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1- Introduction
• Different behavioural modeling languages are used in model-driven 

methodologies
ü How do we verify properties of models designed in different 

languages?
ü Solution: transform a design model notation to the input language 

of an analyzer, such as a model checker
• Our contribution is a semantics-based translator from the family of 

big-step modeling languages (BSMLs) to the input language of  SMV.
• A BSML is described using parameter values for semantic aspects.

ü Using our translator, different combinations of options for semantic 
aspects will lead to generating new translators for specific 
languages

2- Background: BSMLs

• Many BSMLs exist with different syntaxes and semantics, such as 
Statecharts, Argos, Reactive Modules, and SCR, so we use a 
normal-form syntax called CHTS. 

3- Module Structure in SMV

5- Translating the Dynamic Semantic Aspects
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6- Example

MODULE snapshot(){
VAR
--basic states
NS_Green,NS_Yellow,NS_Red,
EW_Green,EW_Yellow,EW_Red:boolean;
--events
end,change : boolean;
--execution variables of transitions
t1_exe,t2_exe,t3_exe,t4_exe,t5_exe
t6_exe,t7_exe,t8_exe : boolean;
DEFINE
North-South := 
NS_Green|NS_Yellow|NS_Red;
East-West := 
EW_Green|EW_Yellow|EW_Red;
--next statements
default
{next(no-change) := no-change;}
in{if(stable)

next(no-change) := input.no-change;}
--similar statements for “end” and “change”
next(NS_Green) := case {
t3_execute | t4_execute : 1;
t1_execute : 0;
1 : NS_Green;
};
--similar statements for all basic states}
MODULE main(){
--instance of the module snapshot
ss : snapshot;
model_root : Traffic_Light(ss);}
MODULE Traffic_Light(ss){
North_South : North_South(ss);
East_West : East_West(ss);
enabled := North_South.enabled | 
East_West.enabled;
execute := North_South.execute | 
East_West.execute;
ss.stable := ~enabled;
--invariants
enabled -> execute;}
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Represents a 
specification's 
snapshot, and contains:

ü A Boolean variable for  each 
basic state and a macro for every 
non-basic state representing whether
they are active or not 

ü A Boolean variable and a variable with
the appropriate type for each event and

each variable in the original model 
ü A Boolean variable for each transition 

in the model: execution variables

4- Translating the Structural Semantic Aspects

• Maximality
ü Using a boolean variable to indicate when the big-step concludes and the next 

input should be read from the Input module
• Event Lifeline
ü Reflected in the next statement of events in the Snapshot module

• Assignment Memory Protocol and Enabledness Memory Protocol
ü If the option is Big-step, a copy of variable value at the beginning of the big-

step is needed and will be used accordingly.
• Order of Small-Steps
ü If the option is Explicit, invariants are used to impose that a transition is 

enabled, only if none of its predecessors are enabled.

MODULE North_South(ss){
t1_enabled := ss.NS_green & end;
t2_enabled := ss.NS_yellow & change;
t3_enabled := ss.NS_red & change;
t4_enabled:=ss.NS_green& no-change;
enabled := t1_enabled | t2_enabled | 
t3_enabled | t4_enabled;
execute := ss.t1_execute | 
ss.t2_execute | ss.t3_execute | 
ss.t4_execute;
--invariants
~(ss.t1_execute & ss.t4_execute);
execute -> ((t1_enabled&~t4_execute)
-> t1_execute);
execute -> ((t4_enabled&~t1_execute)
-> t4_execute);
execute -> (t2_enabled-> t2_execute);
execute -> (t3_enabled-> t3_execute)
--priority invariant
t4_enabled -> ~t1_execute;}
MODULE East_West(ss){
t5_enabled := ss.EW_red & change;
t6_enabled := ss.EW_green & end;
t7_enabled := ss.EW_yellow & change;
t8_enabled := ss.EW_red & no-change;
enabled := t5_enabled | t6_enabled | 
t7_enabled | t8_enabled;
execute := ss.t5_execute | 
ss.t6_execute | ss.t7_execute | 
ss.t8_execute;
--invariants
~(ss.t5_execute & ss.t8_execute);
execute ->((t5_enabled&~t8_execute)
-> t5_execute);
execute ->((t8_enabled&~t5_execute)
-> t8_execute);
execute -> (t6_enabled-> t6_execute);
execute -> (t7_enabled-> t7_execute)
--priority invariant
t8_enabled -> ~t5_execute;
}

Our Translator
(BSML2SMV)

Concurrency: Many
Consistency: Source-Destination

Priority: Explicit
Preemption: Preemptive
Maximality: Take Many

Event Lifeline: Remainder 
Assignment Memory Protocol: Small-Step

Order of Small-Steps: None 

t4: no-change,2

t8: no-change,2

Semantic aspects 
of BSMLs:

Orange: Structural Aspect
White: Dynamic Aspect

Invariants are always 
Inserted in the state 
modules with tightest 
scope

For more information, contact:
Fathiyeh Faghih
E-mail: ffaghihe@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~ffaghihe


