
Online Pricing for Web Service Providers

Shahram Esmaeilsabzali
David R. Cheriton School of Computer Science

University of Waterloo

sesmaeil@cs.uwaterloo.ca

Nancy A. Day
David R. Cheriton School of Computer Science

University of Waterloo

nday@cs.uwaterloo.ca

ABSTRACT
We consider Web service providers, which have a finite ca-
pacity, and requests for their services, which arrive sequen-
tially over time, and propose an online algorithm for select-
ing from such requests and charging for such requests. We
show that different variations of this problem, both as online
and offline (when we know all requests a priori), are hard
problems. We initially start with two naive variations of the
problem and show these variations are too hard to be solved.
Then, we propose an online algorithm for a variation of the
problem where we make some statistical assumptions about
the requests that Web service providers receive over time.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Modes of Computa-
tion—Online Computation; K.6.0 [Computing Milieux]:
Management Of Computing and Information Systems—Eco-
nomics

General Terms
Algorithms, Economics, Management

Keywords
Online Algorithms, Pricing, Economics, Web services

1. INTRODUCTION
The purpose of this paper is, first, to state and formalize

the problem of pricing for Web services; and, second, to pro-
vide an online algorithm for selecting from service requests
and charging for these requests, which arrive over time, in a
way that Web service providers achieve optimal profit.

Web services can be considered as pay-per-view function-
alities that are invoked over the internet. Web service tech-
nologies are based upon a set of standards, and as such,
accommodate a paradigm of software development where
service requesters invoke their desired functionalities by in-
specting their interfaces and calling the services over the

" c©ACM, 2006. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in ACMPress,
EDSER ’06: Proceedings of the 2006 international workshop on Eco-
nomics driven software engineering research, ISBN: 1-59593-396-4, 2006,
http://doi.acm.org/10.1145/1139113.1139123"
EDSER’06, May 27, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

internet. This paradigm of computation requires the Web
service providers to sell their services wisely. By accepting
all requests for their services early, they may exhaust their
capacities early, and miss the chance to accept more prof-
itable requests later. Conversely, they cannot be too con-
servative and reject all requests for their services. In this
paper, we examine this problem to try to formulate it in a
reasonable way, and propose a solution for it.

We are interested in studying how service providers1 can
select from their incoming requests and how they can charge
for such requests, which have certain budgets. We call this
problem, the online pricing problem. We are interested
in considering the pricing problem for public Web services.
Public Web services advertise their functionalities, and allow
different service requesters to use them. Proprietary Web
services are designed for use by specific service requesters.
Public service providers have a limited capacity and there is
a cost for developing and maintaining their services.

Binding between a service requester and a service provider
can happen statically, at design time, or dynamically, at run
time [4]. Dynamic binding relies on having agents for discov-
ering the desired functionality at run time. Static binding,
on the other hand, relies on the functionality of a predeter-
mined Web service at run time. In this paper, we consider
the problem of pricing in the static binding setting. We
believe that static binding is a more realistic scenario than
dynamic binding, because technologically the vision of dy-
namic binding is not mature and reliable yet. In the static
binding setting, we characterize a service request as a re-
quest to consume a certain portion of the capacity of the
service provider indefinitely. As an example, assume we are
designing a system that uses a currency exchange function-
ality, provided by the service Exchange. Also, assume that
our system may have concurrent invocations of Exchange, up
to a maximum of three concurrent invocations. A request
for the Exchange Web service would then ask for three units
of Exchange, within a certain budget. Exchange, on other
hand, commits to provide us with its service, up to three
concurrent invocations, at all times. Such a paradigm of
computation provides the opportunity for service providers
and requesters to engage in financial relations.

We provide a model that formalizes the attributes of ser-
vice providers and the requests they receive, which arrive
sequentially. The goal is to provide a pricing mechanism
that, in the absence of knowledge about future requests, be-
haves reasonably; we call such a setting an online setting,

1We use the terms “Web service”, “Web service provider”,
and “service provider” interchangeably.

and such a problem an online problem. Online problems
are conventionally considered in the online algorithms con-
text [2]. Online algorithms process a sequence of incoming
requests that arrive sequentially over time. An online algo-
rithm is responsible for processing the requests in such a way
that a goal function, e.g., profit maximization, is achieved
optimally. In this paper, we use online algorithms as the
tool for solving our online pricing problem.

Alternatively, auctions have been used to solve online prob-
lems. Two relevant classes of auctions, in this respect, are
competitive auctions [11], and online auctions [14]. Both
auctions are truthful, i.e., participants in the auction have
the incentive to express their preferences truthfully. Both
auctions have applications for the trade of digital goods.
Also, both auctions promise to never gain profits worse than
a constant factor of the optimal outcome.2 However, auc-
tions do not quite fit our problem. First, auctions require
the buyers and the sellers to behave according to some rules,
in order to achieve some elegant properties, e.g., truthful-
ness. Web services, on the other hand, are built upon the
decentralized vision of the internet. It is difficult to advocate
an auction mechanism for trading among Web services and
their requests, without restating the problem in a superficial
way. Second, none of the aforementioned classes of auctions
are of immediate use for solving our problem. Furthermore,
our problem is inherently a decision problem rather than a
trading problem, where we can consider strict regulations
for it.

In the next section, we provide a quick overview of online
algorithms, and a formalization of our problem. Our formal-
ization does not capture all aspects of the pricing problem;
however, despite its simplicity, it captures enough aspects
of the pricing problem to allow us to look at some interest-
ing variations. Next, in Section 3, we consider two naive
variations of our problem, and show that they are too hard
to be solved; for the first variation, we show that it can-
not be solved by any online algorithm, and for the second
variation, we show that the online problem is related to the
well-studied problem of online knapsack problem [16], which
in its general form has not been solved. We then, in Sec-
tion 4, consider a third variation of our problem where we
make some statistical assumptions about the incoming re-
quests; we propose a threat-based, randomized, online algo-
rithm for this variation. Finally, in Section 5, we present
conclusions of our paper, and discuss our plans for future
work.

2. PRELIMINARIES
In this section, we first quickly overview online algorithms,

in Subsection 2.1, and then, in Subsection 2.2, formalize our
pricing problem.

2.1 Online Algorithms Primer
An online algorithm A is meant to deal with a sequence

of incoming requests, R = 〈R(1), R(2), · · · , R(m)〉, and pro-
cess them. At each point of time t, 1 ≤ t < m, A does not
have any knowledge about any request R(t′), t′ > t. Al-
gorithm A should be able to process any arbitrary request,
while optimizing a goal function; e.g., maximizing the profit.

2An optimal outcome is defined differently in different auc-
tions. In general, an optimal outcome is an outcome that
we can achieve, if we have some (or complete) information
about the future.

Assume that the profit of serving an arbitrary sequence of
requests, R = 〈R(1), R(2), · · · , R(m)〉, by A to be PA(R).
Also, assume that algorithm OPT knows the whole sequence
of requests in advance; such an algorithm is called an offline
algorithm for that sequence. By knowing the sequence in
advance, OPT is capable of serving R and gaining maximum
possible profit; let that optimal profit be POPT (R). A is
c-competitive if constants c, which is less than or equal to
1, and a exist such that:3

PA(R) ≥ c × POPT (R) + a

Assuming that A is deterministic and R is any arbitrary
sequence of requests, c is the competitive ratio of A. In
other words, online algorithm A never gains profit worse
than a constant factor of the optimal profit. We are inter-
ested in algorithms with bigger c values. In this paper, we
first consider the offline versions of our online problems, as
indications of how hard their online versions might be.

For more information on financial problems and online
algorithms, the interested readers can refer to [5, 2, 10].

2.2 Model
Our formulation of the service selection and pricing prob-

lem is mainly based on the formulation introduced in our
previous work [8]. In [8], we propose a strategy for deter-
mining quality of service for service providers, in an auction
setting, but do not provide any strategy for determining the
price of service providers. In this paper, we define our model
based on the model in [8], with some necessary modifications
for the online algorithm setting, as opposed to the auction
setting.

2.2.1 Web Service Provider
Each Web service provider can potentially provide service

for multiple service requesters. A Web service provider is
represented by the pair (N, C). N is the capacity of the
Web service; a Web service provider can serve N concurrent
instances of service, which can belong to different service
requesters, at each point of time. C is the cost of providing
one instance of the service continuously. Both C and N are
positive integer numbers.

2.2.2 Service Requests
A service request i is defined by R(i) = (ni, pi). The num-

ber of concurrent services requested by i is represented by ni.
The maximum price that the service requester is willing to
pay for each instance of service is pi. By buying ni services
from the service provider, Ri can have at most ni concurrent
instances of service active at each point of time. A sequence
of service requests is shown by R = 〈R(1), R(2), · · · , R(m)〉;
we assume that requests are indexed according to the time
they arrive.

The service provider would like to employ an online algo-
rithm that can select from the incoming requests and price
its service such that its profit is maximized. In the absence
of knowledge about future requests, we are interested in an
online algorithm that has the largest competitive ratio with
respect to the offline algorithm.

3Our presentation of competitiveness is based on profit
maximization. Conventionally, competitiveness is described
with respect to a cost function. In such presentations, c is
desired to be as small as possible.

3. TWO VARIATIONS FOR PRICING
In this section, we consider two variations of the pricing

problem, namely, uniform and dynamic pricing. We show
that uniform pricing is not solvable by any online algorithm
with a constant competitive ratio, and show that dynamic
pricing is related to the well-studied online knapsack prob-
lem [16], which in its general form has not been solved.

3.1 Uniform Pricing
In uniform pricing, we are interested in predetermining a

price, denoted as P , that the service provider offers to all
requests in R = 〈R(1), R(2), · · · , R(m)〉. The problem is
how to choose P , such that for any arbitrary sequence of
requests, P provides a decent competitive ratio. Formally,
we would like to choose P and a subset of requests S (S ⊆
R) within the capacity N of the service provider that are
willing to pay the price P , such that the profit of the service
provider is maximized:

max
X

Ri∈S

(P − C) × ni

and the following three conditions hold.

-
P

Ri∈S
(ni) ≤ N (The service provider has the capac-

ity to provide the service to the selected requests.)

- P > C (The price is greater than the cost of providing
the service.)

- ∀i · (ni, pi) ∈ S ⇒ (P ≤ pi) (P is less than or equal
to the price the requesters are willing to pay for the
service.)

Because it is always possible to create a bad sequence of
requests, where none of the requests are willing to pay price
P , there does not exist any online algorithm with a constant
competitive ratio for this problem. Not surprisingly even
the offline version of this problem, when we know the whole
sequence of R in advance, is a difficult problem.

Proposition 1. The offline version of the uniform pric-
ing problem for Web services is NP-hard.

Proof. To show that this problem is NP-hard, we reduce
instances of the Subset-Sum problem, as defined in [15],
to this problem. The Subset-Sum problem is a particu-
lar case of the knapsack problem where the price of items,
πj ’s, are equal to their weights, wj ’s. For an instance of
the Subset-Sum problem 〈(w1, w2, · · · , wn), T 〉, we are in-
terested in finding a subset of integer wi’s, that belong to
(w1, w2, · · · , wn), such that their sum is equal to T . Any in-
stance of the Subset-Sum problem can be reduced, in poly-
nomial time, to an instance of the uniform pricing problem,
as shown in the following.

- m = n, N = T , C = 0 (Create an instance of the
uniform pricing problem where the number of service
requests is equal to the number of items in the Subset-
Sum problem, the capacity of server is equal to the
integer value T , and the cost of providing service is 0.)

- ∀i · 1 ≤ i ≤ m ⇒ (pi = 1) ∧ (ni = wi) (Each service
request Ri has the maximum budget of 1, and the
number of concurrent services wi.)

3.2 Dynamic Pricing
In this section, we relax the uniform pricing variation

to an easier case, i.e., dynamic pricing, where a service
provider dynamically announces a price for each request.
Again, we consider an arbitrary sequence of requests R =
〈(n1, p1), (n2, p2), · · · , (nm, pm)〉. The server, (N, C), could
offer a different price, Pi, for each request Ri = (ni, pi) ∈ R.
The problem is which requests should be accepted, and how
to offer a price for each request such that it would maximize
the service provider’s profit. If pi > C, trivially, the optimal
price Pi is always pi, and otherwise the request is rejected.
In fact, in dynamic pricing, we are basically solving an on-
line version of the classic knapsack problem [15]. Formally,
we would like to select a subset of requests, S ⊆ R, within
the capacity N of the service provider, and propose price Pi,
such that the profit of the service provider is maximized:

max
X

Ri∈S

(Pi − C) × ni

and following conditions hold.

-
P

Ri∈S
(ni) ≤ N (The service provider has the capac-

ity to provide the service to the selected requests.)

- ∀i · (ni, pi) ∈ S ⇒ (Pi > C) (The dynamic price that
the service provider announces is greater than the cost
of providing the service.)

- ∀i·(ni, pi) ∈ S ⇒ (Pi = pi) (For each accepted request,
the optimal price to charge, for the service provider, is
equal to the maximum budget of that request.)

Unfortunately, this simpler problem is also NP-hard.

Proposition 2. The offline version of the dynamic pric-
ing problem for Web services is NP-hard.

Proof. To show that this problem is NP-hard, we reduce
the knapsack problem to dynamic pricing problem. Consider
an instance of knapsack problem 〈(w1, w2, · · · , wn), (π1, π2,

· · · , πn), T 〉, it is easy to reduce this problem to an instance
of dynamic pricing problem in polynomial time.

- m = n, N = T , C = 0 (Create an instance of the
dynamic pricing problem where the number of service
requests is equal to the number of items in the knap-
sack problem, the capacity of server is equal to integer
value T , and the cost of providing service is 0.)

- ∀i · 1 ≤ i ≤ m ⇒ (pi = πi) ∧ (ni = wi) (Each service
request Ri has the maximum budget of πi, and the
number of concurrent services wi.)

The online version of dynamic pricing can be compared
with the dynamic (online) knapsack problem [16, 13], where
items arrive according to a Poisson process in time. Online
knapsack problem can be solved, only under some “con-
sistency conditions.” The general case of online knapsack
problem, however, does not have any known solution with a
constant competitive ratio. The authors in [16, 13] evaluate
their proposed method for solving online knapsack problem

through numerical analysis. While we find their work re-
lated to the pricing problem, the ad hoc cases of the knap-
sack problem that they solve are not suitable for our pric-
ing problem. Furthermore, their method does not offer any
concrete competitive ratio. Interested readers can refer to a
PhD thesis on the topic [12].

Next, we consider a variation of our problem that makes
some statistical assumptions about the requests.

4. DYNAMIC PRICING AGAINST
A STATISTICAL ADVERSARY

In this section, we consider our problem against a statis-
tical adversary. Statistical adversaries for online algorithms
were first introduced by Raghavan for analyzing an online
asset allocation algorithm [17]. Online algorithms always
play against an adversary. An adversary tries to request
the least desired requests, and the online algorithm should
be able to deal with such requests. Statistical adversaries
do not behave entirely randomly; inputs under “statistical
adversaries” satisfy some statistical properties.

The variation of dynamic pricing using a statistical ad-
versary is motivated by the fact that dynamic pricing, as
described in the previous section, does not have a concrete
solution, unless we constrain the problem. Our proposed
statistical adversary, on the other hand, does not constrain
the problem. Instead, in this variation of the problem, our
algorithm plays against a weaker adversary than the adver-
sary of the dynamic pricing problem.

In the following, we first introduce the statistical adver-
sary that our algorithm plays against, and then consider the
offline and online algorithms for that statistical adversary.
We believe that some of the statistical information of our
statistical adversary could be extracted from history data
about previous requests.

Again, we consider an arbitrary sequence of requests R =
〈(n1, p1), (n2, p2), · · · , (nm, pm)〉. The server, (N, C), should
decide whether to accept or reject a request, and also offer
a price, Pi, for each request. Again, pricing is trivial; if
pi > C, then Pi = pi. We would like to select a subset
of requests, S ⊆ R, within the capacity N of the service
provider, and propose price Pi, such that the profit of the
service provider is maximized:

max
X

Ri∈S

(Pi − C) × ni

and the following conditions hold.

-
P

Ri∈S
(ni) ≤ N (The service provider has the capac-

ity to provide the service to the selected requests.)

- ∀i · (ni, pi) ∈ S ⇒ (Pi > C) (The dynamic price that
the service provider announces is greater than the cost
of providing the service.)

- ∀i·(ni, pi) ∈ S ⇒ (Pi = pi) (For each accepted request,
the optimal price to charge, for the service provider, is
equal to the maximum budget of that request.)

Our statistical adversary is (Money, Number, MinPrice,

MaxReq, F). In the following we describe the role of each
element. We expect that service providers can obtain the
values of the statistical adversary parameters from the his-
tory data of similar service providers and service requests.

- Money : The optimal profit that the offline algorithm
gains from sequence R.

- Number : The number of requests that should be ac-
cepted by the offline algorithm to achieve the profit
Money.4

- MinPrice : The smallest price that any request would
be willing to pay. We require that MinPrice > C, and
ignore all requests with prices smaller than or equal to
C.

- MaxReq : The maximum number of concurrent ser-
vices that is requested by any request Ri. For any
such Ri, we have ni = MaxReq.

- Function F : For all 1 ≤ x ≤ MaxReq, F (x) represents
the number of requests Ri’s, such that for all such
requests ni = x.

The offline version of our problem, against the above-
mentioned adversary, is still a hard problem; it is NP-hard.

Proposition 3. Pricing against the statistical adversary
is NP-hard.

Proof. Denote the optimal offline algorithm that solves
the dynamic pricing algorithm against the statistical adver-
sary as ALG. To show that this problem is NP-hard, we
reduce the change-making [15] problem to an instance of
ALG. Again, we consider an arbitrary sequence of requests
R = 〈(n1, p1), (n2, p2), · · · , (nm, pm)〉. Change making is the
problem where a cashier wants to provide change for a value
T using some existing coins. The goal is to maximize the
number of coins that are used in changing. Consider an in-
stance of the change-making problem 〈(w1, w2, · · · , wn), T 〉,
where wi’s are coins with certain denominations and T is
the amount for which we would like to solve the changing
problem; we reduce this problem to an instance of ALG in
polynomial time as follows.

- m = n, N = T , C = 0 (Create an instance of the dy-
namic pricing against a statistical adversary problem
where the number of service requests is equal to the
number of items in the change-making problem, the
capacity of the server is equal to integer value T , and
the cost of providing service is 0.)

- ∀i · 1 ≤ i ≤ m ⇒ (pi = wi) ∧ (ni = 1) (Each service
request Ri has the maximum budget of wi, and the
number of requested concurrent services 1.)

In the statistical adversary, (Money, Number, MinPrice,

MaxReq, F), except for the values of Money and
Number, the values for the other parameters can be ex-
tracted from the instance of change-making problem. For
Money, we set it to T , i.e., the value for which change-
making should happen. For Number, we iterate through
all values: 1, 2, · · · , n. In this way, to solve a change-making
problem, we require ALG to be executed n times with n dif-
ferent statistical adversaries with different Number values.
After running ALG n times, we pick the statistical adver-
sary with the largest Number values, and that adversary

4We simplify the problem and assume that Number is
unique. In future work, we would like to extend our model
such that the online algorithm would work based on a set of
Number values.

and the chosen items are the solution to the change-making
problem. This transformation happens in polynomial time
and thus offline dynamic pricing against a statistical adver-
sary is NP-hard.

4.1 Online Algorithm
In this section, we propose an online algorithm that uses

randomization for deciding to accept or reject a particular
request. The idea of our online algorithm is based on threat-
based online algorithms. Threat-based algorithms are intro-
duced in [6], with a more elaborate presentation appearing
in [7]. The idea is to consider a competitive ratio r, and at
each step, assume that the adversary would offer the worst
possible requests henceforth. The online algorithm should
then make decisions that guarantee the competitive ratio of
r if the worst case scenario happens at any step. We define
the worst case scenario as the situation where the adver-
sary (1) decreases its proposed price to MinPrice, and (2)
a big chunk of server capacity remains unsued. Since our
proposed online algorithm is careful to sell its capacity as
it gets closer to the end, the biggest chunk of capacity that
could remain unused is of size MaxReq.

An important question is then what is the best r that can
be achieved? The best attainable competitive ratio r can
be computed from the algorithm itself. In other words, we
define the algorithm based on an arbitrary r, and then try
to find the best r that can be possibly attained; i.e., we try
to maximize r analytically in a formula that represents the
competitive ratio of our algorithm in a closed form. This
approach for computing the best competitive ratio is in ac-
cordance with that of [6, 7]. We defer the computation of r

as a part of our future work.
Before presenting our algorithm we need to define some

notation. At each step i, we define Profiti as the profit
that the online algorithm has up to step i, excluding step i

itself. Similarly, we define Accepti as the number of requests
that the online algorithm has accepted up to step i, and
Capacityi as the capacity of the Web service provider that
has been sold up to step i. We have Accept1 = Profit1 =
Capacity1 = 0. We also define Fi(x) as an updated version
of F (x), and F1(x) = F (x). We update Fi(x) = Fi−1(x)−1,
if Ri−1 is accepted and ni−1 = x, and otherwise Fi(x) =
Fi−1(x); this process is carried out for all 1 ≤ x ≤ MaxReq,
and all steps 2 ≤ i ≤ m.

Figure 1 presents our algorithm, which consists of three
steps. For each service request, the three steps are consid-
ered in a sequential order; if a condition is satisfied in a step,
then the other steps are ignored for that request. The first
step of the algorithm checks whether an incoming request,
Ri, contributes in maintaining the competitive ratio of r. In
other words, in a threat-based environment where the ad-
versary may drop the price to a minimum or a big chunk of
the service provider may remain unused, by accepting Ri,
we would like to remain r-competitive. Also, notice that if
we follow the choices of the offline optimal algorithm, we
should not accept more requests than the optimal offline al-
gorithm does; i.e., we should not accept more than Number

requests. The second step does the wise thing: when it re-
alizes that there are not many requests left to arrive, it ac-
cepts all requests. In fact, once it realizes that the sum of
the remaining requests is less than or equal to the remaining
capacity, it accepts all requests. The third step is the ran-

- At each step i, accept Ri = (ni, pi), if both of the
following conditions hold:

•

(Profiti + (ni × (pi − C)))

+

„

(N − (Capacityi + ni + MaxReq))
× (MinPrice − C)

«

≥ r × Money

(By accepting Ri, and in the worst case scenario,
where a big chunk of capacity of the service
provider remains unused and the rest of capacity
is sold at MinPrice, we remain r-competitive.)

• Accepti + 1 ≤ Number

(We are not accepting more requests than the of-
fline algorithm.)

- At each step i, accept Ri = (ni, pi), if:
X

1≤x≤MaxReq

x × Fi(x) ≤ Capacityi

(If we realize that statistically, there are not enough re-
quests left to arrive that will use the service provider’s
capacity, then we accept the request.)

- Otherwise, with probability prob accept Ri = (ni, pi)
(Randomly accept a request that statistically does not
seem to contribute to maintaining the competitive ra-
tio r.)

Figure 1: Threat-based online algorithm for pricing

against a statistical adversary.

domized step of the algorithm;5 if the conservative criteria
for maintaining r-competitive ratio is not satisfied, we risk
and probabilistically accept the request. This can be justi-
fied by the combinatorial nature of the problem. There is
always the chance that the existing request is a good choice
for using up the capacity of server optimally.

The competitive ratio of this algorithm is r. Notice that
the best value for r is the one that for the worst case se-
quence of requests, would still make the algorithm
r-competitive. In this paper, we do not consider analyz-
ing the competitive ratio of this algorithm. The analysis is
non-trivial and should consider the expected profit of the al-
gorithm and, furthermore, should maximize r based on the
expected profit and probability parameter prob.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we considered the problem of request selec-

tion and pricing for Web service providers, when their re-
quests arrive over time. We first briefly looked at two naive
variations of the pricing problem, namely, uniform and dy-
namic pricing. For uniform pricing, there does not exist any
online algorithm with a constant competitive ratio; and for
dynamic pricing, in its general form, there does not exist any
known online algorithm with a constant competitive ratio.
Our first two variations lead us to a third variation where the
requests, which arrive over time, comply with some statis-
tical properties. We proposed a randomized, threat-based,
online algorithm for this third variation. Our algorithm con-

5For an introduction on randomized online algorithms, read-
ers can refer to [1, 9, 3, 18].

servatively tries to maintain a certain level of competitive-
ness in comparison to the maximum possible profit.

In our future work, we are interested in investigating if it is
possible to weaken some of the statistical assumptions that
we make. We are then interested in calculating the closed
formula of the competitive ratio of our proposed algorithm.
We are also interested in the optimal probability value, i.e.,
the value of prob variable, with which our algorithm gains
the best profit. Alternatively, in our algorithm, we may be
able to have dynamic values for prob; it can be imagined that
prob changes as requests are viewed/accepted. In particular,
it can be conceived that as the capacity of service provider
decreases, prob should become less lenient in accepting new
requests; an analogous approach has been proposed for the
online knapsack problem [16].

We are also interested in enhancing our model and algo-
rithm with the notion of time. When rejecting service re-
quests, our algorithm does not consider any penalty for not
using its unused remaining resources. In a more realistic
model, the service provider will be penalized when its re-
sources remain unused. Also, we are interested in modeling
service requests as requests that ask for a certain capacity
of the service provider for a finite amount of time; as op-
posed to our current unrealistic approach, where a service
requester asks for a certain capacity of the service provider
indefinitely.

Acknowledgments
We would like to thank Alex Lopez-Ortiz for helpful com-
ments, and Mehdi Mirzazadeh for helpful discussions.

6. REFERENCES
[1] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and

A. Wigderson. On the power of randomization in
online algorithms. In STOC ’90: Proceedings of the
twenty-second annual ACM symposium on Theory of
computing, pages 379–386. ACM Press, 1990.

[2] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
1998.

[3] A. Borodin, N. Linial, and M. E. Saks. An optimal
on-line algorithm for metrical task system. Journal of
ACM, 39(4):745–763, 1992.

[4] A. de Mes and E. Rongen. Technical note - web
service credentials. IBM Systems Journal,
42(3):532–537, 2003.

[5] R. El-Yaniv. Competitive solutions for online financial
problems. ACM Computing Survey, 30(1):28–69, 1998.

[6] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin.
Competitive analysis of financial games. In 33rd
Annual Symposium on Foundations of Computer
Science, pages 327–333. IEEE Computer Society
Press, 1992.

[7] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin.
Optimal search and one-way trading online
algorithms. Algorithmica, 30(1):101–139, 2001.

[8] S. Esmaeilsabzali and K. Larson. Service allocation for
composite web services based on quality attributes. In
The First IEEE International Workshop on Service
oriented Solutions for Cooperative Organizations,
pages 71–79. IEEE Computer Society, 2005.

[9] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.
Sleator, and N. E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685–699,
1991.

[10] A. Fiat and G. J. Woeginger, editors. Online
Algorithms: the State of the Art. Proceedings of the
Workshop on the Competitive Analysis of On-line
Algorithms at Schloß Dagstuhl, volume 1442 of Lecture
Notes in Computer Science. Springer, May 1998.

[11] A. V. Goldberg, J. D. Hartline, and A. Wright.
Competitive auctions and digital goods. In Symposium
on Discrete Algorithms, pages 735–744, 2001.

[12] A. J. Kleywegt. Dynamic and Stochastic Models with
Freight Distribution Applications. PhD dissertation,
School of Industrial Engineering, Purdue University,
1996.

[13] A. J. Kleywegt and J. D. Papastavrou. The dynamic
and stochastic knapsack problem. Operational
Research Society, 46(1):17–35, 1998.

[14] R. Lavi and N. Nisan. Competitive analysis of
incentive compatible on-line auctions. In ACM
Conference on Electronic Commerce, pages 233–241,
2000.

[15] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations. John Wiley
& Sons, Inc., 1990.

[16] J. D. Papastavrou, S. Rajagopalan, and A. J.
Kleywegt. The dynamic and stochastic knapsack
problem with deadlines. Management Science,
42(12):1706–1718, 1996.

[17] P. Raghavan. A statistical adversary for on-line
algorithms. In L. A. McGeoch and D. D. Sleator,
editors, On-line Algorithms, volume 7 of DIMACS
Series in Discrete Mathematics and Theoretical
Computer Science, pages 79–84. AMS/ACM, February
1991.

[18] P. Raghavan and M. Snir. Memory versus
randomization in on-line algorithms. IBM J. Res.
Dev., 38(6):683–707, 1994.

