
Mapping Big-Step Modeling Languages to SMV
Formal Verification for Model-Driven Engineering

Fathiyeh Faghih and Nancy A. Day
University of Waterloo
Waterloo, ON, Canada

1- Introduction
• Different behavioural modeling languages are used in model-driven

methodologies
ü How do we verify properties of models designed in different

languages?
ü Solution: transform a design model notation to the input language

of an analyzer, such as a model checker
• Our contribution is a semantics-based translator from the family of

big-step modeling languages (BSMLs) to the input language of SMV.
• A BSML is described using parameter values for semantic aspects.

ü Using our translator, different combinations of options for semantic
aspects will lead to generating new translators for specific
languages

2- Background: BSMLs

• Many BSMLs exist with different syntaxes and semantics, such as
Statecharts, Argos, Reactive Modules, and SCR, so we use a
normal-form syntax called CHTS.

3- Module Structure in SMV

5- Translating the Dynamic Semantic Aspects

Our Translator
(BSML2SMV)

Semantic Parameter
Values for notation M

SMV
Model CheckerSpecification

in Notation M
SMV

Specification

Environmental
Input

Big-Step: Reaction of model to an environmental
Input, which consists of a sequence of small-steps

North-South

East-West

Traffic-Light

NS-Green NS-Yellow

NS-Red

t1: end,1

t2: change,1t3: change,1

EW-Red EW-Green

EW-Yellow

t5: change,1

t6: end,1t7: change,1

Start of
Big-Step

Maximal Big-
Step?

Maximality

Determine the Maximal,
Consistent Sets of

Enabled Transitions
Concurrency, Consistency,
and Preemption Aspects

Choose One High Priority
Set of Transitions

Priority Aspect

Execute the
Small-Step

Assignment Memory
Protocol Aspect

Determine
Transitions Enabled

by Events
Event Lifeline Aspect

Determine transitions
Enabled by Variables
Enabledness Memory

Protocol Aspect

Determine transitions
that satisfy the

Ordering Constraints
Order of Small-Steps

Aspect

End of
Big-Step

Yes

No

One for each
non-basic state,
and includes:

ü Enabledness flag for
each transition in the
state’s scope

ü An instance of the
state modules
corresponding to the
state’s direct children

ü Two flags (macros) for
the state enabledness
and execution

Snapshot
Module

State Module
1

State Module
2

State Module
3

State Module
4

Input
Module

Priority
?

Concurrency
?

Find the inconsistent
pairs of transitions

based on Small-Step
Consistency: R1

Find the inconsistent
pairs of transitions in

R1 based on
Preemption: R2

MANY

Insert invariants for
each pair in R2 to

disallow their
concurrent execution

Insert invariants
not to let any two

transitions be
taken together

SINGLE

Insert invariants for each
pair in R2 with different
priorities to respect the
precedence constraints

DONE!

Options other
than No-Priority

No-Priority

6- Example

MODULE snapshot(){
VAR
--basic states
NS_Green,NS_Yellow,NS_Red,
EW_Green,EW_Yellow,EW_Red:boolean;
--events
end,change : boolean;
--execution variables of transitions
t1_exe,t2_exe,t3_exe,t4_exe,t5_exe
t6_exe,t7_exe,t8_exe : boolean;
DEFINE
North-South :=
NS_Green|NS_Yellow|NS_Red;
East-West :=
EW_Green|EW_Yellow|EW_Red;
--next statements
default
{next(no-change) := no-change;}
in{if(stable)

next(no-change) := input.no-change;}
--similar statements for “end” and “change”
next(NS_Green) := case {
t3_execute | t4_execute : 1;
t1_execute : 0;
1 : NS_Green;
};
--similar statements for all basic states}
MODULE main(){
--instance of the module snapshot
ss : snapshot;
model_root : Traffic_Light(ss);}
MODULE Traffic_Light(ss){
North_South : North_South(ss);
East_West : East_West(ss);
enabled := North_South.enabled |
East_West.enabled;
execute := North_South.execute |
East_West.execute;
ss.stable := ~enabled;
--invariants
enabled -> execute;}

Snapshot1 Snapshot2 Snapshot3 Snapshot4
Trans1

Trans2
Trans3

Trans4

Trans5

Represents a
specification's
snapshot, and contains:

ü A Boolean variable for each
basic state and a macro for every
non-basic state representing whether
they are active or not

ü A Boolean variable and a variable with
the appropriate type for each event and

each variable in the original model
ü A Boolean variable for each transition

in the model: execution variables

4- Translating the Structural Semantic Aspects

• Maximality
ü Using a boolean variable to indicate when the big-step concludes and the next

input should be read from the Input module
• Event Lifeline
ü Reflected in the next statement of events in the Snapshot module

• Assignment Memory Protocol and Enabledness Memory Protocol
ü If the option is Big-step, a copy of variable value at the beginning of the big-

step is needed and will be used accordingly.
• Order of Small-Steps
ü If the option is Explicit, invariants are used to impose that a transition is

enabled, only if none of its predecessors are enabled.

MODULE North_South(ss){
t1_enabled := ss.NS_green & end;
t2_enabled := ss.NS_yellow & change;
t3_enabled := ss.NS_red & change;
t4_enabled:=ss.NS_green& no-change;
enabled := t1_enabled | t2_enabled |
t3_enabled | t4_enabled;
execute := ss.t1_execute |
ss.t2_execute | ss.t3_execute |
ss.t4_execute;
--invariants
~(ss.t1_execute & ss.t4_execute);
execute -> ((t1_enabled&~t4_execute)
-> t1_execute);
execute -> ((t4_enabled&~t1_execute)
-> t4_execute);
execute -> (t2_enabled-> t2_execute);
execute -> (t3_enabled-> t3_execute)
--priority invariant
t4_enabled -> ~t1_execute;}
MODULE East_West(ss){
t5_enabled := ss.EW_red & change;
t6_enabled := ss.EW_green & end;
t7_enabled := ss.EW_yellow & change;
t8_enabled := ss.EW_red & no-change;
enabled := t5_enabled | t6_enabled |
t7_enabled | t8_enabled;
execute := ss.t5_execute |
ss.t6_execute | ss.t7_execute |
ss.t8_execute;
--invariants
~(ss.t5_execute & ss.t8_execute);
execute ->((t5_enabled&~t8_execute)
-> t5_execute);
execute ->((t8_enabled&~t5_execute)
-> t8_execute);
execute -> (t6_enabled-> t6_execute);
execute -> (t7_enabled-> t7_execute)
--priority invariant
t8_enabled -> ~t5_execute;
}

Our Translator
(BSML2SMV)

Concurrency: Many
Consistency: Source-Destination

Priority: Explicit
Preemption: Preemptive
Maximality: Take Many

Event Lifeline: Remainder
Assignment Memory Protocol: Small-Step

Order of Small-Steps: None

t4: no-change,2

t8: no-change,2

Semantic aspects
of BSMLs:

Orange: Structural Aspect
White: Dynamic Aspect

Invariants are always
Inserted in the state
modules with tightest
scope

For more information, contact:
Fathiyeh Faghih
E-mail: ffaghihe@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~ffaghihe

