels,

and for both diligent and non-diligent semantics, we present only the operator variants

that correspond to the key composition operators in our original survey of notations.

4.4.1 Parallel

In the parallel composition of two components, each component executes if both compo-

nents are enabled simultaneously; otherwise, the enabled component executes in isolation

and the nonexecuting component updates its snapshots with assignments to shared vari-

ables and generated events. Figure 4.8 presents an example for parallel composition of

two HTSs, P and Q . Initially, P and Q are in states s1 and s3 , respectively. If event

a occurs, then transitions t1 and t3 are enabled and both execute. In both P ’s and Q ’s

next snapshots, the values of variables x and y are updated; the states s2 and s4 are set
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as current states; and the event b, generated by transition t3 , is recorded in both HTSs’

internal event sets. In the next micro-step, both transitions t2 and t4 are enabled and

both execute.

para

Q
t3: a, ^b, /x:=1

t4: [y=0]

s3 s4

R
P

s1 s2

t1: a, /y:=0

t2: b, [x=1]

Figure 4.8: An example for parallel composition

This section describes various definitions of parallel composition.

Micro-Step Semantics

Figure 4.9 shows parallel composition at the micro-step level, N
para
micro, which is a predicate

that takes as parameters the components’ current snapshot trees (�ss1, �ss2), their trees of

executing transitions (�τ1, �τ2), and their next-snapshot trees (�ss ′1, �ss ′2). The operator is a

predicate that is true if a composed step is valid: the transitions in �τ1 and �τ2, if any, are

priority-enabled, and the next snapshots �ss ′1 and �ss ′2 reflect the transitions’ actions. Both

components execute transitions in the same micro-step (line 2) if both components have

enabled transitions (line 1); otherwise only one component executes and the other updates

shared variables and generated events (line 3 or line 4). To represent that component 2

executes, we simply swap the order of operands in the second comp1steps on line 4. Line

3 and line 4 are mutually exclusive because only one of the components is enabled. Recall
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that idle steps are not admissible micro-steps, so there is no case where both components

do not change, i.e., no transition executes in either component. This composition operator

matches the AND-state composition found in most statecharts variants.

Npara
micro((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

if ¬stable(�ss1) ∧ ¬stable(�ss2) (* line 1 *)

then bothstep((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) (* both take a step *) (* line 2 *)

else

⎡
⎢⎢⎢⎢⎢⎣ ∨

comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2))

(* Component 1 executes; component 2 changes shared variables and events *)

comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss ′2, �ss ′1))

(* Component 2 executes; component 1 changes shared variables and events *)

⎤
⎥⎥⎥⎥⎥⎦

(* line 3 *)

(* line 4 *)

Figure 4.9: Semantics of parallel composition for micro-step

Npara-Harel
micro ((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∨

∨

(bothstep((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ∧ dom(asn(�τ1)) ∩ dom(asn(�τ2)) = �) (* line 1 *)

(* both take a step *)

comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) (* line 2 *)

(* component 1 executes; component 2 changes shared variables and events *)

comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss ′2, �ss ′1)) (* line 3 *)

(* component 2 executes; component 1 changes shared variables and events *)

Figure 4.10: Semantics of parallel composition for Harel micro-step

Composition operator N
para-Harel
micro (Figure 4.10), used in Harel’s statechart seman-

tics [32], differs from N
para
micro in that N

para-Harel
micro does not force both components to execute

if they are both enabled. That is, there is no priority between both components executing
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and only one component executing. Also, N
para-Harel
micro prohibits parallel transitions from

making assignments to the same variable (line 1). Function dom(asn(�τ)) represents the

set of variables that are assigned new values by action in transitions �τ . If the composition

operator in Figure 4.8 is para-Harel , either transition t1 or transition t3 or both t1 and t3

can execute, even though both components are enabled. This specification, when composed

with operator para-Harel , may exhibit different behaviour from when the specification is

composed with composition operator para.

SDL Macro-Step Semantics

In parallel composition at the macro-step level, both components must take a macro step

(which may be an idle step if the snapshots are stable) in every macro-step of the com-

posed component. If the components’ Nmacro relations are diligent (nondiligent), then the

composed component’s macro-step semantics are diligent (nondiligent). The outputs from

each component’s previous step are added as inputs to the other component’s next step.

The only notation that we have surveyed that uses parallel composition at the macro-

step level is SDL processes, defined in Figure 4.11. In SDL, processes do not share variables.

Therefore, our expression of N
para-SDL
macro does not include any resolution for conflicting

variable assignments, which could be needed for another notation. Note that reset takes

place within N 1
macro and N 2

macro and that macro-steps may be of different lengths in each

component, because SDL has stable step semantics.
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Npara-SDL
macro ((�ss1, �ss2), I , (�ss ′1, �ss ′2)) ≡

N 1
macro(�ss1, I ∪ −−−→

ss2.O , �ss ′1) ∧ N 2
macro(�ss2, I ∪ −−−→

ss1.O , �ss ′2)

Figure 4.11: Semantics of parallel composition for macro-steps (SDL)

4.4.2 Interleaving

In interleaving composition, only one component can take a step in each step of the com-

posed component. If both components are enabled, then one of the components is nonde-

terministically chosen to execute. This nondeterminism means that there is the potential

for starvation, which can be prevented by fairness constraints or a scheduling algorithm.

In the example specification presented in Figure 4.8, if the parallel composition operator

is replaced with an interleaving operator, then only one transition, either t1 or t3 (but not

both), can execute even though both are enabled when event a occurs in the initial states.

Micro-step semantics

In micro-step interleaving N intl
micro, exactly one component takes a step (line 1 or line 2) per

step of the composed component (Figure 4.12). This operator is used by CSP and LOTOS

(P ||| Q).

Nondiligent Macro-Step

For simple macro-step semantics, interleaving composition can be either diligent, i.e., an

enabled component has priority to execute, or nondiligent, i.e., there is no priority between

an enabled component executing or not. At the beginning of a macro-step, the outputs

from each component’s previous step are added as inputs to the other components. In
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nondiligent interleaving (Figure 4.13), N
intl-nondiligent
macro , either component, but not both,

can take a step (the first parts of line 1 and line 2), regardless of which components are

enabled; the other component will update its shared variables (the second parts of line 1

and line 2). This operator is used by notation BTSs.

N intl
micro((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∨

comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) (* line 1 *)

(* Component 1 executes; component 2 changes shared variables and events *)

comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss ′2, �ss ′1)) (* line 2 *)

(* Component 2 executes; component 1 changes shared variables and events *)

Figure 4.12: Semantics of interleaving composition for micro-step

N intl-nondiligent
macro (( �ss1, �ss2), I , (�ss ′1, �ss ′2)) ≡

∨
N 1

macro(�ss1, I ∪ −−−→
ss2.O , �ss ′1) ∧ �ss ′2 = �ss2 |AV

assign(
−−−−→
ss2.AV ,

−−−−→
ss′1.AV )

(* line 1 *)

N 2
macro(�ss2, I ∪ −−−→

ss1.O , �ss ′2) ∧ �ss ′1 = �ss1 |AV

assign(
−−−−→
ss1.AV ,

−−−−→
ss′2.AV )

(* line 2 *)

(* either component can take a step (diligent or idle) , but not both *)

Figure 4.13: Semantics of nondiligent interleaving composition for macro-step

If the composition operator in Figure 4.8 is nondiligent interleaving at the macro-step

level, the specification takes one transition, either t1 or t3 , or takes an idle step, when

both t1 and t3 are enabled initially.

4.4.3 Environmental Synchronization

Environmental synchronization allows two components to execute a step together if both

are enabled on the same synchronization event from the environment. In this synchro-
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nization case, the components can execute only transitions that are triggered by the syn-

chronization event; otherwise, only one component can execute a transition that is not

triggered by a synchronization event. When executing transitions that are not triggered

by a synchronization event, the components execute in a interleaving manner, i.e., only

one component executes in a step.

Figure 4.14 shows an example specification, which contains two HTSs P and Q , syn-

chronized on event a, which is put in a bracket on the dashed line below the composition

operator. Initially, P and Q are in states s1 and s3 , respectively. If event a occurs, both

transitions t1 and t3 are enabled and execute. In both P ’s and Q ’s next snapshots, the

values of variables x and y are updated, and the states s2 and s4 are the current states. In

the next micro-step, both transitions t2 and t4 are enabled on nonsynchronization events

but only one of them executes.

env

sync

Q
t3: a, /x:=1

t4: [y=0]

s3 s4

R
P

s1 s2

t1: a, /y:=0

t2: [x=1]

[ a ]

Figure 4.14: An example for environmental synchronization composition

There are five cases in environmental synchronization (Figure 4.15), N
env-sync
micro . In

the first synchronization case, both components execute in the same micro-step if the

executing transitions in τ1 and τ2 all have the same trigger event, e, which is a designated

synchronization event (line 1). To make our environmental synchronization definition
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N
env-sync
micro ((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2)) sync events ≡

∨

∃ �iss1,
�iss2,
e.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∨

∨

trig(�τ1 ∪ �τ2) = �{e} ∧ e ∈ sync events ∧ bothstep((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

(* sync case 1: both components execute on synchronization event e *)⎛
⎝ ∧

trig(�τ1) = {e} ∧ e ∈ sync events ∧ ∀T ∈ �T2. (¬∃ τ ∈ T . trig(τ) = {e})
comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

⎞
⎠

(* sync case 2: component 1 executes on synchronization event e *)(
∧ trig(�τ2) = {e} ∧ e ∈ sync events ∧ ∀T ∈ �T1. (¬∃ τ ∈ T . trig(τ) = {e})

comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss′2, �ss′1))

)

(* sync case 3: component 2 executes on synchronization event e *)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(* line 1 *)

(* line 2 *)

(* line 3 *)

(* line 4 *)

(* line 5 *)

⎡
⎢⎢⎢⎢⎢⎣ ∨

trig(�τ1) ∩ sync events = � ∧ comp1steps(( �ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

(* unsync case 1: component 1 executes *)

trig(�τ2) ∩ sync events = � ∧ comp1steps(( �ss2, �ss1), (�τ2, �τ1), (�ss′2, �ss′1))

(* unsync case 2: component 2 executes *)

⎤
⎥⎥⎥⎥⎥⎦

(* line 6 *)

(* line 7 *)

Figure 4.15: Semantics of environmental synchronization for micro-step

general, we include two other synchronization cases. In the second synchronization case,

component 1 executes (line 3) if every one of its executing transitions triggers on the same

synchronization event e, and if, in component 2, each leaf HTS’s set of transitions contains

no transition that is triggered on synchronization event e (line 2). This clause refers back to

each basic component’s (HTS’s) set of transitions T in �T2. The third synchronization case

is symmetric to the second synchronization case, in that component 2 executes transitions

triggered on synchronization event e, and component 1 has no transition, in each leaf HTS’s

set of transitions, whose trigger event is e (line 4 and 5). The last two cases should be rare

as in environmental synchronization, one component that does not use synchronization

event is pointless.

In the nonsynchronization case 1 and case 2, none of the executing transitions is trig-

gered by a synchronization event, so one or the other component takes a step in isolation,
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i.e., interleaving, (line 6 or line 7).

In an inferred environmental-synchronization macro-step, the two components’ snap-

shot trees are stable if either component is stable with respect to synchronization events

and both components are stable with respect to nonsynchronization events. Figure 4.16

defines the predicate stableenvsync for two components in an environmental synchronization

on events evset . For a single HTS, we introduce function pri enabled to take as parameters

the HTS’s snapshot ss , a set of transitions T in the HTS, and a set of events SE , and

return a set of transitions that are enabled on events in SE and are priority-enabled as

well.

pri enabled(ss,SE ,T ) ≡ {τ | (τ ∈ pri enabled trans(ss,T )) ∧ (trig(τ) ⊆ SE )}

stableev (ss,SE ) ≡ (SE = �) ∧ (pri enabled(ss,SE ,T ) = �)

stableenvsync(�ss1, �ss2, evset) ≡
∀ e ∈ evset . ( (stableev (�ss1, {e}) ∨ stableev (�ss2, {e})) (* line 1 *)

∧ (stableev (�ss1, {e}) ∨ (∃T ∈ �T2. ∃ τ ∈ T . (trig(τ) = {e}))) (* line 2 *)

∧ (stableev (�ss2, {e}) ∨ (∃T ∈ �T1. ∃ τ ∈ T . (trig(τ) = {e})))) (* line 3 *)

∧ stableev (�ss1, (E \ evset)) ∧ stableev (�ss2, (E \ evset)) (* line 4 *)

Figure 4.16: Stable environmental synchronization

Predicate stableev(ss , SE ) is true in snapshot ss , if the set that is returned by

pri enabled(ss , SE ,T ) is empty or if SE is a set of empty events. In a synchronization of

two components, predicate stableenvsync is true if the components’ snapshot trees �ss1 and

�ss2 are stable on all the synchronization events in evset (sync case) and on all nonsyn-

chronization events in (E \ evset) (unsync case), where E is the set of all events. In the

synchronization cases, both components are stable if (1) either component is not enabled
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by a synchronization event e in evset (line 1, corresponding to the first synchronization

case in Figure 4.15); (2) the enabling constraint of the second synchronization case, i.e.,

component 1 is enabled by event e and in component 2, each leaf HTS’s set of transitions

contains no transition that is triggered on e, is not satisfied (line 2); and (3) the enabling

constraint of the third synchronization case, i.e., component 2 is enabled by event e and

component 1 contains no transition that is triggered on e, is not satisfied (line 3). In the

nonsynchronization case, both components are stable if neither component is enabled by

a nonsynchronization event (line 4). In the definition of predicate stableenvsync, function

pri enabled and predicate stableev are lifted to apply to trees of snapshots.

Environmental synchronization corresponds to the parallel composition operators of

CCS (P‖Q), CSP (P‖Q), and LOTOS (P | [a, b, c] | Q). These operators do not distin-

guish between events that trigger a transition and events that are generated by a transition,

so in the semantics of this operator, we treat all such events as triggering events.

4.4.4 Rendezvous Synchronization

In rendezvous synchronization, a transition in one component generates a synchronization

event that triggers one transition in the other component, and both transitions execute to-

gether. If only one component is enabled by (or generates) a synchronization event but the

other one does not generate (or is enabled by) the same synchronization event in the same

step, then the first component is forced to wait until the other component is ready. Tran-

sitions that are enabled by nonsynchronization events or that generate nonsynchronization

events can execute only in an interleaved manner.

Figure 4.17 shows an example specification, where two HTSs P and Q are composed
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via rendezvous synchronization on event a. Initially, P and Q are in states s1 and s3 ,

respectively. Transition t3 is enabled and generates event a, transition t1 is triggered on

a, so both execute. In both P ’s and Q ’s next snapshots, the values of variables x and y

are updated, and the states s2 and s4 are current states. In the next micro-step, both

transitions t2 and t4 are enabled on nonsynchronization events, but only one of them

executes.

rend

sync

Q
t3: ^a, /x:=1

t4: [y=0]

s3 s4

R
P

s1 s2

t1: a, /y:=0

t2: [x=1]

[ a ]

Figure 4.17: An example for rendezvous synchronization composition

There are two synchronization cases and two unsynchronization cases in rendezvous

synchronization N
rend-sync
micro (Figure 4.18). In the synchronization cases, exactly one tran-

sition in the sending component generates a synchronization event that triggers exactly

one transition in the receiving component (line 1). The two unsynchronization cases are

similar to the unsynchronization cases in the environmental synchronization, except that

none of the executing transitions is triggered on or generates a synchronization event (line

6).

Rendezvous synchronization is used in CCS (a.P | ā.Q) and CSP (c!v → P‖c?x → Q).

Rendezvous is the only example of a composition operator in which the events generated

by a transition in one component are transferred to the other component for the other
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comm event(�ss, �τ , �ss′) ≡−−−→
ss.CS =

−−−−→
ss′.CS ∧ −−−−→

ss.CSa =
−−−−−→
ss′.CSa ∧ −−−−→

ss.AV =
−−−−→
ss′.AV ∧ −−−−→

ss.AVa =
−−−−−→
ss′.AVa ∧ −−→

ss.O =
−−−→
ss′.O ∧

next IE(�ss, �τ ,
−−−−→
ss′.IE) ∧ next IEa (�ss, �τ ,

−−−−→
ss′.IEa ) ∧ next Ia (�ss, �τ ,

−−−→
ss′.Ia )

N
rend-sync
micro (( �ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2)) sync events ≡

∃ �iss1, �iss2,
�rss2, e.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∧
∧
∧
∧

e ∈ sync events ∧ | �τ1 |= 1 =| �τ2 | ∧ gen(�τ1) = trig(�τ2) = {e}
comm event( �ss2, �τ1, �rss2)

N 1

micro( �ss1, �τ1, �iss1) ∧ communicate( �iss1, �ss1, �τ2, �ss′1)

N 2

micro( �rss2, �τ2, �iss2) ∧ communicate( �iss2, �ss2, �τ2, �ss′2)

communicate vars((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(* line 1 *)

(* line 2 *)

(* line 3 *)

(* line 4 *)

(* line 5 *)

(* sync case: one sync event generated by one transition in component 1,

triggers only one transition in component 2 *)

∨

∨

(* symmetric case of above: transition in component 2 generates a sync event

that triggers a transition in component 1 *)⎡
⎢⎢⎢⎣ ∨

(
∧

gen(�τ1) ∩ sync events = � ∧ trig(�τ1) ∩ sync events = �

comp1steps(( �ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

)

(* symmetric case of above replacing 1 with 2 and 2 with 1 *)

⎤
⎥⎥⎥⎦

(* line 6 *)

(* line 7 *)

(* unsync case *)

Figure 4.18: Semantics of rendezvous synchronization for micro-step
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component to respond to, within the same micro-step. This requires an extra intermedi-

ate snapshot collection ( �rss2), which is set by comm event to incorporate τ1’s generated

event into �rss2’s event-related snapshot elements – all of the event-related elements, since

we do not know how the component’s notations use these elements (line 2); �rss2 then

becomes the starting snapshot collection for the receiving component (line 4). Because

in the sending component, transition �τ1’s generated event e has been used to trigger a

transition in the receiving component in the same step, event e is not recorded in either

component (see communicate in line 3 and line 4). Although CCS and CSP do not have

variables, other notations might, so we include in the general description of this operator

the communicate vars constraint to ensure that conflicts among assignments to shared

variables are resolved to the same values in all components (line 5).

In an inferred rendezvous-synchronization macro-step, the two components’ snapshot

trees are stable if (1) either component 1 is not enabled, i.e., stable, by a synchronization

event or component 2 does not generate the same event, and vice versa (synchronization

case), and (2) both components are stable on nonsynchronization events (unsynchroniza-

tion case).

Figure 4.19 defines when two snapshot trees are stable on events evset in rendezvous

synchronization. Predicate stabletrig is true for a component if none of its transitions are

enabled with respect to synchronization events SE . Predicate stablegen is true for a com-

ponent if none of its priority-enabled transitions generates a synchronization event. In the

synchronization case, two components are stable on all synchronization events evset if there

is no synchronized event e that is generated by one component and triggers a transition in

the other component (line 1 or line 2). In the unsynchronization case, a component is sta-
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stabletrig(�ss,SE ) ≡ stableev (�ss |IE−−−→
ss.IE∪SE

|IEa−−−−→
ss.IEa∪SE

|Ia−−−→
ss.Ia∪SE

,SE )

stablegen(�ss,SE ) ≡ (∀T ∈ �T . ∀ τ ∈ pri enabled trans(ss,T ). ((gen(τ) ∩ SE ) = �))

stablerendsync(�ss1, �ss2, evset) ≡
∀ e ∈ evset . ( (stabletrig(�ss1, {e}) ∨ stablegen(�ss2, {e})) (* line 1 *)

∧ (stabletrig(�ss2, {e}) ∨ stablegen(�ss1, {e}))) (* line 2 *)

∧ ( stableev (�ss1, (E \ evset)) (* line 3 *)

∧ (∀T ∈ �T1. ∀ τ ∈ pri enabled(ss1, (E \ evset),T ). (gen(τ) ⊆ evset))) (* line 4 *)

∧ ( stableev (�ss2, (E \ evset)) (* line 5 *)

∧ (∀T ∈ �T2. ∀ τ ∈ pri enabled(ss2, (E \ evset),T ). (gen(τ) ⊆ evset))) (* line 6 *)

Figure 4.19: Stable rendezvous synchronization

ble if it is not enabled by a nonsynchronization event (E \evset) (lines 3 and 5) and if all of

the component’s transitions that are enabled by a nonsynchronization event also generate

synchronization events (lines 4 and 6), which is forbidden in the unsynchronization case.

4.4.5 Sequence

In sequence composition of two components, the first component executes in isolation

until it terminates, i.e., reaches its final basic states, after which the second component

executes in isolation. If the first component is a composite component, then all of its basic

components (HTSs) must reach final basic states before the second component can start.

Recall that no transition can exit a final state in an HTS; therefore the first component

cannot take a step when all of its basic components are in their final states.

Figure 4.20 shows the definition of the sequence operator. There are three stages to a

sequence composition. In the first stage, component one executes and the shared variables
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Nseq
micro((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∨

∨

[
basic states(�ss1.CS ) �⊆ SF

1 ∧ comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2))
]

(* line 1 *)

(* component 1 steps *)[
∧ basic states(�ss1.CS ) ⊆ SF

1 ∧ �ss1.CS �= �
comp1steps((�ss2, �ss1 |CS

�
), (�τ2, �τ1), (�ss ′2, �ss ′1))

]
(* line 2 *)

(* line 3 *)

(* component 2 starts and steps *)[
�ss1.CS = � ∧ comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss ′2, �ss ′1))

]
(* line 4 *)

(* component 2 steps *)

Figure 4.20: Semantics of sequence composition for micro-step

of component two are updated (line 1). We introduce macro basic states, to identify which

current states are basic states, in the test of whether component one has terminated. In

the second stage, component one has reached its final states (line 2), control transfers to

component two, component two takes a step (line 2), and the component one’s state-related

snapshot elements are emptied, so that component one can no longer execute (line 3). In

the third stage, component two executes and, for consistency, the snapshots of component

one are updated (line 4). Sequence composition is used in process algebras such as CCS

(P ; Q) and CSP (P ; Q).

4.4.6 Choice

In choice composition, the composition operator nondeterministically chooses one compo-

nent to execute in isolation, and the other component never executes. Once this choice

is made, the composite machine behaves only like the chosen component. This form of

composition is used in process algebras such as CCS (P + Q), CSP(P [ ]Q), and LOTOS

(P [ ]Q). We capture these semantics by clearing the set of current states from the unchosen
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component’s snapshots to keep it from executing. For consistency, we continue to update

the unchosen component’s snapshots.

Figure 4.21 presents the definition of the choice composition operator. Initially, the two

components both can be chosen to execute (line 1), and either one is chosen to execute

(line 2 or line 3). After the initial step, one of the two components is designated as the

executing component and continues to step; the other component’s state-related snapshot

elements are emptied, so that it cannot be enabled and execute anymore (line 4-5).

Nchoice
micro ((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)) ≡

∨

⎡
⎢⎢⎢⎣ ∧

−−−−→
ss1.CS ⊆ S I

1 ∧ −−−−→
ss2.CS ⊆ S I

2 ∧ −−−−→
ss1.CS �= � ∧ −−−−→

ss2.CS �= �(
∨

comp1steps((�ss1, �ss2 |CS
�

), (�τ1, �τ2), (�ss ′1, �ss ′2))

comp1steps((�ss2, �ss1 |CS
�

), (�τ2, �τ1), (�ss ′2, �ss ′1))

)
⎤
⎥⎥⎥⎦

(* line 1 *)

(* line 2 *)

(* line 3 *)

(* choose a component to execute *)⎡
⎣ ∨

(�ss2.CS = � ∧ comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss ′1, �ss ′2)))

(�ss1.CS = � ∧ comp1steps((�ss2, �ss1), (�τ2, �τ1), (�ss ′2, �ss ′1)))

⎤
⎦ (* line 4 *)

(* line 5 *)

(* chosen component steps *)

Figure 4.21: Semantics of choice composition for micro-step

4.4.7 Interrupt

Interrupt composition allows control to pass between two components via a provided set

of interrupt transitions (Tinterr). These transitions may have sources and destinations

that are sub-states of the components rather than the components’ root states. Interrupt

transitions are similar to HTS transitions in our basic components, except that they tran-

sition between components that may have concurrent sub-components. We use interrupt
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composition to describe statecharts that have transitions between components that have

AND-states as sub-components.

Interrupt composition is presented in Figure 4.22. There are four cases in interrupt

composition. In the first case, component one has priority-enabled transitions �τ1, and any

enabled interrupt transition has lower priority than these transitions (line 1). Therefore,

component one executes and component two is updated (line 2). We introduce the predicate

higher pri(x , y) to test if the highest-priority transition in the set x has equal or higher

priority than the highest-priority transition in the set y ; this predicate is defined in terms of

the template parameter pri, which may be based on the state and composition hierarchies.

startcomp(�ss, �τ , �ss′) ≡
ent comp(�ss, �τ ,

−−−−→
ss′.CS) ∧ next CSa (�ss, �τ ,

−−−−−→
ss′.CSa ) ∧ next IE(�ss, �τ ,

−−−−→
ss′.IE) ∧ next IEa (�ss, �τ ,

−−−−→
ss′.IEa ) ∧

next Ia (�ss, �τ ,
−−−→
ss′.Ia ) ∧ next O(�ss, �τ ,

−−−→
ss′.O)

N interr
micro ((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2)) Tinterr ≡

∨

∨

[
∧

�ss1.CS �= � ∧ higher pri(�τ1, pri enabled trans(�ss1,Tinterr ))

comp1steps((�ss1, �ss2), (�τ1, �τ2), (�ss′1, �ss′2))

]
(* line 1 *)

(* line 2 *)

(* component 1 steps *)

∃ τ.

⎡
⎢⎢⎣ ∧

∧

τ ∈ pri enabled trans( �ss1, Tinterr ) ∧ higher pri({τ}, pri enabled trans(�ss1, �T1))

�τ1 = {τ} ∧ �τ2 = � ∧ startcomp( �ss2, {τ}, �ss′2)

update( �ss1 |CS
�

, {τ}, �ss′1) ∧ communicate vars((�ss1, �ss2), ({τ},�), (�ss′1, �ss′2))

⎤
⎥⎥⎦

(* line 3 *)

(* line 4 *)

(* line 5 *)

(* transition to component 2 *)

(* symmetric cases of the above two cases, replacing 1 with 2 and 2 with 1 *)

Figure 4.22: Semantics of interrupt semantics for micro-step

In the second case, one of the interrupt transitions leaving component one is enabled

and has priority over all enabled transitions in component one (line 3), which means that
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control passes from component one to component two (line 4). The predicate startcomp

describes how component two’s snapshots are modified with appropriate information from

component one so that component two can take a step. N 2
micro cannot be used to affect

component two’s first step because τ is not enabled in component two (recall that τ is

enabled in component one’s snapshots). We introduce function ent comp to determine

the current states of component two when control is transferred to the component. This

function uses the state and composition hierarchy of component two and the set of states

entered by the executing transition to determine which default states also need to be

entered, e.g., default states of concurrent sub-components. The composition operator also

clears the current states in component one, so that it will not execute, and it applies the

actions of the executing transition to component one’s snapshots (line 5).

The final two cases of interrupt composition semantics are symmetric to the first two

cases, in that we now consider transitions whose source states are in component two. Only

one component ever has current states, so only one component can have enabled transitions

at a time.

The interrupt composition is stable when both components are stable and the set of

interrupt transitions are stable in both snapshot trees:

stable interr ((�ss1, �ss2,Tinterr )) ≡

stable(�ss1) ∧ stable(�ss2) ∧ stabletrans(�ss1,Tinterr ) ∧ stabletrans(�ss2,Tinterr )

where stabletrans(�ss ,T ) specifies that no transitions in set T are enabled in snapshots �ss .

The initial composite snapshot for interrupt composition requires the designation of one

of the components as the starting component. The current states for this component are

set to its default states, and the current states for the other component are set to empty.
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4.5 Summary

This chapter defines the semantics of seven well-used composition operators. We discuss

how multiple components execute concurrently and how they communicate and synchronize

with each other by exchanging events and data. We provide all micro-step semantics

definitions for these operators, and the macro-step semantics can be either inferred from

their micro-step semantics or are defined explicitly.



Chapter 5

Parameterized Model Compiler

In the previous chapters, we presented an operational-semantics template that captures

the common behaviour of different notations and parameterizes the notations’ distinct

behaviours. Composition operators are defined separately as constraints on how to over-

ride their components’ semantics. The template-semantics definitions for the execution

semantics and composition operators for model-based notations provide the theoretical

foundation for a semantics-based approach for constructing a parameterized model com-

piler, which we call Metro. Our model compiler compiles a specification into a transition

relation, represented in logic, that can be checked by a symbolic model checker. This

chapter describes our approach to construct such a parameterized model compiler based

on the template-semantics description of a notation. We use higher-order functions, which

are close to our definitions of template semantics, to implement the parameterized model

compiler Metro.

95
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5.1 Concept of Model Compilers

A model compiler is a program that compiles a specification in a model-based notation

into a more primitive form, e.g., logic formulae or Kripke structure. A model compiler

resembles a compiler for a programming language, in that a compiler transforms a high-

level programming language, e.g., C, into a low-level language, e.g., an assembly language.

A semantics-based model compiler takes as input the semantics description of a notation

and generates for a specification an equivalent, primitive model that can be used as an

input to an analysis tool. A semantics-based model compiler can work with multiple

notations, and can ease the mapping from notations to analysis tools. As a notation

evolves, the human analysts only need to modify the definition of the notation’s semantics

without reconstructing the model compiler. However, formally defining the semantics in a

semantics-description language is difficult and obstructing to the utility of semantics-based

model compilers.

5.2 Parameterized Semantics-Based Model Compiler

This dissertation proposes a parameterized approach for semantics-based model compila-

tion to address this problem. Template semantics can serve as the theoretical foundation

for a parameterized model compiler. In template semantics, the semantics of a notation

is represented as a set of template-parameter values, which is an input to the template-

semantics-based model compiler. In this way, the user’s effort in defining the semantics of

a model-based notation is reduced.

Template semantics consists of parameterized template definitions for representing the
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common allowable execution steps of model-based notations. Template parameters that

describe notation-specific behaviour are a set of definitions as well. The instantiated tem-

plate definitions, then, constitute the template-semantics description for a notation, in

terms of execution semantics.

Template semantics is a function that takes a set of parameter values and a specifica-

tion expressed as a composed collection of HTSs (CHTS), and produces a snapshot relation

between the current and next snapshots – that is, the set of allowable steps that can move

the system from the current snapshot to the next snapshot by executing the CHTS’s tran-

sitions. To implement template-semantics, we need a tool to evaluate this function by

expanding the definitions and producing, from a specification written in a modelling nota-

tion, its equivalent transition relation. Ideally, we would like to perform the evaluation of

definitions symbolically – that is, to express an execution step as predicate-logic constraints

over values of the current snapshots and possible next snapshots, rather than enumerating

all possible pairs of consecutive snapshots.

The existing tool suite Fusion [20] is a natural choice in which to implement a param-

eterized model compiler, because the input language to Fusion, called S+, is general and

expressive for representing template-semantics definitions. S+ is a higher-order-logic lan-

guage and a subset of the logic used in the HOL theorem prover [28]. We can reuse Fusion’s

infrastructure and some existing tools, such as Fusion’s Symbolic Function Evaluator, type

checker, and symbolic model checker, to evaluate definitions and to analyze the produced

transition relation, rather than developing a model compiler from scratch.

The symbolic functional evaluation (SFE) [21] inside Fusion takes as input an em-

bedding, which is a description of a notation’s semantics encoded in terms of logic, and
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expands the meaning of an S+ specification into a transition relation. For example, given

user-defined functions “INC a b” and “SQUARE a”:

INC a b := a + b;

SQUARE a := a ∗ a;

where a and b are of type numeric, and “+” and “∗” are built-in functions for addition

and multiplication, respectively, the symbolic evaluator SFE uses the above definitions to

expand the meaning of the expression “SQUARE (INC x y)” to “(x + y) ∗ (x + y)”.

In the following subsections, we describe the structure of our implementation of Metro

and the basics of codifying template-semantics definitions in logic.

5.2.1 Structure of Metro

In template semantics, template definitions and parameter definitions are expressed in

logic and set theory. To build a parameterized model compiler, we codify these template-

semantics definitions as logical constraints over values of the current and next snapshots, so

that SFE can symbolically evaluate these definitions to produce a specification’s transition

relation. Such a transition relation can be transformed into BDDs and checked by the

symbolic model checker in Fusion.

We use Figure 5.1, which is a detailed version of Figure 1.4, to demonstrate the inner

workings of our parameterized model compiler, Metro. We have codified the common,

parameterized definitions, e.g., pri enabled trans and micro-step definitions, of template

semantics and five well-used composition operators in S+. The user, then, provides the

template-semantics description for a notation M as a set of template-parameter values,
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which apply to all HTSs in the specification, and a set of composition operators, either pre-

defined composition primitives or new composition operators. A specification in notation

M must be expressed as a collection of HTSs, whose syntax constructs, such as transitions,

states, and events, are defined as data in S+. Thus, the analyst must transliterate his or her

specification into HTS syntax, i.e., map M’s states to HTS states, map M’s state hierarchy

to an HTS state hierarchy, map M’s variables to HTS variables, etc. This transformation

is a transliteration rather than a translation, in that the mapping is syntactic and there is

no abstraction, flattening of composition, or semantics evaluation involved.

In Metro, SFE takes as input all of these definitions in S+, symbolically evaluates and

expands the specification using template definitions and template-parameter values, and

produces as output the specification’s transition relation, expressed in logic. The transition

relation can then be transformed into BDDs, which can be verified using Fusion’s symbolic

model checker or can be transliterated to the input of another tool, such as the SMV model

checker.

Recall that the execution semantics of an HTS is defined as a relation of two snap-

shots, which are the current and the next observable points of execution. The snapshot

is implemented as a symbol table that maps snapshot elements to values. We implement

a snapshot generator, which takes as input a specification, and which produces automati-

cally an initial snapshot, whose elements are initialized according to the Initial Snapshot

defined on page 46.

We structure the implementation of our S+ template definitions to follow closely the

template-semantics definitions, such that we achieve a high degree of confidence in our

implementation. For example, a macro-step is implemented as a sequence of conditional
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micro-steps, and micro-step and composition operators are implemented as boolean con-

straints over snapshots values. We also implement sample parameter values and all of the

helper functions, defined in Chapter 3, for accessing information, e.g., states and transi-

tions, about an HTS, to help users of Metro to define their own values for the template

parameters.

We currently limit our implementation to specifications whose variables are of finite data

types, e.g., boolean and enumerated data types, as those are fully supported by Fusion’s

native model checker. However, this limitation is not fundamental to our parameterized

model compiler.

5.2.2 Characteristic Predicate Representation of Sets

In this subsection, we discuss how to represent set-based definitions as boolean predicates

that can be analyzed symbolically by Fusion.

Sets are not a built-in data type for Fusion’s native model checker, so we codify the

sets used in template-semantics descriptions (which are all finite sets) using characteristic

predicates. For a set S , its characteristic predicate P takes S as its domain, and returns

“true” for every element that belongs to S .

Set operations are realized as operations on the characteristic representation of sets.

For example, the union of two sets is represented as the disjunction of the sets’ character-

istic predicates, the intersection of two sets is represented as the conjunction of the sets’

characteristic predicates, and the difference of two sets is represented as the conjunction

of the first set’s characteristic predicate and the negation of the second set’s characteristic

predicate.
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Set of Transitions

In template semantics, a micro-step for an HTS is defined as an execution of a single enabled

transition, by which the HTS moves from the current snapshot to the next snapshot. To

find a transition to execute, we first need to identify the set of enabled-transitions that

satisfy user-provided parameter predicates en states , en events , and en cond . From this

set, the user-provided parameter pri finds the maximal subset of enabled transitions with

the same highest relative priority, i.e., priority-enabled transitions.

To represent a set of priority-enabled transitions as a predicate, we introduce a transi-

tion flag (a boolean variable) for each transition. If a transition satisfies the two constraints

(1) is enabled and (2) has priority over the other enabled transitions, then its transition

flag is “true”, which indicates that the transition can be selected to execute.

5.2.3 Existential Quantification

Because a specification can be nondeterministic, more than one transition can be enabled

and have the same highest relative priority. Each of these priority-enabled transitions needs

to be explored separately as part of an exhaustive search of all possible executions. To

consider each of these transitions as possible steps, we existentially quantify the transition

flags. Because this is existential quantification over a finite set of boolean variables, it can

be easily encoded for BDD-based model checker.
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5.3 Implementation

In this section, we describe in detail how we codify in S+ the syntax constructs of a

composed collection of HTSs, the HTSs’ snapshot elements, the step semantics, and the

composition operators.

5.3.1 Representation of Syntax

For describing a CHTS’s meaning in logic, we chose to use a deep embedding [7]. There

are two approaches to embedding a notation in higher-order logic: shallow embedding

and deep embedding. In a shallow embedding, the syntactic constructs are represented

as functions in the logic notation, and the meaning of the constructs are captured by the

meaning of the logic [21]. In a shallow embedding, we do not need to define semantic

functions to map a notation’s syntax to its meaning; however, in the process of expressing

the specification in logic, the structure of the original notation’s syntactic constructs may

be lost. In a deep embedding, the notation’s syntactic constructs are represented as data

and the user provides semantic functions that give meanings to the syntax constructs in

terms of logic. Deep embedding allows a CHTS specification to keep its original syntactic

structure and to maintain the distinction between the syntax of a notation and its meaning

in logic. Deep embedding is the proper choice for our implementation of Metro because

the whole goal of Metro is to be able to modify the semantics description of a notation.
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HTS

In our implementation, we define an HTS’s syntactic constructs, such as states and transi-

tions, in a format that can be easily understood and constructed by users who are familiar

with model-based notations. The syntax elements of an HTS are collected into an “HTS”

tuple, represented as a data type in S+, whose BNF is shown in Figure 5.2. In the HTS’s

syntax definition, we use symbol “#” to separate the elements of a tuple. The state hi-

erarchy state hie is a tree of states, in which basic states are leaf nodes and super-states

are nonleaf nodes. A super-state node has a state name, a default state, and one or more

child states, which themselves can be either super-states or basic states. A collection of

state-accessor functions that retrieve a state’s child states, its default state, its rank, and

so on, are implemented by traversing the state hierarchy that is rooted at the state.
A transition is represented as a 7-tuple, where the transition’s trigger event and en-

abling condition are represented using the event construct and the expression language,

respectively. These constructs can be complex and have their own syntax and semantics

that are described in subsection 5.3.4. An action consists of a list of generated events

and a list of variable assignments, and the explicit priority is defined as a number. The

representation is different from a transition’s definition presented in Chapter 3 in that tran-

sition elements are not optional. If a notation has no control state, we will use a constant

no state in the place of a state. The absence of the other elements is handled in a similar

way by using constants.
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/* Syntax definition for a single HTS */

<HTS> ::= <hts_name>
# <state_hie>
# <trans_list>

<hts_name> ::= <ID>

/* Syntax definition for a state hierarchy */

<state_hie> ::= "super_state" <default_child> <state_name> <state_hie_list>
| "basic_state" <state_name>

<state_hie_list> ::= <state_hie> {<state_hie>}*
<default_child> ::= <state_name>
<state_name> ::= <ID>

/* Syntax definition for a transition */

<transition> ::= <trans_name>
# <state>
# <event>
# <condition>
# <action>
# <NUM> /* priority */
# <state>

<trans_name> ::= <ID>

<state> ::= controlState <state_name> | <no_state>

<action> ::= <variable_assignment_list>
# <event_name_list>

...

Figure 5.2: Syntax definition for an HTS
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Composition of HTSs

We represent a specification’s composition hierarchy as a tree whose BNF is shown in Fig-

ure 5.3, where each HTS is a leaf and each composition is a nonleaf node. A leaf HTS

is represented by a tuple “HTS” described previously. A nonleaf node represents a com-

position sub-tree consisting of the composition operator, a state name for the root of the

composition’s sub-tree, and links to the composition’s two child states representing the

composition’s two components. A composition sub-tree may contain additional elements,

e.g., an event name list , depending on the composition operator. The composition hier-

archy is expressed as data in S+.

/* the syntax for a composition hierarchy */

<composedHTS> ::= "SingleHts" <HTS>
| "Para" <state_name> <composedHTS> <composedHTS>
| "Intl" <state_name> <composedHTS> <composedHTS>
| "EnvSync" <state_name> <composedHTS> <composedHTS>

<event_name_list>
| "RendSync" <state_name> <composedHTS> <composedHTS>

<event_name_list>
| "Interr" <state_name> <composedHTS> <composedHTS>

<trans_list>

Figure 5.3: A composition hierarchy

5.3.2 Representation of Snapshots

Recall that a snapshot is an observable point of the execution of an HTS. It collects, for a

single HTS, information about current states (CS ), generated events (IE ), variable values
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(AV ), and events output to the environment (O). Four auxiliary elements, CSa , IEa ,AVa ,

and Ia , accumulate data about states, internal events, variable values, and events input

from the environment, respectively.

As defined in template semantics, our implementation maintains a distinct snapshot

for each HTS. The collection of snapshots for a composed collection of HTSs (CHTS) is

expressed as a tree whose structure matches the composition tree of the CHTS and whose

leaves are the HTSs’ snapshots. No snapshot is defined for a nonleaf node. An HTS uses

its snapshot to record the values for its basic states, events, and variables. An event or a

variable that is shared among several HTSs must have a representative in each of the HTSs’

snapshots, and these representatives must all have the same name. In contrast, states,

events, and variables that are local to an HTS must have names unique in a specification.

A snapshot is implemented as a tuple of eight elements (Figure 5.4). We use characteristic-

predicate representations for CS , CSa , IE , IEa , Ia , and O . For example, CS and CSa are

defined as lists of (state name, state value) pairs, where a state value is of boolean type.

A state value of “true” means that the state is in the snapshot element, and a state value

of “false” means that the state is not in the snapshot element. To reduce the size of the

state space, only basic states are stored in a snapshot implementation. A super-state is

encoded as the disjunction of all its descendant basic states. IE , IEa , Ia and O , are defined

as lists of (event name, event value) pairs, where an event value is of boolean type. If an

event occurs in the environment or is generated by a transition, then it becomes an element

in one or more of the event-related snapshot elements, and its event value in that snapshot

element is “true”; otherwise its value in that snapshot element is “false”. AV and AVa are

defined as (variable name, variable value) pairs, where a variable value is the snapshot’s
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/* snapshot elements */

<snapshot> ::= <state_pair_list> /* CS */
# <event_pair_list> /* IE */
# <variable_pair_list> /* AV */
# <event_pair_list> /* O */
# <state_pair_list> /* CSa */
# <event_pair_list> /* IEa */
# <variable_pair_list> /* AVa */
# <event_pair_list> /* Ia */

<state_pair_list> ::= {"("<ID> "," <bool> ")"}*
<event_pair_list> ::= {"("<ID> "," <bool>")"}*
<variable_pair_list> ::= {"("<ID> "," <variable_type>")"}*

<variable_type> ::= <bool>
| <enumerated>

Figure 5.4: Snapshot definition

value of the corresponding variable and can be of type of boolean or enumerated.

5.3.3 Representation of Step Semantics

In template semantics, a notation’s step semantics is its macro-step semantics, where a

macro-step is a sequence of one or more micro-steps. In this subsection, we describe how

to represent the macro-step and micro-step definitions for an HTS. The implementation

is constructed to match the template-semantics definitions as closely as possible. The

implementation realizes template definitions as predicates, and preserves the orthogonality

of the snapshot elements.
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Macro-Step

Recall that in template semantics, we define three kinds of macro-steps: a diligent simple

macro-step, a nondiligent simple macro-step, and a stable macro-step. The diligent simple

and nondiligent simple macro-steps are implemented as obvious logical representations of

their template-semantics definitions. We implement a stable macro-step as a sequence of

conditional micro-steps. Figure 5.5 shows a pseudo-code representation of a conditional

micro-step. A conditional micro-step takes as input an HTS (including its set of transitions,

its state hierarchy, etc.), the step’s current and next snapshots (ss and ss ′), and the input

from the environment. If the current snapshot is not stable, i.e., some transitions are

enabled, then the HTS takes a micro-step, which is defined in the next subsection. If

the current snapshot is stable, i.e., no transitions are enabled, then a new snapshot ssi is

computed, which is the result of resetting the current snapshot with the input events and

variables from the environment. Thus, the definition of a conditional step introduces an

intermediate snapshot that records new inputs from the environment, without introducing

an intermediate micro-step. The HTS then takes a micro-step if the reset snapshot ssi is

not stable; otherwise, it takes an idle step.

Micro-Step

In template semantics, a micro-step is defined as a snapshot relation:

Nmicro(ss , τ, ss
′) ≡ (τ ∈ pri enabled trans(ss ,T )) ∧ apply(ss , τ, ss ′)

In a micro-step, exactly one transition in an HTS executes. The transition can be any

transition that satisfies four constraints:
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ConditionalMicroStepHTS (HTS, ss, ss’, input) :=
IF HTS is not stable in ss THEN

MicroStepHTS (HTS, ss, ss’)
/* moves from ss to the next snapshot ss’ */

ELSE
ssi := reset (ss, input);
IF HTS is not stable in ssi THEN

MicroStepHTS (HTS, ssi, ss’)
/* moves from ssi to the next snapshot ss’ */

ELSE
IdleStep (HTS, ssi, ss’)

Figure 5.5: A conditional micro-step

1. It is enabled in the current snapshot.

2. Transitions that have priority over it are not enabled in the current snapshot (in

other words, it has the highest relative priority among enabled transitions).

3. Its effects, when applied to the current snapshot, lead to the next snapshot.

4. No other transition executes.

A pseudo-code representation of a micro-step is shown in Figure 5.6, where each con-

junct implements one of the above constraints. “tFlags” is a set of transition flags, one

for each of the HTS’s transitions. Helper function “trans(HTS )”, returns the set of transi-

tions in an HTS. Function “zip(tFlags , trans(HTS ))” produces the set of pairs (tflag , tr),

called transFlags , that associates each of the HTS’s transitions, tr , with a unique tran-

sition flag tflag . We apply a universal quantifier over the pairs (tflag , tr) to ensure that

the transition that executes in a micro-step, i.e., the transition whose tflag is true, is a

priority-enabled-transition. We apply an existential quantifier over the set of transition
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flags tFlags to ensure that the symbolic evaluation expands all choices of tFlags that sat-

isfy all four constraints, and therefore all possible execution paths are explored. In Metro,

sets trans(HTS ), tFlags , and transFlags are expressed as lists in S+.

MicroStepHTS (HTS, ss, ss’) :=
exists tFlags .

let transFlags := zip (tFlags, (trans(HTS))) in
( (for all (tflag, tr) in transFlags

( (tflag -> enabled-trans (HTS, ss, tr))
/\ (tflag -> not-enabled-trans (HTS, ss, pri-t(HTS, tr)))
/\ (tflag -> apply (HTS, ss, tr, ss’))))

/\ (XOR (tFlags)))

Figure 5.6: A micro-step

The predicate enabled -trans takes as parameters an HTS tuple, a snapshot, and a

transition, and determines whether the transition is enabled in the provided snapshot. The

predicate mirrors the template-semantics definition and is defined as a conjunction of three

user-provided parameter predicates, en cond , en events , and en states . The en cond

predicate determines which variable-related snapshot elements, AV or AVa , are employed

to evaluate variables in the transition’s condition and if the transition is enabled with

respect to the condition; the en events determines which event-related snapshot elements,

IE , IEa , and Ia , are used to interpret a transition’s event and if the transition is enabled

with respect to the events; the en states determines which state-related snapshot element,

CS or CSa , is applied to decide if a transition’s source state can enable the transition.

An enabled transition t can execute only if there is no higher-priority transition enabled.

Function pri -t is a function that takes as input an HTS tuple and transition t , and returns

a list of transitions that have priority over transition t . The predicate not-enabled -trans
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takes as parameters an HTS tuple, a snapshot, and the set of transitions returned by pri -t ,

and checks that there is no transition of priority higher than t that is enabled. Predicate

not-enabled -trans is defined as the negation of the disjunction of a collection of enable-

trans predicates, each of which tests whether a higher-priority transition is enabled. The

predicate is true if no such transition is enabled.

The update of the snapshot by a transition is implemented as predicate apply that

takes as parameters an HTS tuple, the current and next snapshots, and a transition. The

apply determines whether applying the actions of the transition to the correct snapshot

can result in the next snapshot. Predicate apply is defined as a conjunction of eight

user-provided parameter predicates, next CS , next CSa , next AV , next AVa , next IE ,

next IEa , next O , and next Ia , each of which specifies how a particular snapshot element

is updated when a transition executes. For example, the predicate next CS constrains the

state values in the next snapshot. In the implementation of next CS , the state value for

the basic state that is entered by the transition should be “true” in the next snapshot,

whereas all other basic states should be “false”. Finding the basic state that is entered by

a transition is implemented as an accessor function that walks over the state hierarchy to

find the default descendant basic states of the transition’s destination state.

An exclusive OR function on all transition flags, XOR(tFlags), ensures that exactly

one transition that satisfies the first three constraints executes in a particular step.

5.3.4 Semantic Functions for HTS Syntax

We use a deep embedding to represent the syntax of a CHTS, so we need to define a set of

semantic functions to map the state constructs, event constructs, and expression constructs
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to their meanings in logic.

In Metro, the values of an HTS’s basic states, events, and variables are recorded in

its snapshot, which is represented as a symbol table. The semantic functions map HTS’s

syntax constructs to queries of snapshot elements. These functions are employed by tem-

plate parameters to evaluate whether a transition is enabled, and to compute the effect

of a transition’s action with respect to the current snapshot. We have implemented a

collection of semantic functions for these syntax constructs in Metro. The meaning of a

state construct has been discussed in the previous subsection 5.3.2, so we discuss only the

semantic functions for events and variables here.

A triggering event of a transition is represented using an event construct (see Fig-

ure 5.7). The semantic function for events evaluates a transition’s event construct with

respect to the snapshot: for a positive event, the semantic function looks the event name

up in the snapshot and returns its corresponding event value. For a negative event, the

semantic function looks the event name up in the snapshot and returns the negation of

the event name’s corresponding event value. For a compound event, the semantics func-

tion returns its value as “true” if each conjunct is evaluated to “true”. We use no event

for those transitions that do not have events. A transition with no event in its trigger is

always enabled with respect to events.

An expression over variables is used to represent a transition’s enabling condition or

used in a variable assignment as part of a transition’s action. Our implementation accom-

modates boolean and enumerated data types that can be model checked. For example,

a boolean expression can be a constant, a variable name, or expressions connected by

boolean operators, e.g., “and”. The semantic function for variables looks a variable name
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<event> ::= "positive-event" <event_name>
| "negative-event" <event_name>
| "conjunction" <event> <event>
| <no-event>

<event-name> ::= <ID>

Figure 5.7: Event definition

up in the snapshot, and returns its corresponding variable value. The semantic function

for expressions evaluate an expression with respect to the snapshot and returns the value of

the expression. We implement the semantic function to handle standard boolean operators.

5.3.5 Representation of Composition Operators

In template semantics, multiple HTSs are combined into a composition hierarchy (a bi-

nary tree structure of components) via a collection of composition operators. A composi-

tion operator is defined as a predicate that constrains and overrides the execution of its

components, each of which can be an HTS or a composed HTS (CHTS). For example, the

predicate for a interleaving composition operator allows one enabled component to execute,

and the other component to update its events and variables.

This subsection describes how to implement five of the composition operators defined

in Chapter 4: interleaving, parallel, environmental synchronization, rendezvous synchro-

nization, and interrupt.



5.3. IMPLEMENTATION 115

Micro-Step and Macro-Step

The micro-step for a CHTS is the concurrent execution of a set of executing transitions,

at most one from each leaf HTS, or a transition from a nonleaf node in place of any

transition from the node’s descendent HTSs. A micro-step moves the system from the

current snapshot tree to the next snapshot tree.

We implemented three kinds of macro-steps for composition operators: a diligent sim-

ple macro-step, a nondiligent simple macro-step, and a stable macro-step, represented as

a sequence of conditional composition micro-steps. Pseudo-code descriptions for all three

macro-step semantics are shown in Figure 5.8, where reset updates the collection of snap-

shots with new input , an Idle-step makes no change to the collection of snapshots, and a

<Micro-step-composition > implements the micro-step semantics for a composition oper-

ator. A <Micro-step-composition > takes as input a composition tree, in which the leaves

are HTSs and the root is a composition operator or an HTS, and its corresponding current

and next snapshot trees, in each of whose structures match the structure of the composi-

tion tree. A < Micro-step-composition > uses the root composition-operator’s constraint

to define how to override the semantics of its two composition sub-trees. We implement

the micro-step semantics for five composition operators.

A composition operator at the micro-step level is realized using its two operands’ step

semantics, to represent the operand components’ execution, and using constraints to control

when the components execute. The composition operator may override or update its

components’ snapshots to express sharing of variables and events. The constraints set by

upper-level composition operators are recursively propagated to components, down to the
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/* the simple diligent macro-step definition for a composition tree */

MacroSimpleDili (composedHTS, ss, ss’, input) :=
let ssi := reset (ss, input) in
(IF composedHTS is stable in ssi THEN

Idle-step (composedHTS, ssi, ss’)
ELSE <Micro-step-composition> (composedHTS, ssi, ss’)

/* composedHTS moves from ssi to the next snapshot ss’ */
);

/* the simple non-diligent macro-step definition for a composition tree */

MacroSimpleNonDili (composedHTS, ss, ss’, input) :=
let ssi := reset (ss, input) in
( Idle-step (composedHTS, ssi, ss’)
OR <Micro-step-composition> (composedHTS, ssi, ss’)

/* composedHTS moves from ssi to the next snapshot ss’ */
);

/* the conditional micro-step definition for a composition tree */

ConditionalMicroStep (composedHTS, ss, ss’, input) :=
IF composedHTS is not stable in ss THEN

<Micro-step-composition> (composedHTS, ss, ss’)
/* composedHTS moves from ss to the next snapshot ss’ */

ELSE
ssi := reset (ss, input)
IF composedHTS is not stable in ssi THEN

<Micro-step-composition> (composedHTS, ssi, ss’)
/* composedHTS moves from ssi to the next snapshot ss’ */

ELSE Idle-step (composedHTS, ssi, ss’)

Figure 5.8: Step definitions for compositions
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HTSs at the leaves of the composition hierarchy. Each composition operator is expressed

as a logical constraint:

• The parallel composition allows its enabled operand components to execute in the

same step.

• The interleaving composition allows only transitions in one enabled component to

execute even if both components contain enabled transitions.

• A composition that supports synchronization forces the leaf HTSs to execute only

transition(s) triggered by a synchronization event in the synchronization case; when

reacting to a nonsynchronization event, only one component can execute, and that

component may not execute any transition triggered by a synchronization event.

• The interrupt composition compares the interrupt transitions (that pass control be-

tween components) with all the transitions within the components to determine

whether an enabled interrupt transition executes or one of the components executes.

A leaf HTS’s transition participates in a step of the composed machine if it satisfies

all of the constraints established by all of the upper-level composition operators and if

it is selected to execute by the leaf HTS, e.g., it has the highest priority among all the

HTS’s enabled transitions. The enabling condition for a composition is implemented as

a separate concern from the execution constraint, which updates snapshot elements and

exchanges data as a result of the step’s set of executing transitions. A composition’s

enabling condition is recursively defined to check that the operand components satisfy

conditions, set by upper-level composition operators.
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Communicate, Communicate vars, and Update

Composition operators use macro predicates communicate vars and communicate to com-

bine the effects of concurrently executing components and produce globally-consistent

snapshots. To capture the case in which both components take a micro-step and share

updates to variables or events, we introduce intermediate snapshots in template semantics.

A component’s intermediate snapshots �iss (defined on page 71) record the results from the

component’s own transitions’ executions. Macros communicate vars and communicate

effectively combine the partial results from the components’ respective intermediate snap-

shots, exchanging shared events and assignments to shared variables, and produce the

components’ next snapshots.

To implement the intermediate snapshots in communicate vars and communicate, we

introduce an intermediate snapshot element for each variable-related and event-related

snapshot element, respectively. These intermediate snapshot elements are added as ad-

ditional elements to the snapshot, which is a tuple of eight elements, thus, no interme-

diate step is introduced. Our implementation of template semantics uses two predicates

communVar and commun to implement communicate vars and communicate predicates,

respectively. Predicate communVar computes the next value of an HTS’s snapshot element

AV when a composition takes a step: (1) the user-provided parameter next AV computes

each HTS’s executing transition’s variable assignments and stores the result in its inter-

mediate snapshot element iAV , and (2) communVar takes as input an HTS’s snapshot

elements AV and iAV , plus all of the iAV elements in all of the other executing HTSs,

and computes the HTS’s next snapshot element, AV ′, which reflects all the changes to
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shared variables by the executing transitions. Similarly, each HTS’s snapshot element AV ′
a

is computed by predicates communVar and next AVa . Predicate commun computes the

next value of each event-related element, IE , IEa , or Ia , for one HTS in a similar manner.

In a composition operator, if one component (a CHTS or a leaf HTS) does not take any

transition in a step, the update function is applied to modify the component’s variables and

events in all of the leaf-node snapshots, to reflect the effects of the executing transitions

in the other component. In the nonexecuting component, the update function takes as

input the next snapshot elements of the executing component, and uses them to modify

the nonexecuting component’s snapshot elements that are shared with the executing com-

ponent. The snapshot elements that are local to, i.e., not shared with, the nonexecuting

operand are not changed. In the executing component, the next snapshots are modified by

the component’s executing transitions only, as there are no effects from the nonexecuting

component to incorporate.

Parallel and Interleaving

The implementation of micro-steps for parallel and interleaving composition operators

mimic their definitions in template semantics.

Environmental Synchronization

In environmental synchronization, there are three kinds of possible steps:

• Both operands take a micro-step and execute only transitions that are triggered by

some synchronization event se, where se is in the set sync ev set of environmental

synchronization events. (case 1)
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• One operand takes a micro-step and executes only transitions that are triggered by

some synchronization event se. The nonexecuting operand has no transition among

any of its leaf HTSs that is triggered by se. (case 2)

• One operand takes a micro-step and executes only transitions that are triggered by

events not in sync ev set . (case 3)

The condition in case 1 is represented as a disjunction of predicates every-trans-

on-syncev , one for each synchronization event se in set sync ev set . Each predicate

every-trans-on-syncev takes as input all of the step’s transitions and an event se in set

sync ev set ; it returns true if all of the transitions are triggered only by event se. (A

transition triggered by event se executes only if it also satisfies all of the constraints of

the lower-level composition operators and the leaf HTS.) Case 2 tests that all executing

transitions in the executing component are triggered by the same synchronization event

and that no defined transition in the nonexecuting component can be triggered by the

same synchronization event. Case 3 tests that no executing transition is triggered by any

synchronization event. Case 2 and case 3 can be represented in a similar way, except that

case 2 allows one component to take a synchronized step and case 3 allows one component

to take a nonsynchronized step.

Rendezvous Synchronization

In rendezvous synchronization, two kinds of steps are possible:

• Both operands take a micro-step. Exactly one transition that generates a synchro-

nization event executes in one component, and exactly one transition that is triggered
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by the same event executes in the other component.

• One operand takes a micro-step and executes only transitions that neither trigger on

nor generate a synchronization event.

Usually, events generated in the current snapshot are recorded in the next snapshot and

may trigger transitions in the next step. In contrast, a rendezvous event is generated by

a transition in one operand (“generating” operand), and triggers a transition in the other

operand (“triggered” operand) in the same step. To realize this behaviour, we introduce

intermediate snapshots �rss , for the “triggered” operand, that contain the generated ren-

dezvous event in the event-related snapshot elements. The step in the “triggered” operand

starts from the intermediate snapshots containing the rendezvous event, and triggers one

transition enabled by the synchronization event.

The generated rendezvous event is not stored in either operand’s next snapshot tree

because the event has been processed in the current step. To reflect this behaviour in

the “generating” operand, we replace the transition that generates the rendezvous event

with a “modified-rendezvous” transition, whose event-generation field is empty and whose

other fields are the same as the fields of the executing rendezvous transition (we call a

transition that generates or is triggered by a rendezvous event a rendezvous transition).

communEv and communVar work as described above.

In the “triggered” operand, the current snapshots �ss are updated by the executing

rendezvous transition (to reflect the local effect), whereas the intermediate snapshot �rss

is only used to trigger the rendezvous transition. Predicates communEv and communVar

are used to compute the next snapshots to incorporate the changes made by the executing
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rendezvous transition in the “generating” operand.

Interrupt

An interrupt transition transfers control from one component to another. Its source state

and destination state can be either a component itself or a state inside a component. In

the implementation, we treat an interrupt transition originating from a component as a

transition whose source state is the component state. (Recall that we define for each

composition a state, which is a super-state for all the states inside the component.) We

treat an interrupt transition whose destination is a component in a similar manner.

5.3.6 Scope of Implementation

We define 28 types and implement 230 functions to represent the template definitions, five

composition operators, and sample template-parameter values.

Our current implementation realizes all of the template definitions and three types

of macro-step definitions. These semantics definitions are parameterized by template-

parameter values, which are provided by users. To help users define parameter values, we

have implemented the helper functions and a number of sample parameter values, defined

in Chapter 3. In addition, we have implemented five composition operators: interleaving,

parallel, environmental synchronization, rendezvous synchronization, and interrupt, at the

micro-step level. The other composition operators that are defined in the dissertation

have not yet been implemented. Our implementation of Metro can be used to produce a

transition relation for a model-based specification.
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5.3.7 Testing and Inspection of Implementation

To assure the quality of the implementation of the parameterized model compiler, we have

performed tests and inspections on all of the implemented template definitions, template

parameters, helper functions, or composition operators, such as the nondiligent simple

macro-step, and different priority schemes.

To validate the parameterized model compiler, we have employed examples for a num-

ber of template-parameter values and five composition operators (interleaving, parallel,

interrupt, rendezvous synchronization, and environmental synchronization) to examine if

the implemented definitions preserve their desired behaviour by using the simulation tool

in Fusion. For example, we have used a specification shown in Figure 4.17 on page 86

to check the sequence of steps that a rendezvous composition can execute in a simulation

run. If both transitions t1 and t3 execute in the first step (by observing how values of

variables x and y and the states in the next snapshots are updated respectively), and

only one of transitions t2 and t4 executes in the next step, then more confidence on the

implementation of rendezvous can be gained.

We have conducted inspections on the codified template definitions as well, such as

walking through the design decisions, reviewing code, and analyzing the simulation results,

to improve the reliability of the parameterized model compiler.

5.3.8 Limitations

Each HTS has its own snapshot. Therefore, to represent the communication of events

and variables that are shared among a composed collection of HTSs, we introduce an
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intermediate snapshot element for each variable and event in each HTS. These intermediate

snapshot elements add additional variables to snapshots, rather than introducing extra

steps. We also introduce for each transition a transition flag to coordinate the transition’s

en cond , pri , and apply predicates. Thus, the state space of the original specification is

increased.

5.4 Summary

This chapter describes the construction of a parameterized model compiler Metro based

on template semantics. Metro is built on the existing tool suite Fusion and takes as

input a specification in a certain notation and the semantics description of the notation,

expressed as a collection of template-parameter values and a set of composition operators,

and produces as output a specification’s transition relation, which can be analyzed by a

model checker. A parameterized model compiler reduces the effort in using a semantics-

based model checker: (1) a notation’s semantics is represented by a set of parameter values,

rather than being formally defined in a semantics-description language, and (2) whenever

a notation evolves, users need modify only the related parameter values to reflect the

changes, rather than changing the entire semantics description.



Chapter 6

Validation

This dissertation proposes a new template-based approach to ease the mapping of multiple

model-based notations to the input languages of formal-analysis tools. We have imple-

mented a parameterized semantics-based model compiler, Metro, which takes as input the

template-semantics description of a notation and compiles a specification in the notation

to its transition relation that can be model checked.

This chapter uses specifications of a heating system and a single-lane bridge as two

examples to evaluate our parameterized approach to semantics-based model compilation.

We demonstrate that template semantics is a parsable and succinct input language to

our model compiler Metro: the semantics of the two examples specified in two different

model-based notations can be represented by (1) instantiating the template’s parameters

and (2) mapping the notations’ composition operators to pre-defined template composition

operators. The correctness of this approach is verified by using model checking to show

that properties of the specification are preserved in the transition relation produced by

125
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Metro. Further, we describe work that validated the correctness of the template-based

approach by showing that the same set of properties hold in both a hand-generated SMV

model and an SMV model generated by a template-semantics-based translator Express.

Template semantics is particularly well-suited to define the operational semantics of

notations with control states and events, such as statecharts variants. We show that

template semantics can be employed also to describe the semantics for other model-based

notations, such as SCR [36] and SDL, and to handle sophisticated notation features, such

as statecharts’ history feature and timing conditions. Finally, we describe the utility of our

template semantics for helping to understand notations by showing how to use it to compare

statecharts variants (original statecharts [32], Maggiolo-Schettini et.al.’s statecharts [46],

RSML [43], STATEMATE [33], and UML state models [56]).

6.1 Case Studies

In this section, we use two case studies, a heating system and a single-lane-bridge system,

to show a proof of concept that template semantics can be used for parameterized model

compilation. The two examples were chosen to evaluate our parameterized compiler Metro

because they are specified in two notations that belong to two different categories of model-

based notations, statecharts variants and process algebras, respectively, and because they

use an extensive range of our composition operators. We chose the template semantics

description for STATEMATE statecharts to define the meaning of the heating system.

The template semantics description of CSP, augmented with variables, is used to specify

the single-lane-bridge system.
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We show that template semantics is succinct by showing that the execution semantics

of multiple notations can be represented through the choice of template parameters, each of

which is a simple and small logic formula that can be defined using less than ten primitives,

namely, snapshot elements, helper functions, logic operators, and set operators.

6.1.1 Heating System

The heating system consists of a room to be heated, a furnace, and a controller [21]. The

room has a valve that controls airflow into the room; the valve can be open, or closed. The

room also has a sensor that measures the room temperature. If the room temperature is

lower than desired (too cold), the system warms the room by opening the valve to increase

the inflow of heated air. If the room continues to be too cold, the room requests heat.

The system behaves analogously when the room temperature is too hot. The controller

activates and deactivates the furnace on request from the room. Faults can occur in the

system; such faults are communicated to the furnace and the controller simultaneously.

After a fault, the furnace can be restarted by the controller once the controller is reset by

the user.

The heating system is decomposed into four HTSs: furnace, controller , noHeatReq ,

and heatReq , and Figure 6.1 shows its composition structure. Each dashed line is a com-

position, whose operator is named in the line’s center circle and whose two operands are

the boxes that lie on either side of the line. HTSs noHeatReq and heatReq are composed

into component room using interrupt composition, whereby control can transfer between

the two components via interrupt transitions, t19 and t20. HTS furnace, HTS controller ,

and component room run concurrently via parallel composition to form the heating sys-
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tem specification. The heating system reacts to the input events (furnaceFault , userReset ,

heatingSwitchOff , and heatingSwithOn) and input variables (tooCold and tooHot); it uses

internal events (activate, deactivate, furnaceReset , and furnaceRunning) to communicate

between the furnace and the controller . Variable requestHeat is shared between compo-

nents room and controller and communicates whether the room needs heat or not.

controllernoHeatReq heatReq furnacepara

room

house

heatingSys

[t19 , t20]

interr para

Figure 6.1: Heating system

Figure 6.2, Figure 6.3, and Figure 6.4 depict the specifications of the furnace, the

controller, and the room of the heating system, respectively.

HTS furnace has four basic states to represent the furnace being turned off, being

turned on, running, and having an error, respectively. HTS controller uses five basic states

to represent the controller being turned off, having an error, being on but idle, starting the

furnace, and running the furnace, respectively. Component room contains four basic states

to represent the room not being heated, requesting heat, being heated, and not requesting

heat. Initially, the heating system is in the basic states, furnaceOff , off , idleNoHeat , and

idleHeat , and the values for all variables are set to “false”.

We chose the template semantics description for STATEMATE statecharts to define the

meaning of the heating system specification. Next, we present the template semantics de-
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furnace

furnaceErr

furnaceNormal

t4 : deactivate

t2 : deactivate

t1 : activate

/ furnaceStartup = false

t3 : [ furnaceStartup = true]

^ furnaceRunning

t5 : [ furnaceStartup = false ]

    / furnaceStartup = true

t7 : furnaceFault

t6 : furnaceReset

furnaceRun

furnaceOff  furnaceAct

Figure 6.2: Furnace HTS

controller

error

idle

controllerOn

t12 : [ requestHeat=true ]

^ activate

t14 : [ requestHeat= false ]

^ deactivate

t8 : userReset

^ furnaceReset

t10 : heatingSwitchOff

 ^ deactivate

off

heaterRunactHeater

t9 : heatingSwitchOn

t13 : furnaceRunning

t11 : furnaceFault

heaterActive

Figure 6.3: Controller HTS
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waitForHeatidleNoHeat

t15 : [ tooCold ]

/ valvePos = true

/ waitedForWarm = false

noHeatReq

waitForCoolidleHeat

t21 : [ tooHot ]

/valvePos = false

/ waitedForCool = false

heatReq

t19 : [ waitedForCool  = true

& valvePos = false & tooHot ]

/ requestHeat = false

t
16 

: [ ! tooCold ]

t22 : [ ! tooHot ]

t20 : [ waitedForWarm = true

 & valvePos= true & tooCold ]

/ requestHeat = true

t17 :  [ waitedForWarm = false]

        / waitedForWarm = true

t23 :  [ waitedForCool = false]

       / waitedForCool = true

room

Figure 6.4: Room HTSs
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scriptions for several statecharts variants, including STATEMATE. Statecharts, introduced

by Harel [32] in 1987, are hierarchical and concurrent state machines for specifying reactive

systems. Many dialects of statecharts have been proposed since then. They are similar but

with subtle differences, such as which states are active to enable transitions, which events

can trigger transitions, and which variable values are used to determine transitions’ en-

abling conditions. All three of the statecharts variants we surveyed use “stable” macro-step

semantics, but they have different micro-step semantics as shown in Tables 3.3–3.5.

A statechart with only OR-states is an HTS. Harel’s statecharts’ AND-states are formed

using our parallel-Harel composition; AND-states of RSML and STATEMATE match our

parallel composition. Transitions between components that contain AND-states correspond

to our interrupt composition.

STATEMATE permits conflicting variable-value assignments to occur among multi-

ple HTSs’ concurrent transitions in the same micro-step. The conflicts are resolved non-

deterministically:

resolveSTM (vv1, vv2, vv) ≡
((vv ⊆ vv1 ∪ vv2) ∧ (dom(vv) = dom(vv1 ∪ vv2)))

∧ (∀(a, b) ∈ vv .∀(c, d) ∈ vv .(a = c =⇒ b = d))

Table 6.1 presents the template-semantics descriptions for three statecharts variants,

STATEMATE, Harel’s statecharts, and RSML. This description extends the information

previously provided in Tables 3.3–3.5.
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Parameter statecharts [32] RSML STATEMATE

reset CS(ss, I ) ss.CS

next CS(ss, τ,CS ′) CS ′ = entered (dest(τ))

reset CSa (ss, I ) ss.CS n/a n/a

next CSa (ss, τ,CS ′
a ) CS ′

a = � n/a n/a

en states(ss, τ) src(τ) ⊆ ss.CSa src(τ) ⊆ ss.CS

reset IE(ss, I ) �

next IE(ss, τ, IE ′) IE ′ = ss.IE ∪ gen(τ)
IE ′ = gen(τ)

∩ intern ev(E)
IE ′ = gen(τ)

reset IEa (ss, I ) n/a n/a n/a

next IEa (ss, τ, IE ′
a ) n/a n/a n/a

reset Ia (ss, I ) I .ev

next Ia (ss, τ, I ′
a ) I ′

a = ss.Ia I ′
a = �

en events(ss, τ) trig(τ) ⊆ ss.IE∪ss.Ia

reset O(ss, I ) �

next O(ss, τ,O ′) O ′ = ss.O ∪ gen(τ)
O ′ = ss.O∪

(gen(τ) ∩ extern ev(E))
O ′ = gen(τ)

reset AV(ss, I ) assign(ss.AV , I .var)

next AV(ss, τ,AV ′)
AV ′ = assign(ss.AV ,

eval((ss.AV , ss.AVa ), asn(τ)))

AV ′ = assign(ss.AV ,

eval(ss.AV , asn(τ)))

AV ′ = assign(ss.AV ,

eval(ss.AV , last(asn(τ))))

reset AVa (ss, I ) assign(ss.AV , I .var) n/a n/a

next AVa (ss, τ,AV ′
a ) AV ′

a = ss.AVa n/a n/a

en cond(ss, τ) ss.AV , ss.AVa |= cond(τ) ss.AV |= cond(τ)

macro semantics stable stable stable

pri(Γ) no priority no priority lowest-ranked scope

resolve (vv1,vv2,vv) n/a n/a resolveSTM (vv1,vv2, vv)

Parallel
AND-state composition

(N para−Harel

micro )

AND-state composition

(N para

micro)

Environmental-sync n/a n/a n/a

Rendezvous-sync n/a n/a n/a

Interleaving n/a n/a n/a

Sequence n/a n/a n/a

Choice n/a n/a n/a

Interrupt OR-state composition

Table 6.1: Template parameters and compositions operators for statecharts variants (“n/a”
means “not applicable”)
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STATEMATE statecharts, in which the transitions with lower-ranked scopes have pri-

ority over transitions with higher-ranked scopes, suit our need for specifying the heating

system. For example in Figure 6.2, transitions t6 and t7 have priority over transitions

t1, t2, t3, t4 , and t5 . STATEMATE uses our parallel composition operator N para

micro, which

means that (1) composition operands, either components or HTSs, execute in the same

micro-step if they are enabled in the same micro-step, (2) shared events generated in one

operand can trigger transitions in both operands in the next micro-step, and (3) the update

of shared variables will be reflected in both operands. In interrupt composition, either one

of the two components executes in a micro-step or one of the interrupt transitions executes.

6.1.2 Single-Lane-Bridge System

The single-lane-bridge specification [44] models four cars travelling in two directions over

a single-lane bridge. Cars travelling in different directions cannot be on the bridge at

the same time. Cars travelling in the same direction can be on the bridge together, but

they cannot pass each other. To ease our presentation, cars travelling in one direction are

designated as red cars, and cars travelling in the other direction are blue cars.

Figure 6.5 depicts the top-level specification of the single-lane-bridge system. The

single-lane-bridge system is decomposed into eight HTSs: two red-car HTSs (Figure 6.6),

two blue-car HTSs (Figure 6.7), two red-car coordinators HTSs (Figure 6.8), and two blue-

car coordinator HTSs (Figure 6.9). We chose to use our interleaving operator to compose

the four car HTSs, redA, redB , blueA, and blueB , into component car , so at most one car

HTS can take a transition in each micro-step. The four coordinator HTSs, redCoordEnt ,

redCoordExit , blueCoordEnt , and blueCoordExit , are interleaved to form component coord .
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The two components, car and coord , are combined using the environmental synchronization

composition operator, and are synchronized on environment events, entRedA, entRedB ,

entBlueA, entBlueB , exitRedA, exitRedB , exitBlueA, and exitBlueB . When a synchro-

nization event occurs, both components execute transitions that are enabled by the event.

The coordination mechanisms we use in this example are probably excessive for the size of

system, but we chose it to exercise a variety of composition operators together.

redCoordEnt

redCoordExit

coordRed

intl

intl

blueCoordEnt

blueCoordExit

coordBlue

 intl

coord
singleLaneBridge

intl

red
A

red
B

redCar

intl

blue
A

blue
B

blueCar

intl

car

intl

env-

sync

[entRed
A
,

exitRed
A
,

entBlue
A
,

exitBlue
A
,

entRed
B
,

exitRed
B
,

entBlue
B
,

exitBlue
B
]

Figure 6.5: Single-lane bridge

Each car HTS has two states, such as waitRedA and onRedA in HTS redA, to indicate

that a car is waiting to enter the bridge and that a car is moving on the bridge, respectively.

The four car HTSs have four shared variables, redAin, redBin, blueAin, and blueBin, to

indicate which cars are currently moving on the bridge, respectively. Initially, the values for

these four variables are set to “false”. The cars of the same colour have two coordinators:

for example, the red cars have one coordinator, redCoordEnt , that ensures that the two
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onRedA

redA

waitRedA

t2 : exitRedA, / redAin=False

t1 : entRedA, [ blueAin=false  &  blueBin = false], / redAin=true

onRedB

redB

waitRedB

t4 : exitRedB, / redBin=False

t3 : entRedB, [ blueAin=false  &  blueBin = false], / redBin=true

Figure 6.6: Red car HTSs

onBlueA

blueA

waitBlueA

t10 : exitBlueA, / blueAin=False

t9 : entBlueA, [ redAin=false & redBin = false,] / blueAin=true

onBlueB

blueB

waitBlueB

t12: exitBlueB, / blueBin=False

t11 : enBlueB, [ redAin=false & redBin = false], / blueBin=true

Figure 6.7: Blue car HTSs
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coordEntRedBcoordEntRedA

t5 : entRedA

t6 : entRedB

redCoordEnter

coordExitRedBcoordExitRedA

t7 : exitRedA

t8 : exitRedB

redCoordExit

Figure 6.8: Red car coordinator HTSs

coordEntBlueBcoordEntBlueA

t13 : entBlueA

t14 : entBlueB

blueCoordEnter

coordExitBlueBcoordExitBlueA

t15 : exitBlueA

t16 : exitBlueB

blueCoordExit

Figure 6.9: Blue car coordinator HTSs
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cars take turns entering the bridge, and a second coordinator, redCoordExit , that ensures

that the cars leave the bridge in the order that they enter the bridge; the latter coordinator

prevents the cars of the same colour from passing each other on the bridge. Initially, the

single-lane-bridge system is the basic states, waitRedA, waitRedB , waitBlueA, waitBlueB ,

coordEntRedA, coordExitRedA, coordEntBlueA, and coordExitBlueA.

We chose CSP, a process algebra, for the single-lane-bridge example because of the syn-

chronization needed among multiple modules. Next, we present the template semantics

descriptions for several process algebras including the notation used for our single-lane-

bridge example. Process algebras are formal notations that use algebraic rules to describe

and reason about processes’ concurrent behaviours. All of CCS [51], CSP [37], and LO-

TOS [40], which we have surveyed, have “no priority” among transitions, have no state

hierarchy, and use “diligent simple” macro-step semantics. These semantics imply the val-

ues of several template parameters, for example, none of these languages use the auxiliary

snapshot elements, CSa , IEa , or AVa . The process algebras have similar step semantics,

and a rich set of composition primitives, which map to our interleaving, environmental

synchronization, rendezvous, sequence, and choice operators, respectively.

We use variables to facilitate specifying the single-lane-bridge system. We can easily

incorporate variables into the template semantics description of CSP because all variable-

related template parameters are orthogonal to the template parameters we use to describe

CSP. Both interleaving and environmental synchronization of CSP are used in the specifi-

cation. Environmental synchronization requires that all transitions executing in the same

step, regardless of which operand they are in, be triggered by the same synchronization

event; or that only one of the operands executes transitions that are not triggered on any
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synchronization event.

Table 6.2 presents the template semantics descriptions for process algebras, CCS, Basic

LOTOS, CSP, and its new variant, CSP with variables. This description extends the

information previously provided in Tables 3.3–3.5.

The template semantics descriptions of model-based notations presented in both Ta-

ble 6.1 and Table 6.2 are succinct – each notation’s execution semantics can be represented

by a set of parameters, the largest value of which is defined as a logic formula containing

eight primitives (in the definition of next AV for Harel’s statecharts, we use primitives

AV ′, assign, ss .AV , eval , ss .AV , ss .AVa , asn, and τ), and each notation’s composition

operators are mapped to our pre-defined composition operators. Whenever a notation’s

semantics evolves or a new variant is created (as we augment CSP with variables), the only

thing that a user has to do is to modify the parameter values to reflect the changes.

6.2 Model Checking Results

In this section, we used the BDD-based model checker in Fusion to verify the two case

studies. We show that using template semantics, multiple notations can be compiled using

one parameterized model compiler Metro. The correctness of our template-based approach

is checked by showing that properties of a specification are preserved in its transition

relation produced by Metro. The correctness is further validated by model checking both

a manually-created SMV model and an SMV model generated by the template-semantics-

based translator, Express, for these two examples.
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Parameter CCS CSP CSP with variables Basic LOTOS BTSs

reset CS(ss, I ) ss.CS

next CS(ss, τ,CS ′) CS ′ = dest(τ)

reset CSa (ss, I ) n/a

next CSa (ss, τ,CS ′
a ) n/a

en states(ss, τ) src(τ) ⊆ ss.CS

reset IE(ss, I ) n/a n/a n/a

next IE(ss, τ, IE ′) n/a n/a n/a

reset IEa (ss, I ) n/a n/a n/a

next IEa (ss, τ, IE ′
a ) n/a n/a n/a

reset Ia (ss, I ) I .ev I .ev n/a

next Ia (ss, τ, I ′
a ) true true n/a

en events(ss, τ) trig(τ) ⊆ ss.Ia trig(τ) ⊆ ss.Ia n/a

reset O(ss, I ) � n/a n/a

next O(ss, τ,O ′) O ′ = gen(τ) n/a n/a

reset AV(ss, I ) n/a assign(ss.AV , I .var) n/a assign(ss.AV , I .var)

next AV(ss, τ,AV ′) n/a
AV ′ = assign(ss.AV ,

eval(ss.AV , asn(τ)))
n/a

AV ′ = assign(ss.AV ,

eval(ss.AV , asn(τ)))

reset AVa (ss, I ) n/a n/a n/a n/a

next AVa (ss, τ,AV ′
a ) n/a n/a n/a n/a

en cond(ss, τ) n/a ss.AV |= cond(τ) n/a ss.AV |= cond(τ)

macro semantics simple diligent simple nondiligent

pri(Γ) no priority no priority

resolve (vv1,vv2,vv) n/a n/a

Parallel n/a

Environmental-sync a → P‖a → Q P | [a, b, c] | Q n/a

Rendezvous-sync a.P | ā.Q n/a n/a n/a

Interleaving n/a P ||| Q P ||| Q interleaving (macro-step)

Sequence P ; Q P ; Q P � Q concatenation (;) P ; Q

Choice P + Q P [ ]Q P [ ]Q selection (OR) P OR Q

Interrupt n/a n/a n/a n/a

a, b, and c: refer to process-algebra actions
P and Q : refer to process-algebra and BTSs components

Table 6.2: Template parameters and compositions operators for process algebras and BTSs
notations (“n/a” means “not applicable”)
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6.2.1 State Spaces of Case Studies

The parameterized model compiler takes as input an HTS specification and the snapshot

elements that record the values for the control states, events, and variables of a specifica-

tion. Table 6.3 and Table 6.4 show the snapshot elements and variables required for the

heating-system specification and the single-lane-bridge specification, respectively.

Specification Snapshot Intermediate Other

Element Element Snapshot Element Variables

22 transitions 0 element 0 element 22 variables

13 basic states 13 CS elements 0 element 0 variable

3 super-states 0 element 0 element 0 variable

3 local variables 3 AV elements 3 AV elements 0 variable

2 shared variables 2 AV elements 5 AV elements 0 variable

2 input variables 2 AV elements 2 AV elements 2 variables

4 internal events 4 IE elements 8 IE elements 0 variable

4 input events 4 Ia elements 4 Ia elements 4 variables

53 elements 28 snapshot elements 22 elements 28 variables

Table 6.3: Statistics for heating system

In the two case studies, all states, events, and variables are represented as boolean

variables. To reduce the size of the state space, the state-related snapshot element contains

only basic states; a super-state is encoded as a disjunction of all its descendant basic

states. For example, in the heating system snapshots, the four super-states needs zero
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Specification Snapshot Intermediate Other

Element Element Snapshot Element Variables

16 transitions 0 element 0 element 16 variables

16 basic states 16 CS elements 0 element 0 variables

4 shared variables 4 AV elements 16 AV elements 0 variables

8 input events 8 Ia elements 8 Ia elements 8 variables

44 elements 28 snapshot elements 24 elements 24 variables

Table 6.4: Statistics for single-lane-bridge system

state elements and the 13 basic states require a total of 13 state elements (Table 6.3).

According to our template semantics, each HTS has its own snapshot. Therefore, the

events and variables that are shared among a collection of HTSs must have representatives

in each of the HTS’s snapshots, and the names of corresponding representatives must be

the same. In the template-semantics definitions, an intermediate snapshot is used to reflect

the effects of the component’s own transitions. We have optimized the implementation to

contain an intermediate snapshot element for each variable and event only. For example,

variables “redAin”, “redBin”, “blueAin” and “blueBin” are used in four car HTSs in the

heating system, so that we create four intermediate variables for each variable in those four

HTSs, respectively (Table 6.4).

We introduce a boolean variable (transition flag) for each transition in the implemen-

tation. These is a variable to represent each input (variable and event), which is also been

recorded as a variable or event element in the snapshots. These variables are put in the

“other variables” columns in both Table 6.3 and Table 6.4.

The last row of each table shows the total of snapshot elements, intermediate elements,
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and other variables (transition flags for each specification).

6.2.2 Case Studies Using Metro

We have employed Fusion’s model checker to analyze the transition relation generated by

Metro for the heating system specification using the following properties. At the end of

each property listed below, we record the length of time (including the compilation and

model checking time) used for checking each property on a server with two 1.8GHz Intel(R)

XEON(TM) CPUs and 4096MB memory.

• All basic states of the furnace, the controller, and the room are reachable. (12

seconds)

• If the furnace is in its running state, the controller is in its running state also. (35

seconds)

• If the room is too cold and stays cold when the valve is open, the furnace will be

turned on. (15 seconds)

• If the room is too hot and stays hot when the valve is closed, the furnace will be

turned off. (16 seconds)

• The furnace will be turned on if a room requests heat, and will be turned off if no

room requests heat. (41 seconds)

We have checked the single lane bridge specification with Fusion’s model checker using

the following properties:
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• The states of the cars and the coordinators are reachable. (10 seconds)

• Two cars of the same colour can travel on the bridge at the same time. (14 seconds)

• A red car and a blue car cannot be on the bridge at the same time. (12 seconds)

• Two cars of the same colour cannot enter the bridge at the same time. (22 seconds)

• A car cannot pass another car on the bridge. (15 seconds)

Model checking the transition relation generated by Metro produced the same results

for these properties, i.e., that they are true of the models, as our verification by hand of

the models.

6.2.3 Case Studies Using Express

We have validated the correctness of our template approach by showing that the transition

relation generated by Metro satisfies a set of properties of its original model for two ex-

amples. This subsection describes additional work that verifies the correctness of template

semantics by model checking both a manually-created SMV model and its corresponding

model generated by the template-semantics-based tool, Express.

Lu et.al. [44, 45] uses template semantics to develop a parameterized translator called

Express, which takes as input a set of template parameters detailing a specification’s se-

mantics and transforms the specification written in CHTS into an SMV model of the spec-

ification. Express supports mapping multiple notations to SMV because it provides a list

of values of each parameter and provides a rich set of composition operators. The creation
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of Express illustrates that template semantics can support another type of parameterized

compilation in addition to Metro.

With the same set of template parameter values we used to define the meaning of the

heating system and the single-lane-bridge system, Express automatically transforms these

two specifications into their SMV models. Esmaeilsabzali, Wong, and Day [25] manually

specified these two examples in the input language of SMV and compared them with

Express generated SMV models. To test the correctness of template semantics descriptions

for these two examples, they showed that both models satisfied the same properties.

6.3 Methodology

This dissertation discusses a template-based approach to facilitating the mapping of mul-

tiple notations to analysis tools. This section outlines how to use template semantics to

represent the semantics of a specification notation, which can be used as an input to pa-

rameterized model compilation. To use template semantics, a user must (1) represent the

syntax of the notation as a CHTS, (2) choose instantiations for the 22 template parameters,

and (3) map the notation’s composition operators to those of template semantics.

To represent the syntax of a notation, the user must transliterate his or her specification

into CHTS syntax. Because CHTS is designed for model-based notations, it includes

syntactic features such as control states and events. The presence of these features means

that the syntactic mapping is usually a transliteration, i.e., mapping the notation’s control

states to HTS states, mapping its state hierarchy to an HTS state hierarchy, mapping its

events to HTS events, and mapping its variables to HTS variables. There may be multiple
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possible syntactic mappings. In general, we recommend using a mapping that is most like

a transliteration, but we have not yet fully explored these issues.

To choose instantiations for the parameters, the user needs to understand the meaning

of each parameter before defining its value. Parameter macro semantics determines the

macro-step type, which can be simple, either diligent or nondiligent, or stable. Param-

eter pri defines the transition priority scheme, which is used to handle multiple enabled

transitions with respect to the same snapshot. Parameter resolve describes the policy for

resolving conflicts among variable assignments in concurrent HTSs. The other 18 snapshot-

related parameters, such as en cond and next AV , are used to determine which transitions

are enabled in an HTS with respect to states, events, and variables, and how to update

snapshot elements to reflect the effect of a transition’s execution. Chapter 3 details the

meaning of each parameter and lists example options of each parameter. A set of helper

functions for accessing information about an HTS are provided, and they ease a user’s ef-

fort in defining new parameter values. There are some simple dependencies among choices

of parameter values, e.g., if next CSa is used, then reset CSa should also have a value.

We are working on a way to document these dependencies.

Multiple HTSs within a specification are combined into a composition hierarchy using

binary composition operators. A user can map the notation’s composition operators to the

composition operators pre-defined in template semantics, or define new composition opera-

tors. In mapping composition operators, a user needs to be aware that some combinations

of different composition operators may be problematic. For example, using the rendezvous

synchronization and the parallel composition operators together may have unexpected re-

sults. In the composition hierarchy, the upper-level composition operators override the
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semantics of lower-level composition operators. When a rendezvous synchronization is

used to combine two components A and B , each of which contains two HTSs composed by

a parallel operator, only one HTS in A (or B) can execute a rendezvous transition. The

behaviour of the rendezvous operator should override the parallel operator, which requires

that both HTSs in A (or B) should participate in the execution if both HTSs have enabled

rendezvous transitions.

If there is no direct match between a notation’s composition operator and a pre-defined

template composition operator, the user has to define the notation’s composition operator

using template parameters. The specification of a new composition is not hard because we

have defined a set of macros to help to define the coordination of two components, such as

communicating events and variables (see subsection 4.2.3 on page 70).

The template-semantics description for a specific notation can be used as input to model

compiler Metro, which compiles a specification in that notation into its transition relation

that can be model checked. Metro provides all common template definitions, plus sample

values for each parameter, helper functions, and five well-used composition operators.

Currently, Metro limits itself to support specifications whose variables are of finite data

types, as those are fully supported by the connected symbolic model checker. The inputs

to Metro, the CHTS representing the specification and the parameter instantiations, are

currently described in S+, the input language of Fusion.
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6.4 Additional Notations and Advanced Features

While template semantics is best-suited to describe the semantics of notations with control

states and named events, in this section, we show that template semantics can be used to

document the semantics of SCR, SDL, and Petri Nets. These three notations are quite

different from the notations we examined in the previous section and from each other.

Following the methodology outlined in the previous section, we describe the syntactic

mapping, the instantiation of template parameters, and the composition operators for each

notation. We show also that template semantics can be used to handle many advanced

features, such as history states.

6.4.1 SCR

In this subsection, we present the template semantics of the Software Cost Reduction

(SCR) notation, as defined in [35, 34]. SCR is an example of a dataflow language, in which

a specification comprises a network of functions that are composed via function compo-

sition; the network executes in response to new input, producing new output. Dataflow

languages were not included in our original survey; thus, this result demonstrates how tem-

plate semantics can accommodate a different communication mechanism from broadcast

or point-to-point communication.

In SCR, a system specification is a collection of mathematical functions represented as

tables. Each function specifies the value of one variable. SCR variables are partitioned

into monitored variables, which are set by the environment; controlled variables, which are

set by the system and output to the environment; and terms, which are internal variables
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set by the system. An SCR specification defines functions only for terms and controlled

variables. An SCR modeclass is a distinguished term, whose values are modes of operation

(or simply modes); effective choice of mode classes helps to structure the specification’s

other functions into cohesive cases.

A step in SCR semantics is the application of all of the specification’s functions: the

composition operator is functional composition, such that each of the specification’s func-

tions executes exactly once per step. Every step starts with a change in the value of

exactly one monitored variable, as per SCR’s One Input Assumption [35] (only one mon-

itored variable can change at a time). The specification’s functions are then applied in

an order that adheres to the definition-use relation among the functions’ variables: any

function that refers to updated values of variables must execute after the functions that

update those variables. These update dependencies impose a partial order on the specifi-

cation’s functions that must be respected during composition. A specification is ill-formed

if its dependency graph has a cycle.

SCR does not support named events. Instead, events are changes to the values of

conditions. A basic event, expressed as @T(cond), occurs in a step if the value of boolean

condition cond becomes true in that step. Basic event @F(cond), representing a condition

becoming false, can be expressed as @T(¬cond). Basic event @C(cond), where cond is

boolean, is equivalent to the expression @T(cond) ∨ @F(cond). Basic event @C(x), where

variable x is not necessarily boolean, occurs in a step if variable x changes value in that

step. Henceforth, we assume that all basic events are of type @T(cond) or @C(x), without

loss of generality, although for simplicity we’ll refer in general discussion only to basic

events of type @T(cond). A simple conditioned event, expressed as @T(cond1) WHEN
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[cond2], occurs in a step if its basic event @T(cond1) occurs in the step and its WHEN

condition, cond2, evaluates to true with respect to variable values that held at the start

of the step. A conditioned event is the conjunction and disjunction of multiple simple

conditioned events.

We will use a simple specification of an oven control system to help describe the SCR

notation. The oven’s monitored variables are

• Dial : {off, bake} – the user-set command

• SetT : [0..550] – the user-set temperature

• Temp : [0..600] – the air temperature in the oven

The modes are Heat (the oven is warming to temperature SetT ), Maintain (the system

is maintaining an oven temperature around SetT ), and Off. The system displays the

oven temperature via controlled-variable DisplayTemp whenever the oven is on and its

temperature is 175◦F or greater. To avoid rapid fluctuations in the displayed value, the

value is rounded down to the nearest number divisible by 25.

SCR uses two types of tables to express mathematical functions: condition tables and

event tables1. A condition table defines a case-based assignment to a variable. The

left table in Figure 6.10 shows a condition table for controlled variable DisplayTemp. The

bottom row of the table specifies the variable being assigned and its possible values. The

Mode column decomposes the function’s definition by mode value. Each of the table

entries defines a conditional assignment to the variable: if the current mode is one of the

modes listed in the row’s Mode-column entry, and if the table entry’s condition evaluates

1A mode-transition table, which defines assignments to a modeclass variable, is a type of event table.
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to true, then the variable is assigned the value listed at the bottom of the table entry’s

column. For example, DisplayTemp displays nothing if the oven is in mode Off or if the

oven temperature is below 175◦F. A table entry of X denotes an impossible case in the

function definition. Condition-table expressions always refer to current values of modes

and variables (c.f., expressions in event-table entries). A condition table’s cases must be

both mutually disjoint and complete; hence, each condition table defines a total function.

Condition Table Event Table

Mode Condition
Off True X
Heat, Temp<175 Temp≥175
Maintain

DisplayTemp’= 〈blank〉 �Temp/25�× 25

Mode Event
Off X @T(Dial=bake) @T(Dial=bake)

WHEN[Temp<SetT] WHEN[Temp≥SetT]
Heat @T(Dial=off) X @T(Temp≥SetT)
Maintain @T(Dial=off) @T(Temp<(SetT-20)) X

Mode’= Off Heat Maintain

Figure 6.10: Partial SCR specification of a control system for an oven

An event table is similar to a condition table, in that the table entries define mode-

partitioned, conditional assignments to a single variable. The right table in Figure 6.10

shows an event table for mode transitions in the oven control-system specification. Unlike

in condition tables, event-table entries are conditioned events over previous and current

variable values, and the modes in the Mode column are considered additional WHEN con-

ditions in these events. A particular table entry applies if one of the modes listed in the

row’s Mode-column entry held at the start of the step, if the entry’s basic events occur in

the step, and if the entry’s WHEN conditions held at the start of the step; then the table’s

variable is assigned to the value listed at the bottom of the table entry’s column. A table

entry of X denotes an impossible case in the function definition. The event table in Fig-

ure 6.10 is equivalent to the following, more traditional representation of a mathematical
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function, where unprimed variables refer to values that held at the start of the macro-step

and primed variables refer to values in the current snapshot:

Mode ′=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Off if (Mode=Heat ∧ Dial �=off ∧ Dial ′=off ) ∨
(Mode=Maintain ∧ Dial �=off ∧ Dial ′=off )

(* first case *)

Heat if (Mode=Off ∧ Dial �=bake ∧ Dial ′=bake ∧
Temp<SetT ) ∨

(Mode=Maintain ∧ Temp≮(SetT−20)∧
Temp ′<(SetT ′−20)

(* last case *)

· · ·

In the last case above, the modeclass transitions to mode Heat if the previous mode was

Maintain, the oven temperature was within 20 degrees of the user-set temperature at the

start of the step, and the oven temperature is now at least 20 degrees cooler than the

user-set temperature. The cases in an event table must be mutually disjoint, but are not

necessarily complete; to compensate, the function includes an implicit else clause that re-

assigns the function’s variable to the variable’s current value if none of the specified cases

is satisfied. Thus, event-table functions are also total functions.

In mapping the syntax of SCR to the syntax of HTS, we map each SCR table to a

distinct HTS, which is 3-tuple, 〈V ,V I ,T 〉. Our mapping of SCR syntax does not use

HTS state elements (S , S I , SF , SH ), or named-event elements E .
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• V is the set of specification variables that appear in the table, including modeclasses.

V is divided into sets monitored, terms, and controlled.

• VI is a predicate specifying initial variable values.

• T is the table’s set of conditional assignments. In condition tables, a table entry

defines zero or one HTS transition, whose trigger event is empty, whose enabling

conditions are the entry’s condition plus the entry’s mode set, and whose action

is the entry’s assignment to the table’s variable. In event tables, an entry defines

zero or more HTS transitions (called table-entry-transitions or simply entry-

transitions), one for each construct in the entry’s conditioned event; the transi-

tion’s trigger events are the construct’s basic events, its enabling conditions are the

construct’s WHEN conditions plus the entry’s mode set, its action is the entry’s as-

signment to the table’s variable, and its explicit priority is #0. A table entry of X

maps to zero HTS transitions. We introduce for each event table an idle transition ti ,

whose trigger event is empty, whose condition is “true”, and whose explicit priority is

#1. The priority ensures that ti executes if and only if none of the entry-transitions

are enabled. (In explicit priority, a lower value is considered a higher priority.)

The condition table in Figure 6.10 maps to an HTS with three transitions:

• t1: [Mode = Off ], /DisplayTemp := blank

• t2: [(Mode = Heat ∨ Mode = Maintain) ∧ Temp < 175], /DisplayTemp := blank

• t3: [(Mode = Heat ∨ Mode = Maintain) ∧ Temp ≥ 175],

/DisplayTemp := �Temp/25� × 25
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The event table in Figure 6.10 maps to an HTS with six transitions:

• t1: @T (Dial = bake), [Mode = Off ∧ Temp < SetT ], /Mode := Heat , #0

• t2: @T (Dial = bake), [Mode = Off ∧ Temp ≥ SetT ], /Mode := Maintain, #0

• t3: @T (Dial = off ), [Mode = Heat ], /Mode := Off , #0

• t4: @T (Temp ≥ SetT ), [Mode = Heat ], /Mode := Maintain, #0

• t5: @T (Dial = off ), [Mode = Maintain], /Mode := Off , #0

• t6: @T (Temp < (SetT − 20)), [Mode = Maintain], /Mode := Heat , #0

• ti : [true], #1

An SCR transition triggered by disjunctive events can be broken down into multiple similar

transitions, each of which is triggered on an event.

To express SCR step-semantics, we instantiate separate templates for condition tables

and event tables. In our template instantiation for condition tables, shown in Figure 6.11,

• AV is the set of current variable values

• Environment input I .var 2 is a monitored-variable assignment that assigns a new

value to one variable in V at the start of a step. Function assign(X ,Y ) takes two

variable-value assignments, X and Y , and it updates the assignments in X with

the assignments in Y , ignoring assignments in Y to variables not in X . Function

eval(ss .AV , a) evaluates assignment a using variable values in ss .AV .

2Recall, input I contains two fields, I .var represents a set of input variable assignments and I .ev
represents a set of input events.
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Snapshot Start of Macro-step Micro-step

Element reset XX (ss , I ) next XX (ss , τ,XX ′)

AV assign(ss .AV , I .var) AV ′ = assign(ss .AV , eval(ss .AV , asn(τ)))

O � O ′ = controlled(V ) � eval(ss .AV , asn(τ))

Template Parameter Parameter Value

en states(ss , τ) true

en events(ss , τ) true

en cond(ss , τ) ss .AV |= cond(τ)

macro semantics simple, diligent

pri(Γ) Γ

Figure 6.11: Template parameters for SCR condition tables

• System outputs O are assignments to controlled variables. Function controlled(V ) �

eval(asn(τ)) uses the Z domain-restriction operator � to ensure that the HTS outputs

a variable assignment only if the variable is among the specification’s controlled

variables.

• Predicates en states and en events are vacuously true, because there are no states

or events.

• Predicate en cond evaluates the transition condition with respect to current variable

values in AV .

• The step-semantics is simple, diligent macro-step semantics, where a macro-step is

one micro-step (i.e., the execution of one of the HTS’s transitions).
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• There is no priority scheme among transitions (i.e., pri is the identity function)

because the transitions in an HTS are mutually disjoint.

The template instantiation for event tables shown in Figure 6.12 is similar, except that

events and conditions are evaluated with respect to both previous and current variable

values, and the priority scheme is explicit priority. Hence,

• Auxiliary variable AVa is used to store variable values that hold at the start of the

step.

• Predicate en events tests whether a transition’s triggering events have all occurred

since the start of the step. For events of type @C(x), it tests whether variable x has

changed value since the start of the step. (Notation ss .AV (x ) returns the value of

variable x in ss .AV .) For the idle transition that has no event, en events returns

true.

• Predicate en cond tests whether a transition’s WHEN conditions evaluated to true

at the start of the step.

• The explicit priority scheme favours transitions with lower-values explicit priority, so

that all table-entry-transitions have higher priority over the idle transition.

SCR’s sole composition operator is functional composition: each step of an SCR specifi-

cation is the composition of HTSs’ micro-steps, one from each of the tables’ HTSs; the order

of composition is with respect to a provided, static, total order, TO , on the HTSs. The



156 CHAPTER 6. VALIDATION

Snapshot Start of Macro-step Micro-step

Element reset XX (ss , I ) next XX (ss , τ,XX ′)

AV assign(ss .AV , I ) AV ′ = assign(ss .AV , eval(ss .AV , asn(τ)))

O � O ′ = controlled(V ) � eval(ss .AV , asn(τ))

AVa ss .AV AV ′
a = ss .AVa

Template Parameter Parameter Value

en states(ss , τ) true

en events(ss , τ)
∀ e∈ trig(τ).[(e =@T (c) ⇒ (ss .AVa |= ¬c ∧ ss .AV |= c))

∧ (e =@C (x ) ⇒ (ss .AVa(x ) �=ss .AV (x )))]

en cond(ss , τ) ss .AVa |= cond(τ)

macro semantics simple, diligent

pri(Γ) explicit priority

Figure 6.12: Template parameters for SCR event tables
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provided total order TO must adhere to the partial order on the specification’s functions,

which is imposed by the functions’ variable dependencies. Any topological sort will do,

since all will result in equivalent compositions. The tables’ partial order, a representative

total order TO , and cycle detection are all calculated off-line using def-use analysis.

Our modelling of SCR’s composition operator N
fun comp
micro , shown in Figure 6.13, de-

scribes whether a set of transitions �τ executing with respect to a collection of snapshots

�ss (one snapshot per component HTS) results in a collection of next snapshots �ss ′. In this

definition, we use a functional representation of the HTSs’ Nmicro steps (the HTSs’ micro-

step semantics are guaranteed to be functions, because the SCR tables are all functions).

Let TO be indexed 1 through n, which is the number of tables being composed. The first

line says that the collection of next snapshots �ss ′ results from applying each HTS’s micro-

step function Nmicro in the total order specified by TO , starting from snapshots �ss . The

second line ensures that the transition set �τ contains exactly one transition from each of

the HTS’s set of transitions T , and that each transition τi is enabled when HTSi executes,

represented by micro-step N
TO [i ]

micro. The transition τi in �τ must be an idle transition if there

is no other enabled transition in HTSi in the current step.

N
fun comp
micro (�ss, �τ , �ss′) TO =

�ss′ = N
TO[n]

micro
(
...

(
N

TO[2]

micro
(
N

TO[1]

micro(�ss, τ1), τ2
)

, ...
)

, τn
)

∧

�τ = {τ1, τ2, ...τn} ∧ ∀ i ≤ n.
[

τi = pri enabled trans
(
N

TO[i−1]

micro (...(N
TO[1]

micro(�ss, τ1), ...), τi−1),TTO[i]

) ]

Figure 6.13: Micro-step semantics for SCR composition
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We note that there are multiple ways to structure a notation’s template semantics, just

as there are multiple ways to structure a notation’s operational semantics. For example,

SCR users who view modeclasses as state machines might have represented modes as states.

We chose the above representation because it more closely matches existing descriptions

of the semantics of SCR, which treat modeclasses as distinguished variables. In general,

we have not yet explored the methodological issues of how best to structure a notation’s

template semantics.

6.4.2 SDL

In this subsection, we present the template semantics for the Specification and Descrip-

tion Language (SDL), as defined in SDL88 [41]. An SDL specification has three types

of components. SDL processes, the most basic components, are extended finite-state

machines that send and react to signals. SDL blocks contain multiple, concurrent pro-

cesses, which are inter-connected by non-delaying, signal-passing routes; more abstract

SDL blocks compose lower-level blocks that are inter-connected by delaying communica-

tion channels. An SDL system, the root component, is an SDL block that communicates

with the environment.

An SDL process consists of states, variables, signals, decisions, actions and transitions.

A transition has a source state; is triggered by an input signal; and has multiple possible

actions (variable assignments and output signals) and destination states, depending on

decision points in the transition. Each process has an unbounded input queue to store the

signals it receives from its signal routes. A signal is removed from the head of the queue

(if not empty) when the process is in an SDL state. If the signal can trigger a transition,
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the process executes the transition moving the process to the transition’s destination state;

otherwise, the signal is discarded. Figure 6.14 shows a simple example of two transitions

that are triggered by two input signals a and b, respectively. In state S0 , an input signal

a at the head of the queue can trigger the left transition, which increments the value of

variable x by 1, and outputs signal d if the condition x < 5 is true or outputs a signal e if

the condition is false. The transition from state S0 to state S2 executes if the input signal

is b, sending output signal c.

s0

x<5

a

d

b

x:=x+1

e

S1

S2

c

S3

   (false)

   (true)

 Legend

state

input event

output event

decision construct

variable assignment

Figure 6.14: Example transitions in an SDL process

Syntactically, we map each SDL process to one HTS, whose states, variables, and events

represent the SDL process’s states, variables, and signals, respectively. We model each

conditional path through an SDL transition as a set of HTS transitions: we create an aux-
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iliary state for each decision construct, and we create an HTS transition for each segment

of an SDL transition between the SDL transition’s source state and the SDL transition’s

first decision construct, between two consecutive decision constructs, or between the SDL

transition’s last decision construct and the SDL transition’s destination state. The initial

transition is triggered by the input signal and leads to the first auxiliary state, and each

subsequent transition is enabled by the auxiliary-state’s decision-construct’s condition and

leads to a subsequent auxiliary state or to a destination state. To model correctly the

removal of signals from the input queue, for each 〈 SDL state, event 〉 pair that does not

trigger an SDL transition, we create an HTS transition whose sole effect on the snapshot

is to remove the signal from the queue Q .

Figure 6.15 shows the HTS representation for the SDL process depicted in Figure 6.14.

We assume the process reacts to events a, b, c, and d . The two SDL transitions map to

six HTS transitions, and an auxiliary state is introduced for the SDL transition’s decision

point: the SDL transition triggered by signal a is split into the HTS transitions t1, t2, and

t3, where t1 is from state S0 to an auxiliary state S a
0 (at decision point x < 5), t2 is from

state S a
0 to S1 , and t3 is from state S a

0 to S3 ; the SDL transition triggered by signal b maps

to transition t4. Because the decision construct’s conditions are disjoint and complete, the

HTS transitions are guaranteed to terminate in a distinct destination state. Transitions t5

and t6 are introduced to discard input signals c and d , respectively, should they be at the

head of the input queue when the process is in state S0 .

The template semantics description for an SDL process is provided in Figure 6.16.
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HTS
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1 
: a, /x=x+1
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a S1
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t
4
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S3
t
5
: c

t
6
: d

Figure 6.15: Corresponding HTS for an SDL process

• At the start of each macro-step, the current state stays the same. In every micro-step,

the new current state is the HTS transition’s destination state.

• Each HTS has its own input queue that stores unprocessed events. The input queue

is modelled as a queue in the snapshot element Ia . SDL processes do not distinguish

between internally generated signals and signals received from other processes or

from the environment, so a process’s input queue holds both. We use the following

operations on queues:

– head(Q) returns a singleton set containing the first element of a nonempty queue

Q , or returns an empty set if the queue Q is empty.

– tail(Q) returns a queue equivalent to Q without its first element.

– front(Q , k) returns a queue containing the first k elements of queue Q , or returns

a queue containing all elements of queue Q if the length of Q is less than k .

– last(Q , k) returns a queue equivalent to Q without its first k elements.

– append(Q , e) returns a queue equivalent to Q appended with the sequence of
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Snapshot Start of Macro-step Micro-step

Element reset XX (ss , I ) next XX (ss , τ,XX ′)

CS ss .CS CS ′ = dest(τ)

IE head(append(ss .Ia , I .ev)) �

Ia tail(append(ss .Ia , I .ev)) I ′
a = append(ss .Ia , gen(τ))

O [ ] O ′ = append(ss .O , gen(τ))

AV
assign(ss .AV ,

parms(head(append(ss .Ia , I .ev))))
AV ′ = assign(AV , eval(ss .AV , asn(τ)))

Template Parameter Parameter Value

en states(ss , τ) src(τ) ⊆ ss .CS

en events(ss , τ) trig(τ) ⊆ ss .IE

en cond(ss , τ) ss .AV |= cond(τ)

macro semantics stable

pri(Γ) Γ

Figure 6.16: Template parameters for SDL process

events e.

– [ ] is an empty queue.

At the start of each macro-step, function reset Ia appends the new environment

events (I .ev) to the end of the event queue, and removes the first element from

the queue. In every micro-step, the transition’s (τ ’s) generated events (here we use

function gen to generate a sequence of events rather than a set of events in its original

definition in Chapter 3) are appended to the end of the queue.
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• At the start of each macro-step, snapshot element IE gets the head element, if any,

of the input queue, to which the new environment events have been appended. In

every micro-step, IE is set to the empty set because at most one SDL transition that

is triggered on an event executes in a macro-step.

• Variables are local to processes in SDL, but their values may be passed among pro-

cesses via signals’ parameters. Variable values in AV may be updated with data

carried by the trigger event (function parms returns a set of mappings from local

variables to signal parameters); the variables are subsequently updated by the tran-

sition’s sequence of variable assignments.

• Output signals are accumulated in O .

• Predicate en states tests that transition’s source states are in the set of the current

states CS .

• Predicate en cond tests a transition’s enabling conditions with respect to current

variable values in AV .

• Predicate en events tests that a transition’s trigger event matches the signal in IE .

At the start of a macro-step, the test checks that the transition’s trigger event matches

the signal that was at the head of the input queue. In subsequent micro-steps, the

HTS transitions will have no trigger event and IE will be empty.

• SDL has stable macro-step semantics. Given the construction above, a macro-step

is a sequence of HTS micro-steps from an SDL transition’s source state through
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auxiliary decision-point states to the SDL transition’s destination state; or a macro-

step is an idle step that makes no change to the reset snapshot. A macro-step will

always end in an SDL transition state, and not an auxiliary state we have introduced.

• SDL has no priority scheme because the transitions from the same state are mutually

exclusive.

Processes are composed into a block using the parallel composition operators N
para-SDL
macro

at the macro-step level, which are described in Chapter 4. Our template semantics assumes

that events are broadcast to all components. We simulate SDL’s point-to-point communi-

cation using broadcast communication and assuming that every event contains its address;

a process enqueues an input signal only if the signal’s address is the process’s address (this

is implemented by the append operation). Parallel composition implements non-delaying

communication among processes.

Higher in the composition tree, SDL blocks are inter-connected by delaying communi-

cation channels, and can be further composed into a high-level block or an SDL system.

Figure 6.17 shows an SDL system that contains three blocks Block1, Block2, and Block3;

five inter-block channels, CH21, CH31, CH12, CH32, and CH23, which pass signals to each

other; and six channels, CHE1, CHE2, CHE3, CH1E , CH2E , and CH3E , which pass signals

from the environment to blocks, or from blocks to the environment. In each step, a non-

deterministic number of signals are removed from each channel. The signals can stay in a

channel and not be processed for a nondeterministic number of steps. Therefore, we need

to represent explicitly each channel to capture the delayed communication.

We define an m-ary parallel composition operator at the macro-step level for com-
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Figure 6.17: An SDL system example

posing multiple SDL blocks in Figure 6.18. The user provides the composition opera-

tor with channel sets �CH E1, �CH E2,..., �CH Em , and �CH 1E , �CH 2E ,..., �CH mE , and �CH 12,

�CH 13, ..., �CH 1m , and �CH 21, �CH 23, ..., �CH 2m , and �CH m1, �CH m2, ..., �CH m(m−1). Each

channel set is a collection of uni-directional, delaying, communication channels (queues)

whose source block/environment is denoted by the left subscript and whose destination

block/environment is denoted by the right subscript. Channel sets �CH E1, ..., �CH Em repre-

sent the channels that pass signals from the environment to Block1, ..., Blockm , respectively.

Channel sets �CH 1E , ..., �CH mE represent the channels that pass signals from Block1, ...,

Blockm to the environment, respectively. Channel sets �CH 21,... , �CH m1 pass signals from

Block2, ..., Blockm to Block1, and channel sets �CH 1m ,..., �CH (m−1)m act similarly. At the

start of each macro-step, the inputs I from the environment are appended to the ends of

every channel in �CH E1,..., �CH Em (recall that the leaf processes will enqueue an event only
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if the signal’s address is the process’s address); some number nEi of signals are removed

from the fronts of the channels in �CH E1, ..., �CH Em ; and some number nij of signals are

removed from the fronts of the channels �CH12,..., �CH 1m , ..., and �CH m1, ..., �CH m(m−1),

respectively. These removed signals from different channels are merged in a nondetermin-

istic order by operators � and appended to the input queues of their components’ HTSs

(i.e., SDL processes). The components execute (with each process working with the head

element of its respective input queue) and move the m blocks from snapshots �ss1, �ss2, ...,

�ssm to snapshots �ss ′1, �ss ′2, ..., �ss ′m ; and at the end of each macro-step, the outputs from

each component’s processes are enqueued in the components’ output channels to the envi-

ronment and to other components – that is, the outputs �ss1
′.O , ..., �ssm

′.O , are appended

to the ends of channels in ( �CH1E , �CH12,..., �CH 1m), ..., ( �CHmE , �CH m1, ..., �CH m(m−1)),

respectively.

6.4.3 Petri Nets

In this subsection, we show how to represent the semantics of Petri Nets using our template.

Petri Nets are a well-used formal notation for modelling and analyzing concurrent systems

(e.g., distributed systems, communication protocols) [52, 58]. Many extensions of the

Petri-Net notation have been developed by researchers for modelling different applications;

however, we consider only traditional Petri Nets in this paper.

A Petri Net, usually represented as a directed graph, contains five types of elements:

places, transitions, arcs, a weight function, and an initial marking. A place, drawn as a

circle, contains zero or more tokens (dots). A transition, drawn as a bar or a box, moves

tokens from its input places to output places when the transition fires. An arc, drawn as a
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NSDL block
macro (((�ss1, �ss2, ..., �ssm ), I , (�ss′1, �ss′2, ..., �ss′m )),

( �CHE1, �CH
′
E1), ( �CHE2, �CH

′
E2), ..., ( �CHEm , �CH

′
Em ), ( �CH 1E , �CH

′
1E ), ( �CH 2E , �CH

′
2E ), ..., ( �CHmE , �CH

′
mE ),

( �CH 12, �CH
′
12), ( �CH 13, �CH

′
13), ..., ( �CH 1m , �CH

′
1m ), ...,

( �CHm1, �CH
′
m1), ( �CHm2, �CH

′
m2), ..., ( �CHm(m−1), �CH

′
m(m−1))) =

∀ i , j
∈
[1..m]
∃nij .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∧

∧

∧

∧

∧

∧

∧

∧

∧

N 1
macro(�ss1, front(append( �CHE1, I ),nE1) � front( �CH 21,n21) � ... � front( �CHm1,nm1), �ss′1)

�CH
′
E1 = last(append( �CHE1, I ),nE1) ∧ �CH

′
1E = append( �CH 1E , �ss′1.O)

�CH
′
12 = append(last( �CH 12,n12), �ss′1.O) ∧ ... ∧ �CH

′
1m = append(last( �CH 1m ,n1m ), �ss′1.O)

N 2
macro(�ss2, front(append( �CHE2, I ),nE2) � front( �CH 12,n12) � ... � front( �CHm2,nm2), �ss′2)

�CH
′
E2 = last(append( �CHE2, I ),nE2) ∧ �CH

′
2E = append( �CH 2E , �ss′2.O)

�CH
′
21 = append(last( �CH 21,n21), �ss′2.O) ∧ ... ∧ �CH

′
2m = append(last( �CH 2m ,n2m ), �ss′2.O)

...

Nm
macro(�ssm , front(append( �CHEm , I ),nEm ) � front( �CH 1m ,n1m ) � ... � front( �CH (m−1)m ,n(m−1)m ), �ss′m )

�CH
′
Em = last(append( �CHEm , I ),nEm ) ∧ �CH

′
mE = append( �CHmE , �ss′m .O)

�CH
′
m1 = append(last( �CHm1,nm1), �ss′m .O) ∧ ... ∧

�CH
′
m(m−1) = append(last( �CHm(m−1),nm(m−1)), �ss′m .O)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(* all m block-components take a step *)

Figure 6.18: Macro-step semantics for SDL block composition
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directed line, represents a relation between a place and a transition. A pair (pi , t) denotes

an arc from an input (source) place pi to a transition t , and a pair (t , po) denotes an arc

from a transition t to an output (destination) place po . In Petri Nets, each place (each

transition) can have one or more input transitions (one or more input places), and one or

more output transitions (one or more output places). A weight is an integer attached to

an arc to represent the number of tokens that move between a transition and a place when

a transition fires. A weight function, w , maps an arc, (pi , t) or (t , po), to its weight. If

the weight is 1, it is usually omitted. A distribution of tokens in places in a Petri Net is

called a marking, which represents a state of the net.

At most one transition executes at a time in a Petri Net. A transition t is enabled

if each of its input places pi contains at least w(pi , t) tokens. The firing of transition t

removes w(pi , t) tokens from each input place pi of t and adds w(t , po) tokens to each

output place po of t . Consider Figure 6.19(a), depicting a transition with three input

places, p1, p2, and p3, and two output places, p4 and p5, all of whose arcs have a weight of

1. Transition t is enabled because all three of its input places contain a token. After firing,

a token is removed from each input place and a token is added to each output place.

In mapping the syntax of Petri Nets to the syntax of HTSs, we map a Net to an

HTS, which is a 3-tuple 〈V ,V I ,T 〉. Because a Petri Net has no control states or named

events, HTS state elements (S , S I , SF , SH ) and named-event elements E are not used in

the mapping. Each place in the Petri Net is represented as a unique variable of the HTS,

whose type is integer and whose value is the number of tokens in the place. An initial

marking of a Petri Net determines the HTS’s initial variable-value assignment. Each Petri-

Net transition is represented as an HTS transition with the form 〈cond, act〉, where cond
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Figure 6.19: Example Petri Nets

is a predicate that tests that the transition’s input places have the necessary number of

tokens with respect to weights on the input arcs, and act removes zero or more tokens

from the input places and adds zero or more tokens to the output places, according to the

weights on the input and output arcs.

For example, the Petri Net in Figure 6.19(a) maps to an HTS with one transition:

• t : [v1 ≥ w(p1, t) ∧ v2 ≥ w(p2, t) ∧ v3 ≥ w(p3, t)],

/v1 = v1 − w(p1, t), /v2 = v2 − w(p2, t), /v3 = v3 − w(p3, t),

/v4 = v4 + w(t , p4), /v5 = v5 + w(t , p5)

The Petri Net in Figure 6.19(b) maps to an HTS with two transitions:

• t1: [v1 ≥ w(p1, t1)], /v1 = v1 − w(p1, t1), /v2 = v2 + w(t1, p2)

• t2: [v1 ≥ w(p1, t2)], /v1 = v1 − w(p1, t2), /v3 = v3 + w(t2, p3)

where variables v1, v2, v3, v4, and v5 are the numbers of tokens in the places p1, p2, p3, p4,

and p5, respectively. In Figure 6.19(b), the two transitions t1 and t2 are in conflict: they
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Snapshot Start of Macro-step Micro-step

Element reset XX (ss , I ) next XX (ss , τ,XX ′)

AV AV AV ′ = assign(ss .AV , eval(ss .AV , asn(τ)))

Template Parameter Parameter Value

en states(ss , τ) true

en events(ss , τ) true

en cond(ss , τ) ss .AV |= cond(τ)

macro semantics simple, diligent

pri(Γ) Γ

Figure 6.20: Template parameters for Petri Nets

share one input place p1, both are enabled, but only one of them can execute in a step.

The transition that executes disables the other until its input place p1 is populated again.

Figure 6.20 shows the relevant template parameters for Petri Nets. AV is the only

snapshot element used, and the variable values are modified by the actions of executing

transitions. Petri Nets use simple, diligent macro-step semantics. There is no priority

among the transitions (pri(Γ) = Γ). Petri Nets do not use any composition operators.

6.4.4 Advanced features

Many sophisticated notations include features beyond simple states, events, and variables

to help specifiers to structure and to simplify their specifications. This subsection dis-

cusses three ways to incorporate a notation feature into the notation’s template semantics:

syntactic transliteration, template parameters’ definitions, and template extension.
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Syntactic Transliteration

Some language features are simply notational conveniences or “syntactic sugar” that have

no effect on the notation’s expressiveness, but that enable the specifier to state certain

ideas more succinctly or more clearly. Examples of such conveniences include statecharts

variants’ macros, compound transitions, AND/OR tables [43], actions associated with en-

tering and exiting states [31], CCS’s event relabelling [51], SDL’s save struct, structured

variables, and parameterized machines. We accommodate these features by working with

the features’ expanded definitions, e.g., macros, separating compound transitions, instan-

tiating a finite number of parameterized machines. In doing so, we accommodate these

features entirely during the syntactic transliteration from the specification’s syntax into

HTS syntax; the features have no representation in the notation’s semantics or composition

operators.

Template Parameters

Language features that affect the sets of enabling states, enabling events, or enabling vari-

ables, or that affect a transition’s effects on states, events, or variables can be accommo-

dated using the auxiliary snapshot elements and the template parameters, without chang-

ing the definitions of the template’s common semantics. Examples of such features include

negated events and other event expressions, event parameters, history states, Maggiolo-

Schettini et. al.’s compatible transitions [46], and event queues [41].

For negated events, we distinguish between positive trigger events, denoted as

pos (trig(τ)), and negated trigger events, i.e., an event not happening, denoted as
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neg (trig(τ)). A simple way to handle negated events is to have snapshot element Ia record

the external events, have IE accumulate the events that occur in the macro-step, and have

predicate en events ensure that a transition is enabled only if its trigger events have oc-

curred and its negated trigger events have not yet occurred within the macro-step:

reset IE(ss , I ) ≡ �

next IE(ss , τ, IE ′) ≡ IE ′ = ss .IE ∪ gen(τ)

reset Ia(ss , I ) ≡ I .ev

next Ia(ss , Ia) ≡ ss .Ia

en events(ss , τ) ≡ (pos(trig(τ)) ⊆ IE∪ss .Ia) ∧
(neg(trig(τ)) ∩ (IE∪ss .Ia) = �)

Maggiolo-Schettini et. al. [46] have a stronger definition of enabling events that pro-

hibits two transitions from executing in the same macro-step if one is triggered by negated

event not e and a subsequent transition in the macro-step generates e; they call these

incompatible transitions. To model these semantics, we use IEa to accumulate the negated

events that trigger transitions in the macro-step. Parameters reset IE and next IE are

defined the same as above. Transitions are enabled only if their actions are consistent with

the set of negated events in IEa that have already triggered transitions in the macro-step;

that is, transitions that generate events that are in IEa are not enabled:
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reset IEa(ss , I ) ≡ �

next IEa(ss , τ, IE
′
a) ≡ IE ′

a = ss .IEa ∪ neg(trig(τ))

en events(ss , τ) ≡ (pos(trig(τ)) ⊆ ss .IE ∪ ss .Ia) ∧
(neg(trig(τ)) ∩ (ss .IE ∪ ss .Ia) = �) ∧
((neg(trig(τ)) ∪ ss .IEa) ∩ gen(τ) = �)

As a more complicated example, we show how to accommodate statecharts history.

Briefly, history is a mechanism by which a re-entered super-state can continue executing

from the sub-state that was current when control last transitioned out of the super-state.

To accommodate history, we partition the set of states S into basic states ; history states,

denoted by ©H ; deep-history states, denoted by ©H∗ ; and super-states. If a transition’s

destination is a history state ©H , then the transition enters the most recently current

sub-state of ©H ’s parent state. If a transition’s destination is a deep-history state ©H∗ ,

then enter-by-history applies not only to ©H∗ ’s parent state but also to all of the parent’s

descendants. Figure 6.21 depicts an example HTS, where S2 has a history state, which is

the destination of transition t1 . If transition t1 executes and previously the HTS was in

states S4 and S5 before the control last transferred out of them, then states S4 and S6

become the current states rather than state S3 even though S3 is S2 ’s default state. If

instead the destination of transition t1 were a deep history state, then states S4 and S5

would be entered and would become the current states.

We use auxiliary variable CSa (or extend CSa to have multiple data fields, if it is al-

ready being used to collect other state-related information) to record for each super-state

the most recent sub-state that the super-state entered:
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Figure 6.21: HTS with a history state

reset CSa(ss , I ) ≡ ss .CSa

next CSa(ss , τ,CS ′
a) ≡ CS ′

a = ss .CSa ⊕ {(parent(s), s) | s∈entered(dest(τ)) }

where CSa is a set of pairs of states where the first element of a pair is the parent state of

the second element; ⊕ is a function-override operator that updates its first operand with

new functional mappings from the second operand. Specifically, each time a state s is

entered, history information CSa is updated to map s ’s parent state with its newly entered

sub-state s . This history information is unchanged at the start of a macro-step. At the

start of the system’s execution, CSa maps super-states to their default initial states.

Accommodating history states also changes how the set of current states is determined

after a transition executes. Without history states, the set of current states CS after exe-

cuting transition τ is the set of states entered by τ :
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next CS(ss , τ,CS ′) ≡ CS ′ = entered(dest(τ))

In hierarchical systems, the definition of entered(dest(τ)) is non-trivial: the set of entered

states includes not only τ ’s destination state dest(τ), but also all of dest(τ)’s ancestor

states plus the default states of dest(τ) and of its entered descendants. Adding history

states changes this definition to include cases in which τ ’s destination is a history state.

We use function entered(CSa , (dest(τ))), which now also takes CSa as an argument, to

determine all states entered by τ . We define function entered descend(CSa , s) as a recursive

definition to determine all entered relevant descendants of state s ; the definition uses

functions super(S ), hist(S ), and hist∗(S ) to identify super-states, history states, and deep-

history states, respectively:

entered(CSa , s) ≡ ancestor(s) ∪ entered descend(CSa , s)

entered descend(CSa , s) ≡
if s ∈ hist(S ) then entered descend (CSa ,CSa(parent(s)))

else if s ∈ hist∗(S ) then deep history(CSa ,CSa(parent(s)))

else if s ∈ super(S ) then {s} ∪ entered descend (CSa , default(s))

else {s}

deep history(CSa , s) ≡
if s �∈ basic(S ) then {s} ∪ deep history(CSa ,CSa(s))

else {s}

That is,
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• If state s is a history state ©H , then its parent’s most recently current sub-state is

entered as recorded by CSa . We use CSa(x ) to return the most recent sub-state of

state x .

• If state s is a deep-history state ©H∗ , then all of s ’s parent’s most recently current

descendants are entered. This is computed recursively using function

deep history(CSa , s).

• If entered state s is a super-state not descended from the parent of an entered deep-

history state, then s ’s default state is entered. The helper function default(s) implic-

itly uses HTS syntax elements S and SH to compute the default state of s .

• The state s is entered if s is not a history or a deep history state.

Predicate ent comp, described on page 93, which was introduced by the interrupt

composition operator, is similar to the above definition of entered. Predicate ent comp

includes an additional case: if entered state u is an AND-state, then u’s sibling states are

also entered.

Template Extension

Some language features fit within state-transition semantics but are orthogonal to states,

events, and variables. Examples of such features include real-time conditions, assertable

and retractable constraints; dynamic creation/destruction of processes; and inherited and

polymorphic behaviours. We cannot accommodate these features without extending the

template, which means adding new elements to the snapshot, adding new template pa-

rameters, or extending the template definitions. Fortunately, such extensions are often
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incremental, in that they can be appended to the template definitions without overriding

the existing definitions.

Consider SDL timers, which are set and reset by transitions and which generate events

when the timers time out. SDL timers could be modelled as HTS variables by stretching

the notion of what a variable is. However, we model SDL timers as a new syntactic and

semantic construct, to show how to extend the template to incorporate new constructs.

This construct requires extensions to the HTS syntax, to the set of snapshot elements,

to the set of template parameters, and to a subset of the template definitions. The HTS

syntax is extended to include a set of clocks C , and to include SET(t,a) and RESET(a)

as allowable transition actions in asn(τ) for a transition τ , where a is a clock and t is

a time interval. The snapshot is extended to include two new elements, TM , represent-

ing the current absolute time, and AL : C → Integer , the set of activated timers (alarm

clocks) and their respective settings (absolute time). The template is extended to include

new template parameters for updating TM and AL at the start of each macro-step and

at the end of each micro-step, respectively. A template-extending language feature may

also affect the values of existing template parameters, as in the case of SDL timers, which

affect the event-related parameters: when a timer times out, a signal is generated and is

inserted into the process’s event queue:
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reset TM(ss, I ) ≡ I .Time

next TM(ss, τ,TM ′) ≡ TM ′ = ss.TM

reset AL(ss, I ) ≡ ss.AL � {(a, t) | (a, t)∈ss.AL ∧ t ≤ I .Time}

next AL(ss, τ,AL′) ≡ AL′ ≡ ss.AL ⊕ {(a, (ss.TM + t)) | SET (t , a)∈asn(τ)} �
{(a, t) | (a, t)∈AL ∧ RESET (a)∈asn(τ)}

reset Ia(ss, I ) ≡ tail(�(append(ss.Ia , I .ev), {a | (a, t)∈ss.AL ∧ t ≤ I .Time}))

next Ia(ss, τ, I ′a) ≡ I ′a = append([remove(ss.Ia , {a | RESET (a)∈asn(τ)})], gen(τ))

where ⊕ is a function-override operator that updates its first operand with new elements

and new functional mappings; � is a set difference operator, and operator �(q , s) adds

elements in set s to the end of the queue q . In the above definitions, system time TM

is changed only by sensing the new time from the environment I .Time; micro-steps do

not affect the passage of time. An alarm clock will time-out at the start of a macro-step

if time TM reaches or exceeds its setting; if an alarm clock a times out, the signal a is

appended to the process’s event queue Ia by template parameter reset Ia , and the timer

is removed from AL. A transition may SET an inactive timer, which causes the clock and

the timer setting to be added to AL; it may SET an already active timer, which causes

the timer entry in AL to be updated. A transition may also RESET an active timer,

which causes the timer entry to be removed from AL. If an expired timer a is RESET

when the event queue contains time-out signal a, i.e., if a timer times-out, but is RESET

before its time-out signal is processed, this signal is removed from the event queue. The

underlined clauses are those that are added to existing template-parameter values for SDL
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to accommodate SDL timers.

Of the six template definitions (pri enabled trans, apply, reset, stable, Nmicro, and

Nmacro), only apply and reset need to be modified. Function reset is modified to include

additional function calls reset TM(ss , I ) and reset AL(ss , I ), so that the new snapshot

elements are appropriately reset at the start of a macro-step (new clauses are underlined):

reset(ss , I ) ≡
〈 reset CS(ss , I ), reset IE(ss , I ), reset AV(ss , I ), reset O(ss , I ),

reset CSa(ss , I ), reset IEa(ss , I ), reset AVa(ss , I ), reset Ia(ss , I ),

reset TM(ss , I ), reset AL(ss , I ) 〉

Predicate apply is modified to include additional conjuncts next TM(ss , τ,TM ′) and

next AL(ss , τ,AL′), so that the new snapshot elements are appropriately updated after

the execution of every transition τ (new clauses are underlined):

apply(ss , τ, ss ′) ≡
let 〈CS ′, IE ′,AV ′,O ′,CS ′

a , IE
′
a ,AV ′

a , I
′
a ,TM ′,AL′〉 ≡ ss ′ in

next CS(ss , τ,CS ′) ∧ next CSa(ss , τ,CS ′
a)

∧ next IE(ss , τ, IE ′) ∧ next IEa(ss , τ, IE
′
a)

∧ next AV(ss , τ,AV ′) ∧ next AVa(ss , τ,AV ′
a)

∧ next O(ss , τ,O ′) ∧ next Ia(ss , τ, I
′
a)

∧ next TM(ss , τ,TM ′) ∧ next AL(ss , τ,AL′)

If timing conditions were a new way to enable transitions, then in addition to the

above extensions, a new enabling template parameter would be needed, and the template
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definition pri enabled trans would be modified to include this predicate as an additional

conjunct. Because such modifications involve only appending new clauses to the existing

template definitions, we say that these template extensions are incremental.

6.5 Comparison of Notations

In this section, we describe how to use our template approach to compare notational vari-

ants, in particular statecharts variants (original statecharts [32], Maggiolo-Schettini et. al.’s

statecharts, RSML [43], STATEMATE [33], and UML state models [56]). Statecharts, first

introduced by Harel [32], are one of the most popular model-based specification notations.

Many users have redefined subtle aspects of the statecharts semantics to better suit their

particular problem, thereby creating a plethora of statecharts variants. For specifiers, it

can be very difficult to understand the similarities and differences among these variants.

von der Beeck’s work comparing statecharts variants [67] is well cited because it provides a

number of criteria for comparing variants. Our template parameters highlight the variants’

differences in a more formal and succinct manner than previously possible.

Syntax Mapping

Syntactically, all statecharts variants map to HTSs that are composed using different par-

allel composition operators, i.e., AND-state composition, and interrupt composition. The

latter operator combines components via a set of interrupt transitions that pass control

between the components; interrupt transitions can originate from states within a compo-

nent.
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Semantics Differences

Table 6.5, which extends Table 6.1 with two additional notations and negated events,

shows the template parameter values for five popular statecharts variants (Harel’s original

semantics [32], Maggiolo-Schettini et. al.’s statecharts, RSML [43], STATEMATE [33], and

UML [56]). UML has simple, diligent macro-step semantics; the other statecharts variants

have stable macro-step semantics. The template parameters CS , CSa , and en states pa-

rameters capture the differences in which states can enable transitions. In Harel’s original

statecharts and Maggiolo-Schettini et. al.’s statecharts, each non-concurrent HTS can ex-

ecute only one transition per macro-step. We model this using CSa to store an HTS’s set

of enabling states; thus, CSa is set to the empty set after a transition is taken. RSML

and STATEMATE do not have this restriction, and it is possible for a macro-step to be

an infinite loop of one or more HTSs’ transitions.

The template parameters AV , AVa , and en cond capture the differences in which

variable values can enable transitions. The current variable values (AV) are updated by

executing transitions in each micro-step. In STATEMATE, a single transition may assign

multiple values to the same variable, but only the last assignment has an effect:

AV ′ = assign(ss .AV , last(asn(τ)))

where last returns the last assignment made to each variable. STATEMATE is the only

notation that allows conflicting variable-value assignments to occur among multiple HTSs’

concurrent transitions, and its template parameter value resolveSTM is defined on page 131.

The template parameters IE , IEa , Ia , and en events capture the differences in which
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Parameter Harel [32] Maggiolo-Schettini [46] RSML [43] STATEMATE [33] UML [56]

reset CS(ss, I ) ss.CS ss.CS ss.CS ss.CS ss.CS

next CS(ss, τ, CS ′) CS ′ = entered(dest(τ))

reset CSa (ss, I ) ss.CS ss.CS n/a n/a n/a

next CSa (ss, τ, CS ′
a ) CS ′

a = � CS ′
a = � n/a n/a n/a

en states(ss, τ) src(τ) ⊆ ss.CSa src(τ) ⊆ ss.CSa src(τ) ⊆ ss.CS src(τ) ⊆ ss.CS src(τ) ⊆ ss.CS

reset IE(ss, I ) � � � � append(ss.IE, I .ev)

next IE(ss, τ, IE ′)
IE ′ = ss.IE

∪ev gen(ss, τ)

IE ′ = ss.IE

∪ev gen(ss, τ)

IE ′ = ev gen(ss, τ)

∩intern ev(E)
IE ′ = ev gen(ss, τ)

IE ′ = append(tail(ss.IE),

ev gen(ss, τ))

reset IEa (ss, I ) n/a � n/a n/a n/a

next IEa (ss, τ, IE ′
a ) n/a IE ′

a = ss.IEa ∪
neg(trig(τ))

n/a n/a n/a

reset Ia (ss, I ) I .ev I .ev I .ev I .ev n/a

next Ia (ss, τ, I ′a ) I ′a = ss.Ia I ′a = ss.Ia I ′a = � I ′a = � n/a

en events(ss, τ)

pos(trig(τ)) ⊆ ss.IE∪ss.Ia

∧ (neg(trig(τ)) ∩
(ss.IE∪ss.Ia )) = �

pos(trig(τ)) ⊆ ss.IE∪ss.Ia

∧ (neg(trig(τ)) ∩
(ss.IE∪ss.Ia ))=�

∧ ((neg(trig(τ)) ∪
(ss.IEa ))∩gen(τ)) = �

trig(τ) ⊆ ss.IE

∪ ss.Ia

trig(τ) ⊆ ss.IE

∪ ss.Ia
trig(τ) = head(IE)

reset O(ss, I ) � � � � �

next O(ss, τ, O′) O′ = ss.O ∪ gen(ss, τ)

O′ = ss.O∪
(gen(ss, τ)

∩ extern ev(E))

O′ = gen(ss, τ) O′ = gen(ss, τ)

reset AV(ss, I ) assign(ss.AV , I .var) assign(ss.AV , I .var) assign(ss.AV, I .var) assign(ss.AV , I .var) assign(ss.AV , I .var)

next AV(ss, τ, AV ′) AV ′ = assign(ss.AV , eval((ss.AV , ss.AVa ), asn(τ)))
AV ′ =assign(ss.AV ,

eval(ss.AV , asn(τ)))

AV ′ = assign(ss.AV ,

eval(ss.AV ,

last(asn(τ))))

AV ′ = assign(ss.AV ,

eval(ss.AV , asn(τ)))

reset AVa (ss, I ) assign(ss.AV , I .var) assign(ss.AV , I .var) n/a n/a n/a

next AVa (ss, τ, AV ′
a ) AV ′

a = ss.AVa AV ′
a = ss.AVa n/a n/a n/a

en cond(ss, τ) ss.AV , ss.AVa |= cond(τ) ss.AV , ss.AVa |=cond(τ) ss.AV |= cond(τ) ss.AV |= cond(τ) ss.AV |= cond(τ)

macro semantics stable stable stable stable simple, diligent

pri(Γ) no priority no priority no priority lowest−ranked scope highest − ranked source

resolve(vv1, vv2, vv) n/a
resolveSTM

(vv1, vv2, vv)
n/a

parallel
AND-state composition

(N
para−Harel
micro )

AND-state composition

(N
para
micro)

interrupt OR-state composition

Table 6.5: Template parameters for statecharts variants (“n/a” means not applicable)
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events can trigger transitions. Harel and Maggiolo-Schettini et. al. allow external events

to trigger transitions throughout a macro-step; parameter Ia holds these events. In RSML

and STATEMATE, external events can trigger transitions only in the first micro-step, thus,

Ia is set to � after a step’s first micro-step. We assume that timeout events are external

events. For notations that differentiate syntactically between internal events and external

events (e.g., RSML), we use function intern ev(E ) to refer to the set of internal events

and the function extern ev(E ) for the set of external events, where E is the set of events.

Similarly, Harel and Maggiolo-Schettini et. al. allow internal events generated in a

micro-step to trigger any future transition in the same macro-step; parameter IE accumu-

lates generated events. RSML allows only internal events (intern ev(E )) generated in the

previous micro-step to trigger a transition. STATEMATE allows only events generated in

the previous micro-step to trigger a transition. In UML, each object has an event queue

that emits one event per (simple) macro-step. Because transitions may trigger on implicit

internal events, such as the entering and exiting of states or changes in conditions or in

variable values, parameters IE and O use a macro function ev gen that returns all explicit

and implicit events generated when transition τ executes in snapshot ss .

Many statecharts variants allow transitions to trigger on event expressions, such as

negated events, i.e., lack of an event, or disjunctions of events. We treat disjunctive

events as a notational convenience for combining transitions that have similar actions, and

each transition is triggered by an event. Maggiolo-Schettini’s statecharts prohibits two

transitions (or one transition) from executing in the same macro-step if one is triggered

by a negated event and a subsequent transition (or itself) generates the same event. For

example, in Figure 6.22, if a transition, t1 : ¬e,∧ g , executes, a following transition, t2 :
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g ,∧ e, is not enabled in the next micro-step within the same macro-step, where e and

g are events. In the previous section, we described how to use IEa to accumulate the

negated events that trigger transitions in the macro-step to model Maggiolo-Schettini et

al.’s semantics. In Harel’s statecharts, a transition with a negated event in the trigger

is enabled if the event is not generated by any previous transitions in the same macro-

step. Harel’s statecharts have a weaker en events predicate than Maggiolo-Schettini’s

statecharts, in that the former allows two transitions to execute in the same macro-step if

one is triggered by a negated event and a following transition (or itself) generates the same

event. In Harel’s statecharts, t1, t2 in Figure 6.22 is an admissible sequence of micro-steps

within the macro-step. RSML does not allow negated events; UML cannot exhibit this

behaviour because it has simple macro-step semantics.

S1 S2

S0

t1:  e, ^g
S4 S5

t2: g, ^e

S3

Figure 6.22: Negated event

With respect to outputs, in Harel’s and in Maggiolo-Schettini’s semantics, all events

generated during the micro-step are communicated as outputs. In RSML, all generated

events that are external events (extern ev(E )) are communicated as outputs. In STATEM-

ATE, only the events generated in the last micro-step of the macro-step are communicated

as outputs.
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With respect to priorities on transitions, Harel’s, Maggiolo-Schettini’s, and RSML’s se-

mantics place no priority scheme on transitions. STATEMATE gives priority to transitions

whose scope has the lowest rank , where scope and rank are defined in Chapter 3. UML

favours transitions with the highest-ranked source state.

Example

We use a simple example, shown in Figure 6.23, to show how the statecharts’ variants

behaviours differ. Consider the example statechart without the dotted transition t6 first.

The two orthogonal states are mapped to two HTSs (HTS1 and HTS2) composed using

a parallel composition operator: Harel’s and Maggiolo-Schettini’s AND-state matches our

Harel parallel composition, and the AND-state of RSML, STATEMATE, and UML matches

our parallel composition. Tables 6.6 - 6.8 show the possible macro-steps for input event a,

with both components in their default states.

    S
4

   t
3
:a,^c

    S
5

    S
6

t
5
:c,^d

t
4
:b,^d

    S
1

    S
2

    S
3

t
1
:a,^b

t
2
:b,^e

   t
6
:d,^a

HTS
1

 HTS
2

para

Figure 6.23: statecharts example

In Harel’s and Maggiolo-Schettini’s statecharts, CSa is initially equal to CS , but be-

comes � after a component takes a micro-step. Since both HTSs are enabled, the Harel
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parallel composition non-deterministically chooses, to execute in a micro-step, either a

transition in each component or a transition in only one component. If only t1 in HTS1

executes, its generated event can trigger t4 in the next micro-step. The external event a

persists through the macro-step, so t3 is still enabled in the second micro-step; thus, one

transition is nondeterministically chosen to execute. After the second micro-step, no more

transitions can execute because both components have taken their allowed step.

In contrast to Harel’s statecharts, both RSML and STATEMATE’s diligent parallel

composition requires each HTS to execute a transition if one is enabled; thus, given the

CHTS in Figure 6.23, both t1 and t3 execute in the first micro-step. The generated events

b and c can enable t2 and t5, respectively, in the next micro-step. Both notations use the

current states CS as the enabled states; therefore, both t2 and t5 execute in the second

micro-step and both HTSs become stable afterwards. If we assume that e is the only

external event, then RSML and STATEMATE differ only in their outputs (O): output

events are accumulated in the macro-step in RSML, but are not in STATEMATE. If we

add transition t6 to HTS1, both notations will have infinite macro steps.

In UML’s state model, only one composed micro-step can execute within a composed

macro-step because UML has simple macro-step semantics: both t1 and t3 can execute in

the micro-step.

Global Inconsistency

Pnueli & Shalev’s statecharts [62] do not allow two transitions (or the same transition) to

execute in the same macro-step if one is triggered by a negated event ¬a and the other

generates event a; they call this scenario a global inconsistency. For the example in Fig-
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Macro-Step HTS1 HTS2 HTS1 para HTS2

enabled

trans

executed

trans
CS ′ O ′ enabled

trans

executed

trans
CS ′ O ′ stable

executed

trans

micro-step-1 {t1} t1 {s2} {b} {t3} {s4} � false {t1}
micro-step-2 � {s2} {b} {t3, t4} t3 {s5} {c} false {t3}

� � true

micro-step-1 {t1} {s1} � {t3} t3 {s5} {c} false {t3}
micro-step-2 {t1} t1 {s2} {b} � {s5} {c} false {t1}

� � true

micro-step-1 {t1} t1 {s2} {b} {t3} t3 {s5} {c} false {t1, t3}
� � true

micro-step-1 {t1} t1 {s2} {b} {t3} {s4} � false {t1}
micro-step-2 � {s2} {b} {t3, t4} t4 {s6} {d} false {t4}

� � true

Table 6.6: Possible macro-steps of Harel’s and Maggiolo-Schettini’s Statecharts

Macro-Step HTS1 HTS2 HTS1 para HTS2

enabled

trans

executed

trans
CS ′ O ′ enabled

trans

executed

trans
CS ′ O ′ stable

executed

trans

micro-step-1 {t1} t1 {s2} {b} {t3} t3 {s5} {c} false {t1, t3}
micro-step-2 {t2} t2 {s3} {e} {t5} t5 {s4} {d} false {t2, t5}

� � true

Table 6.7: Possible macro-steps of STATEMATE

Macro-Step HTS1 HTS2 HTS1 para HTS2

enabled

trans

executed

trans
CS ′ O ′ enabled

trans

executed

trans
CS ′ O ′ stable

executed

trans

micro-step-1 {t1} t1 {s2} � {t3} t3 {s5} � false {t1, t3}
micro-step-2 {t2} t2 {s3} {e} {t5} t5 {s4} � false {t2, t5}

� � true

Table 6.8: Possible macro-steps of RSML

Macro-Step HTS1 HTS2 HTS1 para HTS2

enabled
trans

executed
trans

CS ′ O ′ enabled
trans

executed
trans

CS ′ O ′ stable
executed
trans

micro-step {t1} t1 {s2} {b} {t3} t3 {s5} {c} n/a {t1, t3}

Table 6.9: Possible macro-steps of UML state model
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ure 6.22, transition t1 : ¬e,∧ g cannot execute because its execution generates g that will

enable transition t2 : g ,∧ e, whose execution will generate e; the execution of these two

transitions in the same macro-step violates the global inconsistency. The global incon-

sistency cannot be represented by our template semantics because a transition’s enabling

events (containing negated events as triggers) cannot forecast whether a negated event will

be generated in a future micro-step within the same macro-step.

6.6 Summary

This chapter evaluates the parameterized model compilation based on template semantics

with two case studies, a heating system and a single-lane-bridge system, which are specified

using two different notations. We have demonstrated that template semantics is a succinct,

parsable representation of the semantics for multiple model-based notations, which can

be used as input to the model compiler Metro. We have demonstrated the correctness

of template semantics by (1) showing that the transition relation that is produced by

Metro preserves certain properties of the original specification, and (2) describing work

that checked an SMV model generated by the template-semantics-based tool, Express,

against manually-generated SMV models. We have shown also that template semantics

can accommodate some advanced features, e.g., statecharts’ negated events and history

features, and SDL’s timers, and can be used to compare statecharts variants.



Chapter 7

Concluding Remarks and Future

Work

This dissertation proposes a parameterized approach to the compiling of model-based no-

tations into input languages of formal-analysis tools, based on the template semantics de-

scriptions of the notations. In template semantics, the semantics that are common among

notations are captured as a parameterized template, and users instantiate the template

into a complete semantics by providing notation-specific parameter values. Composition

operators, defined as separate concerns, constrain how components execute together, and

exchange events and data; they are parameterized by the same template parameters, so

that the operators are consistent with their components’ semantics. Our template-based

approach automates and facilitates the mapping from model-based notations to analysis

tools, and eases users’ effort in understanding and comparing model-based notations.

189
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7.1 Contributions

The main contribution of this thesis is the creation of template semantics, which allows

the semantics of model-based notations to be described in a form that can be used as

input to parameterized model compilation. We have implemented such a parameterized

model compiler to transform automatically a specification into a transition relation, which

can be analyzed by model checkers. We have used two case studies, which are defined in

two different notations and exercise a wide range of composition operators, to show that

template semantics is a useful and parsable input language to parameterized model com-

pilation. The use of template semantics should substantially reduce the effort involved in

mapping notation variants to analysis tools: instead of reconstructing a tool, we only have

to modify parameter values to reflect the semantics of notation variants, and the template-

semantics-based model compiler will generate transition relations for specifications written

in notation variants. In doing case studies and specifying some examples, we often used

notation variants, e.g., CSP with variables, instead of a notation’s original semantics, to

better suit our problem’s semantics.

Working with similar goals, other researchers have proposed semantics-based approaches

to generating transition relations or reachablility graphs from the semantics descriptions

of specification notations. Pezzè and Young [59, 60] embed the semantics into hyper-

graph rules and manually produce the internal representation of a specification in terms

of hypergraphs, which can be checked uisng various state-space analysis. Dillon and Stire-

walt [24, 23, 66] develop an approach to map the structural operational semantics de-

scription for a notation, e.g., process algebras and temporal-logic notations, to a tool that



7.1. CONTRIBUTIONS 191

accepts a specification and generates all possible next snapshots. Both approaches are lim-

ited to state-space exploration analysis of specifications without variables, and both tools

are not fully automated. Template semantics provides support for specification notations

with variables, and our approach to model compilation is fully automated. Day and Joyce

embed the semantics of model-based notations in higher-order logic and compile a specifi-

cation into a transition relation from the notation’s semantics using Fusion. The advantage

of Fusion is that it is fully automated. Metro uses Fusion as its back-end, pre-defines the

common semantics and takes as input a notation’s distinct semantics, expressed as param-

eter values, instead of the notation’s entire semantics in a semantics description language,

such as structural operational semantics, hypergraph rules, and higher-order logic. The

user’s effort in defining semantics is eased and the mapping from notations to analysis tools

can be customized for different notations simply by specifying different parameter values.

We have demonstrated the correctness of our template-based approach by model check-

ing two case studies and showing: (1) The transition relation produced by Metro preserves

certain temporal properties of the original specification; (2) A manually-produced SMV

model and an SMV model generated by Express, a template-semantics-based tool, satisfy

the same set of properties. The creation of Express provides additional evidence that tem-

plate semantics forms the theoretical foundation for multiple types of parameterized model

compilation.

Using template semantics, one can describe the semantics of a notation by (1) instanti-

ating the template’s parameters and (2) mapping a notation’s composition operators to our

template composition operators, or defining new composition operators to constrain how

to control components’ executions and change snapshot-element values. Template seman-
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tics is particularly well-suited to define the operational semantics of notations with control

states and named events. We have expressed as instantiations of template semantics most

of the semantics of seven popular specification notations: CSP [37], CCS [51], LOTOS [40],

basic transition systems (BTSs) [47], and three variants on statecharts [32, 33, 43]. We have

demonstrated that template semantics is succinct by showing that a template parameter

value is defined as a simple and small logic formula on the order of less than ten primitives.

We have shown that template semantics can be used for representing the semantics of other

specification notations, such as SCR [35], SDL [41], and Petri Nets [52], and for handling

more sophisticated notation features, e.g., real-time conditions, that are beyond states,

events, and variables. Template semantics provides enough flexibility that the addition of

features can usually be incorporated just by defining new template-parameter values or

by incrementally changing the template definitions, e.g., adding parameters and snapshot

elements.

The main challenge in creating template semantics was separating cleanly the different

aspects of a notation’s semantics in a way that would be easy to understand and can

accommodate many notations. By separating a notation’s execution semantics from its

composition operators, and by parameterizing notations’ common execution semantics, the

template structures the definition of a notation’s semantics into a set of smaller, simpler

definitions. The template descriptions of notations are easier to read and to write, and

they ease the specifier’s effort in understanding notations. Template semantics facilitates

the comparison of variants of the same notation: we have shown how template semantics

can be used to compare statecharts variants. The template semantics also makes it possible

to experiment with new parameter values to produce interesting notations to suit a user’s
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specific needs.

7.2 Limitations

There are many model-based notations that we have not yet used template semantics to

describe, e.g., Esterel [4], value-passing CCS [51]. The set of composition operators is still

in progress; more operators may be added as more composition mechanisms in different

notations are identified in the future.

Language features whose steps are coarser- or finer-grained than our micro-steps and

macro-steps, or features that modify the snapshot in ways that cannot be described by

transitions, cannot be described using template semantics. Examples of such features

include operations, methods, and statecharts activity states (all of which can have their

own triggering conditions and can span multiple macro-steps); steps that need to observe

future snapshots, e.g., Pnueli and Shalev’s global consistency requires advanced knowledge

of all the transitions executing in the macro-step [62]; and continuous-time behaviour.

Accommodating such features would at best require major modifications to the template

beyond appending clauses to existing definitions.

State-space explosion is another issue that concerns the implementation of the model-

compiler generator. In composing multiple HTSs, each HTS has its own snapshot to

represent the events and variables that are shared among a collection of HTSs, so we

introduce an intermediate snapshot element for each variable or event in each HTS. These

intermediate snapshot elements increase the state space of the original specification to be

checked.
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We have not yet proven the correspondence between the template-semantics description

of a notation and an existing representation semantics of the notation.

7.3 Future Work

Because our current implementation of the parameterized model compiler Metro introduces

intermediate snapshot elements to record shared variables and events in each HTS; the state

space of a specification with multiple HTSs will be fairly large. We plan to study how to

reduce the state space by applying existing optimization techniques, such as abstraction

and compositional reasoning, and by investigating more efficient data structures.

The current template definitions of composition operators are binary. We intend to

prove the commutative and associative properties of many of our composition operators

to justify the use of binary operators for composing multiple components. Some operators

are not commutative, such as the sequence operator. We also plan to work towards pa-

rameterizing composition operators, such as environmental synchronization and sequence

composition. To reach this goal, we will identify a pattern for defining composition oper-

ators, such as how to transfer control, how to communicate events, and how to exchange

data among components, and to parameterize the semantic differences of composition op-

erators. Our composition macros, such as comp1steps , bothstep, and communicate, are a

step in this direction.

To ensure that our template representations of these notations’ semantics correspond

to an existing representation of the semantics of these notations, we would have to prove

the correspondence between the two semantics definitions. For many notations (except
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process algebras), it is difficult to find a complete and consistent definition of semantics.

However, for those notations that do have an operational-semantics definition, such a proof

would show the correspondence of the definition of a step in the two semantics. The proof

would normally proceed by structural induction, showing the correspondence of micro-

and/or macro-steps at the HTS level as a base case, and then showing that each of the

composition operators preserves this correspondence. Potentially, the most challenging

part of the proof is simply determining what the correspondence should be, because the

two semantics may involve very different notions of snapshots. A further complication

is that many semantic representations assume certain well-formedness properties of the

notation, e.g., transition triggers are mutually exclusive, which allows them to specialize

their description of the notation’s semantics; these assumptions would have to be identified,

formalized, and translated into constraints on the semantics of the template representation

of the notation to be useful in the proof.

As software systems become increasingly large and complex, specifiers tend to write

specifications of different aspects of the systems in multiple model-based notations. In

order to check a multi-notation system using existing analysis tools, either multiple trans-

lators are written from different input languages into an intermediate language [2, 71],

or semantics-based approaches are used to map automatically specifications in different

notations to transition relations or reachability graphs from the descriptions of notation’s

semantics [21, 24]. We are interested in the second approach. Our template semantics

for model-based notations is expressive enough to represent multiple notations’ semantics,

and the parameterized model compiler Metro can automatically map specifications in dif-

ferent notations to analysis tools, respectively. However, the integration of multi-notation



196 CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

specifications cannot be checked using Metro yet. We believe that template semantics

will support it, but we have not yet investigated the methodological issues, such as the

compatibility of combining notations: (1) notations’ semantics differ, that is, notations

may choose different values for the same parameters, thus, there are some combinations

that will not make sense, and (2) notations have different types of macro-steps, thus, it is

difficult to determine when and how to exchange events and variables in a composition. In

order to address these problems, the template semantics needs to be extended to facilitate

the analysis of specifications in multiple notations. The extended approach will be able

to generate for the specification in multiple notations a generic computation model, e.g.,

transition relation, which can be checked by connected analysis tools.

Another step towards handling heterogenous specification is to extend the data language

and event language to accommodate more notation features, such as value passing via

events.
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Appendix A

Specification of Single-Lane-Bridge

System

% specification of the single-lane-bridge system in S+

: transName := t1|t2|t3|t4|t5|t6|t7|t8|t9|t10|t11|t12|t13|t14|t15|t16;

: stateName := singleLaneBridge
|car
|redCar|redA|onRedA|waitRedA

|redB|onRedB|waitRedB
|blueCar|blueA|onBlueA|waitBlueA

|blueB|onBlueB|waitBlueB
|coord
|coordRed|redCoordEnt|coordEntRedB|coordEntRedA

|redCoordExit|coordExitRedA|coordExitRedB
|coordBlue|blueCoordEnt|coordEntBlueB|coordEntBlueA

|blueCoordExit|coordExitBlueA|coordExitBlueB;

: varName := redAin|redBin|blueAin|blueBin;

: evName := entRedA|exitRedA|entRedB|exitRedB

207
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|entBlueA|exitBlueA|entBlueB|exitBlueB;

: htsName := redA_systemHts|redB_systemHts
|blueA_systemHts|blueB_systemHts
|redCoordEnt_systemHts|redCoordExit_systemHts
|blueCoordEnt_systemHts|blueCoordExit_systemHts;

%----------------------------------------------------------

% HTS redA

redA_systemHie := (superState redA waitRedA
[(basicState onRedA);(basicState waitRedA)]);

tran1 := ( t1,
(ctrlState waitRedA),
(posEv entRedA),
(and (not (varBool blueAin)) (not (varBool blueBin))),
([(redAin, true)],
(:evName)NIL),
0,
(ctrlState onRedA));

tran2 := ( t2,
(ctrlState onRedA),
(posEv exitRedA),
true,
([(redAin, false)],
(:evName)NIL),
0,
(ctrlState waitRedA));

redA_systemTranSet := [tran1;tran2];

RedA_systemHTS := (redA_systemHts, redA_systemHie, redA_systemTranSet);

%----------------------------------------------------------

% HTS redB
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redB_systemHie := (superState redB waitRedB
[(basicState onRedB);(basicState waitRedB)]);

tran3 := ( t3,
(ctrlState waitRedB),
(posEv entRedB),
(and (not (varBool blueAin)) (not (varBool blueBin))),
([(redBin, true)],
(:evName)NIL),
0,
(ctrlState onRedB));

tran4 := ( t4,
(ctrlState onRedB),
(posEv exitRedB),
true,
([(redBin, false)],
(:evName)NIL),
0,
(ctrlState waitRedB));

redB_systemTranSet := [tran3;tran4];

RedB_systemHTS := (redB_systemHts, redB_systemHie, redB_systemTranSet);

%----------------------------------------------------------

%HTS blueA

blueA_systemHie := (superState blueA waitBlueA
[(basicState onBlueA);(basicState waitBlueA)]);

tran5 := ( t9,
(ctrlState waitBlueA),
(posEv entBlueA),
(and (not (varBool redAin)) (not (varBool redBin))),
([(blueAin, true)],
(:evName)NIL),
0,
(ctrlState onBlueA));
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tran6 := ( t10,
(ctrlState onBlueA),
(posEv exitBlueA),
true,
([(blueAin, false)],
(:evName)NIL),
0,
(ctrlState waitBlueA));

blueA_systemTranSet := [tran5;tran6];

BlueA_systemHTS := (blueA_systemHts, blueA_systemHie, blueA_systemTranSet);

%----------------------------------------------------------

%HTS blueB

blueB_systemHie := (superState blueB waitBlueB
[(basicState onBlueB);(basicState waitBlueB)]);

tran7 := ( t11,
(ctrlState waitBlueB),
(posEv entBlueB),
(and (not (varBool redAin)) (not (varBool redBin))),
([(blueBin, true)],
(:evName)NIL),
0,
(ctrlState onBlueB));

tran8 := ( t12,
(ctrlState onBlueB),
(posEv exitBlueB),
true,
([(blueBin, false)],
(:evName)NIL),
0,
(ctrlState waitBlueB));

blueB_systemTranSet := [tran7;tran8];
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BlueB_systemHTS := (blueB_systemHts, blueB_systemHie, blueB_systemTranSet);

%----------------------------------------------------------

% HTS redCoordEnt

redCoordEnt_systemHie := (superState redCoordEnt coordEntRedA
[(basicState coordEntRedB);
(basicState coordEntRedA)]);

tran9 := ( t5,
(ctrlState coordEntRedA),
(posEv entRedA),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordEntRedB));

tran10 := ( t6,
(ctrlState coordEntRedB),
(posEv entRedB),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordEntRedA));

redCoordEnt_systemTranSet := [tran9;tran10];

RedCoordEnt_systemHTS := (redCoordEnt_systemHts, redCoordEnt_systemHie,
redCoordEnt_systemTranSet);

%----------------------------------------------------------

%HTS redCoordExit

redCoordExit_systemHie := (superState redCoordExit coordExitRedA
[(basicState coordExitRedA);
(basicState coordExitRedB)]);
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tran11 := ( t7,
(ctrlState coordExitRedA),
(posEv exitRedA),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordExitRedB));

tran12 := ( t8,
(ctrlState coordExitRedB),
(posEv exitRedB),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordExitRedA));

redCoordExit_systemTranSet := [tran11;tran12];

RedCoordExit_systemHTS := (redCoordExit_systemHts, redCoordExit_systemHie,
redCoordExit_systemTranSet);

%----------------------------------------------------------

%HTS blueCoordEnt

blueCoordEnt_systemHie := (superState blueCoordEnt coordEntBlueA
[(basicState coordEntBlueB);
(basicState coordEntBlueA)]);

tran13 := ( t13,
(ctrlState coordEntBlueA),
(posEv entBlueA),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordEntBlueB));
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tran14 := ( t14,
(ctrlState coordEntBlueB),
(posEv entBlueB),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordEntBlueA));

blueCoordEnt_systemTranSet := [tran13;tran14];

BlueCoordEnt_systemHTS := (blueCoordEnt_systemHts, blueCoordEnt_systemHie,
blueCoordEnt_systemTranSet);

%----------------------------------------------------------

% HTS blueCoordExit

blueCoordExit_systemHie := (superState blueCoordExit coordExitBlueA
[(basicState coordExitBlueA);
(basicState coordExitBlueB)]);

tran15 := ( t15,
(ctrlState coordExitBlueA),
(posEv exitBlueA),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordExitBlueB));

tran16 := ( t16,
(ctrlState coordExitBlueB),
(posEv exitBlueB),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState coordExitBlueA));
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blueCoordExit_systemTranSet := [tran15;tran16];

BlueCoordExit_systemHTS := (blueCoordExit_systemHts, blueCoordExit_systemHie,
blueCoordExit_systemTranSet);

%----------------------------------------------------------

%composition structure and syntax information of the system

compHierarchy := microEnvSync singleLaneBridge
(microIntl car

(microIntl redCar
(microSingleHts RedA_systemHTS)
(microSingleHts RedB_systemHTS))

(microIntl blueCar
(microSingleHts BlueA_systemHTS)
(microSingleHts BlueB_systemHTS)))
(microIntl coord

(microIntl coordRed
(microSingleHts RedCoordEnt_systemHTS)
(microSingleHts RedCoordExit_systemHTS))

(microIntl coordBlue
(microSingleHts BlueCoordEnt_systemHTS)
(microSingleHts BlueCoordExit_systemHTS)))

[entRedA;exitRedA;entRedB;exitRedB;
entBlueA;exitBlueA;entBlueB;exitBlueB];

varTypeList := [(redAin, bool); (redBin, bool);
(blueAin, bool);(blueBin, bool)];

varInitList := [(blueBin, [(BOOLT F)]); (blueAin, [(BOOLT F)]);
(redBin, [(BOOLT F)]); (redAin, [(BOOLT F)])];

finalStates := (:stFinalPair)NIL;

envSet := [entRedA; exitRedA; entRedB; exitRedB;
entBlueA; exitBlueA; entBlueB; exitBlueB];
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ieSet := (:evName)NIL;

eeSet := (:evName)NIL;

envVar := (:varName)NIL;

systemInfo := (varTypeList, varInitList, finalStates,
envSet, ieSet, eeSet, envVar);

sysDefn := (compHierarchy, systemInfo);

%------------------------------------------------------------------------------

%generated snapshots for the system

%declarations of all snapshots elements

blueBinAV,blueBinAVI1,blueBinAVI2,blueBinAVI3,blueBinAVI4,
blueAinAV,blueAinAVI1,blueAinAVI2,blueAinAVI3,blueAinAVI4,
redBinAV,redBinAVI1, redBinAVI2, redBinAVI3, redBinAVI4,
redAinAV,redAinAVI1,redAinAVI2,redAinAVI3,redAinAVI4: bool;

onRedACS,waitRedACS,onRedBCS,waitRedBCS,
onBlueACS,waitBlueACS,onBlueBCS,waitBlueBCS,
coordEntRedBCS,coordEntRedACS,coordExitRedACS,coordExitRedBCS,
coordEntBlueBCS,coordEntBlueACS,coordExitBlueACS,coordExitBlueBCS: bool;

exitBlueBInput,exitBlueBIa,exitBlueBIaI,
entRedAInput,entRedAIa,entRedAIaI,
exitRedAInput,exitRedAIa,exitRedAIaI,
entRedBInput,entRedBIa,entRedBIaI,
exitRedBInput,exitRedBIa,exitRedBIaI,
entBlueAInput,entBlueAIa,entBlueAIaI,
exitBlueAInput,exitBlueAIa,exitBlueAIaI,
entBlueBInput,entBlueBIa,entBlueBIaI: bool;

cf,cf’: config;
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%----------------------------------------------------------

%current and next snapshots for HTS redA

redA_systemSS0 := ([(onRedA, (onRedACS cf));(waitRedA, (waitRedACS cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf)));
(redBin, (BOOLT (redBinAV cf)));
(blueAin, (BOOLT (blueAinAV cf)));
(blueBin, (BOOLT (blueBinAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedA, (entRedAIa cf));(exitRedA, (exitRedAIa cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI1 cf)));
(redBin, (BOOLT (redBinAVI1 cf)));
(blueAin, (BOOLT (blueAinAVI1 cf)));
(blueBin, (BOOLT (blueBinAVI1 cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedA, (entRedAIaI cf));(exitRedA, (exitRedAIaI cf))]);

redA_systemSS1 := ([(onRedA, (onRedACS cf’));(waitRedA, (waitRedACS cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf’)));
(redBin, (BOOLT (redBinAV cf’)));
(blueAin, (BOOLT (blueAinAV cf’)));
(blueBin, (BOOLT (blueBinAV cf’)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedA, (entRedAIa cf’));(exitRedA, (exitRedAIa cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI1 cf’)));
(redBin, (BOOLT (redBinAVI1 cf’)));
(blueAin, (BOOLT (blueAinAVI1 cf’)));
(blueBin, (BOOLT (blueBinAVI1 cf’)))],
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(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedA, (entRedAIaI cf’));(exitRedA, (exitRedAIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS redB

redB_systemSS0 := ([(onRedB, (onRedBCS cf));(waitRedB, (waitRedBCS cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf)));
(redBin, (BOOLT (redBinAV cf)));
(blueAin, (BOOLT (blueAinAV cf)));
(blueBin, (BOOLT (blueBinAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedB, (entRedBIa cf));(exitRedB, (exitRedBIa cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI2 cf)));
(redBin, (BOOLT (redBinAVI2 cf)));
(blueAin, (BOOLT (blueAinAVI2 cf)));
(blueBin, (BOOLT (blueBinAVI2 cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedB, (entRedBIaI cf));(exitRedB, (exitRedBIaI cf))]);

redB_systemSS1 := ([(onRedB, (onRedBCS cf’));(waitRedB, (waitRedBCS cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf’)));
(redBin, (BOOLT (redBinAV cf’)));
(blueAin, (BOOLT (blueAinAV cf’)));
(blueBin, (BOOLT (blueBinAV cf’)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedB, (entRedBIa cf’));(exitRedB, (exitRedBIa cf’))],
(:evValuePair)NIL,
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[(redAin, (BOOLT (redAinAVI2 cf’)));
(redBin, (BOOLT (redBinAVI2 cf’)));
(blueAin, (BOOLT (blueAinAVI2 cf’)));
(blueBin, (BOOLT (blueBinAVI2 cf’)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entRedB, (entRedBIaI cf’));(exitRedB, (exitRedBIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS blueA

blueA_systemSS0 := ([(onBlueA, (onBlueACS cf));(waitBlueA, (waitBlueACS cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf)));
(redBin, (BOOLT (redBinAV cf)));
(blueAin, (BOOLT (blueAinAV cf)));
(blueBin, (BOOLT (blueBinAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueA, (entBlueAIa cf));(exitBlueA, (exitBlueAIa cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI3 cf)));
(redBin, (BOOLT (redBinAVI3 cf)));
(blueAin, (BOOLT (blueAinAVI3 cf)));
(blueBin, (BOOLT (blueBinAVI3 cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueA, (entBlueAIaI cf));(exitBlueA, (exitBlueAIaI cf))]);

blueA_systemSS1 := ([(onBlueA, (onBlueACS cf’));(waitBlueA, (waitBlueACS cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf’)));
(redBin, (BOOLT (redBinAV cf’)));
(blueAin, (BOOLT (blueAinAV cf’)));
(blueBin, (BOOLT (blueBinAV cf’)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
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(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueA, (entBlueAIa cf’));(exitBlueA, (exitBlueAIa cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI3 cf’)));
(redBin, (BOOLT (redBinAVI3 cf’)));
(blueAin, (BOOLT (blueAinAVI3 cf’)));
(blueBin, (BOOLT (blueBinAVI3 cf’)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueA, (entBlueAIaI cf’));(exitBlueA, (exitBlueAIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS blueB

blueB_systemSS0 := ([(onBlueB, (onBlueBCS cf));(waitBlueB, (waitBlueBCS cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf)));
(redBin, (BOOLT (redBinAV cf)));
(blueAin, (BOOLT (blueAinAV cf)));
(blueBin, (BOOLT (blueBinAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueB, (entBlueBIa cf));(exitBlueB, (exitBlueBIa cf))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI4 cf)));
(redBin, (BOOLT (redBinAVI4 cf)));
(blueAin, (BOOLT (blueAinAVI4 cf)));
(blueBin, (BOOLT (blueBinAVI4 cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueB, (entBlueBIaI cf));(exitBlueB, (exitBlueBIaI cf))]);

blueB_systemSS1 := (
[(onBlueB, (onBlueBCS cf’));(waitBlueB, (waitBlueBCS cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAV cf’)));
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(redBin, (BOOLT (redBinAV cf’)));
(blueAin, (BOOLT (blueAinAV cf’)));
(blueBin, (BOOLT (blueBinAV cf’)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueB, (entBlueBIa cf’));(exitBlueB, (exitBlueBIa cf’))],
(:evValuePair)NIL,
[(redAin, (BOOLT (redAinAVI4 cf’)));
(redBin, (BOOLT (redBinAVI4 cf’)));
(blueAin, (BOOLT (blueAinAVI4 cf’)));
(blueBin, (BOOLT (blueBinAVI4 cf’)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
[(entBlueB, (entBlueBIaI cf’));(exitBlueB, (exitBlueBIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS redCoordEnt

redCoordEnt_systemSS0 := ([(coordEntRedB, (coordEntRedBCS cf));
(coordEntRedA, (coordEntRedACS cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entRedA, (entRedAIa cf));(entRedB, (entRedBIa cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entRedA, (entRedAIaI cf));(entRedB, (entRedBIaI cf))]);

redCoordEnt_systemSS1 := ([(coordEntRedB, (coordEntRedBCS cf’));
(coordEntRedA, (coordEntRedACS cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
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(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entRedA, (entRedAIa cf’));(entRedB, (entRedBIa cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entRedA, (entRedAIaI cf’));(entRedB, (entRedBIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS redCoordExit

redCoordExit_systemSS0 := ([(coordExitRedA, (coordExitRedACS cf));
(coordExitRedB, (coordExitRedBCS cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitRedA, (exitRedAIa cf));(exitRedB, (exitRedBIa cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitRedA, (exitRedAIaI cf));(exitRedB, (exitRedBIaI cf))]);

redCoordExit_systemSS1 := ([(coordExitRedA, (coordExitRedACS cf’));
(coordExitRedB, (coordExitRedBCS cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitRedA, (exitRedAIa cf’));(exitRedB, (exitRedBIa cf’))],
(:evValuePair)NIL,
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(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitRedA, (exitRedAIaI cf’));(exitRedB, (exitRedBIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS blueCoordEnt

blueCoordEnt_systemSS0 := ([(coordEntBlueB, (coordEntBlueBCS cf));
(coordEntBlueA, (coordEntBlueACS cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entBlueA, (entBlueAIa cf));(entBlueB, (entBlueBIa cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entBlueA, (entBlueAIaI cf));(entBlueB, (entBlueBIaI cf))]);

blueCoordEnt_systemSS1 := ([(coordEntBlueB, (coordEntBlueBCS cf’));
(coordEntBlueA, (coordEntBlueACS cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entBlueA, (entBlueAIa cf’));(entBlueB, (entBlueBIa cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(entBlueA, (entBlueAIaI cf’));(entBlueB, (entBlueBIaI cf’))]);

%----------------------------------------------------------
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%current and next snapshots for HTS blueCoordExit

blueCoordExit_systemSS0 := ([(coordExitBlueA, (coordExitBlueACS cf));
(coordExitBlueB, (coordExitBlueBCS cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitBlueA, (exitBlueAIa cf));(exitBlueB, (exitBlueBIa cf))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitBlueA, (exitBlueAIaI cf));(exitBlueB, (exitBlueBIaI cf))]);

blueCoordExit_systemSS1 := ([(coordExitBlueA, (coordExitBlueACS cf’));
(coordExitBlueB, (coordExitBlueBCS cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitBlueA, (exitBlueAIa cf’));(exitBlueB, (exitBlueBIa cf’))],
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,

[(exitBlueA, (exitBlueAIaI cf’));(exitBlueB, (exitBlueBIaI cf’))]);

%----------------------------------------------------------

%snapshot structure that matches the composition structure

Input := ([(exitBlueB, (exitBlueBInput cf));
(entRedA, (entRedAInput cf));
(exitRedA, (exitRedAInput cf));
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(entRedB, (entRedBInput cf));
(exitRedB, (exitRedBInput cf));
(entBlueA, (entBlueAInput cf));
(exitBlueA, (exitBlueAInput cf));
(entBlueB, (entBlueBInput cf))],
(:varValuePair)NIL);

redA_systemHtsSS := (redA_systemHts, redA_systemHie, redA_systemTranSet,
redA_systemSS0, redA_systemSS1, systemInfo);

redB_systemHtsSS := (redB_systemHts, redB_systemHie, redB_systemTranSet,
redB_systemSS0, redB_systemSS1, systemInfo);

blueA_systemHtsSS := (blueA_systemHts, blueA_systemHie, blueA_systemTranSet,
blueA_systemSS0, blueA_systemSS1, systemInfo);

blueB_systemHtsSS := (blueB_systemHts, blueB_systemHie, blueB_systemTranSet,
blueB_systemSS0, blueB_systemSS1, systemInfo);

redCoordEnt_systemHtsSS := (redCoordEnt_systemHts, redCoordEnt_systemHie,
redCoordEnt_systemTranSet, redCoordEnt_systemSS0,
redCoordEnt_systemSS1, systemInfo);

redCoordExit_systemHtsSS := (redCoordExit_systemHts, redCoordExit_systemHie,
redCoordExit_systemTranSet,
redCoordExit_systemSS0, redCoordExit_systemSS1,
systemInfo);

blueCoordEnt_systemHtsSS := (blueCoordEnt_systemHts, blueCoordEnt_systemHie,
blueCoordEnt_systemTranSet,
blueCoordEnt_systemSS0, blueCoordEnt_systemSS1,
systemInfo);

blueCoordExit_systemHtsSS := (blueCoordExit_systemHts, blueCoordExit_systemHie,
blueCoordExit_systemTranSet,
blueCoordExit_systemSS0, blueCoordExit_systemSS1,
systemInfo);

treeHtsSnapshot := envSync singleLaneBridge
(intl car
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(intl redCar
(leafHts redA_systemHtsSS)
(leafHts redB_systemHtsSS))

(intl blueCar
(leafHts blueA_systemHtsSS)
(leafHts blueB_systemHtsSS)))

(intl coord
(intl coordRed

(leafHts redCoordEnt_systemHtsSS)
(leafHts redCoordExit_systemHtsSS))

(intl coordBlue
(leafHts blueCoordEnt_systemHtsSS)
(leafHts blueCoordExit_systemHtsSS)))

[entRedA;exitRedA;entRedB;exitRedB;
entBlueA;exitBlueA;entBlueB;exitBlueB];

%------------------------------------------------------------------------------

%properties of the system

%The states are reachable

EF (At (onRedACS cf));
EF (At (onBlueACS cf));
EF (At (coordEntRedBCS cf));
EF (At (coordExitBlueBCS cf));

%Two red cars can travel on the bridge at the same time

EF (CTLAND (At (onRedACS cf)) (At (onRedBCS cf)));

%A red car and a blue car cannot be on the bridge at the same time

AG (CTLNOT (CTLAND (CTLOR (At (onBlueACS cf)) (At (onBlueBCS cf)))
(CTLOR (At (onRedACS cf)) (At (onRedBCS cf)))));

%Two cars of the same colour cannot enter the bridge at the same time

AG (CTLNOT (CTLAND ((At (waitRedACS cf)) (At (waitRedBCS cf)))
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(AX (CTLAND (At (onRedACS cf)) (At (onRedBCS cf))))));

%A red car cannot pass another red car on the bridge

EF (CTLOR (CTLNOT (CTLAND (At (onRedACS cf)) (AX (At (onRedBCS cf)))));
(AX (AU (At (onRedBCS cf)) (At (waitRedACS cf)))))



Appendix B

Specification of Heating System

% specification of the heating system in S+

: transName := t1|t2|t3|t4|t5|t6|t7|t8|t9|t10|t11|t12|t13|t14
|t15|t16|t17|t19|t20|t21|t22|t23;

: stateName := heatingSys
|furnace
|furnaceNormal|furnaceOff|furnaceRun|furnaceAct|furnaceErr
|house
|controller
|off|error|controllerOn|idle|heaterActive|actHeater|heaterRun
|room
|noHeatReq|idleNoHeat|waitForHeat
|heatReq|idleHeat|waitForCool;

: varName := furnaceStartup|tooCold|tooHot|valvePos|waitedForWarm|waitedForCool
|requestHeat;

: evName := heatingSwitchOn|heatingSwitchOff|userReset
|furnaceFault|activate|deactivate|furnaceReset|furnaceRunning;

: htsName := furnaceSysHts|controllerSysHts|roomSysHts;

227
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%----------------------------------------------------------

%HTS furnace

furnaceSysHie := (superState furnace furnaceNormal
[(superState furnaceNormal furnaceOff

[(basicState furnaceOff);(basicState furnaceRun);
(basicState furnaceAct)]);

(basicState furnaceErr)]);

tran1 := ( t1,
(ctrlState furnaceOff),
(posEv activate),
true,
([(furnaceStartup, false)],
(:evName)NIL),
0,
(ctrlState furnaceAct));

tran2 := ( t2,
(ctrlState furnaceAct),
(posEv deactivate),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState furnaceOff));

tran3 := ( t3,
(ctrlState furnaceAct),
(nonEv),
(equal (varBool furnaceStartup) true),
((:varAsn)NIL,
[furnaceRunning]),
0,
(ctrlState furnaceRun));

tran4 := ( t4,
(ctrlState furnaceRun),
(posEv deactivate),
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true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState furnaceOff));

tran5 := ( t5,
(ctrlState furnaceAct),
(nonEv),
(equal (varBool furnaceStartup) false),
([(furnaceStartup, true)],
(:evName)NIL),
0,
(ctrlState furnaceAct));

tran6 := ( t6,
(ctrlState furnaceErr),
(posEv furnaceReset),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState furnaceNormal));

tran7 := ( t7,
(ctrlState furnaceNormal),
(posEv furnaceFault),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState furnaceErr));

furnaceSysTranSet := [tran1;tran2;tran3;tran4;tran5;tran6;tran7];

FurnaceSysHTS := (furnaceSysHts, furnaceSysHie, furnaceSysTranSet);

%----------------------------------------------------------

%HTS controller
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controllerSysHie := (superState controller off
[(basicState off);(basicState error);
(superState controllerOn idle

[(basicState idle);
(superState heaterActive actHeater

[(basicState actHeater);(basicState heaterRun)])])]);

tran8 := ( t8,
(ctrlState error),
(posEv userReset),
true,
((:varAsn)NIL,
[furnaceReset]),
0,
(ctrlState off));

tran9 := ( t9,
(ctrlState off),
(posEv heatingSwitchOn),
true,
((:varAsn)NIL,
(:evName)NIL),
0,
(ctrlState controllerOn));

tran10 := ( t10,
(ctrlState controllerOn),
(posEv heatingSwitchOff),
true,
((:varAsn)NIL,
[deactivate]),
0,
(ctrlState off));

tran11 := ( t11,
(ctrlState controllerOn),
(posEv furnaceFault),
true,
((:varAsn)NIL,
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(:evName)NIL),
0,
(ctrlState error));

tran12 := ( t12,
(ctrlState idle),
(nonEv),
(equal (varBool requestHeat) true),
((:varAsn)NIL,
[activate]),

0,
(ctrlState heaterActive));

tran13 := ( t13,
(ctrlState actHeater),
(posEv furnaceRunning),
true,
((:varAsn)NIL,
(:evName)NIL),

0,
(ctrlState heaterRun));

tran14 := ( t14,
(ctrlState heaterActive),
(nonEv),
(equal (varBool requestHeat) false),
((:varAsn)NIL,
[deactivate]),

0,
(ctrlState idle));

controllerSysTranSet := [tran8;tran9;tran10;tran11;tran12;tran13;tran14];

ControllerSysHTS := (controllerSysHts, controllerSysHie, controllerSysTranSet);

%----------------------------------------------------------

%HTS noHeatReq

noHeatReqSysHie := (superState noHeatReq idleNoHeat
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[(basicState idleNoHeat);(basicState waitForHeat)]);

tran15 := ( t15,
(ctrlState idleNoHeat),
(nonEv),
(varBool tooCold),
([(valvePos, true);(waitedForWarm, false)],
(:evName)NIL),

0,
(ctrlState waitForHeat));

tran16 := ( t16,
(ctrlState waitForHeat),
(nonEv),
(not (varBool tooCold)),
((:varAsn)NIL,
(:evName)NIL),

0,
(ctrlState idleNoHeat));

tran17 := ( t17,
(ctrlState waitForHeat),
(nonEv),
(equal (varBool waitedForWarm) false),
([(waitedForWarm, true)],
(:evName)NIL),

0,
(ctrlState waitForHeat));

noHeatReqSysTranSet := [tran15;tran16;tran17];

NoHeatReqSysHTS := (noHeatReqSysHts, noHeatReqSysHie, noHeatReqSysTranSet);

%----------------------------------------------------------

%interrupt transitions

tran19 := ( t19,
(ctrlState waitForCool),
(nonEv),
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(and (and (equal (varBool valvePos) false)
(equal (varBool waitedForCool) true))

(varBool tooHot)),
([(requestHeat, false)],
(:evName)NIL),

0,
(ctrlState noHeatReq));

tran20 := ( t20,
(ctrlState waitForHeat),
(nonEv),
(and (and (equal (varBool valvePos) true)

(equal (varBool waitedForWarm) true))
(varBool tooCold)),

([(requestHeat, true)],
(:evName)NIL),

0,
(ctrlState heatReq));

%----------------------------------------------------------

%HTS heatReq

heatReqSysHie := (superState heatReq idleHeat
[(basicState idleHeat);(basicState waitForCool)]);

tran21 := ( t21,
(ctrlState idleHeat),
(nonEv),
(varBool tooHot),
([(valvePos, false); (waitedForCool, false)],
(:evName)NIL),

0,
(ctrlState waitForCool));

tran22 := ( t22,
(ctrlState waitForCool),
(nonEv),
(not (varBool tooHot)),
((:varAsn)NIL,
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(:evName)NIL),
0,
(ctrlState idleHeat));

tran23 := ( t23,
(ctrlState waitForCool),
(nonEv),
(equal (varBool waitedForCool) false),
([(waitedForCool, true)],
(:evName)NIL),

0,
(ctrlState waitForCool));

heatReqSysTranSet := [tran21;tran22;tran23];

HeatReqSysHTS := (heatReqSysHts, heatReqSysHie, heatReqSysTranSet);

%----------------------------------------------------------

%composition struture and syntax information of the system

compHierarchy := microParaDili heatingSys
(microSingleHts FurnaceSysHTS)

(microParaDili house
(microSingleHts ControllerSysHTS)
(microInterr room

(microSingleHTS NoHeatReqSysHTS)
(microSingleHTS HeatReqSysHTS)
[tran19; tran20]));

varTypeList := [(furnaceStartup, bool);
(tooCold, bool);
(tooHot, bool);
(valvePos, bool);
(waitedForWarm, bool);
(waitedForCool, bool);
(requestHeat, bool)];

varInitList := [(furnaceStartup, [(BOOLT F)]);
(requestHeat, [(BOOLT F)]);
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(waitedForCool, [(BOOLT F)]);
(waitedForWarm, [(BOOLT F)]);
(valvePos, [(BOOLT F)])];

finalStates := (:stFinalPair)NIL;

envSet := [heatingSwitchOn;heatingSwitchOff;userReset;furnaceFault];

ieSet := (:evName)NIL;

eeSet := [activate;deactivate;furnaceReset;furnaceRunning];

envVar := [tooCold;tooHot];

systemInfo := (varTypeList, varInitList, finalStates,
envSet, ieSet, eeSet, envVar);

sysDefn := (compHierarchy, systemInfo);

%------------------------------------------------------------------------------

%generated snapshots for the system

%declarations of all snapshots elements

cf,cf’: config;

requestHeatAV, requestHeatAVI1, requestHeatAVI2, requestHeatAVI3,
furnaceStartupAV, furnaceStartupAVI,
waitedForCoolAV, waitedForCoolAVI,
waitedForWarmAV, waitedForWarmAVI,
valvePosAV, valvePosAVI1, valvePosAVI2,
tooColdAV, tooColdAVI, tooColdInput,
tooHotAV, tooHotAVI, tooHotInput: bool;

furnaceOffCS,furnaceRunCS,furnaceActCS,furnaceErrCS,
idleNoHeatCS,waitForHeatCS,idleHeatCS,waitForCoolCS, idleCS,
offCS, errorCS, actHeaterCS, heaterRunCS: bool;



236 APPENDIX B. SPECIFICATION OF HEATING SYSTEM

activateIE,activateIEI1,activateIEI2,
deactivateIE,deactivateIEI1,deactivateIEI2,
furnaceResetIE,furnaceResetIEI1,furnaceResetIEI2,
furnaceRunningIE,furnaceRunningIEI1,furnaceRunningIEI2,
furnaceFaultInput,furnaceFaultIa,furnaceFaultIaI,
heatingSwitchOnInput,heatingSwitchOnIa,heatingSwitchOnIaI,
heatingSwitchOffInput,heatingSwitchOffIa,heatingSwitchOffIaI,
userResetInput,userResetIa,userResetIaI: bool;

%----------------------------------------------------------

%current and next snapshots for HTS furnace

furnaceSysSS0 := ([(furnaceOff, (furnaceOffCS cf));
(furnaceRun, (furnaceRunCS cf));
(furnaceAct, (furnaceActCS cf));
(furnaceErr, (furnaceErrCS cf))],

[(activate, (activateIE cf));
(deactivate, (deactivateIE cf));
(furnaceRunning, (furnaceRunningIE cf));
(furnaceReset, (furnaceResetIE cf))],

[(furnaceStartup, (BOOLT (furnaceStartupAV cf)))],
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(furnaceFault, (furnaceFaultIa cf))],
[(activate, (activateIEI1 cf));
(deactivate, (deactivateIEI1 cf));
(furnaceRunning, (furnaceRunningIEI1 cf));
(furnaceReset, (furnaceResetIEI1 cf))],

[(furnaceStartup, (BOOLT (furnaceStartupAVI cf)))],
(:evValuePair)NIL,
(:varValuePair)NIL,
[(furnaceFault, (furnaceFaultIaI cf))]);

furnaceSysSS1 := ([(furnaceOff, (furnaceOffCS cf’));
(furnaceRun, (furnaceRunCS cf’));
(furnaceAct, (furnaceActCS cf’));
(furnaceErr, (furnaceErrCS cf’))],



237

[(activate, (activateIE cf’));
(deactivate, (deactivateIE cf’));
(furnaceRunning, (furnaceRunningIE cf’));
(furnaceReset, (furnaceResetIE cf’))],

[(furnaceStartup, (BOOLT (furnaceStartupAV cf’)))],
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(furnaceFault, (furnaceFaultIa cf’))],
[(activate, (activateIEI1 cf’));
(deactivate, (deactivateIEI1 cf’));
(furnaceRunning, (furnaceRunningIEI1 cf’));
(furnaceReset, (furnaceResetIEI1 cf’))],

[(furnaceStartup, (BOOLT (furnaceStartupAVI cf’)))],
(:evValuePair)NIL,
(:varValuePair)NIL,
[(furnaceFault, (furnaceFaultIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS controller

controllerSysSS0 := ([(off, (offCS cf));
(error, (errorCS cf));
(idle, (idleCS cf));
(actHeater, (actHeaterCS cf));
(heaterRun, (heaterRunCS cf))],

[(activate, (activateIE cf));
(deactivate, (deactivateIE cf));
(furnaceRunning, (furnaceRunningIE cf));
(furnaceReset, (furnaceResetIE cf))],

[(requestHeat, (BOOLT (requestHeatAV cf)))],
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(heatingSwitchOn, (heatingSwitchOnIa cf));
(heatingSwitchOff, (heatingSwitchOffIa cf));
(userReset, (userResetIa cf));
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(furnaceFault, (furnaceFaultIa cf))],
[(activate, (activateIEI2 cf));
(deactivate, (deactivateIEI2 cf));
(furnaceRunning, (furnaceRunningIEI2 cf));
(furnaceReset, (furnaceResetIEI2 cf))],

[(requestHeat, (BOOLT (requestHeatAVI1 cf)))],
(:evValuePair)NIL,
(:varValuePair)NIL,
[(heatingSwitchOn, (heatingSwitchOnIaI cf));
(heatingSwitchOff, (heatingSwitchOffIaI cf));
(userReset, (userResetIaI cf));
(furnaceFault, (furnaceFaultIaI cf))]);

controllerSysSS1 := ( [(off, (offCS cf’));
(error, (errorCS cf’));
(idle, (idleCS cf’));
(actHeater, (actHeaterCS cf’));
(heaterRun, (heaterRunCS cf’))],

[(activate, (activateIE cf’));
(deactivate, (deactivateIE cf’));
(furnaceRunning, (furnaceRunningIE cf’));
(furnaceReset, (furnaceResetIE cf’))],

[(requestHeat, (BOOLT (requestHeatAV cf’)))],
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
[(heatingSwitchOn, (heatingSwitchOnIa cf’));
(heatingSwitchOff, (heatingSwitchOffIa cf’));
(userReset, (userResetIa cf’));
(furnaceFault, (furnaceFaultIa cf’))],

[(activate, (activateIEI2 cf’));
(deactivate, (deactivateIEI2 cf’));
(furnaceRunning, (furnaceRunningIEI2 cf’));
(furnaceReset, (furnaceResetIEI2 cf’))],

[(requestHeat, (BOOLT (requestHeatAVI1 cf’)))],
(:evValuePair)NIL,
(:varValuePair)NIL,
[(heatingSwitchOn, (heatingSwitchOnIaI cf’));
(heatingSwitchOff, (heatingSwitchOffIaI cf’));
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(userReset, (userResetIaI cf’));
(furnaceFault, (furnaceFaultIaI cf’))]);

%----------------------------------------------------------

%current and next snapshots for HTS noHeatReq

noHeatReqSysSS0 := ([(idleNoHeat, (idleNoHeatCS cf));
(waitForHeat, (waitForHeatCS cf))],
(:evValuePair)NIL,

[(valvePos, (BOOLT (valvePosAV cf)));
(waitedForWarm, (BOOLT (waitedForWarmAV cf)));
(requestHeat, (BOOLT (requestHeatAV cf)));
(tooCold, (BOOLT (tooColdAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:evValuePair)NIL,
[(valvePos, (BOOLT (valvePosAVI1 cf)));
(waitedForWarm, (BOOLT (waitedForWarmAVI cf)));
(requestHeat, (BOOLT (requestHeatAVI2 cf)));
(tooCold, (BOOLT (tooColdAVI cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL);

noHeatReqSysSS1 := ([(idleNoHeat, (idleNoHeatCS cf’));
(waitForHeat, (waitForHeatCS cf’))],
(:evValuePair)NIL,

[(valvePos, (BOOLT (valvePosAV cf’)));
(waitedForWarm, (BOOLT (waitedForWarmAV cf’)));
(requestHeat, (BOOLT (requestHeatAV cf’)));
(tooCold, (BOOLT (tooColdAV cf’)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
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(:evValuePair)NIL,
[(valvePos, (BOOLT (valvePosAVI1 cf’)));
(waitedForWarm, (BOOLT (waitedForWarmAVI cf’)));
(requestHeat, (BOOLT (requestHeatAVI2 cf’)));
(tooCold, (BOOLT (tooColdAVI cf’)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL);

%----------------------------------------------------------

%current and next snapshots for HTS heatReq

heatReqSysSS0 := ([(idleHeat, (idleHeatCS cf));
(waitForCool, (waitForCoolCS cf))],
(:evValuePair)NIL,

[(valvePos, (BOOLT (valvePosAV cf)));
(requestHeat, (BOOLT (requestHeatAV cf)));
(waitedForCool, (BOOLT (waitedForCoolAV cf)));
(tooHot, (BOOLT (tooHotAV cf)))],

(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:evValuePair)NIL,
[(valvePos, (BOOLT (valvePosAVI2 cf)));
(requestHeat, (BOOLT (requestHeatAVI3 cf)));
(waitedForCool, (BOOLT (waitedForCoolAVI cf)));
(tooHot, (BOOLT (tooHotAVI cf)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL);

heatReqSysSS1 := ([(idleHeat, (idleHeatCS cf’));
(waitForCool, (waitForCoolCS cf’))],
(:evValuePair)NIL,

[(valvePos, (BOOLT (valvePosAV cf’)));
(requestHeat, (BOOLT (requestHeatAV cf’)));
(waitedForCool, (BOOLT (waitedForCoolAV cf’)));



241

(tooHot, (BOOLT (tooHotAV cf’)))],
(:evValuePair)NIL,
(:stValuePair)NIL,
(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL,
(:evValuePair)NIL,
[(valvePos, (BOOLT (valvePosAVI2 cf’)));
(requestHeat, (BOOLT (requestHeatAVI3 cf’)));
(waitedForCool, (BOOLT (waitedForCoolAVI cf’)));
(tooHot, (BOOLT (tooHotAVI cf’)))],

(:evValuePair)NIL,
(:varValuePair)NIL,
(:evValuePair)NIL);

%----------------------------------------------------------

%snapshot structure that matches the composition structure

Input := ([(heatingSwitchOn, (heatingSwitchOnInput cf));
(heatingSwitchOff, (heatingSwitchOffInput cf));
(userReset, (userResetInput cf));
(furnaceFault, (furnaceFaultInput cf))],
[(tooCold, (BOOLT (tooColdInput cf)));
(tooHot, (BOOLT (tooHotInput cf)))]);

furnaceSysHtsSS := (furnaceSysHts, furnaceSysHie, furnaceSysTranSet,
furnaceSysSS0, furnaceSysSS1, systemInfo);

controllerSysHtsSS :=(controllerSysHts, controllerSysHie, controllerSysTranSet,
controllerSysSS0, controllerSysSS1, systemInfo);

noHeatReqSysHtsSS := (noHeatReqSysHts, noHeatReqSysHie, noHeatReqSysTranSet,
noHeatReqSysSS0, noHeatReqSysSS1, systemInfo);

heatReqSysHtsSS := (heatReqSysHts, heatReqSysHie, heatReqSysTranSet,
heatReqSysSS0, heatReqSysSS1, systemInfo);

treeHtsSnapshot := para heatingSys
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(leafHts furnaceSysHtsSS)
(para house

(leafHts controllerSysHtsSS)
(interr room

(leafHts noHeatReqSysHtsSS)
(leafHts heatReqSysHtsSS)
[tran20]
[tran19]));

%------------------------------------------------------------------------------

%properties of the system

%All basic states of the furnace, the controller, and the room are reachable.

EF (At (waitForHeatCS cf));
EF (At (furnaceActCS cf));
EF (At (actHeaterCS cf));

%If the furnace is in its running state, the controller is in its running
%state also.

EF (CTLAND (CTLAND (At (idleHeatCS cf)) (At (furnaceRunCS cf)))
(At (heaterRunCS cf)));

%If the room is too cold and stays cold when the valve is open, the furnace
%will be turned on.

AG (CTLOR (CTLNOT (CTLAND (CTLAND (CTLAND (At (tooColdInput cf))
(At (heatingSwitchOnInput cf)))

(AX (At (tooColdInput cf))))
(AX (At (tooColdInput cf))))

(AF (At (furnaceActCS cf)))));

%If the room is too hot and stays hot when the valve is closed, the furnace
%will be turned off.

AG (CTLOR (CTLNOT (CTLAND (CTLAND (CTLAND (At (tooHotInput cf))
(At (heatingSwitchOnInput cf)))
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(AX (At (tooHotInput cf))))
(AX (At (tooHotInput cf)))))

(AF (At (furnaceOffCS cf))));

%The furnace will be turned on if a room requests heat.

AG (CTLOR (CTLNOT (CTLAND (CTLAND (At (requestHeatAV cf))
(At (idleCS cf)))

(At (furnaceOffCS cf))))
(AF (At (furnaceActCS cf))));


