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Abstract

Distributed Feature Composition (DFC) is an architecture developed by Jackson and

Zave at AT&T to describe and implement telecommunication services. DFC supports

modular development, where features that are independently implemented can be com-

posed. The main goal of our work is to create a definition of DFC compliance for features

with respect to the signalling call protocol using a set of linear temporal logic (LTL) prop-

erties and to verify that our proposed protocol properties hold for segments of DFC with n

features communicating through unbounded queues. Our main contribution is a compo-

sitional reasoning method that decomposes the problem into two parts: (1) Model check

features individually in an abstract environment to verify that they are DFC compliant

with respect to the call protocol, and (2) Use the properties of the individual features

in an inductive proof to conclude that the call protocol properties hold over segments of

the DFC architecture.
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Chapter 1

Introduction

An often quoted remark by Dijkstra is that “Program testing can be used to show the

presence of bugs, but never their absence” [5]. To ensure that a system is not only

free of bugs, but also meets its requirements without unexpected behaviours, we need

the tools of formal methods. Formal analysis techniques perform exhaustive analysis,

so they are of special interest to verify correctness requirements for distributed systems,

such as telephony systems, which involve concurrently executing processes.

In this thesis, we present a method to verify aspects of the call protocol for Jackson

and Zave’s Distributed Feature Composition (DFC) [12] architecture, which is used by

AT&T in its telecommunication services. In this chapter, we provide an overview of our

method, list the contributions of this thesis, and discuss related work. Finally, we give a

brief description of the organization of this thesis.

1.1 Thesis Description

DFC is an architecture for coordinating telephony features based on a pipe-and-filter

model, developed by Jackson and Zave at AT&T [12]. A feature box is a function for

the users of a system, performed on top of basic services. An example of a feature in

the telephony domain is call waiting. The architecture is a distributed system in which

each feature runs as a process and communicates with its neighbours using signals passed

along communication channels, following the call protocol. A user subscribes to features,

which are placed in an order based on precedence information.

A feature interaction occurs when the execution of one feature interferes with the

work or modifies the behaviour of another feature, although not all feature interactions

1



2 Verification of DFC Call Protocol Correctness Criteria

are bad. The innovation in DFC is that by placing a structure on the way the features

interact, some undesirable feature interactions can be avoided, and others can be pre-

dicted because the features respond to signals in the order of the usage. The DFC rules

on how features interact are strong enough to guarantee that basic call functionality is

preserved, since the usage is created and can be torn down, but flexible enough to allow

individual feature behaviour. Much research has been done on trying to detect and avoid

feature interactions in telecommunication services (e.g., [20, 21, 8, 7]).

In this work, we seek to identify correctness criteria for DFC features concentrating

on the call protocol, i.e., we define what is good behaviour in the system, rather than

detecting feature interactions. We use liveness properties to express that eventually

“something good must happen” during a system execution, a notion first introduced

by Lamport [16]. To describe properties, we use temporal logic, which has proved to

be useful for describing the behaviour of concurrent systems, since temporal logics let

us describe the order in which events occur without using time explicitly [14]. Our

correctness properties are expressed in linear temporal logic (LTL).

In DFC, a usage is a dynamic assembly of boxes connected by channels. A usage

describes the response to a request for a telecommunication service at a certain time.

A box is either an interface box, e.g., Caller or Callee, or a feature subscribed to by

users, e.g., call forwarding. An interface box provides an interface to a physical device

to communicate to users or to another network. A feature box is either free or bound. A

free feature box is one for which a new instance of it is generated every time the feature

is to be included in a usage, e.g., call forwarding. A bound feature box is dedicated to a

particular address, and even if it is already in use within a usage, the same feature box

is made part of the new usage, e.g., call waiting.

A feature box has the authority to influence the routing process, leading to linear

or branching configurations, and changing the number of processes involved in a usage,

depending on the signals received. Therefore, we propose the following characterization

of the feature boxes that affect routing: A transparent box does not affect routing,

not absorbing or modifying signals, but passing them along; A user agent box can affect

routing, by requesting the creation of a usage or by responding to such request. Using this

categorization, we describe properties of DFC segments, each of which consists of a linear

arrangement of boxes from user agent to user agent without a user agent in between. Our

problem consists of verifying that our proposed call protocol properties hold for segments

with n feature boxes, each following the call protocol, and each communicating through

unbounded queues.
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We first check our proposed call protocol properties on fixed DFC segments, each

having a fixed number of Callers, Callees, and feature boxes. We chose the model checker

Spin [9] to develop a model of DFC, because the tool has explicit support for queues

and process interleaving, matching DFC behaviour. Model checking is an automatic

technique to verify the correctness of finite state concurrent systems by exhaustively

exploring all behaviours of the system to check if a property holds or not.

Unlike past work modeling DFC in Spin [22], the environment we developed to model

check the DFC architecture creates usages dynamically, which allows the model to closely

match DFC’s behaviour, using the subscription and precedence information to construct

a usage. This work allows us to debug our proposed properties. However, even if this

verification effort is appropriate for specific instances of DFC usages, we cannot conclude

that all configurations with any number of features will satisfy our correctness properties.

Since DFC consists of a set of independently executing processes, we would like to be

able to use compositional reasoning to verify the call protocol properties. Usually, com-

positional reasoning suffers from dependency problems between components. To prove

properties of one component, we must assume properties of another component and vice

versa, which leads to proof rules for assume-guarantee style reasoning in which care must

be taken to avoid circular arguments (e.g., [17]). The semi-regularity of DFC features

alleviates this problem: the environment of every feature consists of other features boxes

or an interface box such as a Caller or Callee process. By the term semi-regularity we

mean that the DFC architecture requires all features to react to certain signals in the

same way, while leaving other signals to be used in feature-specific behaviours. If we can

capture the most general behaviour of any possible neighbouring box in an abstract envi-

ronment, we can (1) verify each box individually in the abstract environment, and then

(2) show that every box conforms to the behaviour of the abstract environment. This

separation of concerns makes it possible to create a compositional method for verifying

properties of usages to accompany the existing modularity of the DFC architecture.

We develop a compositional reasoning method to check that our proposed protocol

properties hold for any segment with n boxes following the call protocol, and commu-

nicating through unbounded queues. Our approach decomposes the problem into two

parts: (1) verifying that individual boxes behave as intended, being DFC compliant

with respect to the call protocol, and (2) using induction over n boxes, combining box

properties with abstract models of the queues to conclude the call protocol properties.

The verification of individual boxes in Spin involves three parts. First, we use model

checking to verify DFC-compliance properties of individual boxes, described in LTL. We
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use an unrestricted environment that can send and receive any call protocol signal at any

time. We employ synchronous communication, i.e., the channel capacity is zero and can-

not store messages, so when a send statement on a channel is executed, the corresponding

receive operation must be executed next. The use of synchronous communication has the

advantage of providing a reduction of the state space, abstracting away the behaviour of

the channels and neighbouring features in this step.

Second, we use model checking to verify that a box interacting with an environment

of neighbouring boxes receives only the signals it is expecting and sends only the signals

expected by the environment, because synchronous composition implicitly assumes that

the box receives and sends signals only when they are expected. We describe these ex-

pected I/O properties in LTL as invariants. Rather than consider the box in all possible

environments (i.e., all possible boxes as neighbours), to model the neighbouring boxes

we have created an abstract environment that captures the most general DFC port be-

haviour. We apply asynchronous communication, i.e., the channel capacity is at least

one, storing messages that do not need to be read immediately, which allows interleaving.

Third, we check for port compliance, which means that every port of any box conforms

to the most general DFC port behaviour used in the abstract environment. Port compli-

ance checking is done using language containment. By proving that the use of abstract

environments in the verification of the expected I/O property is a sound abstraction, it

is sufficient to verify the individual boxes with an abstract environment.

We use induction to show that if all boxes satisfy their required individual behaviours

and the queues behave correctly, then the segment properties are satisfied. We mecha-

nized the proof using the Hol theorem prover [6]. Theorem proving is the approach of

using a computer to support deductive reasoning. Only properties are used to describe

the behaviour of boxes, so we do not need to represent any complete description of box

models in Hol. The LTL properties for boxes and queues are stated in Hol and induc-

tion is applied over natural numbers, which allow us to represent the size of the segment.

The inductive reasoning step needs to be completed only once.

Our thesis statement is:

A correctness criteria for the call protocol for any DFC segment can

be described using linear temporal logic. A compositional reasoning

approach, combining model checking, theorem proving and language

containment, makes it possible to reason about DFC boxes individu-

ally in an abstract environment, and then to deduce the call protocol

properties about any DFC segment with n boxes by induction.
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1.2 Contributions

The main contributions of this thesis are:

• A proposed definition of DFC compliance with respect to the call protocol, using

a set of LTL properties.

• An environment for model checking fixed configurations of DFC box models in

the model checker Spin. The creation of the configuration is done dynamically,

following closely the DFC architecture.

• The detection of surprising feature behaviours during the verification of fixed config-

urations. The behaviours discovered were not specified in the feature’s descriptions

given in the literature, e.g., scenarios for the call waiting subscriber when several

parties are calling and hanging up.

• A compositional reasoning approach for DFC that consists of four steps:

– Verify, using model checking, that each box reacts to the call signals in agree-

ment with the DFC architecture constraints, using an unrestricted environ-

ment and synchronous communication.

– Verify, using model checking, that each box receives and sends only the call sig-

nals it expects, using an abstract environment that captures the most general

DFC port protocol behaviour and asynchronous communication.

– Prove that every port of any box conforms to the most general DFC port

behaviour used in the abstract environment. We proved the language con-

tainment relationships between a partial order of abstract port models so that

the most specific abstract port model could be used for checking the port

compliance of a box.

– Prove by induction over the length of a segment that the call protocol prop-

erties proposed about the DFC architecture hold.

1.3 Related Work

In this section, we briefly overview other efforts to verify DFC-related artifacts.
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An interesting motivation for the application of formal methods to DFC was described

by Zave [23]. Zave explores feature oriented and architectural system descriptions for

DFC and explains the need to use formal methods to support these descriptions. More

recently, she introduced a feature-oriented specification technique that follows the struc-

tural approach to detecting feature interactions by relying on properties of individual

feature programs [24]. We follow a similar method, but looking for requirements of good

behaviour instead of detecting feature interactions. Our work checks that individual

boxes are DFC compliant, and then we apply induction to confirm our call protocol

properties.

Zave provided also a formal description of the service layer of a telecommunication

system, organized according to the DFC architecture, using Promela and Z [22]. The

routing algorithm as well as the routing data were described in Z, and the DFC protocols

were described in Promela. Spin was used to check that the protocols of the virtual

network never deadlock. Zave used a static model, whereas in our model checking of fixed

DFC configurations, we dynamically create the box processes, which allows the model

to closely match DFC’s behaviour. As in Zave’s work, the first step of our verification

approach is to check for the absence of deadlock in the model, but we check also our call

protocol properties for segments and provide a compositional approach for checking the

properties on segments of length n.

A Java implementation of DFC in an IP setting, called ECLIPSE, was developed at

AT&T Labs, and the Mocha model checker [1] was used to verify the communication

protocols [3]. Individual ECLIPSE feature box code was translated to the modeling

language framework of Mocha automatically. Similar to our work, the verification consists

of combining a box with standardized environmental peer entities of caller, callee and

dual ports. At AT&T, a check for deadlock using synchronous communication between

the feature and its environment was performed. The example described in the paper

involves the analysis of a free transparent feature box, and there is no discussion of

analyzing bound feature boxes. We extend this work by checking liveness properties, as

well as taking the step of showing that all box behaviour is contained within an abstract

model, which captures the most general DFC port behaviour. The dual port peer in the

ECLIPSE work reflects the combined behaviour of a caller and callee ports, as described

in the DFC manual. However, a dual port does not take into account busy processing,

which is part of our abstract models. We present a partial order among these abstract

models. Finally, we also state box and segment properties and use inductive reasoning

to conclude the segment properties.
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Zave and Jackson have created a domain-specific programming language called Boxtalk

to simplify the expression of DFC feature behaviour [30]. Boxtalk encourages correct pro-

gramming of coordinating components and provides the foundation to prove behavioural

equivalence. This work lists a set of well-formedness properties that every box should

follow to produce meaningful global behaviour in a program.

Other abstractions, leading to theorems and analysis concerning feature interactions

have also been introduced. Zave defined a set of constraints on feature behaviour called

“ideal address translation” [26]. Adherence to the constraints results in provable proper-

ties such as preservation of anonymity. We are not dealing directly with the problem of

address translation, so the results are not directly related to our work. Zave presents also

a formal specification and properties of the new routing algorithm [25]. These properties

are defined in terms of an abstraction called “ideal connection paths”. However in our

work we are not modeling the behaviour of the router, so we do not use the properties

of this abstraction.

There is also significant work in searching for feature interactions in telephony systems

(e.g., [2]). In the context of DFC, Zimmer and Atlee have been studying categorizing

features for resolving feature interactions [31].

The combination of Spin and Hol has been used to analyze routing protocols [15]

where Hol was used to justify abstractions to a finite number of processes.

1.4 Thesis Organization

In Chapter 2, we provide background on the Distributed Feature Composition (DFC)

architecture, the Spin model checker and the Hol theorem prover. In Chapter 3, we

describe our model of DFC in Promela. Our proposed correctness criteria described

in LTL as call protocol properties is presented in Chapter 4, and the process of model

checking these properties on fixed configurations is explained in Chapter 5. We discuss the

compositional reasoning approach in Chapter 6, and conclude with a summary, discussion

of limitations and future work in Chapter 7. We provide the DFC models in Spin as

well as language containment proofs and a glossary of terms in the Appendices.





Chapter 2

Background

In this chapter, we provide the background needed to understand the rest of the thesis.

First, we give a brief overview of the Distributed Feature Composition (DFC) architec-

ture. Next, we describe the main characteristics of the Spin model checker and the Hol

theorem prover, which are used to prove our claims.

2.1 DFC Overview

DFC is an architecture developed by Jackson and Zave at AT&T to describe and imple-

ment telecommunication services [12]. Our description of DFC is based on the material

found in the DFC Manual [13], DFC modifications [29, 28], and early papers describing

the architecture [12, 23, 30]. The architecture coordinates telephony features based on

a pipe-and-filter model. A feature is a function for the users of a system, performed on

top of basic services. An example of a feature in the telephony domain is call waiting.

DFC’s main characteristic is modularity, where modules are independently implemented

components that can be structurally composed.

In DFC, a usage describes the response to a request for a telecommunication service

at certain time. A usage can be seen as a dynamically assembled graph composed of

boxes and internal calls, which are unbounded queues communicating with boxes. This

graph can change over time, in response to environmental events. An example is given

in Figure 2.1.

To understand and reason about usages, the graph is divided into regions. A source

region involves all the feature boxes subscribed to by the calling customer (at the source

address). A target region involves all the feature boxes subscribed to by the customer

9
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Caller
A OCSA

Callee
B

SOURCE REGION TARGET REGION

CWA CFB

Figure 2.1: Example of a Usage

being called (at the target address). Figure 2.1 shows an example of a usage created

when user A calls user B. User A subscribes to originating call screening (OCS) and

call waiting (CW) as source features and user B subscribes to call forwarding (CF) as a

target feature. If someone else calls A while A is talking to B, that user gets connected

to the CW feature of A. The components, as well as the way they interact to respond to

a customer telecommunication request, will be explained in the following subsections.

2.1.1 Signals

A signal is a message of the DFC call protocol. It has a signal type and a set of named,

typed fields. Optional fields can be programmer-defined fields that are included to contain

feature-specific information. The primary types of signals used in the call protocol are:

• setup: To request the setup of a telecommunication service, creating an internal

call via the router.

• upack: To acknowledge the receipt of a setup signal.

• teardown: To request the end of an existing usage.

• downack: To acknowledge the receipt of a teardown signal.

A setup signal requires the following fields:

• regn: source region, or target region.

• src: the sender’s address.

• dld : the dialed number.

• trg : the destination address.

• route: record used by the routing algorithm.

Status signals are used to provide information about the state of the current usage.

The status signals in the call protocol are:
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• avail: To indicate that the target address is available and the usage is deemed to

be successful, establishing a voice channel between Caller and Callee.

• unavail: To indicate the target address is not available, stimulating a busy tone if

none of the feature boxes in the usage offers a “busy treatment”, e.g., call forwarding

on busy or voice mail.

• unknown: To indicate that the target address does not map to any interface box,

stimulating an error tone.

• none: To cancel the effect of any of the other three previous signals on a user

interface, means “no outcome yet”.

2.1.2 Boxes

A box is a process that performs either interface or feature functions. Interface boxes

(e.g., Caller or Callee) provide an interface to physical devices to communicate to users

or to other networks. Feature boxes are either free or bound. A free feature box is

one for which a new instance is generated every time the feature is to be included in a

usage. An example of a free feature box is call forwarding, which is not persistent and

gets created upon request. Free feature boxes normally have two ports, so we call them

two-way feature boxes. A bound feature box is dedicated to a particular address, and

even if it is already in use within an existing usage, the same feature box is made part of

the new usage. An example of a bound feature box is call waiting, which is a persistent

process, and can be part of the source or target region of a usage. If a call waiting box

is involved in a usage, and the subscriber is being called, the routing process should go

through the call waiting box that is already in use. Bound feature boxes normally have

three or more ports. We call boxes with three ports three-way feature boxes.

The scope of DFC is delimited by interface boxes, which are connected to physical

devices to communicate among networks that use different protocols to exchange infor-

mation. However, inside this boundary, the components are arranged in a pipe-and-filter

style and use only the DFC call protocol to handle signals passing through the composed

features boxes.

2.1.3 Calls

The interaction that a box has with a communication channel connected to another box

is called a port. An internal call is an communication channel between ports of two

different boxes, transmitting signals between boxes in first in–first out (FIFO) order and
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following the DFC call protocol. The end of the channel connected to the box that

initiates a call by sending a setup is called a caller port, and the port on the other end

of the communication channel is called a callee port.

2.1.4 Global Data

In this section, we describe the information that is available to all components in order

to generate a usage. The way this information is used to build usages is explained in the

next section.

Subscriptions: A telephony system provides a set of features. Each customer chooses

which features to subscribe to. These choices are captured in the subscription data as a

mapping from addresses to feature boxes. In DFC, there are two kinds of subscriptions:

srcSubscribes, which is an association between an address and the feature boxes in its

source region, and trgSubscribes, which is an association between an address and the

feature boxes in its target region. Some feature boxes can only be placed either in the

source or target region.

Precedences: A relation that constrains the order in which feature boxes are placed

in the source and target region. This relation is a partial order, thus it helps restrict the

number of feature interactions that can occur in a usage.

Operational data: Data relations that can be read and written by feature boxes.

Operational data is meant to provide information needed by a particular feature, or by

a certain customer, e.g., retrieving the subscriber’s forwarding address when a feature

requires it.

2.1.5 Router

The router helps in the generation of the usage, setting up the communication channels

between boxes. This process is done by receiving, modifying and sending setup signals.

The router selects the next box that will be part of the usage by the application of the

routing algorithm to the setup signal, taking into account subscription information as

well as feature precedences. For each channel to be created, a setup signal from a box

is sent to any DFC router, which builds the whole route, i.e., the routing list of all the

boxes to be part of the usage. Because usages can be forked and joined, some steps of

the routing algorithm repeat more than once while constructing the routing list.

The DFC routing algorithm [13] is as follows:
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Step1 Extract the target address from the dialed string.

Step2 Expand the route field of the setup signal to contain the sequence

of feature boxes for the corresponding region (source or target) that are

expected to be next in the usage.

Step3 Advance to the next region once the sequence of feature boxes in the

current region is exhausted. Thus repeat Step 2 and 3 until all regions to

be part of the usage are in the route field.

Step4 Choose a feature box whose box type matches the head of the route,

and send the modified setup signal to it. If the route is empty, route to

an interface box corresponding to the target address.

When a router must incorporate a free feature box into a usage, it creates a new

instance of the feature box. When a router must incorporate a bound feature box into

a usage, only the unique box of appropriate type bound to the appropriate address may

be chosen. The router always finds a box to route the setup signal, because if needed,

it chooses a box whose only function is to handle errors.

2.1.6 Usages

The components of the DFC architecture are boxes, signals, calls, the router and the

global data. A usage can be seen as a dynamically assembled graph composed of boxes

and calls. Usages can be branching structures and involve multiple Callees and Callers.

The DFC architecture works as following. There are three phases to the interaction

between Caller and Callee: setup, communication, and teardown. In the setup phase, as

shown in Figure 2.2, each internal call is set up in a triangular and piecewise manner:

a message with a setup signal from a box first goes to the router, then the router

determines the next box in the usage and sends it a setup signal, and finally, a channel

is created between the two box ports at either end of the call. The router determines the

next box in the sequence based on the Caller and Callee’s subscriptions and precedence

information. When a box receives a setup signal from the router, it sends an upack

signal to the calling box along the channel connecting the two boxes. The setup phase

continues with the second box sending a setup signal to the router to be forwarded to

the next box in the usage. Once a usage from a Caller to a Callee has been set up, the

call proceeds to its communication phase, and later to its teardown phase.
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Figure 2.2: Overview of Setup Phase

In the communication phase, data is exchanged between the Caller and Callee di-

rectly.

In the teardown phase, the usage is destroyed. Similar to the setup phase, the tear-

down phase is performed in a piecewise manner: a teardown is acknowledged by sending

a downack back to the box that sent the teardown, and then propagating the teardown

to the next box in the usage.

2.2 Spin

Spin is an explicit-state model checker, and has highly optimized state space representa-

tion and reduction techniques for checking LTL properties. Spin also includes simulation

facilities and a graphical interface (XSPIN). The Spin model checker checks descriptions

written in the modelling language Promela. First, we briefly describe Promela and

then provide an overview of Spin’s verification capabilities. References for our descrip-

tions are the Spin model checker reference manual [9] and the references online [10].

2.2.1 Promela

A model in Promela is a set of processes that communicate via channels. The execution

of processes is interleaved. If more than one process can execute, only one of them will

be non-deterministically chosen to execute.

In Promela, the keyword proctype begins the definition of a new process. Processes

are declared globally. The definition of a process contains the list of formal parameters

(if any), and its body starting with declarations of local variables (if any). If the keyword
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active precedes proctype, then the process initially runs; otherwise, it is possible to run

an instance of a process dynamically at any point in execution using the run operator

followed by the name of the process and parameters as needed. There cannot be more

than 255 processes running at the same time.

Promela’s basic data types include bit, bool, byte, short, int and unsigned.

Symbolic values are created using an mtype declaration. These symbols are implicitly

associated with natural numbers, so they can be used as array indices. Global variables

can be declared to be shared by all processes.

Points in the execution of a process can have labels, which can be viewed as state

names. Final states can be designated using labels that begin with end.

The most common statements used in a process are if-statements and do-loops. The

syntax of an if-statement is:

if

::statement

[::statement]*

fi;

Each statement may start with a guard condition, e.g., x==1. If no guards are satisfied,

then the if-statement blocks, i.e., other processes can run, until at least one guard is

executable. If more than one guard is satisfied, then one statement is chosen to execute

non-deterministically.

The syntax of a do-loop is:

do

::statement

[::statement]*

od;

In a do-loop, only one statement in each iteration is executed. The statements may start

with a guard condition. If more than one guard is satisfied, one statement is chosen to

execute non-deterministically. After executing a statement, the process loops back to the

beginning of the loop. If no statements are executable, the loop blocks. The loop can be

exited using either a goto statement, which sends the process to a labeled statement, or

a break statement, which jumps to the end of the innermost do loop.

Processes communicate via channels. Promela supports both asynchronous and

synchronous channels. For example, the following is a declaration of a channel, ch1,
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of capacity 1 that carries messages composed of a pair with the first element of type

boolean, and the second element of type byte:

chan ch1 = [1] of {bool,byte};

In process A, we could now write: ch1!true,8 to send the message (true,8) on

channel ch1. Using the statement ch1?var1,var2, process B can read the channel and

store the received value in two variables var1, and var2 respectively declared as boolean

and byte types, respectively. Because the channel has capacity 1, if process A sends

another message before B retrieves the first message, process A blocks, which might result

in the system being in deadlock, i.e., no process can take a step. A similar situation can

occur if process B tries to read an empty channel.

Rather than using a variable to receive the value of a message passed on a channel,

we can force a process to respond to only particular messages. For example, if we declare

setup as an element of an mtype, and a channel, ch2, as:

chan ch2 = [1] of {mtype};

then a statement in a process such as ch2?setup is executed only if the message in

the channel is a setup. Otherwise, the process blocks, without retrieving the message

from the channel. The use of the built-in operator eval can lead to similar results. For

example, ch2?eval(var3) checks that the value received matches the value stored in a

variable var3, otherwise, this statement blocks. In a do or if statement, these can be

used as guards.

A rendezvous channel is a channel of zero capacity. The sending and receiving opera-

tions are executed atomically for a rendezvous channel, i.e., no other instruction can be

executed in between them. If a process tries to send a message on such a channel when

no process is ready to receive the message, the sending process blocks.

The keyword atomic is used to force a sequence of statements to be executed together

without any other process interleaving the execution of its statements in between, thereby

reducing the number of behaviours of the model. Each statement within an atomic

sequence constitutes an individual transition in the underlying state machine, but no

other process can interleave its behaviour with transitions in an atomic sequence unless a

statement in the sequence blocks. If one of the statements in an atomic group blocks, the

group blocks, until the statement can execute. A receiving operation within an atomic

sequence may also cause the atomic sequence to block.
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2.2.2 Simulation and Model Checking

Spin can simulate and model check Promela models. Spin provides a command-line

interface as well as a graphical user interface called XSPIN, which can illustrate a trace

of the model’s execution generated in simulation or as a counterexample from model

checking. The trace is presented as a message sequence chart showing the relative ordering

of message communication between processes.

In the simulation mode, by default, the non-deterministic choices for which statements

execute, and the choices for which process executes, are resolved randomly; but one can

either specify a particular seed value that is used to resolve all the choices (two simulation

runs with the same seed value will give exactly the same output), or run the simulation

interactively (at each step, the user selects one among all the possible next steps). Non-

interactive simulation continues until no more processes can execute.

In the model checking mode, Spin can check different types of correctness claims:

• Absence of Deadlock : Check for non-existence of invalid end states (non-final states

from which there are no next states).

• State properties: Claims about the reachability of states.

• Path properties: Define valid sequences of events on message channels.

State properties are checked with never claims, which are used to specify system

behaviour that should never occur. The most simple kind of state property is a system

invariant that should hold in every system state. The logic used for never claims in Spin

is LTL. LTL lets us specify the behaviour of a reactive system, where the executions are

sequences of states. The semantics of LTL is defined over infinite executions. LTL is built

up from proposition variables, the usual logic connectives ¬ (not), ∧ (and), ∨ (or), ⇒
(if), the quantifiers ∀ (forall), ∃ (exists), and temporal operators. The temporal operators

supported in Spin and their meaning are described in Table 2.1.

We briefly discuss the theory behind never claim verification. The basis is the theory

of ω-automata, where the acceptance conditions cover infinite executions [19]. The kind

of acceptance condition that Spin considers was introduced by J.R. Büchi, therefore

called Büchi acceptance. It is common to refer to automata with Büchi acceptance

conditions simply is Büchi Automata. Every Promela process is a Büchi automata,

which communicates with other processes via message channels. The global behaviour

of the system is the asynchronous interleaving product of the Promela processes. To

perform verification, Spin takes the negation of the LTL property to be checked, converts
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Symbol
Operator

in Spin
Meaning

© X Next
♦ <> Eventually (future)
" [] Always (henceforth)⋃

U Strong Until

Table 2.1: Linear Temporal Logic Operators in Spin

it into a Büchi automaton [18] and computes the synchronous product of the claim

and the automaton representing the global behaviour of the system, as illustrated in

Figure 2.3. The model checking problem is reduced to checking if the intersection of

the languages of a property automaton and a system automaton is empty. Property

automata have accepting states, which are final states that are visited infinitely often.

Spin’s verification procedure, based on a depth-first graph traversal method, terminates

when an acceptance cycle is found (counterexample) or when the complete intersection

of the product has been computed. An acceptance cycle means that an accepting state

was reached from the initial state, and is reachable infinitely often.

An example of the verification procedure is the following. The property to verify is

♦¬a. To specify a property prop1 that should hold, one needs to translate the negation

of this property into a never claim, using “ spin -f ’ !(prop1)’ ”. Spin converts the

negated formula into the Büchi automata corresponding to the LTL formula, "a in our

example, represented by the following never claim:

never { /* !(<> ! a) */

accept_init:

if

:: ((a)) -> goto accept_init

fi;

}

Figure 2.4 shows a model in which the property holds, while Figure 2.5 presents a

model in which the property does not hold. The set of atomic propositions of the model

is {a, b}. We think of this system as having the states P{a, b} = {∅, {a}, {b}, {a, b}} =

{o∅, oA, oB, oAB}. These system states are the alphabet of the automaton1. Sequences

of system states (labeling the transitions in Figures 2.4 and 2.5) are the language of the

1For this explanation, we distinguish between “system states” and “states of the automaton”.
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Figure 2.3: Model Checking Problem in Spin

automaton. For example, the system automaton for Figure 2.4 recognizes the language

OA(OB)ω, i.e., an a followed by zero or more b’s. The property has only one state, which

is an accepting state. Thus, when taking the synchronous product between the property

and the system, all states become accepting states. When the property holds, there are

no cycles that contain an accepting state, so the intersection of the languages is empty,

i.e., a cannot repeat infinitely often. However, when the property does not hold, a cycle

that contains an accepting state is found, so the intersection of the languages is (OA)ω in

Figure 2.5, i.e., a repeats infinitely often, which was the condition that the never claim

was checking should not occur.

Path properties are checked with trace assertions, which express correctness re-

quirements about sequences of operations that processes can perform on message chan-

nels. The trace assertion defines an automaton that monitors the system execution,

specifying the order in which a sending or receiving operation must be performed. If

an operation cannot be matched by any transition of the trace automaton, the verifier

reports an error. The following is an example of a trace assertion [9]:
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trace {

do

:: q1!a; q2?b

od }

The example specifies: first, that send operations on channel q1 alternate with receive

operations on channel q2, and second, that send messages on channel q1 must be of type

a, and that receive messages on channel q2 must be of type b.

To use trace assertions, channels must be simple variables and no access to channel

array indexes is allowed, which limits their use. Also, there is no clear relationship

between the semantics of trace assertions and LTL properties, which is a drawback

since we wish to declare the correct behaviour DFC using LTL properties. Therefore, we

did not use trace assertions in our verification effort.

2.3 Hol

The Hol system is an interactive theorem prover for higher order logic, which allows

quantification over predicates and functions. Hol offers not only a rich initial envi-

ronment of pre-defined tools and pre-proved theorems, but also the possibility of im-

plementing application-specific tools and theories. The tool uses the eager functional

meta-language ML for constructing proofs.

A formal proof is a sequence, whose elements are either axioms or follow from previous

elements of the sequence by a rule of inference. A theorem is the last element of a proof.

The key idea of the Hol system, due to Robin Milner, is that theorems are represented by

an abstract type thm whose only pre-defined values are axioms, and whose only allowed

operations are rules of inference. Therefore, the only way to construct theorems in Hol

is to apply rules of inference to axioms or existing theorems, which means that the

consistency of the logic is always preserved. Hol has efficient mechanisms to process

forward and backward proofs plus several automated decision procedures that take care

of the tedious details of many proofs.

2.4 Summary

In this chapter we described the Distributed Feature Composition (DFC) architecture.

We also explained the main characteristics of the Spin model checker and the Hol

theorem prover, which are the main tools we use to prove our claims.





Chapter 3

Modelling DFC

In this chapter we describe our model of the DFC architecture in Promela, the modelling

language of the Spin model checker. The feature boxes that have been modelled are call

forwarding (CF), originating call screening (OCS), call waiting (CW) and free transparent

feature (FTF). We also modelled the interface boxes as Caller and Callee processes. The

complete model can be found in Appendix A, which reflects the final specifications after

debugging the models. Early versions of the model were created in collaboration with

Wenceslas Godard.

3.1 Overview

DFC follows a pipe-and-filter architectural design, where filters are feature boxes, and

pipes are internal calls. Each line interface and feature box is modelled as one Promela

process. We represent the router in a distributed form, having one router process created

for each internal call. From now on, we use the term communication path1 for a DFC

internal call.

In creating our Promela model for DFC, we had to choose whether to create pro-

cesses dynamically or to have all processes created at initialization and exist throughout

the system’s execution. We call the second option the static model. Dynamic creation

of processes best matches the way DFC actually works, but means that we are not guar-

anteed to have a finite state space.

To understand the difference between the dynamic and static models, consider a

simple configuration where a Caller calls a Callee, and both do not subscribe to any

1To avoid confusion with the term “call” in the context of a user requesting the creation of a usage,
we use the term “communication path” to describe an internal call.

23
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services. In a static model, all processes (the Caller, Callee and router) and each channel

(two for each communication path and two for to and from the router) exist permanently.

In a larger configuration with n communication paths, we would require 4n channels. If

we want it to be possible for a Caller to call multiple Callees, we need multiple instances

of each free feature box with its corresponding channels. For example, for k users, where

one user subscribes to the free feature box originating call screening, we need to have

k − 1 originating call screening processes – one for each potential Callee with all the

corresponding channels. For bound feature boxes and the Caller and Callee, in order to

have all the possible connections statically created, we would have to create additionally

ports that don’t exist in the feature boxes.

Another alternative is to check only one configuration and Caller-Callee combination

in a static model as is done by Calder and Miller [4]. They use Perl scripts to generate

particular combinations of features for a model of email features in Promela. Each

sender of email can send multiple messages and the state space is still finite.

In a dynamic model, instances of boxes in a usage are dynamically created by the

router as they are needed. Distributed instances of the router process are also dynamically

created by boxes when needed. We use an array of channels to declare a set of channels,

dynamically allocated by the router, to be used for the communication paths. Each

router process provides to the process an array index to make use of the channel. During

usage creation, only one router process is running at a time, so we require only two zero

capacity channels for all the routing operations. In the dynamic model, we require only

(2n)+2 channels for n communication paths, since each communication path is composed

of two channels.

We chose to create processes dynamically in our Promela model because (1) it was

easier to write; (2) we can cover more options for configurations in a single model; and (3)

it more closely matches the behaviour of DFC. However, in a dynamic model, if a Caller

can make multiple calls, we have an infinite state space because process identifiers of

created processes cannot be reused. Even though Spin allows a dead process identifier to

be reused, there is always at least one execution of the model in which process identifiers

cannot be reused because of the interleaved behaviour: a process that has executed its last

instruction still has to be chosen to execute again before it actually releases its process

identifier. Therefore, the maximum number of processes (255) is eventually reached in a

path of the execution where process identifiers are not released. We abstract the model

to a finite state space, by allowing the Caller to call only once or twice. Results of the

verification runs with this restriction are shown in Chapter 5 (page 53).
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3.2 Signals and Global Data

Signals in DFC allow the boxes to communicate and carry out the tasks of the setup and

teardown phases. These signals travel on the signalling channels. Our model uses the

following notation for DFC protocol signals:

• setup creates a communication path via the router.

• upack is used to acknowledge a setup signal.

• avail is used to convey that the user is available. In a simple usage, receipt of this

signal would generate a ring tone at the Caller.

• unavail is used to convey that the user is not available. In a simple usage, receipt

of this signal would generate a busy tone at the Caller.

• teardown is used to destroy a usage.

• downnack is used to acknowledge a teardown signal.

All features use the above signals, whose syntax is given next. These signals are declared

in Promela using an mtype:

mtype {setup, upack, teardown, downack, avail, unavail}

For a model with N users, we declare user0, user1... user(N-1) as symbols using

mtype. These symbolic values are used in the source field in setup signals and as actual

parameters to processes to indicate the source and target of the usage. This information

is also used to index global arrays representing subscriptions and busy status of users

(e.g., subs CF[user0 - 1] is a boolean value that indicates if user0 subscribes to call

forwarding).

Communication paths (between feature boxes, Callers, and Callees, not those to/from

the router processes) are bidirectional, but in Spin they are modelled using two channels,

one for each direction of communication.

typedef Com_chan {

chan A = [3] of {upack, teardown, downack, avail, unavail}

chan B = [3] of {upack, teardown, downack, avail, unavail}

}



26 Verification of DFC Call Protocol Correctness Criteria

Because the input channel of one process is the output channel of the other process, we

choose the generic names A and B for the channels and each process must be aware of

which part is the input and output for each communication path. The sizes chosen for

these channels will be explained later.

The model includes a set of communication paths as an array of constant size M. A

communication path is dynamically allocated during the creation of a usage by providing

an array index to the created process. A boolean array indicates if the corresponding

communication path is assigned or free:

Com_chan chan_array [M];

bool channel_busy [M];

An inline function channel busy is used to return an index of a free communication

path. Each time a communication path is created, a counter is incremented and the next

value is provided as the communication path identifier to use. This communication path

identifier is sent in the last field of the setup signal. An assert statement in the inline

function forces Spin to report an error if more than M paths are needed. The number of

bits needed to hold a communication path identifier is set by the constant L such that

2L > M .

Our model includes data on the active status of a user, represented as a globally

declared boolean array:

bool busy[N];

This array indicates whether a user (Caller or Callee) is currently busy or idle. The

Caller and Callee processes control this status data.

Additional global declarations include:

Subscription information – Boolean arrays indicating whether users subscribe to the

implemented features. Feature precedence is hard-coded into the router processes

in our model (Section 3.3.4).

Call forwarding information – An array that contains the numbers to which users

want their incoming calls to be forwarded.

Next, we describe how the three phases of a DFC usage are represented in our

Promela model. In the setup phase, the usage is created. In the communication

phase, data is passed between Caller and Callee. In the teardown phase, the usage is

destroyed. Every box in the usage has processing steps for these stages.
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The constants M (number of channels), N (number of users), and L (the number of

bits needed to represent channel indices) are assigned at the beginning of our Promela

code, shown in Appendix A.

3.3 DFC Usage Phases

3.3.1 Setup Phase

Setup signals from a line interface are sent to the router. The function of the router is

to receive setup signals and to propagate them to the next box of the usage, which is

determined based on the feature subscriptions of the Caller and Callee, and also by the

feature precedence.

A setup signal in our model has five fields in the following order:

1. Type of the signal (always setup)

2. Identity of the originating Caller of the usage

3. Dialled number

4. Identity of the destination Callee of the usage.

5. Identifier for the communication path between the boxes.

When a box receives a setup, it sets a local variable to the value of the communication

path identifier provided in the setup signal.

To represent the dialled number, we use the constants user0, user1, etc. For ex-

ample, a dialled number field containing user0 means that the Caller has dialled the

number of user0.

router router

(1) setup

box_out

(3) upack (6) upack
chan_array[i] chan_array[j] (i!j)

(4) s
etup

box_out
(2) setup

box_in

(5) setup
box_in

CALLER
PORT

Caller FB Callee

CALLER
PORT

CALLEE
PORT

CALLEE
PORT

Figure 3.1: Setup Phase



28 Verification of DFC Call Protocol Correctness Criteria

As illustrated in Figure 3.1, the setup phase proceeds piecewise:

• A Caller sends a setup to a router ((1) in the figure) on channel box out, including

the identifier, i, of the communication path to be used.

• The router uses the subscription information and feature precedence to determine

the next box in the usage and forwards the setup to that box ((2) in the figure) on

channel box in, including the identifier, i, of the communication path to be used.

• The receiving box sends an upack signal directly back to the Caller ((3) in the

figure) on the communication path chosen (chan array[i ]).

• The box also forwards the setup to another router to continue the creation of the

usage if it is not the final box in the usage ((4) in the figure).

For our model, we assume that the routing is carried out correctly and have one router

for the creation of each communication path between boxes. Therefore, we model the

communication to and from the router in an atomic sequence using rendezvous channels

for box out and box in. No other process can execute during this atomic sequence of

actions (processes communicating through rendezvous channels never block) and once

completed, the router has reached the end of its code. Therefore, there is never a need to

have two router processes in existence at the same time, which means the same channels,

box out and box in, can be used for all communications with the routers. This method

also reduces the state space of the model.

Spin channels are global variables, so any process can read from them. Persistent

processes such as Callee and the bound feature box call waiting always exist and are

always trying to read signals from global variables such as the channel box in, even if

these signals are not directed to them. To avoid race conditions, where multiple processes

want to read box in, for each bound box we introduce a unique channel that the router

uses to communicate to a bound box. We need special zero-capacity channels, which we

call box in process, to capture the fact that a router is about to send a setup signal to a

Callee or call waiting process through box in, and not to another box in the process of

usage creation. We continue to also use the box in channel for consistency, so all boxes

communicate setup signals to and from the routers using channels box out and box in.

For a bound feature box, the router first sends the communication path identifier on this

box in process channel (which only one box will respond to), then sends a setup signal

on box in, all within an atomic sequence. In the next chapters, we refer only to box in.
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3.3.2 Communication Phase

In the communication phase, data is exchanged between the Caller and Callee directly

(e.g., on the communication paths labelled chan array in Figure 3.1). The communica-

tion that occurs on the signalling communication path connecting the Caller and Callee

may be delayed, i.e., a signal may not be read immediately after it was sent because

of the interleaved execution of processes. Therefore, these channels are not 0-capacity.

DFC assumes that signals are read in the same order as they were sent on a particular

channel, and Promela’s channels have this behaviour. Messages exchanged during the

communication phase have one field for the type of the signal. Possible protocol signals

travelling on these channels are upack, avail, unavail, teardown and downnack.

Promela cannot handle infinite size channels, therefore we have to choose an ap-

propriate capacity for the communication channels. If boxes behave correctly (i.e., they

all follow the protocol), then the maximum sequence of protocol signals that can be

written on a channel in an atomic sequence of statements in our model is three: upack,

unavail, teardown indicating that the Callee box is busy2. If a process tries to write to a

channel that is full, the process blocks. Using Spin, we can check for deadlock to ensure

that no process will ever block. If no deadlock is possible, then the chosen size of the

communication channels is sufficient.

In DFC, data is handled on a separate channel from the signalling channel. Because

we are focusing on the protocol signals that travel on the signalling channel, we abstract

away the details of the data communication and do not represent the data channel. The

signals used to describe the media channels opening or closing (open, close) are also not

included in our model.

3.3.3 Teardown Phase

In the teardown phase, the usage is destroyed. Similar to the setup phase, the teardown

phase is piecewise: a teardown is acknowledged by sending a downack back to the box

that sent the teardown, and then propagating the teardown to the next box in the usage.

Features can alter this behaviour. For example, if a call waiting box receives a teardown

from the user that is waiting, it will terminate that branch of the usage by sending a

downack message, but it does not propagate the teardown to the subscriber because the

subscriber is involved in another call.
2An example of where this atomic sequence of actions occurs is in the Callee process in Figure 3.6.
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3.3.4 Routers

In DFC, the router is responsible for creating or locating the next feature box in the

usage and forwarding the setup message to it. The next box in the usage is determined

by subscription information and feature precedence. To simplify our model, we assume

the static feature precedence of the source region is free transparent feature (FTF),

originating call screening (OCS), call waiting (CW), and of the target region is call

forwarding (CF), call waiting (CW), as shown in Figure 3.2.

A FTF OCS CW
(src) CF CW

(trg) B

SOURCE REGION TARGET REGION

Figure 3.2: Static Feature Precedence

For each kind of feature box, there is a corresponding router that is dynamically

created by the feature box before this box sends a setup message to the router process.

We abstract away the route field of the setup signal, so in order to create the next feature

box of the usage, a router process checks the subscription information of the Caller (and

of the Callee when the usage gets in the target zone) according to the precedence order.

For example, in our model, the router for the Caller first checks if the Caller subscribes for

free transparent feature, and runs dynamically an instance of an originating call screening

process since it is a free feature box:

if

::subs_FTF[thisindex]->

atomic {

run OCS(user[thisindex],caller[thisindex]);

box_in!setup,origS,numberS,destS,i

}

::else -> (...)

fi

If the user subscribes to a bound feature box, the corresponding information is sent

on channels box in process and box in, but no dynamic creation of processes is needed

because bound feature boxes are persistent processes created at initialization.
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Each router process for subsequent features in the precedence order does not check

whether free transparent feature should be created. The closer a usage is to its target,

the shorter the body of each router process is. We model these customized routers with

processes whose names start with “router” (e.g., routeruser, routerOCS).

We considered having only one persistent router process that would handle all setup

requests. However, in this case the body of the router would be long because it would have

to handle all the possible subscription configurations. Instead, by dynamically creating

a router for each part of the setup process, we can customize each router based on a

feature’s precedence order.

Another modelling issue that we encountered was with regard to how to capture sub-

scription information used by the router. Each router encodes the precedence order of

the features, but checks whether a user is subscribed to features using Boolean arrays for

each feature (e.g., subs OCB[userX]). We experimented with encoding fixed subscrip-

tion information in the router, and using Perl scripts to generate simplified routers for

particular configurations. However, the gain in memory used, state space vector size

and depth reached were not significant, and we continued with our original approach of

representing the subscription information using arrays, which makes it easier to verify

different configurations.

3.4 Interface and Feature Boxes

In this section, we describe two interface boxes (a Caller and a Callee), the router pro-

cesses, and the feature boxes that we have included in our model. The Caller, Callee

and call waiting processes persist, whereas the routers and the rest of the feature box

processes are created dynamically as appropriate for usages.

We show state machine diagrams to describe the processes. The state names cor-

responds to statement labels in the Promela code found in Appendix A. The state

machine diagrams show the sending and receiving of protocol signals, and omit other

process details for clarity. Sequences of statements that are atomic in the code are shown

on one transition3. For the communication paths, we omit the channel names (A and B)

and show only the communication path identifier because the action (send or receive)

disambiguates which channel would be used. Final states are shown with double circles.

3Atomic sequence of statements are used while model checking fixed DFC configurations to reduce
the state space, but not when verifying individual feature boxes, during which an atomic sequence is
used only to enclose statements that represent the same action.
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3.4.1 Caller

Figure 3.3 shows the port and channel labels used by a Caller, and Figure 3.4 shows the

state machine corresponding to a Caller process. A Caller process first sets the busy

bit of the corresponding user, then picks a destination (using non-deterministic choice),

creates an appropriate router (see Section 3.3.4 for more details on the different routers),

and sends a setup message (as described in Section 3.3.1) to this router along the box out

channel.

The Caller then waits for an upack message from the neighbour box connected to it in

the usage. The upack may be followed by an avail if the Callee is available, or an unavail

and then teardown if the Callee is not available (in this case the Caller sends a downack

and then terminates). If the Callee is available, the Caller enters the communication

phase, and then either the Callee or Caller can send a teardown message. Because

teardown messages can cross paths, the Caller must be prepared to receive a teardown

even if it has already sent one. The communication phase could last arbitrarily long; this

possibility is modelled by making the linked state a valid end state (end linked).

In DFC, once a call is complete, the process should return to its initial state so that

a second call can be initiated.

router

Caller X

box_out

ch

Figure 3.3: Channels and Ports for Caller X

3.4.2 Callee

Figure 3.5 shows the channel and port labels associated with the Callee process, and

Figure 3.6 shows the state machine of the Callee process. A Callee is a bound box that

can receive more than one setup signal, and is a persistent process. Thus, we use a zero-

capacity channel box in Callee ((1) in Figure 3.5) to indicate that a router chooses this

Callee as the next box in the usage.
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Figure 3.4: Caller Process State Machine

When a Callee process receives the first setup, the processing is as follows: When the

Callee process is in its end idle state, the router sends the communication path identifier

through box in Callee, and it is stored in the local variable ch4. Next, the Callee process

receives a setup message from the router through box in, sending the corresponding

upack upstream on the communication path ch and checking if the user associated with

the Callee is currently busy using the value in the boolean array busy. If the Callee is

not busy, it sends an avail message upstream on the ch communication path, and moves

into its communication phase (the state end linked). If the Callee is busy, the sequence

unavail, teardown is sent on the ch communication path, and the Callee process waits for

the corresponding downack. The communication phase could last arbitrarily long; this

possibility is modelled by making the linked state a valid end state (end linked).

Since the Callee process can receive more than one setup, “busy processing” is imple-

mented as follows: At any state other than the end idle, the router may send to the Callee

process the communication path identifier of the user trying to reach the Callee using the

4A field must be sent on the channel box in Callee, so the communication path identifier is chosen.
When receiving from channel box in, we check with an operator eval that this identifier is part of the
fields of the setup signal, which gives us extra confidence that the setup signal is received by the bound
process that was meant.
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channel box in Callee. The identifier is stored in an extra local variable called busy ch.

Since the user is busy handling another call, the Callee process sends the sequence upack,

unavail, teardown on the communication path busy ch, and waits for the corresponding

downack, so the process go back to its normal processing. Busy processing is shown by

the loops labeled U in Figure 3.6.

As in the Caller process, the Callee returns to its initial state so it is always ready to

handle another call.

Callee Y

router

(2) box_in

ch

(1) box_in_Callee

busy_ch

Figure 3.5: Channels and Ports for Callee Y

3.4.3 Free Transparent Feature Box (FTF)

After the setup phase, which performs the proper initialization of the box, a free trans-

parent feature (FTF) box with two ports, connected to communication paths, behaves

transparently, i.e., any signal received at one port is sent on to the other port. The box

behaves as a buffer (which always forwards the signal to its neighbour in its next step, so

the buffer never stores signals), remaining in the communication phase until the arrival

of a teardown signal, which initiates the teardown phase. The channels and ports of a

free transparent feature box are shown in Figure 3.7, and its state machine is shown in

Figure 3.8. Because FTB is a free feature box, there is no transition that returns it to

its initial state.

3.4.4 Call Forwarding (CF)

The call forwarding feature is similar to the free transparent feature box except that

it changes the field “dialed number” of the setup message if the subscriber wants to

be reached on another device, which forces the usage to take a different route. Call
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Figure 3.6: Callee Process State Machine

FTF ch2ch1

router

box_in

router

box_out

Figure 3.7: Channels for a Free Transparent Feature Box

forwarding is a free feature box. This box communicates with exactly the same channels

as the free transparent box (Figure 3.7).
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Figure 3.8: Free Transparent Feature Box State Machine

3.4.5 Originating Call Screening (OCS)

Originating call screening is a free feature box, and its state machine is shown in Fig-

ure 3.9. This feature is similar to the free transparent feature box except that when

it receives a setup it sends the corresponding upack, and then either sends an unavail

followed by teardown if the target number is forbidden by the subscriber or it continues

the setup phase. Rather than modelling the blocking information, we model these two

options as a non-deterministic choice. This box communicates with exactly the same

channels as the transparent box (Figure 3.7).

3.4.6 Call Waiting (CW)

Call waiting is a bound feature box. This feature enables the subscriber to switch between

two different correspondents by issuing an additional switch signal. Call waiting makes

use of another additional signal, waitsignal, which is used to convey that the subscriber
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Figure 3.9: Originating Call Screening State Machine

is already engaged in a usage but might switch, as allowed by the call waiting feature.

These two additional signals are not implemented in our Promela model. We abstract

away the details of the Callee issuing a switch signal by using a boolean variable talk,

which can change non-deterministically whenever two correspondents are connected to

the subscriber. The variable callers keeps track of the number of Callers connected

to the call waiting process. In our model, the role of the boolean variable calling is

basically to know whether the subscriber is calling (source scenario) or is being called

(target scenario). The call waiting feature is a persistent process, it is ready to read

signals at any time, so it uses a zero-capacity channel box in CW ((1) in Figure 3.10) just

like Callee.

Figure 3.10, shows the channels of the call waiting box. The subsc communication

path links the call waiting box with its subscriber, while first and second link the

call waiting box with the first and second correspondents respectively. Because call

waiting is a bound feature, it needs the busy ch communication path, that links the
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CW
rstsubsc

SUBSCRIBER

box_out

router

(2) box_in

(1) box_in_CW

router

busy_ch second

Figure 3.10: Channels for a Call Waiting box

call waiting box with any other correspondant trying to talk to the subscriber. The

busy ch communication path is only used for “busy processing”, i.e., once the subscriber

is already engaged in a call with two parties.

Figure 3.11 shows the state machine for the call waiting box. The Spin CW process

contains 338 states and 445 transitions. Spin assigns state and transition numbers to

all control flow points and statements in the model, thus these numbers differ from

the states and transitions shown in Figure 3.11, which combines some transitions for

the sake of clarity. The setup, communication and teardown phases are illustrated by

shading states with different patterns. The left-hand side manages the source scenario,

i.e., the subscriber is calling, so the call waiting box acts as a source feature, which is

denoted by src in the state names. The right-hand side manages the target scenario,

i.e., the subscriber is being called, so the call waiting box acts as a target feature,

which is denoted by trg in the state names. Both scenarios differentiate whether the

subscriber is connected to the first or the second correspondent, denoted by first and

second in the state names respectively. Up to the con1src first1 and the con1trg first1,

the behaviour corresponds to the one of a box with two ports. However, call waiting can

be connected to two correspondants, and goes to state con2src or con2trg respectively.

Then, either of the correspondants can disconnect (leaving the subscriber talking to the

other correspondant), or the subscriber can disconnect (leading to the states unlink3src,

unlink4src, unlink3trg or unlink4trg for call back processing).

The state machine is symmetric, except for the direction of the channels in the com-

munication path first and the processing of the call back for the subscriber, which

always leaves the call waiting process in the target scenario.
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Since the call waiting process is persistent, it can keep receiving setup messages,

so “busy processing” is implemented as follows: Once the subscriber of call waiting is

already communicating with two correspondants, and the router sends to the call waiting

process the communication path identifier of the user trying to reach the subscriber, the

identifier is stored in a local variable called busy ch. Then, the call waiting process sends

the sequence upack, unavail, teardown on the communication path busy ch, and waits for

the corresponding downack, so the call waiting process goes back to its normal processing.

Busy processing is shown by the loops labeled U in Figure 3.11.

3.5 Summary

In this chapter we described our model of DFC in Promela. The feature boxes that have

been modelled are call forwarding (CF), originating call screening (OCS), call waiting

(CW) and free transparent feature (FTF). We also modelled interface boxes as Caller

and Callee processes, as well as router processes. We discussed several modelling issues

regarding the use of Spin in the verification effort.
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Chapter 4

Correctness Criteria

To simplify our verification effort, we reason about segments of a DFC usage, based on a

categorization of feature boxes by their influence on the routing process. In this chapter,

we describe this categorization, and then, we provide a set of LTL properties that define

our correctness criteria.

4.1 Categories of Boxes

Feature boxes are independently implemented modules that carry out their functions

without external assistance, and they have the power to change the topology of a usage.

A feature box can act transparently if the box has no action to perform on the signal

received, but it also may have the authority to affect routing, placing, receiving, or tearing

down calls. Feature boxes can lead to linear or branching usages, and can also change

the number of processes involved in a usage, depending on the signals received. Since the

changes in the topologies depend on the features that have the autonomy to influence

the routing process, we propose the following characterization of feature boxes:

User agents (UA): Set of interface boxes, plus the feature boxes that can act like a

user. A user agent box can request the creation of a usage (e.g., call forwarding

on busy), or respond to such request. The response can be positive, accepting

the creation of a usage (by the generation of an avail signal e.g., voice mail), or

negative, rejecting the creation of a usage (by the generation of an unavail signal

e.g., originating call screening).

41
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Transparent (T): Set of all boxes that must forward any call protocol signals that

they receive to the next box in the usage, i.e., feature boxes that do not affect the

routing. 1

A further subcategorization of user agents is possible, considering that there are

different properties for upstream or downstream user agents. An upstream user agent

(UUA) is the one requesting the creation of a usage, whereas a downstream user agent

(DUA) is the one answering or acting on a request.

We denote as a segment any part of a usage that starts at a user agent box and

ends at a user agent box. More than one setup signal is involved in the creation of a

branching usage, therefore every setup signal generates a segment. The first segment

of a branching usage is exactly like the creation of a linear usage. Successive segments

would be connected to the previous ones, assembling the usage, as shown in Figure 4.1.

The user agents where the segments are connected are called joins. The call protocol

properties to be presented next are used to verify segments, which may be either linear

usages, or segments that compose a branching usage.

Caller
A

Callee
BFB FB FB

Caller
C

FB

S E G M E N T S E G M E N TS  
E 
G 
M 
E 
N 
T

User
Agent

User
Agent

User
Agent

User
Agent

Figure 4.1: Usage composed of Segments

1As discussed in the previous chapter, there are specific features called free transparent feature (FTF)
and bound transparent feature (BTF) boxes. We use “transparent” as the name for a category of feature
boxes, which is inspired by the fact that they act passively (transparently) with respect to the routing
process, but this category does not contain only FTF and BTF. The context should make clear which
term is being used. We thank Pamela Zave for suggesting this terminology.
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4.2 Segment Properties

In this section, we describe the DFC call protocol properties of segments, which define

our correctness criteria. The general form of the properties is

" (Send ⇒ ♦ Receive).

To state the segment properties, we use the names of the channels shown in Figure

4.2. We call the sender of a setup signal at one end of the segment an Upstream User

Agent (UUA), and the receiving user agent is called a Downstream User Agent (DUA).

We also need one feature box (FB i) in the middle of the segment to state the properties.

UUA
A

DUA
B

box_out box_in

...

UPSTREAM DOWNSTREAM

FB
i ch2ch1alpha beta...

Figure 4.2: Channels in a Segment

The following are the set of segment properties that we initially thought would hold,

described in LTL, having one or more feature boxes delimited by a UUA and a DUA:

S.1 A setup signal created by UUA A should eventually reach DUA B.

"(box out!setup ⇒ ♦box in?setup)

S.2 A teardown signal created by UUA A should eventually reach DUA B.

"(alpha!teardown ⇒ ♦beta?teardown)

S.3 A teardown signal created by DUA B should eventually reach UUA A.

"(beta!teardown ⇒ ♦alpha?teardown)

S.4 An avail signal created by DUA B should eventually reach UUA A.

"(beta!avail ⇒ ♦alpha?avail)

S.5 An unavail signal created by DUA B should eventually reach UUA A.

"(beta!unavail ⇒ ♦alpha?unavail)
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In Chapter 5, we describe our effort to verify the segment properties on simple con-

figurations having features boxes delimited by a Caller and a Callee. In the verification

process, we found correct behaviours that violate properties S.2 and S.3.

First, for a configuration of Caller–FTF–Callee, when both Caller A and Callee B

send teardown signals to finish the usage, property S.2 fails if the teardown signal from

Callee B is received in FTF before the one from Caller A. The teardown signal from

Caller A follows only its first piecewise obligation, since the call to which the signal was

supposed to be forwarded is already torn down. The described situation is illustrated

with a the message sequence chart (MSC) in Figure 4.3.

A
Caller FTF

B
Callee... ...

teardownteardown

downack

downack

teardown

teardown

connected end
_linked

end
_linked
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downack
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downack
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from_ch2
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end

end
_idle

COUNTEREXAMPLE
TO SEGMENT

PROPERTY S.2
z

A teardown signal created 
by Caller A should 

eventually reach Callee B

prop_S.2
violated

Figure 4.3: Counterexample for Property S.2

Therefore, we came up with a new formalization for these segment properties, taking

into account the consumption of signals by feature boxes:

S.2 A teardown signal created by UUA A should eventually reach DUA B unless UUA

A receives a teardown signal first.

"(alpha!teardown ⇒ ((¬alpha?teardown)
⋃

(alpha?teardown ∨ beta?teardown)))



Correctness Criteria 45

S.3 A teardown signal created by DUA B should eventually reach UUA A unless DUA

B receives a teardown signal first.

"(beta!teardown ⇒ ((¬beta?teardown)
⋃

(beta?teardown ∨ alpha?teardown)))

However, when a usage has more than two feature boxes, and teardown signals are

generated by both users, the usage is torn down, but the new S.2 and S.3 properties are

violated as illustrated with the MSC in Figure 4.4.
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Figure 4.4: Counterexample for Modified Property S.2

Therefore, we again modified the formalization of the segment properties S.2 and S.3

to express the fact that a teardown signal propagates to the end of a segment only if a

teardown has not been received at some intermediate box. A DFC feature that receives

a teardown from one side when it has already received a teardown from the other side

does not propagate the signal. Otherwise, such messages could cross paths, violating the

properties, as shown in the counterexamples. To express this property, we introduce an

intermediate box in the segment.
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S.2 A teardown signal created by UUA A should eventually reach DUA B if no teardown

has been received at some intermediate box i.

"(box out!setup ⇒
(("¬(∃i.(i.ch2)?teardown)) ⇒

(alpha!teardown ⇒ ♦(beta?teardown))))

S.3 A teardown signal created by DUA B should eventually reach UUA A if no teardown

has been received at some intermediate box i.

"(box in?setup ⇒
(("¬(∃i.(i.ch1)?teardown)) ⇒

(beta!teardown ⇒ ♦(alpha?teardown))))

These properties state that a teardown signal generated by an user agent must reach

the user agent at the other end of the segment if no transparent box in between receives

a teardown signal in the opposite direction. To set the scope for when the sending of

teardown signals is relevant, we use box out!setup in the antecedent of properties S.2

and S.3, which ensures these properties are true for each segment created.

The final set of segment properties, to be checked for segments with any number of

feature boxes, is shown in Table 4.1.

"(box out!setup ⇒ ♦box in?setup) S.1

"(box out!setup ⇒
(("¬(∃i.(i.ch2)?teardown)) ⇒

(alpha!teardown ⇒ ♦(beta?teardown)))) S.2

"(box out!setup ⇒
(("¬(∃i.(i.ch1)?teardown)) ⇒

(beta!teardown ⇒ ♦(alpha?teardown)))) S.3

"(beta!avail ⇒ ♦alpha?avail) S.4

"(beta!unavail ⇒ ♦alpha?unavail) S.5

Table 4.1: Segment Properties
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4.3 Summary

In this chapter, we presented a set of LTL properties describing our correctness criteria,

based on a categorization of boxes by their influence on the routing process. In the

next chapter, we show how our Promela model can be used to investigate whether our

proposed correctness properties hold for DFC usages.





Chapter 5

Model Checking Fixed DFC

Configurations

In this chapter, we show how our Promela model of DFC, explained in Chapter 3, can

be used to check our DFC call protocol correctness properties, described in Chapter 4,

for small configurations of DFC. This model checking effort is a useful debugging exercise

to see if our proposed properties are correct, but it is not sufficient to conclude that the

properties hold for segments with any number of features.

5.1 Model Checking Results

We describe our approach for verifying the segment properties on fixed usages. By

“fixed”, we mean there is a fixed number of interface and feature boxes that can be

part of the usage. In our model, we can set the value of certain global variables and the

subscription information of users, to create different fixed usages, and perform verification

on them. We can change the maximum number of users, number of calls a Caller can

make, and the subscription information.

Because never claims in Spin cannot refer directly to channels in an array such as

as chan array, we follow the approach of Holzmann [9], and add global variables to

check the value of the last signal sent or received. We use these global variables to de-

fine our segment properties in LTL, which are translated to never claims to perform

verification. The channels and communication paths referred to in this chapter corre-

spond to the ones shown in Figure 4.2 (page 43). The boolean variables last rec setup

and last sent setup represent the event of the setup signal traveling on the channels
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box out and box in respectively. We also use boolean variables last rec signal alpha

and last sent signal alpha, to capture the behaviour of every possible signal traveling

through the communication path alpha, as well as the boolean variables

last rec signal beta and last sent signal beta, to capture the behaviour of every pos-

sible signal traveling through the communication path beta. To denote the event of a

signal sent or received on a communication path, we change the value of the correspond-

ing variable to true. The event and the change of the boolean variable are enclosed in

an atomic sequence since they represent the same action. All the variables are initialized

by default to false. For example, when a teardown signal is received from the incoming

communication path of the call alpha, the variable last rec teardown alpha is updated

to true to denote the event:

atomic{

chan_array[alpha].B?teardown;

last_rec_teardown_alpha=true;

}

When sending a signal, the global variable is updated after the signal is transmitted. For

example, when a avail signal is sent through the outgoing communication path beta, the

variable last sent avail beta is updated to true:

atomic{

chan_array[beta].B!avail;

last_sent_avail_beta=true;

}

To capture the meaning of an event, we should set the boolean variable to false

immediately after it has been set to true. Placing the update of a boolean variable to

true and the reset of this variable to false inside an atomic sequence does not work

because the never claim does not register the change of the boolean variable value. If we

reset the value to false immediately after the atomic above, we encounter a problem

with false negatives due to the interleaving of processes. An example of such a false

negative is illustrated in Figure 5.1. The variable last sent avail beta remains true

longer then it was expected. The never claim finds an accepting cycle since the boolean

variable was not reset to false right after the event, so it keeps checking as if the boolean

variable became true more than once. As described earlier (Section 2.2.2), we cannot use

trace assertions, so our solution for using model checking to debug fixed configurations

is to not reset the boolean variables to false. Using this approach, we are checking

only that the segment property passes the first time the antecedent of the property
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becomes true rather than globally. Our compositional reasoning approach, described in

Chapter 6, does not encounter this problem
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Figure 5.1: False Negative Situation Caused by Interleaving

To check properties S.2 and S.3, where we need to refer to boxes within the seg-

ment, we add to every transparent box boolean variables rec teardown ch2 Tbox and

rec teardown ch1 Tbox, where Tbox is the name of any box in the transparent category,

to represent the event of a teardown signal traveling on the box’s channels ch1 and ch2

respectively. These properties capture the behaviour that a teardown signal generated by

a user agent must reach the user agent at the other end of the segment if no transparent

box in between receives a teardown signal in the opposite direction. Using these boolean

variables, we can formalize

"(¬∃i.(i.ch1)?teardown)
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by instantiating the existential quantifier for all possible intermediate boxes in a segment.

To avoid confusion with multiple instances of the same box, we check only this property

on configurations with one instance of each kind transparent box.

The model checking verification runs were done on a 1.4GHz Xeon CPU and 8GB in

RAM. There are different parameters that can be set in Spin to make the verification

effort more efficient when checking more complex configurations. The Spin options used

at compile time are:

-DCOLLAPSE reduces the memory requirements, exploiting a hierarchical indexing method

to compress the state vector sizes by up to 80% to 90%.

-DMEMLIM=N changes the memory limit to N, which by default is 128Mb, but we used

4Gb, which is the maximum that a single machine process access.

The Spin options used at run time are:

-mN sets the maximum depth search to N, which by default is 1000.

The values selected for the global variables, subscription information, as well as the

results obtained from the model checking verification runs are shown in Table 5.1. To

reduce the state space, the model of the Caller is restricted to make only one or two calls,

avoiding an infinite state system.

We present the maximum execution statistics for the largest verification of a property

in terms of number states, memory used and time, instead of listing all the segment

properties statistics per configuration. If the subscription column shows the name of a

feature, e.g., TFB, OCS, or CW(src), it means that in the usage checked, all the users

subscribe to this feature box in their source regions. If the subscription column shows

the name of a feature, e.g., CF, or CW(trg), it means that in the configurations checked,

all the users subscribe to this feature box in their target regions. For the call waiting

box, model checking space limits meant we only checked a simple configuration shown in

Figure 5.2.

In all the configurations we verified, we checked also for the absence of deadlock,

but in the configuration for call waiting we ran out of memory without finishing the

verification. In the call waiting box model based on a BoxTalk specification [30], we found

previously unknown race conditions within five minutes while checking for deadlock in the

configuration of Figure 5.2. The situation happens when the call waiting box is processing

the call back for a person on hold after the subscriber hangs up. The normal situation
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Figure 5.2: Call Waiting Feature Box in a Simple Configuration

is shown with a MSC in Figure 5.3, where the subscriber and the person on hold get

connected. Two race condition situations can happen during the time that the CW box

is attempting to reach the subscriber in the call back processing: the subscriber may try

to make another call, or another user may try to call the subscriber. In either cases, the

subscriber seems unavailable to CW, and the call back processing fails. After conferring

with Pamela Zave [27], we handled the situations of the call back processing failure as

follows. First, when the subscriber tries to make another call, the person on hold is left

in the same condition. The subscriber is allowed to reach the user being called, but the

subscriber is reminded that there is a person on hold as soon as possible, as illustrated

with a MSC in Figure 5.4. Second, when another user tries to call the subscriber, the user

trying to reach the subscriber is left on hold. The subscriber is reached by the person

that is currently on hold, completing the call back processing, as illustrated with a MSC

in Figure 5.5. This behaviour was added to the original specification of call waiting, and

the final description is shown in Figure 3.11 (page 40).

Checking fixed segments (i.e., fixed subscription information) does not allow us to

conclude that the properties hold of DFC segments with any number of features. In

Chapter 6, we explore a compositional reasoning approach whereby we can model check

box properties on individual boxes, and then use theorem proving to conclude that seg-

ment properties hold in all DFC segments, composed of any number of transparent boxes

and delimited by user agents.
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5.2 Summary

In this chapter, we explained how to use the DFC Promela model, described in Chap-

ter 3, to check our call protocol correctness properties, described in Chapter 4, on small

fixed DFC usages. We provided results from the model checking verification runs, and

explained some issues regarding the verification effort. Our models and proposed prop-

erties were debugged, but this exercise is not sufficient to conclude that the properties

hold for segments with any number of features. Therefore, we propose a compositional

reasoning method in the next chapter.
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Chapter 6

Compositional Reasoning

In this chapter, we describe our compositional reasoning method to verify that segments

with any number of boxes satisfy our correctness properties.

6.1 Overview

Our main goal is to verify that all segments with any number of boxes satisfy our seg-

ment properties, which define our correctness criteria. In Chapter 5, we described an

approach to check our proposed segment properties on DFC usages with a fixed number

of Callers, Callees, and feature boxes. However, while that verification effort is suffi-

cient for verifying specific instances of DFC usages, we cannot conclude from it that

the properties will hold for segments of any number of boxes. Therefore, we propose a

compositional reasoning method, that combines theorem proving and model checking, to

prove the segment properties hold in all segments with any number of boxes.

Figure 6.1 shows the decomposition of the top goal into subproblems for a theorem

prover and a model checker. To prove the main goal, we reduce the problem to the

subproblems of: checking LTL properties of boxes individually (2A), describing the be-

haviour of the unbounded queues as LTL properties (2B), and then using both sets of

LTL properties in an inductive proof that concludes the proposed segment properties.

Each subproblem is represented as a component in the second level of the proof tree.

The reasoning to use subgoals (2A) and (2B) to conclude the main goal is performed in

terms of LTL properties only. In the third level, we verify properties for individual boxes

by performing model checking on models of the boxes. Next, we describe each part of

the proof tree presented in Figure 6.1.

59
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Figure 6.1: Compositional Reasoning Method

We verify the DFC Box Properties (2A) to prove that individual boxes behave as

intended when communicating with any DFC environment. The verification of individual

boxes is performed for Transparent (T), Upstream User Agent (UUA), and Downstream

User Agent (DUA) box categories, which each have different properties. The verification

of boxes in each category follows the methodology described in the third level of the proof

tree. The box properties are described in LTL and most have the form “After receiving

a signal, the box eventually sends a signal on another channel”.

" (Receive(signal) ⇒ ♦ Send(signal))

To represent the behaviour of the unbounded queues connecting boxes in any DFC

segment, we assume perfect communication and describe the Queue Property (2B) in

LTL. The queue property has the common form “After the box sent a signal, eventually

it is ready to be received by the next box1”.

" (Send(signal) ⇒ ♦ Receive(signal))

1This does not mean signal is guaranteed to be read. The box properties check for this condition.
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To prove that the segment properties hold for any segment of length n, we use the box

properties (2A) and queue property (2B) to perform induction over the number of boxes

communicating through queues (1). Segments are composed of transparent boxes and

delimited by UUA and DUA boxes. The base case of the inductive reasoning corresponds

to segments composed only of a UUA and a DUA. In the inductive step, we conclude

that a segment, composed of a UUA, n T boxes, and a DUA, satisfies the call protocol

properties.

Verifying the DFC Box properties (2A) is decomposed into three proof obligations

(3A, 3B and 3C), which must be completed for all individual boxes. In the verification

of DFC-compliance (3A), the goal is to prove that each box reacts to the call signals in

agreement with the DFC architecture constraints in an unrestricted environment that can

send and receive any call protocol signal at any time. We verify these properties in Spin.

For the communication between the unrestricted environment and the individual box, we

employ synchronous (rendezvouz) communication, i.e., the channel capacity is zero and it

cannot store messages. Therefore, when a send operation is executed, the corresponding

receive operation must be executed next. This abstraction captures the communication

behaviour of an individual box and its neighbours for any size of queues, and reduces the

state space because no queues are modeled. However, synchronous composition implicitly

assumes that the box receives only inputs and sends outputs when they are expected.

Verifying that each box receives only the call signals it expects and sends outputs when

they are expected by its neighbours is done by checking the Expected I/O Property

(3B) expressed as an invariant in Spin. We annotate the models of boxes with error states,

which are reached when a box receives a signal that it was not expecting. The invariant

properties have the form ¬ (♦Box@error), thus the model checking reasoning reduces to

verifying that the error state is never reached. In contrast with case (3A), in (3B) we

use asynchronous (delayed) communication, i.e., the channel can store signals that do

not need to be read immediately, which allows interleaving. Rather than combining the

box with all possible boxes that could be its neighbours, we create an abstract model

of DFC port behaviour that captures the most general behaviour of a DFC port. All

boxes are verified for the expected I/O property in an environment consisting of abstract

ports. Without this abstraction we would have to verify the invariants on all possible

permutations of box models, i.e., every box having a caller port (callee port respectively)

must be composed with all the boxes having a callee port (caller port respectively). The

verification of the expected I/O property would involve every pairwise composition of

caller–callee and callee–caller ports.



62 Verification of DFC Call Protocol Correctness Criteria

As long as the behaviour of every port in any box is contained within the behaviours of

the abstract ports, then the use of abstract ports in the environment is a valid abstraction,

and there is no need to compose the models of boxes pairwise to verify the expected I/O

property. To prove that every port in any box is an instance of the most general abstract

port, i.e., Port-compliance (3C), we carry out language containment reasoning.

Having completed the proof obligations (3A), (3B) and (3C), we can conclude that

each box will satisfy the DFC Box properties (2A) in any DFC environment when com-

municating with any other box, thus we can proceed to reason using only the LTL

properties.

The verification that (2A) ∧ (2B) ⇒ (1) needs to be completed only once. Thereafter,

using this compositional reasoning approach, to add a new feature to the DFC architec-

ture, and ensure that all segments of length n satisfy the segment properties, there are

the following proof obligations for the new feature:

• Verify, using model checking, that an individual box reacts to the call signals in

agreement with the DFC architecture constraints, with an unrestricted environment

and synchronous communication.

• Verify, using model checking, that an individual box receives and sends only the

call signals it expects, with an abstract environment that capture the most general

DFC port protocol behaviour, and asynchronous communication.

• Verify that the language recognized by a port in any box is contained in the language

recognized by an abstract port.

In the rest of this chapter, we present the box properties for T, UUA and DUA boxes,

followed by the model checking approach to verify DFC-compliance on Spin models of

the DFC interface and feature boxes. Then, we explain how to check the expected I/O

property on the Spin models. Next, we describe the proof that every port in a box is

an instance of an abstract port. Finally, we explain how to use theorem proving with

HOL to perform inductive reasoning, using the box properties and assumptions about

the queues to conclude our correctness properties.
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6.2 DFC Box Properties

To prove segment properties using a compositional reasoning argument, we first need to

verify properties of individual boxes, categorized as T, UUA and DUA boxes depending

on the box’s influence on the routing process.

The box properties are expressed as LTL formulas, and most have the form “After

receiving a signal, the box eventually sends a signal on another channel”.

" (Receive(signal) ⇒ ♦ Send(signal))

The box properties are described in terms of the channels and communication paths

shown in Figure 6.2.

UPSTREAM DOWNSTREAM
box_in box_out

Callee 
Port

Caller 
Portch1 ch2

Figure 6.2: Channels and Ports for Box Properties

The channels box in and box out connect the box with the routers sending and

receiving setup signals respectively. The communication path ch1 (composed of two one-

way communication channels) connects the box’s callee-port with a caller port of an

adjacent box. A Callee user box has only one callee port, but feature boxes can have

either none, one, or more than one callee port. The communication path ch2 (composed

of two one-way communication channels) connects the box’s caller port with a callee port

of an adjacent box. A Caller user box has only one caller port, but the feature boxes can

have either none, one, or more than one caller port.

Next, we list the feature properties organized by category. The DFC Box Properties,

formalized in LTL, are listed in Table 6.1 and described in terms of the channels and

communication paths shown in Figure 6.2. Most box properties are similar to the segment

properties (Table 4.1), but reflect what an individual box must do so that the segment

properties will be satisfied. Also because bound boxes participate in more than one

segment, these properties must hold for all time. In the following subsections, we explain

these properties.
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"(box in?setup ⇒ ♦ch1!upack) T.1

"(box in?setup ⇒ ♦box out!setup) T.2

"(ch1?teardown ⇒ ♦ch1!downack) T.3

"(ch2?teardown ⇒ ♦ch2!downack) T.4

"(box in?setup ⇒
( (¬ch2?teardown

⋃
(ch1?teardown ∧ ♦ch2!teardown))

∨ (¬ch1?teardown
⋃

(ch2?teardown ∧ ♦ch1!teardown))

∨ "(¬ch1?teardown ∧ ¬ch2?teardown)) T.5

"(ch2?avail ⇒ ♦ch1!avail) T.6

"(ch2?unavail ⇒ ♦ch1!unavail) T.7

"(ch2?teardown ⇒ ♦ch2!downack) UUA.1

"(box in?setup ⇒ ♦ch1!upack) DUA.1

"(ch1?teardown ⇒ ♦ch1!downack) DUA.2

"(ch1!upack ⇒
((¬ch1?teardown)

⋃
(ch1?teardown ∨ ch1!avail ∨ ch1!unavail)) DUA.3

"(ch1!upack ⇒ ♦(ch1!avail ∨ ch1!unavail)) DUA.4

"(ch1!unavail ⇒
((¬ch1?teardown)

⋃
(ch1?teardown ∨ ch1!teardown)) DUA.5

"(ch1!unavail ⇒ ♦(ch1!teardown)) DUA.6

Table 6.1: DFC Box Properties

6.2.1 Transparent Box Properties

For every signal received by a T box, there is a corresponding action taken. We give a

brief explanation of the events occurring in the channels connected to the T box.

Both obligations of the piecewise setup are followed by these boxes. After receiving a

setup signal on the port connected to the channel box in, two actions must be performed.

First, the box should send the corresponding upack signal upstream on the port connected

to the communication path ch1, as stated in Property T.1. Second, the box should send

a modified2 setup signal downstream on the port connected to the channel box out, as

2DFC makes a distinction between a new and a modified setup signal, since the former corresponds
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stated in Property T.2.

Both obligations of the piecewise teardown are followed by these boxes. However,

there is a distinction if the teardown signal is generated upstream or downstream, since

the events take place on different channels. First, if the teardown signal is generated

upstream, i.e., on communication path ch1, the corresponding downack signal should be

sent upstream, i.e., after receiving a teardown signal on the port connected to the com-

munication path ch1, the box should send the corresponding downack signal on the port

connected to the communication path ch1, as stated in Property T.3. Property T.4 is

symmetric to Property T.3 for the case where the teardown signal is generated down-

stream, so the corresponding downack signal must be send on the port connected to the

communication path ch2. Second, since a T box can receive teardown signals from either

neighbour, only the first one is forwarded. In the formalization of the Property T.5,

after the box receives a setup, three situations could occur: (1) if the teardown signal

received on the port connected to the communication path ch1 is the first to arrive at

the box, then the teardown signal is forwarded onto the communication path ch2; (2) if

the teardown signal received on the port connected to the communication path ch2 is the

first to arrive at the box, then the teardown signal is forwarded onto the communication

path ch1; or (3) no teardown signal is received on either port.

Finally, a T box propagates avail and unavail signals upstream. After receiving an

avail or an unavail signal on the port connected to the communication path ch2, it

should be sent upstream on the port connected to the communication path ch1 to its

adjacent box, as stated in Property T.6 and Property T.7 for avail and unavail signals

respectively.

6.2.2 Upstream User Agent Box Properties

For UUA boxes, we give a brief explanation of the events occurring in the channels

connected to the UUA box. There are no properties of piecewise setup, since these boxes

are sending a new setup signal to request the creation of a usage. In addition, there

are no required actions on the reception of an avail or unavail signals, which may be

absorbed by the UUA box.

There is an action required on the reception of a teardown signal, but only the first

obligation of the piecewise teardown must be satisfied: If the teardown signal is gener-

to the request of the creation of a usage, whereas the later is only a modification of the route field.
However, our model abstracts away the route field of the setup signal.
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ated downstream, the corresponding downack signal should be sent downstream, i.e.,

after receiving a teardown signal on the port connected to the communication path ch2,

the box should send the corresponding downack signal on the port connected to the

communication path ch2, as stated in Property UUA.1. However, the UUA box may

not propagate the teardown signal received, since there are no more boxes of the segment

currently being torn down connected to the UUA box.

6.2.3 Downstream User Agent Box Properties

For DUA boxes, we give a brief explanation of the events occurring in the channels

connected to the DUA box. For piecewise setup, only the first obligation must be fol-

lowed: After receiving a setup signal on the port connected to the channel box in, the

box should send the corresponding upack signal upstream on the port connected to the

communication path ch1, as stated in Property DUA.1. However, DUA boxes do not

need to propagate the setup signal since they are answering the request for the creation

of a usage.

On the reception of a teardown signal, only the first obligation of the piecewise tear-

down must be satisfied: If the teardown signal is generated upstream, the corresponding

downack signal should be sent upstream, i.e., after receiving a teardown signal on the

port connected to the communication path ch1, the box should send the corresponding

downack signal on the port connected to the communication path ch1, as stated in Prop-

erty DUA.2. But the DUA box does not need to propagate the teardown signal received,

since there are no more boxes of the segment currently being torn down connected to the

DUA box.

For avail and unavail signals, we verify properties of the form “After sending a signal,

the box eventually sends a subsequent signal on the same channel”.

" (Send(signal) ⇒ ♦ Send(signal))

First, after sending an upack signal on the port connected to the communication path ch1,

the box should send an avail or an unavail signal upstream on the port connected to the

communication path ch1, if the box has not received a teardown signal from upstream

yet, as stated in Property DUA.3. For our DFC model, a stronger version of this

property can be stated because the box does not read input from the port connected to

the communication path ch1 prior to sending the avail or unavail after the upack signal

on the port connected to the communication path ch1, as stated in Property DUA.4.
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Second, after sending an unavail signal on the port connected to the communication

path ch1, the box sends a teardown signal upstream on the port connected to the com-

munication path ch1, if the box has not received a teardown signal from upstream yet,

as stated in Property DUA.5. For our DFC models, a stronger version of this property

can be stated because the box does not read input from the port connected to the com-

munication path ch1 prior to sending the teardown after the unavail signal on the port

connected to the communication path ch1, as stated in Property DUA.6.

6.3 DFC Compliance

To verify that individual boxes behave as intended, we prove that each box reacts to

all signals in agreement with the DFC call protocol architecture constraints, described

in the previous section as box properties, and formalized in LTL. We check these prop-

erties using model checking in Spin. We decided to use atomic sequences only when

needed, i.e., conditions in a process must be changed avoiding interleaving, or when a

set of statements are intended to represent the same action to maximize the possible

interleavings. We place each box in an unrestricted environment that can receive and

send non-deterministically any of the signals through all channels shown in Figure 6.33,

using synchronous (rendezvous) communication. Next we explain the environments used

for the Caller, Callee, Two-way and Three-way feature boxes.

A Caller has only a caller port, so communication path ch2, and channel box out

are used. A Callee has two callee ports, so two communication paths ch1 (for regular

communication) and busy ch (for “busy” processing in bound persistent boxes), and

the channel box in are used4. For Two-way Feature boxes (i.e., boxes with two ports),

communication paths ch1 and ch2 (for regular communication), as well as channels box in

and box out are used. For Three-way Feature boxes (i.e., boxes with three ports),

communication paths subsc, ch1, ch2 (for regular communication), and busy ch (for

handling the box’s response to another user that tries to call, where it simply tears down

the call), as well as channels box in and box out are used.

Dynamic allocation of channels is not necessary because only one box is verified at

a time. Figure 6.4 shows part of the Spin process for the unrestricted environment,

called env. The unrestricted environment has no life on its own, i.e., all it provides is

3All kinds of boxes are shown in the figure, but only one box is verified at a time.
4For presentation purposes, we leave out the details of the box in process channels needed for bound

boxes, as described on page 28, but these exist in our model.
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Figure 6.3: Unrestricted Environment to Verify DFC Box Properties

1 proctype env(byte thisuser)
2 {
3 byte orig1; /*source subsc channel*/
4 byte dest1; /*dest subsc channel*/
5 byte orig2; /*source first channel*/
6 byte dest2; /*dest first channel*/
7 byte orig3; /*source second channel*/
8 byte dest3; /*dest second channel*/
9 byte orig4; /*source busy channel*/

10 byte dest4; /*dest busy channel*/
11

12 end_idle:
13 do
14 :: box_in!setup,orig2,dest2,dest2,ch1
15 :: box_out?setup,orig1,dest1,dest1,eval(ch1)
16 :: chan_array[ch1].A?upack

17 :: chan_array[ch1].A?avail
18 :: chan_array[ch1].A?unavail
19 :: chan_array[ch1].A?downack
20 :: chan_array[ch1].A?teardown
21 :: chan_array[ch1].B!upack
22 :: chan_array[ch1].B!avail
23 :: chan_array[ch1].B!unavail
24 :: chan_array[ch1].B!downack
25 :: chan_array[ch1].B!teardown
26 /* Same as 14-25 for ch2 */
27 /* Same as 14-25 for subsc */
28 /* Same as 14-25 for busy_ch */
29 od;
30

31 end: skip
32 }

Figure 6.4: SpinProcess for the env Unrestricted Environment



Compositional Reasoning 69

the corresponding handshake associated with all signals that could be sent or received

by the box being verified because synchronous communication is used. For boxes with

more ports, we need only to add the corresponding sending and receiving transitions, as

shown in lines 14–25 in Figure 6.4. In our unrestricted environment, we use synchronous

communication, i.e., rendezvous channels between the box and the unrestricted environ-

ment processes to abstract away the communication queues, and to avoid deadlock. This

abstraction captures the communication behaviour of an individual box and its neigh-

bours for any size of queues, and reduces the state space because no queues are modeled.

Rendezvous communication is composed of a sending and a receiving part, but for an

external observer, they act as one operation. Once a rendezvous send occurs, only the

corresponding receiving part becomes executable. The receiving part of a rendezvous

operation becomes executable just after the corresponding sending part was selected. If,

in the unrestricted environment, Spin happens to choose a rendezvous send statement

that has no receiving part in the box process, the send statement is discarded by Spin,

selecting a new candidate from the set of executable statements.

We add global boolean variables to the individual box models to capture the be-

haviour of the event of a signal being sent or received, following the approach for model

checking segment properties, described in Section 5.1 (page 49). The boolean variables

last rec setup and last sent setup are set to true when the setup signal is traveling on

the channels box out and box in respectively5. We use boolean variables last rec signal

to last sent signal, to capture the behaviour of every possible signal traveling through

the communication paths. To denote the event of a signal sent or received on a com-

munication path, we change the value of the corresponding variable to true. The event

and the change of the boolean variable are enclosed in an atomic sequence, since they

represent the same action. All the variables are initialized by default to false, and

reset (set again to false) after a transition is taken that reads or writes to the calls.

We do not have the problem of false negatives, described in Chapter 5 because we use

synchronous communication with the unrestricted environment. For example, when a

teardown signal is received on the incoming channel of communication path ch2, the

variable last rec teardown is updated to true to denote the event, and reset to false

afterwards6:

5setup signals travel only to and from the router.
6This statement in Promela is chan array[ch2].B?downack;, however, to make it easier to follow,

we do not state explicitly the use of the array of channels chan array or the channel of the communication
path that is used to send or receive (A or B).
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atomic{

ch2?teardown;

last_rec_teardown=true;

}

last_rec_teardown=false;

When sending a signal, the global variable is updated before the signal is transmitted,

because control of the execution changes from the sender to the receiver with rendezvous

channels. For example, when a downack signal is sent through the outgoing channel of

communication path ch1, the variable last sent downack is updated to true, and reset

to false afterwards:

atomic{

last_sent_downack=true;

ch1!downack;

}

last_sent_downack=false;

We verified the DFC Box properties on the T, UUA, and DUA boxes that we described

in our Spin model, and the results obtained from the verifications are shown in Table 6.2.

We present the maximum execution statistics for the largest verification of a property in

terms of number of states, memory used and time, instead of listing all the box properties

statistics per box. The properties that took the longest to verify were the ones related

to teardown signals.

Box Number of State vector Depth Total memory Time
verified states (bytes) reached used (Mbytes) min:sec

Caller 153 480 140 1.778 0:00.015
Callee 67 484 122 1.778 0:00.014
TFB 95 480 137 1.778 0:00.015
OCS 128 480 141 1.778 0:00.016
CF 99 488 145 1.778 0:00.016
CW 295645 500 23938 41.548 0:20.331

Table 6.2: Maximum Execution Statistics for DFC Box Properties Verification
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6.4 Port Compliance

Using synchronous communication with an unrestricted environment to verify DFC-

compliance implicitly assumes that the box receives inputs and sends outputs only when

they are expected. Therefore, we also need to verify the expected I/O property when

the box is placed in an environment that follows the DFC call protocol. To avoid the

problem of having to verify every box in the environment of every other box, we capture

the essential behaviour of a DFC port in an abstract model of a port’s behaviour.

The DFC manual presents models of caller port and callee port behaviour [13]. We

started using these caller and callee port models for our abstract environment, but found

that the ports of the call waiting feature box can switch from being callers to callees and

vice versa during the box’s execution. This behaviour happens in two situations. The

first situation occurs when a user who was called by the subscriber (interacting with CW

through a caller port) is placed on hold. If this user decides to hang up, it releases the

CW’s caller port. The port just released can be used if another user calls the subscriber,

and therefore interacts with CW through a callee port. The second situation occurs when

a user calls the subscriber so the subscriber interacts with CW through a callee port,

and another user tries to reach the subscriber. This user remains on hold. When the

subscriber hangs up, the CW feature calls back the subscriber, reminding them that there

is a person on hold. The subscriber is now called by CW and therefore interacts with

CW through a caller port. Because of these situations, we created an abstract model of

a port, called a combo port, that can switch between these modes. The details of how

we verify all features with neighbours whose ports behave as this most general abstract

port are provided in the next section. In this section, we describe how to verify that

the behaviour of every port of a box is contained within the possible behaviours of the

combo port.

The abstract models of caller port, callee port, combo ports and their free and bound

instances can be arranged in a partial order based on language containment as shown in

Figure 6.5, where the dashed boxes are the abstract models (1-6). The language of the

ports is the communication between the port and the channel. Bound ports (ports of

bound boxes) have the behaviours of free ports, but after the call is torn down they return

to their initial state to await another setup signal. The behaviour of both caller ports

and callee ports is contained within the behaviour of the combo ports. The combo bound

port model, shown in Figure 6.6, behaves like a caller port (or callee port) until it reaches

the communication phase (state CommPhase), then there is no distinction in behaviour



72 Verification of DFC Call Protocol Correctness Criteria

between caller port and callee port. This captures the behaviour of call waiting where

the subscriber can call (using a call waiting callee port) or be called (using a call waiting

caller port). Bound ports include the behaviour of the busy ch port, which handles the

reception of a setup signal from the router when the box is already communicating with

another box. The busy ch port rejects the request for an additional connection. This

behaviour is captured by the looping transitions on states in Figure 6.6 labelled U . The

rest of the abstract models (2 to 6 in Figure 6.5) are shown in Appendix B.

Bound
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Caller Port 

Callee 
PortBOUND

Bound
Feature
Callee Port

Caller 
PortBOUND

Callee 
PortFREE

Caller 
PortFREE

Free
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Caller Port

Free
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Combo 
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Combo 
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abstract
port

language containment 
checked
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1

2 3 4

6 7 8Caller/  Callee/  

Figure 6.5: Language Containment Relations

Rather than trying to show language containment of a box’s port directly with the

behaviour of the combo bound port, we rely on the partial order of abstract models, and

match the box’s ports with the most appropriate element of the abstract model hierarchy.

This makes it easier to find the abstraction function needed to show language contain-

ment, and also provides a tighter verification of the port’s behaviour. In Figure 6.5,

the shaded boxes (the leaves of the tree) represent the ports of particular boxes. For

example, the caller port of the Caller process (7) is checked against the abstract bound

caller port model (3), and the callee port of a free feature box, such as call forwarding,

(10) is checked against the free callee port abstract model (6).
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Figure 6.6: State Machine for ComboPortBOUND Process

We check that the behaviours of a box are contained within the behaviours of an

abstract port in two steps. First, we isolate the behaviour of the box to its communication

on only one port by replacing all transition triggers based on communication with other

ports with a guard of “true” and removing all outputs except those to the port being

verified. This is a valid abstraction of the port’s behaviour – it does not add or remove

any port behaviour. Second, we find an abstraction function, abs, matching the states

of the box (concrete) with the states of an abstract model (abstract). Then we show,

for every transition in the concrete machine consisting of a source state, trigger, which

receives or sends a signal, and destination state:

∀ src, sig, dest · (src, sig, dest) ∈ concrete

⇒ (abs(src), sig, abs(dest)) ∈ abstract
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We have written a simple tool in ML that takes a description of the box as a set

of transitions, isolates one port’s behaviour, and carries out the language containment

check stated above. It walks over transitions of a box, uses the abstraction function to

compute the abstract states matching the source and destination of the transition, and

checks that there is a corresponding transition in the abstract machine. Because we are

considering only signal types, and not considering data values, this reasoning can be

done using an enumerative search. The creation of the state transition diagram for a

box is currently done by hand, but a tool could automatically extract these models from

the Promela model. Determining the abstraction function is usually straightforward,

but can be tedious for a bound box like CW, due to the large number of states and

transitions.

We checked the behaviour of the all the boxes we modelled against the appropriate

abstract port model. All the ports of call waiting behave as bound combo ports. We also

checked the relationship between the abstract models (e.g., that caller port bound is

contained within the combo port bound). Using the partial order, we know that as long a

box’s port behaviour is contained within one of the abstract models, it is contained within

the most general abstract model. This part of the verification effort took 5 seconds to

check each call waiting port, which is the most complicated and time consuming example.

The abstract port models contain more information than captured by the DFC box

properties in LTL (Table 6.1). The LTL properties capture only the essential information

about box behaviour needed to prove the segment properties. By isolating this informa-

tion from the more complicated abstract port descriptions, we simplify the inductive

reasoning, which is the final step in our method.

Tables showing the abstraction functions for all the relationships of Figure 6.5 are in

Appendix B.

6.5 Expected I/O

We use Spin to verify the expected I/O property: that each individual box placed in an

environment of the most abstract ports (i.e., communicating with combo bound ports)

receives only signals it expects and sends only the signals the abstract port models expect.

Without abstract port models, we would need to check all possible permutations of box

models, i.e., every box having a caller port (callee port respectively) must be composed

with all the boxes having a callee port (caller port respectively). The verification of

the expected I/O properties would have involved every single pairwise composition of
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caller–callee and callee–caller ports. The abstract port models for verifying the expected

I/O property for individual boxes uses the channels and communication paths shown in

Figure 6.7.
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Figure 6.7: Abstract Environment to Verify Expected I/O Property

Boxes in the transparent (T) category can have at most two ports, but user agents

may have more. The ports subsc (subscriber), ch1, and ch2 are for regular communica-

tion, and the busy ch port rejects the request for an additional connection. By using

the combo bound port in the environment we capture the behaviour of multiple users

communicating with a box as a caller or callee port at different times. The router process

is included in the model, but the box is not dynamically created (as we are checking only

one box) and the channels used are fixed in advance. As in our verification of fixed DFC

configurations, we use synchronous communication for the channels box out and box in.

We use asynchronous communication for the rest of the channels with a queue size of

one. This forces the maximal amount of interleavings. We checked that the box and its

environment are free of deadlock to show that this channel size is sufficient. Having a

larger queue size would permit extra behaviours that involve fewer interleavings.
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Checking for lack of deadlock in this model is not sufficient to ensure the expected I/O

property since the deadlock check looks only for invalid end states7. Even if a deadlock

check passes, a signal that should have been read by a process that is in a valid end state

can remain in the queue. Therefore, we add error states to our interface and feature

box processes, as well as to our abstract environment processes, and transitions to error

states when the signal received is not one the process was expecting to process. We

then describe the expected I/O property using an invariant in LTL, which has the form

¬ (♦Box@error), thus the model checking reasoning reduces to verifying that the error

state is never reached.

We verified the expected I/O property for the T, UUA, and DUA boxes that we

described in our Spin model. The results obtained from the verifications of invariant

properties are shown in Table 6.3.

Box Number of State vector Depth Total memory Time
verified states (bytes) reached used (Mbytes) min:sec

Caller 276 492 290 1.778 0:00.014
Callee 48 492 97 1.778 0:00.011
TFB 671 512 189 1.881 0:00.026
OCS 720 512 189 1.881 0:00.028
CF 683 520 191 1.881 0:00.026
CW 165297 544 8158 50.213 0:05.698

Table 6.3: Execution Statistics for Expected I/O Property Verification

In Spin, it is not possible to verify the DFC Box Properties in the environment we

use for the expected I/O property (proving both DFC-compliance and expected I/O at

one time), since we face the problem of false negatives due to interleaving, as explained

in Chapter 5. In addition, the two types of properties are interesting individually and

verification of them separately may help isolate errors.

6.6 Inductive Reasoning

The final step in our compositional verification method is to use the DFC box properties

stated in Table 6.1 to prove the segment properties, stated in Table 4.1, for all segments of

7We recently learned that using XSPIN, there is a parameter that can be specified to make sure that
queues are empty when checking for deadlock (“Extra Run-Time Option” -q). However, this is not the
default behaviour, and not all versions of the tool support this advanced option.
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a bounded but unknown length n. To do this proof, we use induction. To gain confidence

in the correctness of this proof, we verified it using the Hol theorem proving system.

Having shown that the DFC box properties hold for a box in any DFC environment,

we can restrict our reasoning at this point to rely only on the LTL properties. This

restriction means we do not have to deal with the details of the models and greatly

simplifies the reasoning. A graphical representation of the inductive process is shown

in Figure 6.8, where every component represents a formula. Because we reason about

segments, the base case is only an UUA box connected to a DUA box communicating

through a queue, whereas the inductive step is an UUA box connected to n transparent

boxes and finalized by a DUA box, all communicating through queues. Since we are

assuming the correctness of the routing protocol, the box address can be represented

using natural numbers in the order they appear in the usage.

UUA DUA

UUA DUAT T...

BASE CASE

n-1 
T Boxes

INDUCTIVE STEP

Queue

Queue QueueQueueQueue

0 1

0 1 n n+1

Figure 6.8: Inductive Reasoning

Rather than using an embedding of temporal logic in the logic of the theorem prover,

we found it easier to convert the segment properties to their equivalent versions as func-

tions of time. For example, "p means that proposition p holds at all points in the future,

and is expressed using propositions as functions of time as ∀m · p(t + m), where t the

time at which the property is supposed to hold.

We model the sending and receiving of signals at a box as uninterpreted predicates:

Send p1 p2 p3 p4

Rec p1 p2 p3 p4

The parameters in order represent:

(p1) Time when the function takes place (type: num=natural numbers).
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(p2) Label describing the originating box (type: num=natural numbers).

(p3) Label describing the destination box (type: num=natural numbers).

(p4) Signal being sent or received (signal types: Setup, Upack, Td, Downack, Avail,

Unavail).

Because our focus is on verifying the behaviour of DFC boxes, we make the assumption

that the unbounded queues behave perfectly, meaning that every signal sent is eventually

received by the destination box. The unbounded queues property has the form “After

the box sent a signal, it is held in the queue ready to be eventually received by the next

box”.

" (Send(signal) ⇒ ♦ Receive(signal))

For example, the queue property for the setup signal, QueueSetup, is described using

explicit time functions as follows:

∀c,t · (Send t c (c+1) Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 c (c+1) Setup))

Most of the box properties, expressed as LTL formulas, have the form “After receiving

a signal, the box reacts sending a signal on another channel”.

" (Receive(signal) ⇒ ♦ Send(signal))

For example, the box property for the setup signal, BoxSetup, is expressed using explicit

time functions as follows:

∀c,t · (Rec t c (c+1) Setup) ⇒ (∃t2 · (t2 > t) ∧ (Send t2 (c+1) (c+2) Setup))

Using the DFC properties of boxes, plus the queue property, we prove the segment

properties. For the segment properties, we describe first the reasoning for S.1, S.4, and

S.5, and then discuss S.2 and S.3.

Properties S.1, S.4, and S.5 have the same form, the only difference is that in

property S.1 the setup signal goes from an UUA to a DUA, whereas in properties S.4

and S.5 the signals avail and unavail travel from a DUA to an UUA. Since they are

symmetric, we need only to focus on one of the properties, say S.1, to explain the

inductive proof. The proofs for properties S.4, and S.5 are similar, but the induction

goes from n + 1 to 0 instead of from 0 to n + 1. For example, for segment property S.1

describing the propagation of setup signals, we prove,
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/*QueueSetup*/

∀c,t · (Send t c (c+1) Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 c (c+1) Setup)) ,

/*BoxSetup*/

∀c,t · (Rec t c (c+1) Setup) ⇒ (∃t2 · (t2 > t) ∧ (Send t2 (c+1) (c+2) Setup))

|=
∀n,t · (Send t 0 1 Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Setup))

Applying induction over n, we obtain two subgoals to prove, one corresponding to

the base case, and one to the inductive step.

BASE CASE: Prove

(Send t 0 1 Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 0 1 Setup))

We get this directly from the QueueSetup property.

INDUCTIVE STEP: Prove

∀n,t · (Send t 0 1 Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 (n+1) (n+2) Setup))

Proof sketch:

The Induction Hypothesis (IH) is

∀t · (Send t 0 1 Setup) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Setup))

First, we assume
Send t 0 1 Setup (1)

From IH and (1), we can conclude there is a t3 such that

(t3 > t) ∧ (Rec t3 n (n+1) Setup) (2)

From BoxSetup and (2), we can conclude there is a t4 such that

(t4 > t3) ∧ (Send t4 (n+1) (n+2) Setup) (3)

From QueueSetup and (3), we can conclude there is a t5 such that

(t5 > t4) ∧ (Rec t5 (n+1) (n+2) Setup) (4)



80 Verification of DFC Call Protocol Correctness Criteria

Therefore, we can conclude

∃t2 · (t2 > t) ∧ (Rec t2 (n+1) (n+2) Setup) (5)

#

Properties S.2, and S.3 have the same form, the only difference is that in property

S.2, the teardown signal goes from an UUA to a DUA, whereas in property S.3 the

teardown signals travel from a DUA to an UUA. Then, since they are symmetric, we

need only to focus on one of the properties, say S.2, to explain the inductive proof. The

proof for property S.3 is similar, but the induction goes form n + 1 to 0 instead of from

0 to n + 1.

For segment property S.2 describing the propagation of teardown signals, we prove,

/*QueueTdU*/

∀c,t · (Send t c (c+1) Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 c (c+1) Td)) ,

/*BoxTdU*/

∀c,t · (Send t c (c+1) Setup) ⇒
( (∃t2 · t2 > t ∧ ((Rec t2 c (c+1) Td)

∧ (∃t3 · t3 > t2 ∧ Send t3 (c+1) (c+2) Td))

∧ (∀t4 · t < t4 < t2 ⇒ ¬(Rec t4 (c+2) (c+1) Td)))

∨ (∃t5 · t5 > t ∧ ((Rec t5 (c+2) (c+1) Td)

∧ (∃t6 · t6 > t5 ∧ Send t6 (c+1) c Td))

∧ (∀t7 · t < t7 < t5 ⇒ ¬(Rec t7 c (c+1) Td)))

∨ (∀t8 · t8 > t ∧ ¬(Rec t8 c (c+1)Td) ∧ ¬(Rec t8 (c+2) (c+1)Td))

)

|= ∀n,t’ · Send t’ 0 1 setup ⇒
(∀t1 · ¬(∃i · (Rec t1 (i+1) i Td))) ⇒
(∀t · (t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Td)))

Applying induction over n, we obtain two subgoals to prove, one corresponding to

the base case, and one to the inductive step.
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BASE CASE: Prove

Send t’ 0 1 setup ⇒
(∀t1 · ¬(∃i · (Rec t1 (i+1) i Td))) ⇒
(∀t · (t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 0 1 Td)))

We get this directly form the QueueTdU property.

INDUCTIVE STEP: Prove

Send t’ 0 1 setup ⇒
(∀t1 · (¬(∃i · (Rec t1 (i+1) i Td)))) ⇒
(∀t · (t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 (n+1) (n+2) Td)))

Proof sketch:

The Induction Hypothesis (IH) is
Send t’ 0 1 setup ⇒

(∀t1 · ¬(∃i · (Rec t1 (i+1) i Td))) ⇒
(∀t · (t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Td))))

First, we assume
Send t’ 0 1 Setup (1)

and
∀t1 · ¬(∃i · (Rec t1 (i+1) i Td)) (2)

and
Send t 0 1 Td (3)

and from properties S.1, BoxSetup and QueueSetup, we can deduce there is a t” such
that

Send t” n (n+1) Setup (4)

From IH and (1), we get

(∀t1 · ¬(∃i · (Rec t1 (i+1) i Td))) ⇒
(∀t · (t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Td))) (5)

From (2) and (5), we get

((t > t’ ∧ Send t 0 1 Td) ⇒ (∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Td))) (6)
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From (3) and (6), we get

∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Td) (7)

From BoxTdU and (4), we can conclude that for all n and t”

( (∃t2 · t2 > t” ∧ ((Rec t2 n (n+1) Td)

∧ (∃t3 · t3 > t2 ∧ Send t3 (n+1) (n+2) Td))

∧ (∀t4 · t” < t4 < t2 ⇒ ¬(Rec t4 (n+2) (n+1)Td)))

∨ (∃t5 · t5 > t” ∧ ((Rec t5 (n+2) (n+1) Td)

∧ (∃t6 · t6 > t5 ∧ Send t6 (n+1) n Td))

∧ (∀t7 · t” < t7 < t5 ⇒ ¬(Rec t7 n (n+1)Td)))

∨ (∀t8 · t8 > t” ∧ ¬(Rec t8 n (n+1)Td) ∧ ¬(Rec t8 (n+2) (n+1)Td))

) (8)

From (8), we get three cases, one for each disjunct:

In CASE (a), we assume

( (∃t2 · t2 > t” ∧ ((Rec t2 n (n+1) Td)

∧ (∃t3 · t3 > t2 ∧ Send t3 (n+1) (n+2) Td))

∧ (∀t4 · t < t4 < t2 ⇒ ¬(Rec t4 (n+2) (n+1) Td))

) (9)

In (9), we know there is t3 and t2 such that

t3 > t2 ∧ Send t3 (n+1) (n+2) Td (10)

From QueueTdU and (10), we can conclude there is a t4 such that

t4 > t3 ∧ Rec t4 (n+1) (n+2) Td (11)

Therefore in this case, we can conclude,

∃t2 · (t2 > t) ∧ (Rec t2 (n+1) (n+2) Td) (12)
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In CASE (b), we assume

( (∃t5 · t5 > t” ∧ ((Rec t5 (n+2) (n+1) Td)

∧ (∃t6 · t6 > t5 ∧ Send t6 (n+1) n Td))

∧ (∀t7 · t < t7 < t5 ⇒ ¬(Rec t7 n (n+1)Td))

) (13)

In (13), we know there is a t5 such that

t5 > t” ∧ Rec t5 (n+2) (n+1) Td (14)

From (2), we know

¬(Rec t5 (n+2) (n+1) Td) (15)

From the contradiction between (14) and (15), we can conclude this case is not pos-
sible.

In CASE (c), we assume

∀t8 · ¬(Rec t8 n (n+1)Td) ∧ ¬(Rec t8 (n+2) (n+1)Td) (16)

In (7), we know there is a t8 such that

t8 > t ∧ (Rec t8 n (n+1) Td) (17)

From (16), we can conclude that for all t8

¬(Rec t8 n (n+1)Td) ∧ ¬(Rec t8 (n+2) (n+1)Td) (18)

From the contradiction between (17) and (18), we can conclude this case is not pos-
sible.

Therefore, we can conclude by cases

∃t2 · (t2 > t) ∧ (Rec t2 (n+1) (n+2) Td) (19)

#The complete proofs were done in the HOL theorem prover.
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6.7 Summary

In this chapter we described the compositional reasoning method for verifying liveness

properties of the DFC call signalling protocol, so we can conclude that segments with

any number of boxes satisfy our correctness properties.



Chapter 7

Conclusions

In this chapter, we summarize the main contributions of our work, as well as its limita-

tions. Finally, we discuss ideas to extend and improve our approach as future work.

7.1 Contributions

In this work, we identified and proposed a definition of DFC compliance for features,

concentrating on the call protocol, i.e., we verify that the system behaves well, rather

than detecting feature interactions. This definition describes our correctness criteria as

a set of LTL properties for segments. One of the main contributions in our work is a

categorization of boxes by their influence on the routing process, which helps to reason

about segments of a DFC usage and is used to express our correctness properties.

We created an environment for model checking fixed DFC segments, which is a se-

quence of transparent features in a pipeline delimited by user agent features. The creation

of the segment was done dynamically, following closely the DFC architecture. This model

checking effort was a useful debugging exercise to see if our models of boxes were fully

specified and if our segment properties were correct. We detected surprising feature be-

haviours during the verification of fixed configurations. The behaviours discovered were

not specified in the feature’s descriptions given in the literature, e.g., scenarios for the call

waiting subscriber when several parties are calling and hanging up. After conferring with

Pamela Zave, we handled the situation of the call back processing failure, and provided a

full and correct specification for the call waiting feature. However, call waiting could not

be fully verified for the segment properties in a small configuration of two Callers and

one Callee, even when increasing the memory and maximum depth search in Spin to the
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highest limits allowed by the server. Therefore, this effort is not sufficient to conclude

that the properties hold for segments with any number of features.

To verify liveness properties of the DFC call signalling protocol for segments of length

n, we developed a compositional reasoning method, that combines theorem proving and

model checking. Our verification method allows us to reason about each feature individ-

ually, considerably reducing the verification effort. Our method consists of four steps:

DFC Compliance: Verify, using model checking, that an individual box reacts to the

call signals in agreement with the DFC architecture constraints, using an unre-

stricted environment and synchronous communication.

Expected I/O: Verify, using model checking, that an individual box receives only the

signals it is expecting and sends only the signals expected by the environment, using

an abstract environment that captures the most general port protocol behaviour of

DFC, and asynchronous communication.

Port Compliance: Prove that the behaviour of every port in the box is within the

most general behaviour allowed by DFC. We proved the language containment

relationships between a partial order of abstract port models so that the most

specific abstract port model could be used for checking the port compliance of a

box.

Inductive Reasoning: Prove by induction over the number of boxes communicating

through unbounded queues that the segment properties hold for segments of length

n. Queues are assumed to provide perfect communication between boxes in any

DFC configuration.

This form of compositional reasoning is possible because of the semi-regularity of DFC

features. With our method, we achieve a separation of concerns in that features can be

verified individually, and a description in terms of only LTL properties is used to reason

about segments. The inductive reasoning step needs to be completed only once and is in

terms of LTL properties only. Thereafter, using this compositional reasoning approach,

to add a new feature to the DFC architecture, and ensure that all segments of length

n satisfy the segment properties, each new features must follow the proof obligations

described as DFC compliance, expected I/O and port compliance.
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7.2 Limitations

In the environment created for model checking fixed DFC segments, only four feature

boxes were implemented: free transparent feature (FTF), call forwarding (CF) and origi-

nating call screening (OCS) as free feature boxes, as well as call waiting (CW) as a bound

feature box.

We abstracted away some feature specific behaviours to simplify the modeling and

verification. In OCS, we chose non-deterministically if a user to be called is in the

screening list instead of checking the global information. In CW, we abstracted away two

signals. We did not implement the wait tone, which lets the subscriber know that a new

correspondant is on hold. We do not use the switch signal, which allows the subscriber

to change between correspondants, and instead, we make this a non-deterministic choice.

In our model, we also assume that the routing is carried out correctly.

7.3 Future Work

We model checked some small configurations of the DFC architecture, varying the number

of Callers, Callees, and number of times a Caller could make a call. To make it possible

to model check larger configurations, an interesting avenue for further exploration is

symmetry reductions (e.g., [11]) which would allow us to conclude that restricting the

Caller to making a finite number of calls with a certain number of Callers and Callees is

a sound abstraction.

Currently, segment properties allow us to reason about the signals traversing the

segment in one direction. Next, we plan to tackle round-trip properties, which involve

the receipt of acknowledgments for signals that have been sent. For example, one of our

properties guarantees that a setup signal travels from a DUA to an UUA. Once the setup

signal is received, the DUA generates an avail or unavail signal. Then, another property

states that avail or unavail signals travels upstream, reaching the DUA that generated

the setup signal. We also expect there are additional properties of segments, plus many

other interesting properties of DFC (e.g., address translation, properties of branching

usages) that can be proved using the compositional method presented in this work. We

would also like to introduce properties that can be used to identify the category of a

feature. For example, a property could describe what it means for a user agent to have

the behaviour of absorbing a setup signal, or generating an avail or unavail signal.
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We are working on creating an environment in which Boxtalk models can be verified

directly using our method, and in which we can begin to explore the application of this

method to other pipe-and-filter systems that exhibit a semi-regularity in their behaviour.

We also want to use other model checkers, in which events can be modeled more easily,

while avoiding the use of global boolean variables.

Lastly, it was not clear what the optimal size of channels should be when asynchronous

communication is allowed. This is closely related to the issue of granularity, i.e., how

many statements to include in an atomic sequence. Coarse granularity implies less

interleaving, thus some behaviours would not be checked, but fine granularity can make

the verification effort less efficient. To cover all possible interleaving behaviours, we

decided to use atomic sequences only when needed, i.e., conditions in a process that

must be changed without interleaving (e.g., busy bit changing from false to true) or

when a set of statements are intended to represent the same action (e.g., the event of

sending or receiving on a channel and the change of the boolean variable to represent

the event) to maximize interleavings. However, it seems likely that when combined with

certain sizes of channels, fewer interleavings would be sufficient.

7.4 Summary

In this work, we proposed a definition of DFC compliance with respect to the call protocol,

using a set of LTL properties. To model check fixed configurations of DFC box models,

we created an environment in the model checker Spin. We also described a compositional

method for verifying liveness properties of the DFC call signalling protocol for segments

of length n. To define the segment properties, we categorized boxes by their influence

on the routing process. Our method consists of verifying an individual box, and then, in

a step that needs only to be completed once and is in terms of LTL properties only, we

proved by induction that the segment properties hold for segments of length n. This form

of compositional reasoning is possible because of the semi-regularity of DFC features.



Appendix A

Promela Model

A.1 Global declarations

A.1.1 Global variables

1 /* Max number of channels at the same time */
2 #define M 16
3 /* Number of users in the system. This number is related
4 to the mtype definitions for users, ranging from user0 to
5 userN-1. If this number changes, mtype definitions should
6 be added. */
7 #define N 6
8 /* Number of callers in the system. Different from N for
9 verification purposes, leading to different configurations.*/

10 #define Cr 0
11 /* Number of callees in the system. Different from N for
12 verification purposes, leading to different configurations.*/
13 #define Ce 0
14 /* Number of bits needed to identify a channel with (2^L)>M*/
15 #define L 4
16 /* Number of times Caller can call*/
17 #define TIMES 1
18

19 /* mtype definitions are associated to natural numbers, being
20 the last one declared mapped to 1, the second last mapped to 2,
21 and so on. Then users must be last in mtype definitions,
22 declared in reverse order. */
23 /* We tried to use integers to represent users. However,
24 mtypes for users is needed to avoid confusion between the
25 numbers representing users and the numbers associated to the

89



90 Verification of DFC Call Protocol Correctness Criteria

26 mtype definition of signals */
27 mtype{
28 /* mtypes definitions to represent the signals:*/
29 setup, upack, teardown, downack, avail, unavail, waitsignal,
30 /* mtypes definitions to represent the users:*/
31 noone, user5, user4, user3, user2, user1, user0}
32

33 /* The subscription of users to Transparent (src FB)*/
34 bool subs_FTF[N];
35 /* The subscription of users to Call Blocking (src FB)*/
36 bool subs_OCS[N];
37 /* The subscription of users to Call Forwarding (trg FB)*/
38 bool subs_CF [N];
39 /* The subscription of users to Call Waiting (src,trg FB)*/
40 bool subs_CW [N];
41

42

43 /* The forwarding information.
44 NOTE: currently we don’t check for loops */
45 mtype CF_info [N];
46

47 /* Whether a user is busy or idle */
48 bool busy[N];
49

50 /* Saturation of callwaiting boxes */
51 byte connCW[N];
52

53

54 /* The set of Intern channels for the Callwaiting box*/
55 typedef CW_intern{
56 /*chan intern = [1] of {mtype,mtype, mtype, mtype, byte}*/
57 chan intern = [1] of {byte}
58 }
59 CW_intern CW_channel [N];
60

61 /* The set of Intern channels for the Callee*/
62 typedef Callee_intern{
63 chan intern = [0] of {byte}
64 }
65 Callee_intern Callee_channel [N];
66

67

68 /* The channel for the switch which is shared by all
69 boxes because of the atomicity of the switches and
70 the 0-capacity buffers*/
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71 chan box_out = [0] of {mtype,mtype, mtype, mtype, byte};
72 chan box_in = [0] of {mtype,mtype, mtype, mtype, byte};
73

74 /* The two one-direction channels used for passing
75 messages. Both of them are capacity 3 because the
76 maximum sequence of signals in our model is
77 upack,unavail,teardown */
78 typedef Com_chan {
79 chan A = [3] of {mtype}
80 chan B = [3] of {mtype}
81 }
82

83 /* The set of Channels*/
84 Com_chan chan_array [M];
85

86 /* The array to keep track of whether a channel is allocated*/
87 bool channel_busy [M];
88

89 /* To find the first idle Com_chan. Channels can be reused */
90 inline C_assign(iden)
91 {
92 iden = 0;
93 do
94 ::atomic{
95 (channel_busy[iden] && !(iden==(M-1))) -> iden++;
96 }
97 ::atomic{
98 (channel_busy[iden] && (iden==(M-1))) -> assert(false);
99 break

100 }
101 ::atomic{
102 !channel_busy[iden] -> channel_busy[iden] = true;
103 break
104 }
105 od;
106 }
107

108 /* To find the first idle Com_chan. Channels can be reused */
109 inline C_uassign(iden)
110 {
111 atomic { /*buggy*/ /*comment*/
112 do
113 ::!channel_busy[iden] -> break
114 ::channel_busy[iden] -> channel_busy[iden] = false; break
115 od;



92 Verification of DFC Call Protocol Correctness Criteria

116 } /*buggy*/ /*comment*/
117 }
118

119 /* For verification */
120

121 bool a; /* last_out==setup */
122 bool b; /* last_in==setup */
123 bool c; /* last_out_B==teardown */
124 bool d; /* last_out_B==downack */
125 bool e; /* last_out_A==upack */
126 bool f; /* last_out_A==downack */
127 bool g; /* last_out_A==teardown */
128 bool h; /* last_out_A==avail */
129 bool i; /* last_out_A==unavail */
130 bool j; /* last_in_A==unavail */
131 bool k; /* last_in_A==upack */
132 bool l; /* last_in_A==teardown */
133 bool m; /* last_in_A==avail */
134 bool n; /* last_in_A==downack */
135 bool o; /* last_in_B==teardown */
136 bool p; /* last_in_B==downack */

A.1.2 Initializations

1 init{
2

3 CF_info[0]=noone;
4 CF_info[1]=user2;
5 CF_info[2]=user4;
6 CF_info[3]=noone;
7 CF_info[4]=user2;
8 CF_info[5]=user3;
9

10 subs_FTF[0]=false;
11 subs_FTF[1]=false;
12 subs_FTF[2]=false;
13 subs_FTF[3]=false;
14 subs_FTF[4]=false;
15 subs_FTF[5]=false;
16

17 subs_CF[0]=false;
18 subs_CF[1]=false;
19 subs_CF[2]=false;
20 subs_CF[3]=false;
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21 subs_CF[4]=false;
22 subs_CF[5]=false;
23

24 subs_OCS[0] = false;
25 subs_OCS[1] = false;
26 subs_OCS[2] = false;
27 subs_OCS[3] = false;
28 subs_OCS[4] = false;
29 subs_OCS[5] = false;
30

31 subs_CW[0] = false;
32 subs_CW[1] = false;
33 subs_CW[2] = false;
34 subs_CW[3] = false;
35 subs_CW[4] = false;
36 subs_CW[5] = false;
37

38 end:
39 atomic{
40 /* Initialize Caller processes */
41 byte usr=1;
42 do
43 ::(usr<=Cr) -> run Caller(usr); usr=usr+1;
44 ::else -> break;
45 od;
46 /* Initialize Callee processes */
47 usr=1;
48 do
49 ::(usr<=Ce) -> run Callee(usr); usr=usr+1;
50 ::else -> break;
51 od;
52 /* Initialize CW processes */
53 usr=1;
54 do
55 ::(usr<=N) -> run CW(usr); usr=usr+1;
56 ::else -> break;
57 od;
58 }
59 }

A.2 Caller process

1 proctype Caller(byte me)
2 {
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3 byte dest; /*the non deterministically chosen callee*/
4 unsigned ch : L; /*the channel identifier of the free channel*/
5 byte counter=0; /*count number of times Caller repeats*/
6

7 /* NOTES:
8 * ch.A is the outgoing receiving channel
9 * ch.B is the outgoing sending channel

10 */
11

12 condition:
13 if
14 ::(counter==TIMES) -> goto end
15 ::else -> counter= counter+1
16 fi;
17 end_idle:
18 atomic{
19 do
20 /*Sets up the busy bit*/
21 ::(busy[me-1]==false) -> busy[me-1]= true; break
22 ::else -> skip
23 od;
24 /*find a free channel thanks to a call of the inline function*/
25 C_assign(ch);
26 /*run a process router_user for "Switch after a user"*/
27 run routeruser(me);
28 /*and choose non deterministically a callee before sending setup*/
29 if
30 ::dest = user0
31 ::dest = user1
32 ::dest = user2
33 ::dest = user3
34 ::dest = user4
35 ::dest = user5
36 fi;
37 box_out!setup,me,dest,dest,ch;
38 a=true;
39 }
40

41 wait_upack:
42 atomic{
43 chan_array[ch].A?upack;
44 k=true };
45

46

47 /*wait the next signal either unavail or avail*/
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48 wait_vail:
49 if
50 ::atomic{
51 chan_array[ch].A?unavail ->
52 j=true;
53 goto wait_teardown
54 }
55 ::atomic{
56 chan_array[ch].A?avail;
57 m=true;
58 goto end_linked
59 }
60 fi;
61

62 end_linked: /* can stay connected forever */
63 do
64 ::atomic{
65 chan_array[ch].B!teardown->
66 c=true;
67 goto unlinking
68 }
69 ::atomic{
70 chan_array[ch].A?teardown->
71 l=true;
72 chan_array[ch].B!downack;
73 d=true;
74 busy[me-1]=false;
75 goto condition
76 }
77 od;
78

79 wait_teardown:
80 atomic{
81 chan_array[ch].A?teardown;
82 l=true;
83 chan_array[ch].B!downack;
84 d=true;
85 busy[me-1]=false;
86 goto condition
87 }
88

89 unlinking:
90 do
91 ::atomic{
92 chan_array[ch].A?downack->
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93 n=true;
94 busy[me-1]=false;
95 goto condition
96 }
97 ::atomic{
98 chan_array[ch].A?teardown->
99 l=true;

100 chan_array[ch].B!downack;
101 d=true
102 }
103 od;
104 end : skip
105 }

A.3 Callee process

1 proctype Callee (byte me)
2 {
3 byte scr2;byte scr4; /*scratch values*/
4 byte ch, ch1;
5 byte msg;
6

7 /* NOTES:
8 * ch.A is the incoming sending channel
9 * ch.B is the incoming receiving channel

10 */
11

12

13 end_idle:
14 /* Shouldn’t block because it’s rendezvous channel */
15 Callee_channel[me-1].intern?ch2;
16 atomic{
17 box_in?setup,scr2,eval(me),scr4,eval(ch2) ->
18 b=true;
19 chan_array[ch2].A!upack;
20 e=true;
21 }
22 goto send_vail;
23

24 send_vail:
25 do
26 ::atomic{
27 (busy[me-1] == false) ->
28 busy[me-1]= true;
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29 }
30 atomic{
31 chan_array[ch2].A!avail;
32 h=true;
33 }
34 goto end_linked;
35 ::(busy[me-1] == true) ->
36 atomic{
37 chan_array[ch2].A!unavail;
38 i=true;
39 }
40 goto send_td
41 ::Callee_channel[me-1].intern?ch ->
42 atomic{
43 box_in?setup,scr2,eval(me),scr4,eval(ch) ->
44 a=true;
45 chan_array[ch].A!upack;
46 k=true;
47 }
48 atomic{
49 chan_array[ch].A!unavail;
50 j=true;
51 }
52 atomic{
53 chan_array[ch].A!teardown;
54 l=true;
55 }
56 goto unlink_send_vail
57 od;
58

59 end_linked: /* can stay connected forever */
60 do
61 ::atomic{
62 chan_array[ch].A!teardown;
63 g=true;
64 goto unlinking_nonbusy
65 }
66 ::atomic{
67 chan_array[ch].B?teardown->
68 o=true;
69 chan_array[ch].A!downack;
70 f=true;
71 busy[me-1]=false;
72 goto end_idle
73 }
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74 ::Callee_channel[me-1].intern?ch1 ->
75 atomic{
76 box_in?setup,scr2,eval(me),scr4,eval(ch1) ->
77 b=true;
78 chan_array[ch1].A!upack;
79 e=true;
80 chan_array[ch1].A!unavail;
81 i=true;
82 chan_array[ch1].A!teardown;
83 g=true;
84 goto unlinking2
85 }
86 od;
87

88 unlinking_nonbusy:
89 do
90 ::atomic{chan_array[ch].B?downack->
91 p=true;
92 busy[me-1]=false;
93 goto end_idle
94 }
95 ::atomic{chan_array[ch].B?teardown->
96 o=true;
97 chan_array[ch].A!downack;
98 f=true
99 }

100 ::Callee_channel[me-1].intern?ch1 ->
101 atomic{
102 box_in?setup,scr2,eval(me),scr4,eval(ch1) ->
103 b=true;
104 chan_array[ch1].A!upack;
105 e=true;
106 chan_array[ch1].A!unavail;
107 i=true;
108 chan_array[ch1].A!teardown;
109 g=true;
110 goto unlinking3
111 }
112 od;
113

114 unlinking2:
115 atomic{
116 chan_array[ch1].B?downack->
117 p=true;
118 goto end_linked
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119 }
120

121 unlinking3:
122 atomic{
123 chan_array[ch1].B?downack->
124 p=true;
125 goto unlinking_nonbusy
126 }
127

128 unlinking_busy:
129 do
130 ::atomic{chan_array[ch].B?downack->
131 p=true;
132 goto end_idle
133 }
134 ::atomic{chan_array[ch].B?teardown->
135 o=true;
136 chan_array[ch].A!downack;
137 f=true
138 }
139 od;
140

141 end: skip
142 }

A.4 Router processes

A.4.1 routeruser process

1 proctype routeruser (byte thisindex)
2 {
3 byte number;
4 byte dest;
5 unsigned ch: L;
6

7 atomic{
8 box_out?setup,eval(thisindex),number,dest,ch;
9 if

10 ::subs_FTF[thisindex-1] -> atomic {
11 run FTF(thisindex);
12 box_in!setup,thisindex,number,dest,ch}
13 ::else ->
14 if
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15 ::subs_OCS[thisindex-1]-> atomic{
16 run OCS(thisindex);
17 box_in!setup,thisindex,number,dest,ch}
18 ::else ->
19 if
20 ::subs_CW[thisindex-1] -> atomic{
21 CW_channel[thisindex-1].intern!ch;
22 box_in!setup,thisindex,number,number,ch}
23 ::else ->
24 if
25 ::subs_CF[number-1] -> atomic{
26 run CF(number);
27 box_in!setup,thisindex,number,number,ch }
28 ::else ->
29 if
30 ::subs_CW[number-1] -> atomic{
31 CW_channel[number-1].intern!ch;
32 box_in!setup,thisindex,number,number,ch}
33 ::else -> atomic{
34 Callee_channel[number-1].intern!ch;
35 box_in!setup,thisindex,number,number,ch}
36 fi;
37 fi;
38 fi;
39 fi;
40 fi;
41 }
42 end:skip
43 }

A.4.2 routerFTF process (Source region)

1 proctype routerFTF (byte thisindex)
2 {
3 byte number;
4 byte dest;
5 unsigned ch: L;
6

7 atomic{
8 box_out?setup,eval(thisindex),number,dest,ch;
9 if

10 ::subs_OCS[thisindex-1]-> atomic{
11 run OCS(thisindex);
12 box_in!setup,thisindex,number,dest,ch}
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13 ::else ->
14 if
15 ::subs_CW[thisindex-1] -> atomic{
16 CW_channel[thisindex-1].intern!ch;
17 box_in!setup,thisindex,number,number,ch}
18 ::else ->
19 if
20 ::subs_CF[number-1] -> atomic{
21 run CF(number);
22 box_in!setup,thisindex,number,number,ch }
23 ::else ->
24 if
25 ::subs_CW[number-1] -> atomic{
26 CW_channel[number-1].intern!ch;
27 box_in!setup,thisindex,number,number,ch}
28 ::else -> atomic{
29 Callee_channel[number-1].intern!ch;
30 box_in!setup,thisindex,number,number,ch}
31 fi;
32 fi;
33 fi;
34 fi;
35 }
36 }

A.4.3 routerOCS process (Source region)

1 proctype routerOCS (byte thisindex)
2 {
3 byte number;
4 byte dest;
5 unsigned ch: L;
6

7 atomic{
8 box_out?setup,eval(thisindex),number,dest,ch;
9 if

10 ::subs_CW[thisindex-1] -> atomic{
11 CW_channel[thisindex-1].intern!ch;
12 box_in!setup,thisindex,number,number,ch}
13 ::else ->
14 if
15 ::subs_CF[number-1] -> atomic{
16 run CF(number);
17 box_in!setup,thisindex,number,number,ch }
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18 ::else ->
19 if
20 ::subs_CW[number-1] -> atomic{
21 CW_channel[number-1].intern!ch;
22 box_in!setup,thisindex,number,number,ch}
23 ::else -> atomic{
24 Callee_channel[number-1].intern!ch;
25 box_in!setup,thisindex,number,number,ch}
26 fi;
27 fi;
28 fi;
29 }
30 }

A.4.4 routerCWsrc process (Source region)

1 proctype routerCWsrc (byte thisindex)
2 {
3 byte number;
4 byte dest;
5 unsigned ch: L;
6

7 atomic{
8 box_out?setup,eval(thisindex),number,dest,ch;
9 if

10 ::subs_CF[number-1] -> atomic{
11 run CF(number);
12 box_in!setup,thisindex,number,number,ch }
13 ::else ->
14 if
15 ::subs_CW[number-1] -> atomic{
16 CW_channel[number-1].intern!ch;
17 box_in!setup,thisindex,number,number,ch}
18 ::else -> atomic{
19 Callee_channel[number-1].intern!ch;
20 box_in!setup,thisindex,number,number,ch}
21 fi;
22 fi;
23 }
24 }
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A.4.5 routerCF process (Target region)

1 proctype routerCF (byte thisindex)
2 {
3 byte orig; byte number; byte dest;
4 unsigned ch: L;
5

6 atomic{
7 box_out?setup,eval(thisindex),number,dest,ch;
8 if
9 ::subs_CW[number-1] -> atomic{

10 CW_channel[number-1].intern!setup,thisindex,number,dest,ch;*/
11 CW_channel[number-1].intern!ch;
12 box_in!setup,thisindex,number,number,ch}
13 ::else -> atomic{
14 Callee_channel[number-1].intern!ch;
15 box_in!setup,thisindex,number,number,ch}
16 fi;
17 }
18 }

A.4.6 routerCWtrg process (Target region)

1 proctype routerCWtrg (byte thisuser)
2 {
3 byte orig; byte number; byte dest;
4 unsigned ch: L;
5

6 atomic{
7 box_out?setup,orig,number,eval(thisuser),ch;
8 Callee_channel[number-1].intern!ch;
9 box_in!setup,orig,number,number,ch;

10 }
11 }

A.5 Feature boxes processes

A.5.1 Free Transparent process

1 proctype FTF(byte thisuser)
2 {
3 byte number;
4 byte dest;
5 unsigned ch2: L; /* index of the next communication channel*/



104 Verification of DFC Call Protocol Correctness Criteria

6 unsigned ch1: L; /* index of the previous communication channel*/
7

8 /* NOTES:
9 * ch1.A is the incoming sending channel

10 * ch1.B is the incoming receiving channel
11 * ch2.A is the outgoing receiving channel
12 * ch2.B is the outgoing sending channel
13 */
14

15 begin: atomic {
16 box_in?setup,eval(thisuser),number,dest,ch1;
17 chan_array[ch1].A!upack;
18 C_assign(ch2);
19 run routerFTF(thisuser);
20 box_out!setup,thisuser,number,dest,ch2
21 };
22

23 wait_upack:
24 chan_array[ch2].A?upack;
25

26 wait_vail:
27 if
28 :: chan_array[ch2].A?unavail ->
29 chan_array[ch1].A!unavail;
30 goto wait_teardown
31 :: chan_array[ch2].A?avail ->
32 chan_array[ch1].A!avail;
33 goto connected
34 fi;
35

36 wait_teardown:
37 atomic{
38 chan_array[ch2].A?teardown ->
39 chan_array[ch2].B!downack;
40 chan_array[ch1].A!teardown;
41 goto unlinking_from_ch2
42 }
43

44 connected:
45 do
46 :: atomic{
47 chan_array[ch2].A?teardown ->
48 chan_array[ch2].B!downack;
49 chan_array[ch1].A!teardown;
50 goto unlinking_from_ch2
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51 }
52 :: atomic {
53 chan_array[ch1].B?teardown ->
54 chan_array[ch1].A!downack;
55 chan_array[ch2].B!teardown;
56 goto unlinking_from_ch1
57 }
58 od;
59

60 unlinking_from_ch2:
61 do
62 :: atomic {
63 chan_array[ch1].B?downack ->
64 goto end
65 }
66 :: atomic{
67 chan_array[ch1].B?teardown ->
68 chan_array[ch1].A!downack;
69 }
70 od;
71

72 unlinking_from_ch1:
73 do
74 :: atomic {
75 chan_array[ch2].A?downack ->
76 goto end
77 }
78 :: atomic{
79 chan_array[ch2].A?teardown ->
80 chan_array[ch2].B!downack;
81 }
82 od;
83

84 end:skip
85 }

A.5.2 Originating Call Screening process

1 proctype OCS(byte thisuser)
2 {
3 byte number;
4 byte dest;
5 unsigned ch1 : L; /* index of the previous communication channel*/
6 unsigned ch2 : L; /* index of the next communication channel*/
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7

8 /* NOTES:
9 * ch1.A is the incoming sending channel

10 * ch1.B is the incoming receiving channel
11 * ch2.A is the outgoing receiving channel
12 * ch2.B is the outgoing sending channel
13 */
14

15 begin :
16 atomic{
17 box_in?setup,eval(thisuser),number,dest,ch1 ->
18 b=true;
19 chan_array[ch1].A!upack;
20 e=true;
21 if /*non_deterministic choice*/
22 /*blocking*/
23 :: chan_array[ch1].A!unavail;
24 i=true;
25 chan_array[ch1].A!teardown;
26 g=true;
27 goto unlinking_from_ch2
28 /*non blocking */
29 :: C_assign(ch2);
30 run routerOCS(thisuser);
31 box_out!setup,thisuser,number,dest,ch2
32 fi
33 }
34

35 waiting_upack: chan_array[ch2].A?upack;
36

37 /*the OCS propagates unavail and teardown but also "downacks" the latter*/
38 wait_vail:
39 if
40 ::chan_array[ch2].A?unavail; /*busy tone*/
41 chan_array[ch1].A!unavail;
42 goto wait_teardown
43 ::chan_array[ch2].A?avail; /*ringing tone*/
44 chan_array[ch1].A!avail;
45 goto connected
46 fi;
47

48 wait_teardown:
49 atomic{
50 chan_array[ch2].A?teardown ->
51 chan_array[ch2].B!downack;
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52 chan_array[ch1].A!teardown;
53 goto unlinking_from_ch2
54 }
55

56 connected:
57 do
58 ::atomic{
59 chan_array[ch2].A?teardown->
60 chan_array[ch2].B!downack;
61 chan_array[ch1].A!teardown;
62 goto unlinking_from_ch2
63 }
64 ::atomic{
65 chan_array[ch1].B?teardown->
66 chan_array[ch1].A!downack;
67 chan_array[ch2].B!teardown->
68 goto unlinking_from_ch1
69 }
70 od;
71

72 unlinking_from_ch2:
73 do
74 ::atomic{
75 chan_array[ch1].B?teardown->
76 o=true;
77 chan_array[ch1].A!downack;
78 f=true
79 }
80 ::atomic{
81 chan_array[ch1].B?downack->
82 p=true;
83 goto end
84 }
85 od;
86 unlinking_from_ch1:
87 do
88 ::atomic{
89 chan_array[ch2].A?teardown->
90 chan_array[ch2].B!downack->
91 }
92 ::atomic{
93 chan_array[ch2].A?downack->
94 goto end
95 }
96 od;
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97 end :skip
98 }

A.5.3 Call Forwarding process

1 proctype CF(byte thisnum)
2 {
3 byte orig; /*Source of the usage*/
4 byte dest;
5 unsigned ch2: L; /* index of the next communication channel*/
6 unsigned ch1: L; /* index of the previous communication channel*/
7

8 /* NOTES:
9 * ch1.A is the incoming sending channel

10 * ch1.B is the incoming receiving channel
11 * ch2.A is the outgoing receiving channel
12 * ch2.B is the outgoing sending channel
13 */
14

15 begin:
16 atomic{
17 box_in?setup,orig,eval(thisnum),dest,ch1;
18 chan_array[ch1].A!upack;
19 C_assign(ch2);
20 run routerCF(orig);
21 if
22 ::(CF_info[thisnum-1] == noone)->
23 box_out!setup,orig,thisnum,dest,ch2
24 ::else ->
25 box_out!setup,orig,CF_info[thisnum-1],dest,ch2
26 fi
27 };
28

29 waiting_upack: chan_array[ch2].A?upack;
30

31 wait_vail:
32 if
33 ::chan_array[ch2].A?unavail;
34 chan_array[ch1].A!unavail;
35 goto wait_teardown
36 ::chan_array[ch2].A?avail;
37 chan_array[ch1].A!avail;
38 goto connected
39 fi;



Promela Model 109

40

41 wait_teardown:
42 atomic{
43 chan_array[ch2].A?teardown ->
44 chan_array[ch2].B!downack;
45 chan_array[ch1].A!teardown;
46 goto unlinking_from_ch2
47 }
48

49 connected:
50 do
51 ::atomic{
52 chan_array[ch2].A?teardown ->
53 chan_array[ch2].B!downack;
54 chan_array[ch1].A!teardown;
55 goto unlinking_from_ch2
56 }
57 ::atomic{
58 chan_array[ch1].B?teardown->
59 chan_array[ch1].A!downack;
60 chan_array[ch2].B!teardown;
61 goto unlinking_from_ch1
62 }
63 od;
64

65 unlinking_from_ch2:
66 do
67 ::atomic{
68 chan_array[ch1].B?teardown->
69 chan_array[ch1].A!downack
70 }
71 ::atomic{
72 chan_array[ch1].B?downack->
73 goto end
74 }
75 od;
76

77 unlinking_from_ch1:
78 do
79 ::atomic{
80 chan_array[ch2].A?teardown->
81 chan_array[ch2].B!downack;
82 }
83 ::atomic{
84 chan_array[ch2].A?downack->
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85 goto end
86 }
87 od;
88 end:skip
89 }

A.5.4 Call Waiting process

1 proctype CW(byte thisuser)
2 {
3 bool calling; /* denote subscriber calling or being called */
4 bool talk; /* non-deterministic: first/second party talking */
5 byte callers; /* denote number of callers connected to CW */
6 byte orig; byte number ; byte dest;
7 byte orig2; byte number2 ; byte dest2;
8 byte orig3; byte number3 ; byte dest3;
9 unsigned ch:L; /* temporal channel */

10 unsigned new:L; /* temporal channel */
11 unsigned extra:L; /* temporal channel */
12 unsigned first:L; /* channel connecting CW box with first party */
13 unsigned subsc:L; /* channel connecting CW box with subscriber */
14 unsigned second:L; /* channel connecting CW box with second party */
15

16 /* NOTES:
17 * first channel connecting the CW box with the first party
18 * subs channel connecting the CW box with the subscriber
19 * second channel connecting the CW box with the second party
20 * talk==true => first party talking
21 * talk==false => first party waiting
22 * calling==true => subscriber is calling
23 * calling==false => subscriber is being called
24 *
25 * 1) waitsignal and switch signals are not implemented.
26 * 2) NO change of global variables. e.g. busy[thisuser-1] = false;
27 * 3) switch signal is abstracted and handled by the talk varible,
28 * which changes only non-deterministically!
29 */
30

31 endSet_up:
32 talk=true;
33 end_bis:
34 atomic{
35 CW_channel[thisuser-1].intern?ch;
36 box_in?setup,orig,number,dest,eval(ch);
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37 connCW[thisuser-1]=1;
38 if /*no fake id possible*/
39 ::orig == thisuser -> /* subscriber is calling */
40 orig2=orig; number2=number; dest2=dest;
41 calling=true;
42 callers=1;
43 subsc=ch;
44 chan_array[subsc].A!upack;
45 goto wait_upack_src;
46 ::else -> /* subscriber is being called */
47 orig3=orig; number3=number; dest3=dest;
48 calling = false;
49 callers=1;
50 first=ch;
51 chan_array[first].A!upack;
52 goto wait_upack_trg;
53 fi;
54 }
55

56 wait_upack_src:
57 C_assign(first);
58 run routerCWsrc(thisuser);
59 box_out!setup,orig,number,dest,first;
60 chan_array[first].A?upack;
61 goto wait_vail_src;
62

63 wait_vail_src:
64 if
65 :: atomic{
66 chan_array[first].A?avail ->
67 chan_array[subsc].A!avail;
68 goto con1src_first1
69 }
70 :: atomic{
71 chan_array[first].A?unavail ->
72 chan_array[subsc].A!unavail;
73 goto wait_dn_src
74 }
75 fi;
76

77 wait_dn_src:
78 atomic{
79 chan_array[first].A?teardown;
80 chan_array[subsc].A!teardown;
81 chan_array[first].B!downack;
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82 goto unlink1src
83 }
84

85 wait_upack_trg:
86 C_assign(subsc);
87 run routerCWtrg(thisuser);
88 box_out!setup,orig,number,dest,subsc;
89 chan_array[subsc].A?upack;
90 goto wait_vail_trg;
91

92 wait_vail_trg:
93 if
94 :: atomic{
95 chan_array[subsc].A?avail ->
96 chan_array[first].A!avail;
97 goto con1trg_first1
98 }
99 :: atomic{

100 chan_array[subsc].A?unavail ->
101 chan_array[first].A!unavail;
102 goto wait_dn_trg
103 }
104 fi;
105

106 wait_dn_trg:
107 atomic{
108 chan_array[subsc].A?teardown;
109 chan_array[first].A!teardown;
110 chan_array[subsc].B!downack;
111 goto unlink0trg
112 }
113

114 con1src_first1:
115 connCW[thisuser-1]=1;
116 do
117 ::atomic{
118 chan_array[first].A?teardown ->
119 chan_array[first].B!downack;
120 chan_array[subsc].A!teardown;
121 goto unlink1src
122 }
123 ::atomic{
124 chan_array[first].B?teardown ->
125 chan_array[first].A!downack;
126 chan_array[subsc].A!teardown;
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127 goto unlink1src
128 }
129 ::atomic {
130 chan_array[subsc].B?teardown ->
131 chan_array[subsc].A!downack;
132 if
133 /* 2 callers talking to subscriber ->
134 * channels of first as caller, and trg scenario
135 */
136 ::(callers>=2) ->
137 chan_array[first].A!teardown;
138 goto unlink0trg
139 /* 1 caller and 1 callee talking to subscriber ->
140 * channels of first as callee, and src scenario
141 */
142 ::else ->
143 chan_array[first].B!teardown;
144 goto unlink0src
145 fi;
146 }
147 ::atomic{
148 CW_channel[thisuser-1].intern?ch;
149 box_in?setup,orig,number,dest,eval(ch);
150 b=true;
151 connCW[thisuser-1]=2;
152 callers=callers+1;
153 orig3=orig;
154 number3=number;
155 dest3=dest;
156 second=ch;
157 chan_array[second].A!upack;
158 e=true;
159 goto con1src_first2
160 }
161 od;
162

163 con1src_first2:
164 atomic{
165 chan_array[second].A!avail;
166 h=true;
167 if
168 ::talk = true /*port 2 will be the talking one*/
169 ::talk = false /*port 3 will be the talking one*/
170 fi;
171 goto con2src
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172 };
173

174 con1src_second1:
175 connCW[thisuser-1]=1;
176 do
177 ::atomic{
178 chan_array[second].B?teardown ->
179 chan_array[second].A!downack;
180 chan_array[subsc].A!teardown;
181 goto unlink1src
182 }
183 ::atomic {
184 chan_array[subsc].B?teardown ->
185 chan_array[subsc].A!downack;
186 chan_array[second].A!teardown;
187 goto unlink2src
188 }
189 ::atomic{
190 CW_channel[thisuser-1].intern?ch;
191 box_in?setup,orig,number,dest,eval(ch);
192 b=true;
193 connCW[thisuser-1]=2;
194 callers=callers+1;
195 orig2=orig;
196 number2=number;
197 dest2=dest;
198 first=ch;
199 chan_array[first].A!upack;
200 e=true;
201 goto con1src_second2
202 }
203 od;
204

205 con1src_second2:
206 atomic{
207 chan_array[first].A!avail;
208 h=true;
209 if
210 ::talk = true /*port 2 will be the talking one*/
211 ::talk = false /*port 3 will be the talking one*/
212 fi;
213 goto con2src
214 };
215

216 unlink0src:
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217 do
218 ::atomic {
219 chan_array[first].A?downack ->
220 connCW[thisuser-1]=0;
221 callers=0;
222 goto end
223 }
224 ::atomic{
225 chan_array[first].A?teardown ->
226 chan_array[first].B!downack;
227 }
228 od;
229

230 unlink1src:
231 do
232 ::atomic {
233 chan_array[subsc].B?downack ->
234 connCW[thisuser-1]=0;
235 callers=0;
236 goto end
237 }
238 ::atomic{
239 chan_array[subsc].B?teardown ->
240 chan_array[subsc].A!downack;
241 }
242 od;
243

244 unlink2src:
245 do
246 ::atomic {
247 chan_array[second].B?downack ->
248 connCW[thisuser-1]=0;
249 callers=0;
250 goto end
251 }
252 ::atomic{
253 chan_array[second].B?teardown ->
254 chan_array[second].A!downack;
255 }
256 od;
257

258 con1trg_first1:
259 connCW[thisuser-1]=1;
260 do
261 ::atomic{
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262 chan_array[first].B?teardown ->
263 chan_array[first].A!downack;
264 chan_array[subsc].B!teardown;
265 goto unlink1trg
266 }
267 ::atomic{
268 chan_array[first].A?teardown ->
269 chan_array[first].B!downack;
270 chan_array[subsc].B!teardown;
271 goto unlink1trg
272 }
273 ::atomic {
274 chan_array[subsc].A?teardown ->
275 chan_array[subsc].B!downack;
276 if
277 ::(callers>=1) ->
278 chan_array[first].A!teardown;
279 goto unlink0trg
280 ::else ->
281 chan_array[first].B!teardown;
282 goto unlink0src
283 fi;
284 }
285 ::atomic{
286 CW_channel[thisuser-1].intern?ch;
287 connCW[thisuser-1]=2;
288 callers=callers+1;
289 orig3=orig;
290 number3=number;
291 dest3=dest;
292 second=ch;
293 chan_array[second].A!upack;
294 e=true;
295 goto con1trg_first2
296 }
297 od;
298

299 con1trg_first2:
300 atomic{
301 chan_array[second].A!avail;
302 if
303 ::talk = true /*port 2 will be the talking one*/
304 ::talk = false /*port 3 will be the talking one*/
305 fi;
306 goto con2trg
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307 };
308

309 con1trg_second1:
310 connCW[thisuser-1]=1;
311 do
312 ::atomic{
313 chan_array[second].B?teardown ->
314 chan_array[second].A!downack;
315 chan_array[subsc].B!teardown;
316 goto unlink1trg
317 }
318 ::atomic {
319 chan_array[subsc].A?teardown ->
320 chan_array[subsc].B!downack;
321 chan_array[second].A!teardown;
322 goto unlink2trg
323 }
324 ::atomic{
325 CW_channel[thisuser-1].intern?ch;
326 box_in?setup,orig,number,dest,eval(ch);
327 b=true;
328 connCW[thisuser-1]=2;
329 callers=callers+1;
330 orig2=orig;
331 number2=number;
332 dest2=dest;
333 first=ch;
334 chan_array[first].A!upack;
335 e=true;
336 goto con1trg_second2
337 }
338 od;
339

340 con1trg_second2:
341 atomic{
342 chan_array[first].A!avail;
343 if
344 ::talk = true /*port 2 will be the talking one*/
345 ::talk = false /*port 3 will be the talking one*/
346 fi;
347 goto con2trg
348 };
349

350 unlink0trg:
351 do
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352 ::atomic {
353 chan_array[first].B?downack ->
354 connCW[thisuser-1]=0;
355 callers=0;
356 goto end
357 }
358 ::atomic{
359 chan_array[first].B?teardown ->
360 chan_array[first].A!downack;
361 }
362 od;
363

364 unlink1trg:
365 do
366 ::atomic{
367 chan_array[subsc].A?downack ->
368 connCW[thisuser-1]=0;
369 callers=0;
370 goto end
371 }
372 ::atomic{
373 chan_array[subsc].A?teardown ->
374 chan_array[subsc].B!downack;
375 }
376 od;
377

378 unlink2trg:
379 do
380 ::atomic {
381 chan_array[second].B?downack ->
382 connCW[thisuser-1]=0;
383 callers=0;
384 goto end
385 }
386 ::atomic{
387 chan_array[second].B?teardown ->
388 chan_array[second].A!downack;
389 }
390 od;
391

392 con2src:
393 do
394 /* CASE 1: subscriber sends teardown=>CALL BACK PROCESSING */
395 ::atomic{
396 chan_array[subsc].B?teardown ->
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397 chan_array[subsc].A!downack;
398 };
399 connCW[thisuser-1]=1;
400 if
401 ::talk-> /**connecting to second party, disconnecting first**/
402 if
403 ::(callers==3) ->
404 chan_array[first].A!teardown;
405 goto unlink3srcA
406 ::else ->
407 chan_array[first].B!teardown;
408 goto unlink3srcB
409 fi;
410 ::else -> /**connecting to first party, disconnecting second**/
411 chan_array[second].A!teardown;
412 if
413 ::(callers==3) ->
414 /*since subscr=caller instead of callee in =>trg scenario*/
415 callers=callers-1;
416 goto unlink4trg
417 ::else ->
418 goto unlink4src
419 fi;
420 fi;
421

422 setup_sec_src: /**connecting to second party, disconnecting first**/
423 atomic{
424 run routerCWtrg(thisuser);
425 C_assign(ch);
426 box_out!setup,orig,number,dest,ch;
427 subsc=ch;
428 }
429 do
430 /* WAIT_UPACK from subscriber*/
431 ::chan_array[subsc].A?upack;
432 goto wait_response_second_src
433 ::atomic{
434 CW_channel[thisuser-1].intern?new;
435 box_in?setup,orig,number,dest,eval(new);
436 b=true;
437 connCW[thisuser-1]=2;
438 }
439 if
440 /* SITUATION (2) Subscriber calls somebody else [1][2]*/
441 ::orig == thisuser ->
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442 orig2=orig; number2=number; dest2=dest;
443 calling=true;
444 callers=callers+1;
445 subsc=new;
446 chan_array[subsc].A!upack;
447 C_assign(first);
448 run routerCWsrc(thisuser);
449 box_out!setup,orig,number,dest,first;
450 goto unlink_old_subsc_sec
451 /* SITUATION (3) Somebody else calls subscriber [3][4] */
452 ::else ->
453 orig3=orig; number3=number; dest3=dest;
454 calling = false;
455 callers=callers+1;
456 first=new;
457 chan_array[first].A!upack;
458 e=true;
459 goto wait_vail_sec1_src
460 fi;
461 od;
462

463 wait_vail_sec1_src:
464 atomic{
465 chan_array[first].A!avail;
466 h=true;
467 goto link_nonsubsc_sec
468 };
469

470 unlink_old_subsc_sec: /* SITUATION 2 */
471 if
472 ::atomic{ /* Subscriber as in trg scenario */
473 chan_array[ch].A?upack;
474 k=true;
475 chan_array[ch].A?unavail;
476 j=true;
477 chan_array[ch].A?teardown;
478 l=true;
479 chan_array[ch].B!downack;
480 d=true;
481 goto wait_upack_sec2
482 }
483 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
484 CW_channel[thisuser-1].intern?extra;
485 box_in?setup,orig,number,dest,eval(extra);
486 b=true;
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487 chan_array[extra].A!upack;
488 e=true;
489 chan_array[extra].A!unavail;
490 i=true;
491 chan_array[extra].A!teardown;
492 g=true;
493 goto dn_unlink_old_subsc_sec
494 }
495 fi;
496

497 dn_unlink_old_subsc_sec:
498 atomic{
499 chan_array[extra].B?downack;
500 p=true;
501 goto unlink_old_subsc_sec
502 };
503

504 wait_upack_sec2:
505 if
506 ::atomic{
507 chan_array[first].A?upack;
508 goto wait_vail_sec2
509 }
510 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
511 CW_channel[thisuser-1].intern?extra;
512 box_in?setup,orig,number,dest,eval(extra);
513 b=true;
514 chan_array[extra].A!upack;
515 e=true;
516 chan_array[extra].A!unavail;
517 i=true;
518 chan_array[extra].A!teardown;
519 g=true;
520 goto dn_wait_upack_sec2
521 }
522 fi;
523

524 dn_wait_upack_sec2:
525 atomic{
526 chan_array[extra].B?downack;
527 p=true;
528 goto wait_upack_sec2
529 };
530

531 wait_vail_sec2:
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532 if
533 ::atomic{
534 chan_array[first].A?avail;
535 chan_array[subsc].A!avail;
536 if
537 ::talk = true /*port 2 will be the talking one*/
538 ::talk = false /*port 3 will be the talking one*/
539 fi;
540 goto con2src
541 }
542 ::atomic{
543 chan_array[first].A?unavail;
544 j=true;
545 chan_array[subsc].A!avail;
546 h=true;
547 goto wait_td_sec2
548 }
549 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
550 CW_channel[thisuser-1].intern?extra;
551 box_in?setup,orig,number,dest,eval(extra);
552 b=true;
553 chan_array[extra].A!upack;
554 e=true;
555 chan_array[extra].A!unavail;
556 i=true;
557 chan_array[extra].A!teardown;
558 g=true;
559 goto dn_wait_vail_sec2
560 }
561 fi;
562

563 dn_wait_vail_sec2:
564 atomic{
565 chan_array[extra].B?downack;
566 p=true;
567 goto wait_vail_sec2
568 };
569

570 wait_td_sec2:
571 atomic{
572 chan_array[first].A?teardown;
573 l=true;
574 chan_array[first].B!downack;
575 d=true;
576 goto con1src_second1
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577 };
578

579 link_nonsubsc_sec: /* SITUATION 3 */
580 if
581 ::atomic{
582 chan_array[subsc].A?upack;
583 goto wait_response_sec2
584 }
585 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
586 CW_channel[thisuser-1].intern?extra;
587 box_in?setup,orig,number,dest,eval(extra);
588 b=true;
589 chan_array[extra].A!upack;
590 e=true;
591 chan_array[extra].A!unavail;
592 i=true;
593 chan_array[extra].A!teardown;
594 g=true;
595 goto dn_link_nonsubsc_sec
596 }
597 fi;
598

599 dn_link_nonsubsc_sec:
600 atomic{
601 chan_array[extra].B?downack;
602 p=true;
603 goto link_nonsubsc_sec;
604 };
605

606 wait_response_sec2:
607 if
608 ::atomic{
609 chan_array[subsc].A?avail;
610 m=true;
611 if
612 ::talk = true /*port 2 will be the talking one*/
613 ::talk = false /*port 3 will be the talking one*/
614 fi;
615 goto con2trg
616 }
617 ::atomic{
618 chan_array[subsc].A?unavail;
619 j=true;
620 goto wait_td_sec1_trg
621 }
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622 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
623 CW_channel[thisuser-1].intern?extra;
624 box_in?setup,orig,number,dest,eval(extra);
625 b=true;
626 chan_array[extra].A!upack;
627 e=true;
628 chan_array[extra].A!unavail;
629 i=true;
630 chan_array[extra].A!teardown;
631 g=true;
632 goto dn_wait_response_sec2
633 }
634 fi;
635

636 dn_wait_response_sec2:
637 atomic{
638 chan_array[extra].B?downack;
639 p=true;
640 goto wait_response_sec2
641 };
642

643 wait_td_sec1_trg:
644 atomic{
645 chan_array[subsc].A?teardown;
646 chan_array[subsc].B!downack;
647 chan_array[first].A!teardown;
648 goto unlink3srcA
649 };
650

651 wait_td_sec1_trg_bis:
652 atomic{
653 chan_array[subsc].A?teardown;
654 chan_array[subsc].B!downack;
655 chan_array[second].A!teardown;
656 goto unlink2trg
657 };
658

659 wait_response_second_src: /*Normal situation:connecting to second party*/
660 do
661 ::atomic{
662 chan_array[subsc].A?avail;
663 m=true;
664 goto con1trg_second1
665 }
666 ::atomic{
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667 chan_array[subsc].A?unavail;
668 j=true;
669 goto wait_td_sec_src
670 }
671 od;
672

673 wait_td_sec_src:
674 atomic{
675 chan_array[subsc].A?teardown;
676 chan_array[subsc].B!downack;
677 chan_array[second].A!teardown;
678 goto unlink2src
679 };
680

681 setup_first_src: /**connecting to first party, disconnecting second**/
682 atomic{
683 run routerCWtrg(thisuser);
684 C_assign(ch);
685 if
686 ::orig==thisuser ->
687 box_out!setup,dest,orig,orig,ch
688 ::else ->
689 box_out!setup,orig,number,dest,ch
690 fi;
691 subsc=ch;
692 }
693 do
694 ::atomic{
695 chan_array[subsc].A?upack;
696 goto wait_response_first_src
697 }
698 ::atomic{
699 CW_channel[thisuser-1].intern?new;
700 box_in?setup,orig,number,dest,eval(new);
701 b=true;
702 connCW[thisuser-1]=2;
703 }
704 if
705 /* SITUATION (2) Subscriber calls somebody else [1][2] */
706 ::orig == thisuser ->
707 orig2=orig; number2=number; dest2=dest;
708 calling=true;
709 callers=callers+1;
710 subsc=new;
711 chan_array[subsc].A!upack;
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712 C_assign(second);
713 run routerCWsrc(thisuser);
714 box_out!setup,orig,number,dest,second;
715 goto unlink_old_subsc_first_src
716 /* SITUATION (3) Somebody else calls subscriber [3][4] */
717 ::else ->
718 orig3=orig; number3=number; dest3=dest;
719 calling = false;
720 callers=callers+1;
721 second=new;
722 chan_array[second].A!upack;
723 e=true;
724 goto wait_vail_first1_src
725 fi;
726 od;
727

728 wait_vail_first1_src:
729 atomic{
730 chan_array[second].A!avail;
731 h=true;
732 goto link_nonsubsc_first
733 };
734

735 unlink_old_subsc_first_src: /* SITUATION 2 */
736 if
737 ::atomic{
738 chan_array[ch].A?upack;
739 k=true;
740 chan_array[ch].A?unavail;
741 j=true;
742 chan_array[ch].A?teardown;
743 l=true;
744 chan_array[ch].B!downack;
745 d=true;
746 goto wait_upack_first_2src
747 }
748 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
749 CW_channel[thisuser-1].intern?extra;
750 box_in?setup,orig,number,dest,eval(extra);
751 b=true;
752 chan_array[extra].A!upack;
753 e=true;
754 chan_array[extra].A!unavail;
755 i=true;
756 chan_array[extra].A!teardown;
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757 g=true;
758 goto dn_unlink_old_subsc_first_src
759 }
760 fi;
761

762 dn_unlink_old_subsc_first_src:
763 atomic{
764 chan_array[extra].B?downack;
765 p=true;
766 goto unlink_old_subsc_first_src;
767 };
768

769 wait_upack_first_2src:
770 if
771 ::atomic{
772 chan_array[second].A?upack;
773 goto wait_vail_first_2src
774 }
775 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
776 CW_channel[thisuser-1].intern?extra;
777 box_in?setup,orig,number,dest,eval(extra);
778 b=true;
779 chan_array[extra].A!upack;
780 e=true;
781 chan_array[extra].A!unavail;
782 i=true;
783 chan_array[extra].A!teardown;
784 g=true;
785 goto dn_wait_upack_first_2src
786 }
787 fi;
788

789 dn_wait_upack_first_2src:
790 atomic{
791 chan_array[extra].B?downack;
792 goto wait_upack_first_2src;
793 };
794

795 wait_vail_first_2src:
796 if
797 ::atomic{
798 chan_array[second].A?avail;
799 chan_array[subsc].A!avail;
800 new=first;
801 first=second;
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802 second=new;
803 if
804 ::talk = true /*port 2 will be the talking one*/
805 ::talk = false /*port 3 will be the talking one*/
806 fi;
807 goto con2src
808 }
809 ::atomic{
810 chan_array[second].A?unavail;
811 j=true;
812 chan_array[subsc].A!avail;
813 h=true;
814 goto wait_td_first1_src
815 }
816 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
817 CW_channel[thisuser-1].intern?extra;
818 box_in?setup,orig,number,dest,eval(extra);
819 b=true;
820 chan_array[extra].A!upack;
821 e=true;
822 chan_array[extra].A!unavail;
823 i=true;
824 chan_array[extra].A!teardown;
825 g=true;
826 goto dn_wait_vail_first_2src
827 }
828 fi;
829

830 dn_wait_vail_first_2src:
831 atomic{
832 chan_array[extra].B?downack;
833 p=true;
834 goto wait_vail_first_2src
835 };
836

837 wait_td_first1_src:
838 atomic{
839 chan_array[second].A?teardown;
840 l=true;
841 chan_array[second].B!downack;
842 d=true;
843 goto con1src_first1
844 };
845

846 link_nonsubsc_first: /* SITUATION 3 */
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847 if
848 ::atomic{
849 chan_array[subsc].A?upack;
850 goto wait_response_first2
851 }
852 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
853 CW_channel[thisuser-1].intern?extra;
854 box_in?setup,orig,number,dest,eval(extra);
855 b=true;
856 chan_array[extra].A!upack;
857 e=true;
858 chan_array[extra].A!unavail;
859 i=true;
860 chan_array[extra].A!teardown;
861 g=true;
862 goto dn_link_nonsubsc_first
863 }
864 fi;
865

866 dn_link_nonsubsc_first:
867 atomic{
868 chan_array[extra].B?downack;
869 p=true;
870 goto link_nonsubsc_first
871 };
872

873 wait_response_first2:
874 if
875 ::atomic{
876 chan_array[subsc].A?avail;
877 m=true;
878 if
879 ::talk = true /*port 2 will be the talking one*/
880 ::talk = false /*port 3 will be the talking one*/
881 fi;
882 goto con2trg
883 }
884 ::atomic{
885 chan_array[subsc].A?unavail;
886 j=true;
887 goto wait_td_first1_trg
888 }
889 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
890 CW_channel[thisuser-1].intern?extra;
891 box_in?setup,orig,number,dest,eval(extra);
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892 b=true;
893 chan_array[extra].A!upack;
894 e=true;
895 chan_array[extra].A!unavail;
896 i=true;
897 chan_array[extra].A!teardown;
898 g=true;
899 goto dn_wait_response_first2
900 }
901 fi;
902

903 dn_wait_response_first2:
904 atomic{
905 chan_array[extra].B?downack;
906 goto wait_response_first2
907 };
908

909 wait_td_first1_trg:
910 atomic{
911 chan_array[subsc].A?teardown;
912 chan_array[subsc].B!downack;
913 chan_array[second].A!teardown;
914 /* Go back to call back processing for second */
915 goto unlink4src
916 };
917

918 wait_td_first1_trg_bis:
919 atomic{
920 chan_array[subsc].A?teardown;
921 chan_array[subsc].B!downack;
922 if
923 ::(callers>1) ->
924 chan_array[first].A!teardown;
925 goto unlink0trg
926 ::else ->
927 chan_array[first].B!teardown;
928 goto unlink0src
929 fi;
930 };
931

932 wait_response_first_src: /*Normal situation:connecting to first party*/
933 do
934 ::atomic{
935 chan_array[subsc].A?avail;
936 m=true;
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937 goto con1trg_first1
938 };
939 ::atomic{
940 chan_array[subsc].A?unavail;
941 j=true;
942 goto wait_td_first_src
943 }
944 od;
945

946 wait_td_first_src:
947 atomic{
948 chan_array[subsc].A?teardown;
949 chan_array[subsc].B!downack;
950 if
951 ::(callers>0) ->
952 chan_array[first].A!teardown;
953 goto unlink0trg
954 ::else ->
955 chan_array[first].B!teardown;
956 goto unlink0src
957 fi;
958 };
959

960 /* Main do loop: LABEL con2src -> first.A?, fisrt.B! caller2=false*/
961 ::atomic{ /* CASE 2: first party sends teardown */
962 chan_array[first].A?teardown ->
963 o=true;
964 chan_array[first].B!downack ->
965 f=true;
966 /*first=callee, so callers no change*/
967 goto con1src_second1
968 }
969 /* Main do loop: LABEL con2src -> first.B?, fisrt.A! caller2=true*/
970 ::atomic{ /* CASE 2: first party sends teardown */
971 chan_array[first].B?teardown ->
972 o=true;
973 chan_array[first].A!downack ->
974 f=true;
975 callers=callers-1;
976 goto con1src_second1
977 }
978 /* Main do loop: LABEL con2src */
979 ::atomic{ /* CASE 3: second party sends teardown */
980 chan_array[second].B?teardown ->
981 o=true;
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982 chan_array[second].A!downack ->
983 f=true;
984 connCW[thisuser-1]=1;
985 callers=callers-1;
986 goto con1src_first1
987 }
988 /* Main do loop: LABEL con2src */
989 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
990 CW_channel[thisuser-1].intern?extra;
991 box_in?setup,orig,number,dest,eval(extra);
992 b=true;
993 chan_array[extra].A!upack;
994 e=true;
995 chan_array[extra].A!unavail;
996 i=true;
997 chan_array[extra].A!teardown;
998 g=true;
999 goto dn_extra_setup_src

1000 }
1001 /*MAIN con2src*/
1002 od;
1003

1004 dn_extra_setup_src:
1005 atomic{
1006 chan_array[extra].B?downack;
1007 p=true;
1008 goto con2src
1009 };
1010

1011 unlink3srcA:
1012 do
1013 ::atomic{
1014 chan_array[first].B?teardown ->
1015 chan_array[first].A!downack
1016 }
1017 ::atomic {
1018 chan_array[first].B?downack ->
1019 connCW[thisuser-1]=1;
1020 if
1021 ::(callers==3) ->
1022 /*disconnecting callers first and subsc*/
1023 callers=callers-2;
1024 ::else ->
1025 /*disconnecting caller first, subsc=callee*/
1026 callers=callers-1;
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1027 fi;
1028 calling=false;
1029 goto setup_sec_src
1030 }
1031 od;
1032

1033 unlink3srcB:
1034 do
1035 ::atomic{
1036 chan_array[first].A?teardown ->
1037 chan_array[first].B!downack
1038 }
1039 ::atomic {
1040 chan_array[first].A?downack ->
1041 connCW[thisuser-1]=1;
1042 callers=callers-1; /*disconnecting caller subsc*/
1043 calling=false;
1044 goto setup_sec_src
1045 }
1046 od;
1047

1048 unlink4src:
1049 do
1050 ::atomic{
1051 chan_array[second].B?teardown ->
1052 chan_array[second].A!downack;
1053 }
1054 ::atomic {
1055 chan_array[second].B?downack ->
1056 connCW[thisuser-1]=1;
1057 if
1058 ::(callers>=2 && calling) ->
1059 /*disconnecting callers second and subsc*/
1060 callers=callers-2;
1061 ::(callers>=2 && !calling) ->
1062 /*disconnecting callers second and subsc*/
1063 callers=callers-1;
1064 ::else ->
1065 /*disconnecting caller second in call back processing*/
1066 callers=callers-1;
1067 fi;
1068 calling=false;
1069 goto setup_first_src
1070 }
1071 od;
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1072

1073 con2trg:
1074 do
1075 /* CASE 1: subscriber sends teardown=>CALL BACK PROCESSING */
1076 ::atomic{
1077 chan_array[subsc].A?teardown ->
1078 chan_array[subsc].B!downack;
1079 };
1080 connCW[thisuser-1]=1;
1081 if
1082 ::talk-> /**connecting to second party, disconnecting first**/
1083 if
1084 ::(callers>=2) ->
1085 chan_array[first].A!teardown;
1086 goto unlink3trgA
1087 ::else ->
1088 chan_array[first].B!teardown;
1089 goto unlink3trgB
1090 fi;
1091 ::else -> /**connecting to first party, disconnecting second**/
1092 chan_array[second].A!teardown;
1093 goto unlink4trg
1094 fi;
1095

1096 setup_sec_trg: /**connecting to second party**/
1097 atomic{
1098 run routerCWtrg(thisuser);
1099 C_assign(ch);
1100 box_out!setup,orig,number,dest,ch;
1101 subsc=ch;
1102 }
1103 do
1104 /* WAIT_UPACK from subscriber*/
1105 ::atomic{
1106 chan_array[subsc].A?upack;
1107 goto wait_response_second_trg
1108 }
1109 ::atomic{
1110 CW_channel[thisuser-1].intern?new;
1111 box_in?setup,orig,number,dest,eval(new);
1112 b=true;
1113 connCW[thisuser-1]=2;
1114 }
1115 if
1116 /* SITUATION (2) Subscriber calls somebody else [9][10] */
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1117 ::orig == thisuser ->
1118 orig2=orig; number2=number; dest2=dest;
1119 calling=true;
1120 callers=callers+1;
1121 subsc=new;
1122 chan_array[subsc].A!upack;
1123 C_assign(first);
1124 run routerCWsrc(thisuser);
1125 box_out!setup,orig,number,dest,first;
1126 goto unlink_old_subsc_sec /* Same as src scenario */
1127 /* SITUATION (3) Somebody else calls subscriber [11][12]*/
1128 ::else ->
1129 orig3=orig; number3=number; dest3=dest;
1130 calling = false;
1131 callers=callers+1;
1132 first=new;
1133 chan_array[first].A!upack;
1134 e=true;
1135 chan_array[first].A!avail;
1136 h=true;
1137 goto link_nonsubsc_sec /* Same as src scenario */
1138 fi;
1139 od;
1140

1141 /* SITUATION 2: Same as src scenario */
1142 /* SITUATION 3: Same as src scenario */
1143

1144 wait_response_second_trg: /*Normal situation:connecting to second party*/
1145 do
1146 ::atomic{
1147 chan_array[subsc].A?avail;
1148 m=true;
1149 goto con1trg_second1;
1150 }
1151 ::atomic{
1152 chan_array[subsc].A?unavail;
1153 j=true;
1154 chan_array[subsc].A?teardown;
1155 chan_array[subsc].B!downack;
1156 chan_array[second].A!teardown;
1157 goto unlink2trg
1158 }
1159 od;
1160

1161 setup_first_trg: /**connecting to first party**/
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1162 atomic{
1163 run routerCWtrg(thisuser);
1164 C_assign(ch);
1165 if
1166 ::orig==thisuser -> /*REVERSE SETUP */
1167 box_out!setup,dest,orig,orig,ch
1168 ::else ->
1169 box_out!!setup,orig,number,dest,ch
1170 fi;
1171 subsc=ch;
1172 }
1173 do
1174 /* WAIT_UPACK from subscriber*/
1175 ::atomic{
1176 chan_array[subsc].A?upack;
1177 goto wait_response_first_trg
1178 }
1179 ::atomic{
1180 CW_channel[thisuser-1].intern?new;
1181 box_in?setup,orig,number,dest,eval(new);
1182 b=true;
1183 connCW[thisuser-1]=2;
1184 }
1185 if
1186 /* SITUATION (2) Subscriber calls somebody else [13][14]*/
1187 /* SRC scenario -> Caller channels!! */
1188 ::orig == thisuser ->
1189 orig2=orig; number2=number; dest2=dest;
1190 calling=true;
1191 callers=callers+1;
1192 subsc=new;
1193 chan_array[subsc].A!upack;
1194 C_assign(second);
1195 /**/
1196 new=second;
1197 second=first;
1198 first=new;
1199 /**/
1200 run routerCWsrc(thisuser);
1201 /* Due to the exchange second=first*/
1202 box_out!setup,orig,number,dest,first;
1203 goto unlink_old_subsc_first_trg
1204 /* SITUATION (3) Somebody else calls subscriber [15][16]*/
1205 ::else ->
1206 orig3=orig; number3=number; dest3=dest;
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1207 calling = false;
1208 callers=callers+1;
1209 second=new;
1210 chan_array[second].A!upack;
1211 e=true;
1212 chan_array[second].A!avail;
1213 h=true;
1214 goto link_nonsubsc_first
1215 fi;
1216 od;
1217

1218 unlink_old_subsc_first_trg: /* SITUATION 2 */
1219 if
1220 ::atomic{ /* Subscriber as in trg scenario */
1221 chan_array[ch].A?upack;
1222 k=true;
1223 chan_array[ch].A?unavail;
1224 j=true;
1225 chan_array[ch].A?teardown;
1226 l=true;
1227 chan_array[ch].B!downack;
1228 d=true;
1229 goto wait_upack_first_2trg
1230 }
1231 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
1232 CW_channel[thisuser-1].intern?extra;
1233 box_in?setup,orig,number,dest,eval(extra);
1234 b=true;
1235 chan_array[extra].A!upack;
1236 e=true;
1237 chan_array[extra].A!unavail;
1238 i=true;
1239 chan_array[extra].A!teardown;
1240 g=true;
1241 goto dn_unlink_old_subsc_first_trg
1242 }
1243 fi;
1244

1245 dn_unlink_old_subsc_first_trg:
1246 atomic{
1247 chan_array[extra].B?downack;
1248 p=true;
1249 goto unlink_old_subsc_first_trg
1250 };
1251
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1252 /*
1253 * NOTE: In connecting to first party, channels for first
1254 * wouldn’t correspond to the src scenario, so we need to
1255 * treat subscriber channels as in trg scenario, which
1256 * lead us in "con2trg" or "con1trg_first1" states.
1257 */
1258 wait_upack_first_2trg:
1259 if
1260 ::atomic{
1261 chan_array[first].A?upack;
1262 goto wait_vail_first_2trg
1263 }
1264 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
1265 CW_channel[thisuser-1].intern?extra;
1266 box_in?setup,orig,number,dest,eval(extra);
1267 b=true;
1268 chan_array[extra].A!upack;
1269 e=true;
1270 chan_array[extra].A!unavail;
1271 i=true;
1272 chan_array[extra].A!teardown;
1273 g=true;
1274 goto dn_wait_upack_first_2trg
1275 }
1276 fi;
1277

1278 dn_wait_upack_first_2trg:
1279 atomic{
1280 chan_array[extra].B?downack;
1281 p=true;
1282 goto wait_upack_first_2trg
1283 };
1284

1285 wait_vail_first_2trg:
1286 if
1287 ::atomic{
1288 chan_array[first].A?avail;
1289 chan_array[subsc].A!avail;
1290 if
1291 ::talk = true /*port 2 will be the talking one*/
1292 ::talk = false /*port 3 will be the talking one*/
1293 fi;
1294 goto con2src
1295 }
1296 ::atomic{
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1297 chan_array[first].A?unavail;
1298 j=true;
1299 chan_array[subsc].A!avail;
1300 h=true;
1301 chan_array[first].A?teardown;
1302 l=true;
1303 chan_array[first].B!downack;
1304 d=true;
1305 goto con1trg_second1
1306 }
1307 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
1308 CW_channel[thisuser-1].intern?extra;
1309 box_in?setup,orig,number,dest,eval(extra);
1310 b=true;
1311 chan_array[extra].A!upack;
1312 e=true;
1313 chan_array[extra].A!unavail;
1314 i=true;
1315 chan_array[extra].A!teardown;
1316 g=true;
1317 goto dn_wait_vail_first_2trg
1318 }
1319 fi;
1320

1321 dn_wait_vail_first_2trg:
1322 atomic{
1323 chan_array[extra].B?downack;
1324 p=true;
1325 goto wait_vail_first_2trg
1326 };
1327

1328 /* SITUATION 3: Same is in src scenario */
1329

1330 wait_response_first_trg: /*Normal situation:connecting to first party*/
1331 do
1332 ::atomic{
1333 chan_array[subsc].A?avail;
1334 m=true;
1335 goto con1trg_first1;
1336 }
1337 ::atomic{
1338 chan_array[subsc].A?unavail;
1339 j=true;
1340 chan_array[subsc].A?teardown;
1341 chan_array[subsc].B!downack;
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1342 if
1343 ::(callers==0) ->
1344 /* first and subsc are callees*/
1345 chan_array[first].B!teardown;
1346 goto unlink0src
1347 ::else ->
1348 /* first=caller and subsc=callee*/
1349 chan_array[first].A!teardown;
1350 goto unlink0trg
1351 fi;
1352 }
1353 od;
1354

1355 /* Main do loop: LABEL con2trg */
1356 ::atomic{ /* CASE 2: first party sends teardown, first=caller */
1357 chan_array[first].B?teardown ->
1358 o=true;
1359 chan_array[first].A!downack ->
1360 f=true;
1361 connCW[thisuser-1]=1;
1362 callers=callers-1;
1363 goto con1trg_second1
1364 }
1365 /* Main do loop: LABEL con2trg */
1366 ::atomic{ /* CASE 2: first party sends teardown, first=callee */
1367 chan_array[first].A?teardown ->
1368 o=true;
1369 chan_array[first].B!downack ->
1370 f=true;
1371 connCW[thisuser-1]=1;
1372 callers=callers;
1373 goto con1trg_second1
1374 }
1375 /* Main do loop: LABEL con2trg */
1376 ::atomic{ /* CASE 3: second party sends teardown */
1377 chan_array[second].B?teardown ->
1378 o=true;
1379 chan_array[second].A!downack ->
1380 f=true;
1381 connCW[thisuser-1]=1;
1382 callers=callers-1;
1383 goto con1trg_first1
1384 }
1385 /* Main do loop: LABEL con2trg */
1386 ::atomic{ /* CASE: extra setup => connCW[thisuser-1]>2 */
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1387 CW_channel[thisuser-1].intern?extra;
1388 box_in?setup,orig,number,dest,eval(extra);
1389 b=true;
1390 chan_array[extra].A!upack;
1391 e=true;
1392 chan_array[extra].A!unavail;
1393 i=true;
1394 chan_array[extra].A!teardown;
1395 g=true;
1396 goto dn_extra_setup_trg
1397 }
1398 /*MAIN con2src*/
1399 od;
1400

1401 dn_extra_setup_trg:
1402 atomic{
1403 chan_array[extra].B?downack;
1404 p=true;
1405 goto con2trg
1406 };
1407

1408 unlink3trgA:
1409 do
1410 ::atomic{
1411 chan_array[first].B?teardown ->
1412 chan_array[first].A!downack;
1413 }
1414 ::atomic {
1415 chan_array[first].B?downack ->
1416 connCW[thisuser-1]=1;
1417 /*one less, since subsc=caller and first=callee*/
1418 callers=callers-1;
1419 goto setup_sec_trg
1420 }
1421 od;
1422

1423 unlink3trgB:
1424 do
1425 ::atomic{
1426 chan_array[first].A?teardown ->
1427 chan_array[first].B!downack;
1428 }
1429 ::atomic {
1430 chan_array[first].A?downack ->
1431 connCW[thisuser-1]=1;
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1432 /*the same, since subsc and first=callees*/
1433 callers=callers;
1434 goto setup_sec_trg
1435 }
1436 od;
1437

1438 unlink4trg:
1439 do
1440 ::atomic{
1441 chan_array[second].B?teardown ->
1442 chan_array[second].A!downack;
1443 }
1444 ::atomic {
1445 chan_array[second].B?downack ->
1446 connCW[thisuser-1]=1;
1447 /*one less, since subsc=callee and second=caller*/
1448 callers=callers-1;
1449 goto setup_first_trg
1450 }
1451 od;
1452

1453 end:
1454 goto endSet_up
1455 }



Appendix B

Language Containment Proof

B.1 State Machine for Abstract Models

B.1.1 ComboPortBOUND

CommPhase

box_in?setup;
ch!upack

ch!teardown

ch?downack

ch?teardown;
ch!downack

SETUP
PHASE

COMMUNICATION
PHASE

TEARDOWN
PHASE

EndIdle

ch?teardown;
ch!downack

TeardownPhase

SetupPhaseE

UnlinkingE

ch!teardown

busy[userX] /
ch!unavail

!busy[userX] /
ch!avail

U

U

UU

SetupPhaseR

ch?avail

ch?teardown;
ch!downack

box_out!setup;
ch?upack

UnlinkingR

ch?unavail

U =
box_in?setup;

busy_ch!upack;
busy_ch!unavail;

busy_ch!teardown;

busy_ch?downack

Unlink_
PrevStateName

caller's port
behaviour

callee's port
behaviour

port behaviour
of both 

Figure B.1: State Machine for ComboPortBOUND Process
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B.1.2 ComboPortFREE

SetupPhaseR

CommPhase

ch?avail ch?unavail

ch!teardown

Idle

ch?downack

ch?teardown;
ch!downack

SETUP
PHASE

COMMUNICATION
PHASE

TEARDOWN
PHASE

ch?teardown;
ch!downack

box_out!setup

End

TeardownPhase

UnlinkingR

ch?teardown;
ch!downack

WaitUpack

ch?upack

SetupPhaseE

!busy[userX] /
ch!avail

busy[userX] /
ch!unavail

UnlinkingE
ch!teardown

box_in?setup;
ch!upack

Figure B.2: State Machine for ComboPortFREE Process
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B.1.3 CallerPortBOUND

Figure B.3: State Machine for CallerPortBOUND Process
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B.1.4 CalleePortBOUND

Figure B.4: State Machine for CalleePortBOUND Process
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B.1.5 CallerPortFREE

Figure B.5: State Machine for CallerPortFREE Process
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B.1.6 CalleePortFREE

Figure B.6: State Machine for CallerPortFREE Process
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B.2 L(ComboPort)FREE) ⊆ L(ComboPortBOUND) (1)-(2)

R =



(idle,EndIdle), (waitUpack,WaitUpack),
(setupPhaseR,SetupPhaseR), (setupPhaseE,SetupPhaseE),
(setupPhaseE,U SetupPhaseE), (unlinkingR,UnlinkingR),
(unlinkingE,UnlinkingE), (unlinkingE,U UnlinkingE),
(commPhase,CommPhase), (commPhase,U CommPhase),
(teardownPhase,TeardownPhase), (teardownPhase,U TeardownPhase),
(end,EndIdle),



Source State Trigger Destination State
ComboPortFREE / ComboPortFREE /
ComboPortBOUND ComboPortBOUND

idle /
EndIdle

box out ! setup
waitUpack /
WaitUpack

idle /
EndIdle

box in ? setup;
ch ! upack

setupPhaseE /
SetupPhaseE

waitUpack /
WaitUpack

ch ? upack
setupPhaseR /
SetupPhaseR

setupPhaseR /
SetupPhaseR

ch ? avail
commPhase /
CommPhase

setupPhaseR /
SetupPhaseR

ch ? unavail
unlinkingR /
UnlinkingR

setupPhaseE /
SetupPhaseE

ch ! avail
commPhase /
CommPhase

setupPhaseE /
SetupPhaseE

ch ! unavail
unlinkingE /
UnlinkingE

setupPhaseE /
SetupPhaseE

setupPhaseE /
SetupPhaseE

commPhase /
CommPhase

ch ? td;
ch ! dnack

end /
EndIdle

commPhase /
CommPhase

ch ! td
teardownPhase /
TeardownPhase
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Source State Trigger Destination State
ComboPortFREE / ComboPortFREE /
ComboPortBOUND ComboPortBOUND

unlinkingR /
UnlinkingR

ch ? td;
ch ! dnack

end /
EndIdle

unlinkingE /
UnlinkingE

ch ! td
teardownPhase /
TeardownPhase

teardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

teardownPhase /
TeardownPhase

teardownPhase /
TeardownPhase

ch ? dnack
end /
EndIdle
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B.3 L(CallerPort)BOUND) ⊆ L(ComboPortBOUND) (1)-(3)

R =


(endIdle,EndIdle), (waitUpack,WaitUpack),
(setupPhase,SetupPhaseR), (unlinking,UnlinkingR),
(commPhase,CommPhase), (commPhase,U CommPhase),
(teardownPhase,TeardownPhase), (teardownPhase,U TeardownPhase)



Source State Trigger Destination State
CallerPortBOUND / CallerPortBOUND /
ComboPortBOUND ComboPortBOUND

endIdle /
EndIdle

box out ! setup
waitUpack /
WaitUpack

endIdle /
EndIdle

endIdle /
EndIdle

waitUpack /
WaitUpack

ch ? upack
setupPhase /
SetupPhaseR

setupPhase /
SetupPhaseR

ch ? avail
commPhase /
CommPhase

setupPhase /
SetupPhaseR

ch ? unavail
unlinking /
UnlinkingR

commPhase /
CommPhase

ch ? td;
ch ! dnack

endIdle /
EndIdle

commPhase /
CommPhase

ch ! td
teardownPhase /
TeardownPhase

commPhase /
CommPhase

commPhase /
CommPhase

teardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

teardownPhase /
TeardownPhase

teardownPhase /
TeardownPhase

ch ? dnack
endIdle /
EndIdle

unlinking /
UnlinkingR

ch ? td;
ch ! dnack

endIdle /
EndIdle
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B.4 L(CalleePort)BOUND) ⊆ L(ComboPortBOUND) (1)-(4)

R =



(endIdle,EndIdle), (setupPhase,SetupPhaseE),
(unlink setupPhase,U SetupPhaseE), (unlinking,UnlinkingE),
(unlink unlinking,U UnlinkingE), (commPhase,CommPhase),
(unlink commPhase,U CommPhase), (teardownPhase,TeardownPhase),
(unlink teardownPhase,U TeardownPhase),



Source State Trigger Destination State
CalleePortBOUND / CalleePortBOUND /
ComboPortBOUND ComboPortBOUND

endIdle /
EndIdle

box in ? setup;
ch ! upack

setupPhase /
SetupPhaseE

endIdle /
EndIdle

endIdle /
EndIdle

setupPhase /
SetupPhaseE

ch ! avail
commPhase /
CommPhase

setupPhase /
SetupPhaseE

ch ! unavail
unlinking /
UnlinkingE

setupPhase /
SetupPhaseE

setupPhase /
SetupPhaseE

setupPhase /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink setupPhase /
U SetupPhaseE

unlink setupPhase /
U SetupPhaseE

ext ? dnack
setupPhase /
SetupPhaseE

unlinking /
UnlinkingE

ch ! td
teardownPhase /
TeardownPhase

unlinking /
UnlinkingE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink unlinking /
U UnlinkingE

unlink unlinking /
U UnlinkingE

ext ? dnack
unlinking /
UnlinkingE
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Source State Trigger Destination State
CalleePortBOUND / CalleePortBOUND /
ComboPortBOUND ComboPortBOUND

commPhase /
CommPhase

ch ? td;
ch ! dnack

endIdle /
EndIdle

commPhase /
CommPhase

ch ! td
teardownPhase /
TeardownPhase

commPhase /
CommPhase

commPhase /
CommPhase

commPhase /
CommPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink commPhase /
U CommPhase

unlink commPhase /
U CommPhase

ext ? dnack
commPhase /
CommPhase

teardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

teardownPhase /
TeardownPhase

teardownPhase /
TeardownPhase

ch ? dnack
endIdle /
EndIdle

teardownPhase /
TeardownPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink teardownPhase /
U TeardownPhase

unlink teardownPhase /
U TeardownPhase

ext ? dnack
teardownPhase /
TeardownPhase
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B.5 L(CallerPort)FREE) ⊆ L(ComboPortFREE) (2)-(5)

R =


(Idle,Idle), (WaitUpack,WaitUpack),
(SetupPhase,SetupPhaseR), (CommPhase,CommPhase),
(TeardownPhase,TeardownPhase), (Unlinking,UnlinkingR),
(End,End)



Source State Trigger Destination State
CallerPortFREE / CallerPortFREE /
ComboPortFREE ComboPortFREE

Idle /
Idle

box out ! setup
WaitUpack /
WaitUpack

WaitUpack /
WaitUpack

ch ? upack
SetupPhase /
SetupPhaseR

SetupPhase /
SetupPhaseR

ch ? avail
CommPhase /
CommPhase

SetupPhase /
SetupPhaseR

ch ? unavail
Unlinking /
UnlinkingR

CommPhase /
CommPhase

ch ? td;
ch ! dnack

End /
End

CommPhase /
CommPhase

ch ! td
TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? dnack
End /
End

Unlinking /
UnlinkingR

ch ? td;
ch ! dnack

End /
End

End /
End

End /
End
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B.6 L(CalleePort)FREE) ⊆ L(ComboPortFREE) (2)-(6)

R =


(Idle,Idle), (SetupPhase,SetupPhaseE),
(CommPhase,CommPhase), (Unlinking,UnlinkingE),
(TeardownPhase,TeardownPhase), (End,End)



Source State Trigger Destination State
CalleePortFREE / CalleePortFREE /
ComboPortFREE ComboPortFREE

Idle /
Idle

box in ? setup;
ch ! upack

SetupPhase /
SetupPhaseE

SetupPhase /
SetupPhaseE

ch ! avail
CommPhase /
CommPhase

SetupPhase /
SetupPhaseE

ch ! unavail
Unlinking /
UnlinkingE

SetupPhase /
SetupPhaseE

SetupPhase /
SetupPhaseE

Unlinking /
UnlinkingE

ch ! td
TeardownPhase /
TeardownPhase

CommPhase /
CommPhase

ch ? td;
ch ! dnack

End /
End

CommPhase /
CommPhase

ch ! td
TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? dnack
End /
End

End /
End

End /
End
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B.7 L(CallerPort)FREE) ⊆ L(CallerPortBOUND) (3)-(5)

R =


(Idle,EndIdle), (WaitUpack,WaitUpack),
(SetupPhase,SetupPhase), (CommPhase,CommPhase),
(TeardownPhase,TeardownPhase), (End,EndIdle)



Source State Trigger Destination State
CallerPortFREE / CallerPortFREE /
CallerPortBOUND CallerPortBOUND

Idle /
EndIdle

box out ! setup
WaitUpack /
WaitUpack

WaitUpack /
WaitUpack

ch ? upack
SetupPhase /
SetupPhase

SetupPhase /
SetupPhase

ch ? avail
CommPhase /
CommPhase

SetupPhase /
SetupPhase

ch ? unavail
Unlinking /
Unlinking

CommPhase /
CommPhase

ch ? td;
ch ! dnack

End /
EndIdle

CommPhase /
CommPhase

ch ! td
TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? dnack
End /
EndIdle

Unlinking /
Unlinking

ch ? td;
ch ! dnack

End /
EndIdle

End /
EndIdle

End /
EndIdle
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B.8 L(CalleePort)FREE) ⊆ L(CalleePortBOUND) (4)-(6)

R =



(Idle,EndIdle), (SetupPhase,SetupPhase),
(SetupPhase,Unlink SetupPhase), (CommPhase,CommPhase),
(CommPhase,Unlink CommPhase), (Unlinking,Unlinking),
(Unlinking,Unlink Unlinking), (TeardownPhase,TeardownPhase),
(End,EndIdle)



Source State Trigger Destination State
CalleePortFREE / CalleePortFREE /
CalleePortBOUND CalleePortBOUND

Idle /
EndIdle

box in ? setup;
ch ! upack

SetupPhase /
SetupPhase

SetupPhase /
SetupPhase

ch ! avail
CommPhase /
CommPhase

SetupPhase /
SetupPhase

ch ! unavail
Unlinking /
Unlinking

SetupPhase /
SetupPhase

SetupPhase /
SetupPhase

Unlinking /
Unlinking

ch ! td
TeardownPhase /
TeardownPhase

CommPhase /
CommPhase

ch ? td;
ch ! dnack

End /
EndIdle

CommPhase /
CommPhase

ch ! td
TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? td;
ch ! dnack

TeardownPhase /
TeardownPhase

TeardownPhase /
TeardownPhase

ch ? dnack
End /
EndIdle

End /
EndIdle

End /
EndIdle
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B.9 L(FTFCallerPort) ⊆ L(CallerPortFREE) (5)-(9)

R =


(idle,Idle), (wait upack,WaitUpack),
(wait vail,SetupPhase), (connected,CommPhase),
(unlinking from ch1,TeardownPhase) (wait teardown,Unlinking),
(unlinking from ch2,End), (end,End)



Source State Trigger Destination State
FTFCallerPort / FTFCallerPort /
CallerPortFREE CallerPortFREE

idle /
Idle

box out ! setup
wait upack /
WaitUpack

wait upack /
WaitUpack

ch2 ? upack
wait vail /
SetupPhase

wait vail /
SetupPhase

ch2 ? avail
connected /
CommPhase

wait vail /
SetupPhase

ch2 ? unavail
wait teardown /
Unlinking

wait teardown /
Unlinking

ch2 ? td;
ch2 ! dnack

unlinking from ch2 /
End

connected /
CommPhase

ch2 ! td
unlinking from ch1 /
TeardownPhase

connected /
CommPhase

ch2 ? td;
ch2 ! dnack

unlinking from ch2 /
End

unlinking from ch1 /
TeardownPhase

ch2 ? td;
ch2 ! dnack

unlinking from ch1 /
TeardownPhase

unlinking from ch1 /
TeardownPhase

ch2 ? dnack
end /
End

unlinking from ch2 /
End

unlinking from ch2 /
End

unlinking from ch2 /
End

end /
End
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B.10 L(FTFCalleePort) ⊆ L(CalleePortFREE) (6)-(10)

R =


(idle,Idle), (wait upack,SetupPhase),
(wait vail,SetupPhase), (connected,CommPhase),
(unlinking from ch1,End), (wait teardown,Unlinking),
(unlinking from ch2,TeardownPhase), (end,End),



Source State Trigger Destination State
FTFCalleePort / FTFCalleePort /
CalleePortFREE CalleePortFREE

idle /
Idle

box in ? setup;
ch1 ! upack

wait upack /
SetupPhase

wait upack /
SetupPhase

wait vail /
SetupPhase

wait vail /
SetupPhase

ch1 ! avail
connected /
CommPhase

wait vail /
SetupPhase

ch1 ! unavail
wait teardown /
Unlinking

wait teardown /
Unlinking

ch1 ! td
unlinking from ch2 /
TeardownPhase

connected /
CommPhase

ch1 ? td;
ch1 ! dnack

unlinking from ch1 /
End

connected /
CommPhase

ch1 ! td
unlinking from ch2 /
TeardownPhase

unlinking from ch1 /
End

unlinking from ch1 /
End

unlinking from ch1 /
End

end /
End

unlinking from ch2 /
TeardownPhase

ch1 ? td;
ch1 ! dnack

unlinking from ch2 /
TeardownPhase

unlinking from ch2 /
TeardownPhase

ch1 ? dnack
end /
End
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B.11 L(CallerCallerPort) ⊆ L(CallerPortBOUND) (3)-(7)

R =


(end idle,EndIdle), (wait upack,WaitUpack),
(wait vail,SetupPhase), (end linked,CommPhase),
(unlinking,TeardownPhase), (wait teardown,Unlinking),



Source State Trigger Destination State
CallerCallerPort / CallerCallerPort /
CallerPortBOUND CallerPortBOUND

end idle /
EndIdle

box out ! setup
wait upack /
WaitUpack

wait upack /
WaitUpack

ch ? upack
wait vail /
SetupPhase

wait vail /
SetupPhase

ch ? avail
end linked /
CommPhase

wait vail /
SetupPhase

ch ? unavail
wait teardown /
Unlinking

wait teardown /
Unlinking

ch ? td;
ch ! dnack

end idle /
EndIdle

end linked /
CommPhase

ch ? td;
ch ! dnack

end idle /
EndIdle

end linked /
CommPhase

end linked /
CommPhase

end linked /
CommPhase

ch ! td
unlinking /
TeardownPhase

unlinking /
TeardownPhase

ch ? td;
ch ! dnack

unlinking /
TeardownPhase

unlinking /
TeardownPhase

ch ? dnack
end idle /
EndIdle
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B.12 L(CalleeCalleePort) ⊆ L(CalleePortBOUND) (4)-(8)

R =



(end idle,EndIdle), (send vail,SetupPhase),
(unlink send vail,Unlink SetupPhase), (end linked,CommPhase),
(unlink end linked,Unlink CommPhase), (send td,Unlinking),
(unlink send td,Unlink Unlinking), (unlinking,TeardownPhase),
(unlink unlinking,Unlink TeardownPhase)



Source State Trigger Destination State
CalleeCalleePort / CalleeCalleePort /
CalleePortBOUND CalleePortBOUND

end idle /
EndIdle

box in ? setup;
ch ! upack

send vail /
SetupPhase

send vail /
SetupPhase

ch ! avail
end linked /
CommPhase

send vail /
SetupPhase

ch ! unavail
send td /
Unlinking

send vail /
SetupPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink send vail /
Unlink SetupPhase

unlink send vail /
Unlink SetupPhase

ext ? dnack
send vail /
SetupPhase

send td /
Unlinking

ch ! td
unlinking /
TeardownPhase

send td /
Unlinking

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink send td /
Unlink Unlinking

unlink send td /
Unlink Unlinking

ext ? dnack
send td /
Unlinking
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Source State Trigger Destination State
CalleeCalleePort / CalleeCalleePort /
CalleePortBOUND CalleePortBOUND

end linked /
CommPhase

ch ? td;
ch ! dnack

end idle /
EndIdle

end linked /
CommPhase

end linked /
CommPhase

end linked /
CommPhase

ch ! td
unlinking /
TeardownPhase

end linked /
CommPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink end linked /
Unlink CommPhase

unlink end linked /
Unlink CommPhase

ext ? dnack
end linked /
CommPhase

unlinking /
TeardownPhase

ch ? td;
ch ! dnack

unlinking /
TeardownPhase

unlinking /
TeardownPhase

ch ? dnack
end idle /
EndIdle

unlinking /
TeardownPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

unlink unlinking /
Unlink TeardownPhase

unlink unlinking /
Unlink TeardownPhase

ext ? dnack
unlinking /
TeardownPhase
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B.13 L(CW(subsc)ComboPort) ⊆ L(ComboPortBOUND) (1)-

(11)

R =



(idle,Idle), (wait upack,SetupPhase),
(end Setup,EndIdle), (wait upack src,SetupPhaseE),
(wait vail src,SetupPhaseE), (wait dn src,UnlinkingE),
(con1src first1,CommPhase), (con1src second1,CommPhase),
(con1src first2,CommPhase), (con1src second2,CommPhase),
(con2src,CommPhase), (dn extra setup src,U CommPhase),
(unlink0src,EndIdle), (unlink1src,TeardownPhase),
(unlink2src,EndIdle), (unlink3src,EndIdle),
(unlink4src,EndIdle), (setup first src,EndIdle),
(wait vail first1 src,EndIdle), (wait response first src,SetupPhaseR),
(wait td first src,UnlinkingR), (ulnk old sub fst src,SetupPhaseE),
(dn ulnk old sub fst src,U SetupPhaseE), (wait upack first2 src,SetupPhaseE),
(dn wait upack first2 src,U SetupPhaseE), (wait vail first2 src,SetupPhaseE),
(dn wait vail first2 src,U SetupPhaseE), (wait td first1 src,CommPhase),
(setup sec src,EndIdle), (wait vail sec1 src,EndIdle),
(wait response sec src,SetupPhaseR), (wait td sec src,UnlinkingR),
(ulnk old sub sec,SetupPhaseE), (dn ulnk old sub sec,U SetupPhaseE),
(wait upack sec2,SetupPhaseE), (dn wait upack sec2,U SetupPhaseE),
(wait vail sec2,SetupPhaseE), (dn wait vail sec2,U SetupPhaseE),
(wait td sec2,CommPhase), (link nonsubsc first,EndIdle),





164 Verification of DFC Call Protocol Correctness Criteria

R =



(dn link nonsubsc first,EndIdle), (wait response first2,SetupPhaseR),
(dn wait response first2,SetupPhaseR), (wait td first1 trg,UnlinkingR),
(link nonsubsc sec,EndIdle), (dn link nonsubsc sec,EndIdle),
(wait response sec2,SetupPhaseR), (dn wait response sec2,SetupPhaseR),
(wait td sec1 trg,UnlinkingR), (wait upack trg,EndIdle),
(wait vail trg,SetupPhaseR), (wait dn trg,UnlinkingR),
(con1trg first1,CommPhase), (con1trg second1,CommPhase),
(con1trg first2,CommPhase), (con1trg second2,CommPhase),
(con2trg,CommPhase), (dn extra setup trg,U CommPhase),
(unlink0trg,EndIdle), (unlink1trg,TeardownPhase),
(unlink2trg,EndIdle), (unlink3trg,EndIdle),
(unlink4trg,EndIdle), (setup first trg,EndIdle),
(wait vail first1 trg,EndIdle), (wait response first trg,SetupPhaseR),
(wait td first trg,UnlinkingR), (ulnk old sub fst trg,SetupPhaseE),
(dn ulnk old sub fst trg,U SetupPhaseE), (wait upack first2 trg,SetupPhaseE),
(dn wait upack first2 trg,U SetupPhaseE), (wait vail first2 trg,SetupPhaseE),
(dn wait vail first2 trg,U SetupPhaseE), (wait td first2 trg,CommPhase),
(setup sec trg,EndIdle), (wait vail sec trg,EndIdle),
(wait response sec trg,SetupPhaseR), (wait td sec trg,UnlinkingR)


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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

end Setup /
EndIdle

box in ? setup;
sub ! upack

wait upack src /
SetupPhaseE

wait upack src /
SetupPhaseE

wait vail src /
SetupPhaseE

wait vail src /
SetupPhaseE

sub ! avail
con1src first1 /
CommPhase

wait vail src /
SetupPhaseE

sub ! unavail
wait dn src /
UnlinkingE

wait dn src /
UnlinkingE

sub ! td
unlink1src /
TeardownPhase

con1src first1 /
CommPhase

sub ! td
unlink1src /
TeardownPhase

con1src first1 /
CommPhase

sub ? td;
sub ! dnack

unlink0src /
EndIdle

con1src first1 /
CommPhase

con1src first2 /
CommPhase

con1src first2 /
CommPhase

con2src /
CommPhase

unlink0src /
EndIdle

unlink0src /
EndIdle

unlink0src /
EndIdle

end Setup /
EndIdle

unlink1src /
TeardownPhase

sub ? td;
sub ! dnack

unlink1src /
TeardownPhase

unlink1src /
TeardownPhase

sub ? dnack
end Setup /
EndIdle

con1src second1 /
CommPhase

sub ! td
unlink1src /
TeardownPhase

con1src second1 /
CommPhase

sub ? td;
sub ! dnack

unlink2src /
EndIdle

con1src second1 /
CommPhase

con1src second2 /
CommPhase

con1src second2 /
CommPhase

con2src /
CommPhase

unlink2src /
EndIdle

unlink2src /
EndIdle



166 Verification of DFC Call Protocol Correctness Criteria

Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

unlink2src /
EndIdle

end Setup /
EndIdle

con2src /
CommPhase

con1src first1 /
CommPhase

con2src /
CommPhase

con1src second1 /
CommPhase

con2src /
CommPhase

sub ? td;
sub ! dnack

unlink3src /
EndIdle

con2src /
CommPhase

sub ? td;
sub ! dnack

unlink4src /
EndIdle

con2src /
CommPhase

sub ? td;
sub ! dnack

unlink4trg /
EndIdle

con2src /
CommPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn extra setup src /
U CommPhase

dn extra setup src /
U CommPhase

ext ? dnack
con2src /
CommPhase

unlink3src /
EndIdle

unlink3src /
EndIdle

unlink3src /
EndIdle

setup sec src /
EndIdle

setup sec src /
EndIdle

box out ! setup;
sub ? upack

wait response sec src /
SetupPhaseR

setup sec src /
EndIdle

box in ? setup;
sub ! upack

ulnk old sub sec /
SetupPhaseE

setup sec src /
EndIdle

wait vail sec1 src /
EndIdle

wait vail sec1 src /
EndIdle

link nonsubsc sec /
EndIdle

wait response sec src /
SetupPhaseR

sub ? avail
con1trg second1 /
CommPhase

wait response sec src /
SetupPhaseR

sub ? unavail
wait td sec src /
UnlinkingR

wait td sec src /
UnlinkingR

sub ? td;
sub ! dnack

unlink2src /
EndIdle
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

ulnk old sub sec /
SetupPhaseE

wait upack sec2 /
SetupPhaseE

ulnk old sub sec /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn ulnk old sub sec /
U SetupPhaseE

dn ulnk old sub sec /
U SetupPhaseE

ext ? dnack
ulnk old sub sec /
SetupPhaseE

wait upack sec2 /
SetupPhaseE

wait vail sec2 /
SetupPhaseE

wait upack sec2 /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait upack sec2 /
U SetupPhaseE

dn wait upack sec2 /
U SetupPhaseE

ext ? dnack
wait upack sec2 /
SetupPhaseE

wait vail sec2 /
SetupPhaseE

sub ! avail
con2src /
CommPhase

wait vail sec2 /
SetupPhaseE

sub ! avail
wait td sec2 /
CommPhase

wait vail sec2 /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait vail sec2 /
U SetupPhaseE

dn wait vail sec2 /
U SetupPhaseE

ext ? dnack
wait vail sec2 /
SetupPhaseE

wait td sec2 /
CommPhase

con1src second1 /
CommPhase

unlink4src /
EndIdle

unlink4src /
EndIdle

unlink4src /
EndIdle

setup first src /
EndIdle

setup first src /
EndIdle

box out ! setup;
sub ? upack

wait response first src /
SetupPhaseR
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

setup first src /
EndIdle

box in ? setup;
sub ! upack

ulnk old sub fst src /
SetupPhaseE

setup first src /
EndIdle

wait vail first1 src /
EndIdle

wait vail first1 src /
EndIdle

link nonsubsc first /
EndIdle

wait response first src /
SetupPhaseR

sub ? avail
con1trg first1 /
CommPhase

wait response first src /
SetupPhaseR

sub ? unavail
wait td first src /
UnlinkingR

wait td first src /
UnlinkingR

sub ? td;
sub ! dnack

unlink0src /
EndIdle

ulnk old sub fst src /
SetupPhaseE

wait upack first2 src /
SetupPhaseE

ulnk old sub fst src /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn ulnk old sub fst src /
U SetupPhaseE

dn ulnk old sub fst src /
U SetupPhaseE

ext ? dnack
ulnk old sub fst src /
SetupPhaseE

wait upack first2 src /
SetupPhaseE

wait vail first2 src /
SetupPhaseE

wait upack first2 src /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait upack first2 src /
U SetupPhaseE

dn wait upack first2 src /
U SetupPhaseE

ext ? dnack
wait upack first2 src /
SetupPhaseE

wait vail first2 src /
SetupPhaseE

sub ! avail
con2src /
CommPhase

wait vail first2 src /
SetupPhaseE

sub ! avail
wait td first1 src /
CommPhase

wait vail first2 src /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait vail first2 src /
U SetupPhaseE
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

dn wait vail first2 src /
U SetupPhaseE

ext ? dnack
wait vail first2 src /
SetupPhaseE

wait td first1 src /
CommPhase

con1src first1 /
CommPhase

link nonsubsc sec /
EndIdle

box out ! setup;
sub ? upack

wait response sec2 /
SetupPhaseR

link nonsubsc sec /
EndIdle

dn link nonsubsc sec /
EndIdle

dn link nonsubsc sec /
EndIdle

link nonsubsc sec /
EndIdle

wait response sec2 /
SetupPhaseR

sub ? avail
con2trg /
CommPhase

wait response sec2 /
SetupPhaseR

sub ? unavail
wait td sec1 trg /
UnlinkingR

wait response sec2 /
SetupPhaseR

dn wait response sec2 /
SetupPhaseR

dn wait response sec2 /
SetupPhaseR

wait response sec2 /
SetupPhaseR

wait td sec1 trg /
UnlinkingR

sub ? td;
sub ! dnack

unlink3src /
EndIdle

link nonsubsc first /
EndIdle

box out ! setup;
sub ? upack

wait response first2 /
SetupPhaseR

link nonsubsc first /
EndIdle

dn link nonsubsc first /
EndIdle

dn link nonsubsc first /
EndIdle

link nonsubsc first /
EndIdle

wait response first2 /
SetupPhaseR

sub ? avail
con2trg /
CommPhase

wait response first2 /
SetupPhaseR

sub ? unavail
wait td first1 trg /
UnlinkingR

wait response first2 /
SetupPhaseR

dn wait response first2 /
SetupPhaseR

dn wait response first2 /
SetupPhaseR

wait response first2 /
SetupPhaseR
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

wait td first1 trg /
UnlinkingR

sub ? td;
sub ! dnack

unlink4src /
EndIdle

end Setup /
EndIdle

wait upack trg /
EndIdle

wait upack trg /
EndIdle

box out ! setup;
sub ? upack

wait vail trg /
SetupPhaseR

wait vail trg /
SetupPhaseR

sub ? avail
con1trg first1 /
CommPhase

wait vail trg /
SetupPhaseR

sub ? unavail
wait dn trg /
UnlinkingR

wait dn trg /
UnlinkingR

sub ? td;
sub ! dnack

unlink0trg /
EndIdle

con1trg first1 /
CommPhase

sub ! td
unlink1trg /
TeardownPhase

con1trg first1 /
CommPhase

sub ? td;
sub ! dnack

unlink0trg /
EndIdle

con1trg first1 /
CommPhase

con1trg first2 /
CommPhase

con1trg first2 /
CommPhase

con2trg /
CommPhase

unlink0trg /
EndIdle

unlink0trg /
EndIdle

unlink0trg /
EndIdle

end Setup /
EndIdle

unlink1trg /
TeardownPhase

sub ? td;
sub ! dnack

unlink1trg /
TeardownPhase

unlink1trg /
TeardownPhase

sub ? dnack
end Setup /
EndIdle

con1trg second1 /
CommPhase

sub ! td
unlink1trg /
TeardownPhase

con1trg second1 /
CommPhase

sub ? td;
sub ! dnack

unlink2trg /
EndIdle

con1trg second1 /
CommPhase

con1trg second2 /
CommPhase

con1trg second2 /
CommPhase

con2trg /
CommPhase
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

unlink2trg /
EndIdle

unlink2trg /
EndIdle

unlink2trg /
EndIdle

end Setup /
EndIdle

con2trg /
CommPhase

con1trg first1 /
CommPhase

con2trg /
CommPhase

con1trg second1 /
CommPhase

con2trg /
CommPhase

sub ? td;
sub ! dnack

unlink3trg /
EndIdle

con2trg /
CommPhase

sub ? td;
sub ! dnack

unlink4trg /
EndIdle

con2trg /
CommPhase

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn extra setup trg /
U CommPhase

dn extra setup trg /
U CommPhase

ext ? dnack
con2trg /
CommPhase

unlink3trg /
EndIdle

unlink3trg /
EndIdle

unlink3trg /
EndIdle

setup sec trg /
EndIdle

setup sec trg /
EndIdle

box out ! setup;
sub ? upack

wait response sec trg /
SetupPhaseR

setup sec trg /
EndIdle

box in ? setup;
sub ! upack

ulnk old sub sec /
SetupPhaseE

setup sec trg /
EndIdle

wait vail sec trg /
EndIdle

wait vail sec trg /
EndIdle

link nonsubsc sec /
EndIdle

wait response sec trg /
SetupPhaseR

sub ? avail
con1trg second1 /
CommPhase

wait response sec trg /
SetupPhaseR

sub ? unavail
wait td sec trg /
UnlinkingR

wait td sec trg /
UnlinkingR

sub ? td;
sub ! dnack

unlink2trg /
EndIdle
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

unlink4trg /
EndIdle

unlink4trg /
EndIdle

unlink4trg /
EndIdle

setup first trg /
EndIdle

setup first trg /
EndIdle

box out ! setup;
sub ? upack

wait response first trg /
SetupPhaseR

setup first trg /
EndIdle

box in ? setup;
sub ! upack

ulnk old sub fst trg /
SetupPhaseE

setup first trg /
EndIdle

wait vail first1 trg /
EndIdle

wait vail first1 trg /
EndIdle

link nonsubsc first /
EndIdle

wait response first trg /
SetupPhaseR

sub ? avail
con1trg first1 /
CommPhase

wait response first trg /
SetupPhaseR

sub ? unavail
wait td first trg /
UnlinkingR

wait td first trg /
UnlinkingR

sub ? td;
sub ! dnack

unlink0trg /
EndIdle

ulnk old sub fst trg /
SetupPhaseE

wait upack first2 trg /
SetupPhaseE

ulnk old sub fst trg /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn ulnk old sub fst trg /
U SetupPhaseE

dn ulnk old sub fst trg /
U SetupPhaseE

ext ? dnack
ulnk old sub fst trg /
SetupPhaseE

wait upack first2 trg /
SetupPhaseE

wait vail first2 trg /
SetupPhaseE

wait upack first2 trg /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait upack first2 trg /
U SetupPhaseE

dn wait upack first2 trg /
U SetupPhaseE

ext ? dnack
wait upack first2 trg /
SetupPhaseE

wait vail first2 trg /
SetupPhaseE

sub ! avail
con2src /
CommPhase
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Source State Trigger Destination State
CW(subsc)ComboPort / CW(subsc)ComboPort /
ComboPortBOUND ComboPortBOUND

wait vail first2 trg /
SetupPhaseE

sub ! avail
wait td first2 trg /
CommPhase

wait vail first2 trg /
SetupPhaseE

box in ? setup;
ext ! upack;
ext ! unavail;
ext ! td

dn wait vail first2 trg /
U SetupPhaseE

dn wait vail first2 trg /
U SetupPhaseE

ext ? dnack
wait vail first2 trg /
SetupPhaseE

wait td first2 trg /
CommPhase

con1trg first1 /
CommPhase
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B.14 L(CW(first)ComboPort) ⊆ L(ComboPortBOUND) (1)-

(11)

R =



(end Setup,EndIdle), (wait upack src,EndIdle),
(wait vail src,SetupPhaseR), (wait dn src,UnlinkingR),
(con1src first1,CommPhase), (con1src second1,EndIdle),
(con1src first2,CommPhase), (con1src second2,SetupPhaseE),
(con2src,CommPhase), (dn extra setup src,U CommPhase),
(unlink0src,TeardownPhase), (unlink1src,EndIdle),
(unlink2src,EndIdle), (unlink3src,TeardownPhase),
(unlink4src,CommPhase), (setup first src,CommPhase),
(wait vail first1 src,CommPhase), (wait response first src,CommPhase),
(wait td first src,CommPhase), (ulnk old sub fst src,CommPhase),
(dn ulnk old sub fst src,U CommPhase), (wait upack first2 src,CommPhase),
(dn wait upack first2 src,U CommPhase), (wait vail first2 src,CommPhase),
(dn wait vail first2 src,U CommPhase), (wait td first1 src,CommPhase),
(setup sec src,EndIdle), (wait vail sec1 src,SetupPhaseE),
(wait response sec src,EndIdle), (wait td sec src,EndIdle),
(ulnk old sub sec,EndIdle), (dn ulnk old sub sec,EndIdle),
(wait upack sec2,EndIdle), (dn wait upack sec2,EndIdle),
(wait vail sec2,SetupPhaseR), (dn wait vail sec2,SetupPhaseR),
(wait td sec2,UnlinkingR), (link nonsubsc first,CommPhase),


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R =



(dn link nonsubsc first,U CommPhase), (wait response first2,CommPhase),
(dn wait response first2,U CommPhase), (wait td first1 trg,CommPhase),
(link nonsubsc sec,CommPhase), (dn link nonsubsc sec,U CommPhase),
(wait response sec2,CommPhase), (dn wait response sec2,U CommPhase),
(wait td sec1 trg,CommPhase), (wait upack trg,SetupPhaseE),
(wait vail trg,SetupPhaseE), (wait dn trg,UnlinkingE),
(con1trg first1,CommPhase), (con1trg second1,EndIdle),
(con1trg first2,CommPhase), (con1trg second2,SetupPhaseE),
(con2trg,CommPhase), (dn extra setup trg,U CommPhase),
(unlink0trg,TeardownPhase), (unlink1trg,EndIdle),
(unlink2trg,EndIdle), (unlink3trg,TeardownPhase),
(unlink4trg,CommPhase), (setup first trg,CommPhase),
(wait vail first1 trg,CommPhase), (wait response first trg,CommPhase),
(wait td first trg,CommPhase), (ulnk old sub fst trg,CommPhase),
(dn ulnk old sub fst trg,U CommPhase), (wait upack first2 trg,CommPhase),
(dn wait upack first2 trg,U CommPhase), (wait vail first2 trg,CommPhase),
(dn wait vail first2 trg,U CommPhase), (wait td first2 trg,CommPhase),
(setup sec trg,EndIdle), (wait vail sec trg,SetupPhaseE),
(wait response sec trg,EndIdle), (wait td sec trg,EndIdle)


Similar to Section B.13.
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B.15 L(CW(second)ComboPort) ⊆ L(ComboPortBOUND) (1)-

(11)

R =



(end Setup,EndIdle), (wait upack src,EndIdle),
(wait vail src,EndIdle), (wait dn src,EndIdle),
(con1src first1,EndIdle), (con1src second1,CommPhase),
(con1src first2,SetupPhaseE), (con1src second2,CommPhase),
(con2src,CommPhase), (dn extra setup src,U CommPhase),
(unlink0src,EndIdle), (unlink1src,EndIdle),
(unlink2src,TeardownPhase), (unlink3src,CommPhase),
(unlink4src,TeardownPhase), (setup first src,EndIdle),
(wait vail first1 src,SetupPhaseE), (wait response first src,EndIdle),
(wait td first src,EndIdle), (ulnk old sub fst src,EndIdle),
(dn ulnk old sub fst src,EndIdle), (wait upack first2 src,EndIdle),
(dn wait upack first2 src,EndIdle), (wait vail first2 src,SetupPhaseR),
(dn wait vail first2 src,SetupPhaseR), (wait td first1 src,UnlinkingR),
(setup sec src,CommPhase), (wait vail sec1 src,CommPhase),
(wait response sec src,CommPhase), (wait td sec src,CommPhase),
(ulnk old sub sec,CommPhase), (dn ulnk old sub sec,U CommPhase),
(wait upack sec2,CommPhase), (dn wait upack sec2,U CommPhase),
(wait vail sec2,CommPhase), (dn wait vail sec2,U CommPhase),
(wait td sec2,CommPhase), (link nonsubsc first,CommPhase),


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R =



(dn link nonsubsc first,U CommPhase), (wait response first2,CommPhase),
(dn wait response first2,U CommPhase), (wait td first1 trg,CommPhase),
(link nonsubsc sec,CommPhase), (dn link nonsubsc sec,U CommPhase),
(wait response sec2,CommPhase), (dn wait response sec2,U CommPhase),
(wait td sec1 trg,CommPhase), (wait upack trg,EndIdle),
(wait vail trg,EndIdle), (wait dn trg,EndIdle),
(con1trg first1,EndIdle), (con1trg second1,CommPhase),
(con1trg first2,SetupPhaseE), (con1trg second2,CommPhase),
(con2trg,CommPhase), (dn extra setup trg,U CommPhase),
(unlink0trg,EndIdle), (unlink1trg,EndIdle),
(unlink2trg,TeardownPhase), (unlink3trg,CommPhase),
(unlink4trg,TeardownPhase), (setup first trg,EndIdle),
(wait vail first1 trg,SetupPhaseE), (wait response first trg,EndIdle),
(wait td first trg,EndIdle), (ulnk old sub fst trg,EndIdle),
(dn ulnk old sub fst trg,EndIdle), (wait upack first2 trg,EndIdle),
(dn wait upack first2 trg,EndIdle), (wait vail first2 trg,SetupPhaseR),
(dn wait vail first2 trg,SetupPhaseR), (wait td first2 trg,UnlinkingR),
(setup sec trg,CommPhase), (wait vail sec trg,CommPhase),
(wait response sec trg,CommPhase), (wait td sec trg,CommPhase)


Similar to Section B.13.





Appendix C

Glossary of Terms

Address Defined by syntactic restrictions on a sequence of symbols from the addressing

alphabet.

Bound feature box Process that is dedicated to a particular address, and even if it is

already in use within an existing usage, the same feature box is made part of the

new usage. An example of a bound feature box is call waiting, which is a persistent

process, and can be part of the source or target region of a usage.

Box Process that performs either feature or interface functions.

Call/Communication channel Channel between ports of two different boxes, trans-

mitting signals between boxes in first in–first out (FIFO) order and following the

DFC call protocol.

Feature Function for the users of a system, performed on top of basic services. An

example of a feature is call waiting.

Free feature box Process for which a new instance is generated every time the feature

is to be included in a usage. An example of a free feature box is call forwarding,

which is not persistent and gets created upon request.

Interface box Process that provide an interface to physical devices to communicate to

users or to other networks. An example of an interface box is a Caller or Callee.

Operational data Data relations that can be read and written by feature boxes.

Port Interaction that a box has with a communication channel connected to another

box. The end of the channel connected to the box that initiates a call by sending a
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setup is called a caller port, and the port on the other end of the communication

channel is called a callee port.

Precedences Relations that are partial orders constraining the order in which feature

boxes are placed in the source and target region.

Router Process that helps in the generation of the usage, setting up the communication

channels between boxes.

Signal Message of the DFC protocol. It has a signal type and some set of named, typed

fields. Primary signals: setup, upack, teardown, downack. Status signals: avail,

unavail, unknown, none.

Source region Feature boxes that the caller customer (at the source address) is sub-

scribed to.

Subscriptions Mapping from the address in use to feature box types.

Target region Feature boxes that the called customer (at the target address) is sub-

scribed to.

Usage Graph composed by boxes and calls describing the response of a request for a

telecommunication service at certain time.
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