
Interface Automata with Complex Actions - Extended Version

Shahram Esmaeilsabzali Nancy A. Day Farhad Mavaddat

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
{sesmaeil,nday,fmavaddat}@cs.uwaterloo.ca

Technical Report: CS-2005-26 (Revised May 15th, 2006)

Abstract. Many formalisms use interleaving to model concurrency. To describe some system be-
haviours appropriately, we need to limit interleaving. For example, in component-based systems, we
wish to limit interleaving to force the inputs to a method to arrive together in order. In Web services,
the arrival of XML messages consisting of multiple simple parts should not be interleaved with the
behaviour of another component. We introduce interface automata with complex actions (IACA),
which add complex actions to de Alfaro and Henzinger’s interface automata (IA). A complex action
is a sequence of actions that may not be interleaved with actions from other components. The com-
position and refinement operations are more involved in IACA compared to IA, and we must sacrifice
associativity of composition. However, we argue that the advantages of having complex actions make
it a useful formalism. We provide proofs of various properties of IACA and discuss the use of IACA
for modelling Web services.

1 Introduction

Interleaving is a common choice to model the concurrent behaviour of components of a system.
Interleaving means that at each point in time only one component takes a step. The behaviours
of the overall system consist of all possible interleavings of the actions of the components. Many
formalisms, both algebraic and non-algebraic, have adopted interleaving semantics, e.g., [16, 14,
13, 12]. It provides an intuitive and elegant means for modelling and reasoning about systems’ be-
haviours. Henzinger, Manna, and Pnueli, in [11], characterize interleaving semantics as adequate,
meaning they can distinguish between systems with different behaviours, and abstract, meaning
that unnecessary details of systems are ignored in modelling.

However, for some systems, interleaving is not always adequate. Some software artifacts have
multiple constituent elements but represent a single unit, thus, we may wish to group multiple
actions such that their behaviour cannot be interleaved with the behaviour of another component.
In these cases, interleaving is not always appropriate to characterize system behaviour accurately
because it is based on the assumption that the behaviours of a concurrent system include all
possible orderings of actions in a system.

We introduce interface automata with complex actions (IACA), designed to model component-
based and service-oriented systems. An interface automaton with complex actions uses interleav-
ing with complex actions as its semantics for concurrency. A complex action consists of mul-
tiple normal actions that cannot be interleaved with the behaviour of another component. In
component-based systems, at its signature level, a method of a component can be characterized
by the method’s name and a set of parameters. Such parameters are elements of a single software
artifact. Some formalisms choose to model a method by abstracting away its details using, for

2

example, only its name, e.g., [6]. To model the details of the parameter communication, the
arrival of the inputs should not be interleaved with the behaviour of another component. Thus,
we require complex actions to model the semantics of the concurrent behaviour of a component-
based system at this level of detail. In Web services, communication with service requesters and
other Web services occurs through complex XML messages, which are streams of data delimited
appropriately into multiple simple messages. We would like to model complex XML messages of
Web services as non-interruptible software artifacts.

Various approaches have been proposed for grouping multiple actions together (atomic ac-
tions)1[3, 10] or refining a single action into multiple actions (action refinement) [1, 17]. Many of
these approaches are proposed in a process algebraic context. We are interested in defining an
automata-based model with complex actions. We want our model to comply as closely as possible
with the class of interface models, introduced by de Alfaro and Henzinger [7, 6], which are a class
of formalism suitable for describing component-based systems.

The paradigm of component-based development is based upon the principle of reusing already
developed components to create new systems. It should be possible to design each component
independently from the other components to make it reusable in different contexts. However, no
matter how generically a component is designed, to be useful in practice, assumptions need to be
made about its environment. Assuming a less restrictive environment will make the component
applicable in more contexts.

Interface models are designed to facilitate the compatibility of components such that differ-
ent components or services can work together to achieve a desired behaviour. Interface models
assume a helpful environment, which supplies needed inputs and receives all outputs. They also
have well-formedness criteria that support top-down design, which means that a refinement of
a component can be substituted for the original in the context of its composition with other
components. Composition must be commutative and associative. The top-down design property
makes it possible to refine an initial design into a more detailed design. One of our goals in IACA
has been to maintain these propertiers of interface models.

Our IACA model is an extension of de Alfaro and Henzinger’s interface automata (IA) [6, 8],
which is an interface model. An interface automaton captures aspects of the functionality of a
component along with its assumptions about its environment. Using this information about the
environmental assumptions of the components, it is possible to reason about the compatibility of
multiple components that are supposed to collaborate. In IA, the system is described via sets of
input and output actions. As an automaton-based model, an IA captures the required temporal
order of the input and output behaviours of a component. In this way, it captures what the
component assumes about its environment.

The composition of two IAs is a new IA which combines their functionalities through an
interleaving semantics. When the two components are ready to synchronize, i.e., one has an
output that is received by the other as an input (or vice versa), a hidden action is created in the
composition. The environmental assumptions of the two components are combined to describe
the environmental assumptions of the composition. In this interleaving, there is no notion of
real time or a clock, only the temporal order of transitions are modelled. IA composition is
both commutative and associative. Commutativity along with associativity allows for incremental

1 To avoid ambiguity, for actions that consist of multiple normal actions, we chose the term “complex actions”
instead of “atomic actions.”

3

development of a system because the order in which different components are composed does not
affect the result of composition.

The refinement of an IA is defined based on the assumed helpful environment. A refinement
of an IA must have fewer assumptions about its environment than its parent, and as such can
replace the parent in all contexts. With respect to outputs, the refinement of an IA should not
constrain the environment with new outputs that the parent IA did not issue to the environment.
The composition and refinement operators for IA together establish the top-down design property
of IAs.

IACA extends IA with complex actions, which are needed to model actions that should not
be interleaved in composition, such as parameters of methods and complex messages of Web
services. Interleaving usually relies on a notion of atomicity, which is the idea that an action in
the system is indivisible in time [15, 16]. In IA, for example, a transition on an input, output, or
hidden action cannot be interrupted with another. An important question is how to choose the
granularity of atomic actions when modelling a system.

Usually, the granularity of actions can be chosen at a single, uniform level of abstraction.
However, in component-based and service-oriented systems, we come across situations where a
uniform level of abstraction is not “adequate” (using Henzinger et al.’s terminology in [11]).

In IACA, we are interested in having a model that allows us to model multiple levels of
abstraction together. For example, consider the functionality of payment via a credit card,
pay(credit card no, amou
nt). Assume that the value for the credit card no parameter is received via a banking machine,
and the value for the amount parameter is received via a function that retrieves the price of an
item. The challenge is now how to choose an appropriate level of abstraction that is adequate
for modelling the different functionalities of such a system. If we choose to consider pay, without
its parameters, as an action, then our model is not precisely modelling the system. On the other
hand, we cannot choose to model pay as two actions: credit card no and amount in a sequence;
because they do not represent meaningful atomic actions. What we really need is to have a com-
plex action, which groups credit card no and amount as a single action, namely pay. The need to
have complex actions arises because systems often tend to have heterogeneous components that
can only be modelled appropriately if different levels of abstraction for modelling are available.
In our example, credit card no can be an atomic output action of the banking machine, as well
as, a part of the complex action pay of the payment functionality.

The main challenge for IACA is how to define a composition operator and a refinement re-
lation that do not allow interleaving of complex actions, but support top-down design as much
as possible. Compared to other formalisms with complex actions, in IACA we must respect the
helpful environment, which means that in composition a state should not be reached where one
component would have to wait for communication from the other. With complex actions, synchro-
nization is more involved than synchronization in IA, because there can be multiple constituent
parameters that can potentially synchronize. We tried to define IACA composition in such a
way that the necessary synchronization can happen and interface models’ well-formedness cri-
teria are also achieved. However, it became apparent to us that achieving associativity of the
composition operator is not possible. Other approaches that have used types of interleaving with
complex actions have also suffered from the loss of associativity, e.g., A2CCS [10]. Despite the

4

non-associativity of composition, we belive that IACA is useful for modelling software artifacts
with complex actions.

Our definition of composition leads to a natural definition for the IACA refinement relation.
IACA’s refinement relation is intuitively comparable with programming languages’ concepts such
as subclasses and optional parameters for function calls. IACA refinement follows the IA re-
finement principles: a more refined IACA should not constrain its environment more than the
original IACA does. As such, a more refined IACA should provide more inputs (i.e., should be
more controllable by its environment than the original IACA), and issue less outputs (i.e., should
constrain its environment less than the original IACA). Additionally, a more refined IACA, in
comparison with the original IACA, can have complex actions with some more (optional) input
elements at the end of its complex actions. Conversely, a more refined IACA can choose to omit
some of the output elements at the end of the original IACA’s complex actions.

The remainder of the report is organized as follows. We begin by providing background on
IA. Next, we describe IACA and its composition operator and refinement relation. In Section 4,
we compare IACA with similar models that support complex actions, and summarize and discuss
future work in Section 5. Throughout the report, we provide examples of the use of IACA to model
Web services. This report is an extended version of our original work [9]. Here, we have included a
more thorough and formal treatment of IACA composition and refinement, and provide outlines
of the proofs of the properties of IACA.

2 Background: Interface Automata

Interface automata (IA) [6, 8], introduced by de Alfaro and Henzinger, is an automata-based
model designed to be suitable for specifying component-based systems. IA is a part of the class
of models called interface models [7], which are intended to specify concisely how systems can be
used and to adhere to certain well-formedness criteria which make them appropriate for modelling
component-based systems. The two main characteristics of interface models are that they assume a
helpful environment and support top-down design. A helpful environment for an interface provides
the inputs it needs and always accepts all its outputs. Therefore, interfaces are optimistic, and do
not usually specify all possible behaviours of the systems. For example, they often do not include
fault scenarios. Top-down design is based on a notion of refinement, which relates two instances
of a model. A refinement of a model can be substituted for the original. In a well-formed interface
model, a binary composition operator and a refinement relation are defined. Composition is both
commutative and associative. Top-down design means that for three interface models P , P ′, Q,
and the composition of P and Q, P ∥ Q, if P ′ refines P , i.e., P ′ ≼ P , then: (P ′ ∥ Q) ≼ (P ∥ Q).

IAs are well-formed interface models. They are syntactically similar to Input/Output Au-
tomata [13], but have different semantics. Figure 1 shows two IAs. The arrows on top represent
the inputs of the system and arrows at the bottom represent the outputs of the system. The
initial state of an IA is designated by an arrow with no source. IA Prod is a component (service)
that receives either an ISBN or a name of a book, and based on the request provides the price
of the book in Canadian or US dollars. The author of a book is also an output of the system.
Input actions are followed by “?”, and output actions by “!”. IA Pay carries out a credit card
payment by receiving an amount in Canadian dollars and a credit card number, and produces
either a reference number for a successful transaction or an error number.

5

Definition 1. An interface automaton (IA), P = ⟨VP , iP ,AI
P ,AO

P ,AH
P , τP ⟩, consists of VP a

finite set of states, iP ∈ VP the initial state, AI
P , AO

P and AH
P , which are disjoint sets of input,

output, and hidden actions, respectively, and τP the set of transitions between states such that
τP ⊆ VP ×AP ×VP , where AP = AI

P ∪AO
P ∪AH

P . Well-formed IAs must be input deterministic [8],
i.e., for any two input transitions (u, a, v) and (u, a, l), v = l.

For an IA P , and a state u ∈ VP : AI
P (u), AO

P (u), and AH
P (u) represent the sets of input,

output, and hidden actions, respectively, that have transitions with source u.

in_us?

author!

name?

ISBN?
in_cdn?

cdn_price!

us_price!

name in_us

cdn_price us_price author

Prod

ISBN in_cdn

credit_no?

ref_no!

cdn_price?

Pay

err_no!

err_noref_no

us_pricecredit_no cdn_price

Fig. 1: Two IAs: Prod and Pay.

2.1 IA Composition

The composition of two IAs consists of all possible interleaved transitions of the two IAs, except
for those actions that are shared. On a shared action (input of one IA and output of the other
IA), the two IAs synchronize in the composition.

First, we define when two IAs are composable.

Definition 2. IAs P and Q are composable if they do not take any of the same inputs and do
not produce the same outputs, and their hidden actions do not overlap with other actions:

(AI
P ∩AI

Q) = (AO
P ∩AO

Q) = (AH
P ∩AQ) = (AH

Q ∩AP) = ∅

For two composable IAs, we can define their set of shared actions.

Definition 3. Considering two IAs, P and Q, their set of shared actions is defined as:

Shared(P, Q) = AP ∩AQ

A hidden action is created by shared actions. During composition when an output action of one
component is internally consumed by an input action of another component, a synchronization
happens and the two actions are reduced to a hidden action on a single transition. To define
composition, we begin by defining the interleaved product of actions and states of two composable
IAs:

6

Definition 4. For two composable IAs, P and Q, their interleaved product, P ⊗ Q, is defined
as follows.

VP⊗Q = VP × VQ

iP⊗Q = iP × iQ
AI

P⊗Q = AI
P ∪AI

Q\Shared(P, Q)
AO

P⊗Q = AO
P ∪AO

Q\Shared(P, Q)
AH

P⊗Q = AH
P ∪AH

Q ∪ Shared(P, Q)

τP⊗Q =

⎛

⎝

{((p, q), a, (p′, q)) | (p, a, p′) ∈ τP ∧ a /∈ Shared(P, Q) ∧ q ∈ VQ}
∪ {((p, q), a, (p, q′)) | (q, a, q′) ∈ τQ ∧ a /∈ Shared(P, Q) ∧ p ∈ VP }
∪ {((p, q), a, (p′, q′)) | (p, a, p′) ∈ τP ∧ (q, a, q′) ∈ τQ ∧ a ∈ Shared(P, Q)}

⎞

⎠

In Figure 2, the matrix of states and transitions represents the interleaved product of IAs
A and B. IAs A and B are composable and b is a shared action of the two IAs. Transitions on
non-shared actions are interleaved, and a transition is created on a hidden action to represent the
synchronization on b (from state (1,2’) to state (2,3’)). Hidden actions have “;” following their
names.

The composition of two IAs is defined based on their interleaved product. In the composition
of two composable IAs, because of the assumption of a helpful environment, neither component
should have to wait to synchronize, i.e., if one component is ready to issue an output action, the
other should be ready to receive the action immediately. A state of the interleaved product where
one component would have to wait is considered an illegal state. The composition of two IAs does
not include their illegal states.

Definition 5. An illegal state of two composable IAs, P and Q, is a state in which one of the
IAs has an output action, belonging to their set of shared actions, enabled in that state and the
other IA does not have any transition using the corresponding action.

Illegal(P, Q) =

⎧

⎨

⎩

(v, u) ∈ VP × VQ | ∃a ∈ Shared(P, Q) ·

⎛

⎝

a ∈ AO
P (v) ∧ a /∈ AI

Q(v)
∨
a ∈ AO

Q(u) ∧ a /∈ AI
P (v)

⎞

⎠

⎫

⎬

⎭

An illegal state is a combined state of the two components in which one is ready to issue an
output and the other is not ready to receive it. If the interleaved product of two IAs is open,
i.e., there are some inputs that do not belong to the set of shared actions of the two IAs, then
a helpful environment may be able to avoid an illegal state by not providing the inputs that
lead the product to its illegal states. Inputs of an open system allow its environment to control
it. However, if the interleaved product of two IAs is closed, i.e., all actions are either output
or hidden, and thus uncontrollable, then an environment cannot avoid the illegal states of the
interleaved product, and the composition becomes empty.

Composition of two composable IAs, P and Q, can be formally defined based on a notion of
a legal environment for them.

An environment E for an IA P is itself an IA, and satisfies the following conditions:

- E and P are composable, and
- E is non-empty, and
- E can receive all of P ’s outputs, i.e., AI

E = AO
P , and

7

- Illegal(P, E) = ∅.

In the following three definitions, we formalize the notions of: legal environment, compatible
states of two composable IAs, and finally the composition of two composable IAs.

Definition 6. Given two composable IAs, P and Q, a legal environment for the pair (P, Q) is
an environment E for P ⊗Q such that no state in Illegal(P, Q)×E is reachable in (P ⊗Q)⊗E.

We can now define the set of compatible states for two composable IAs as the existence of a
legal environment for their product.

Definition 7. Given two composable IAs P and Q, a pair (v, u) ∈ VP × VQ is compatible if
there is an environment E for P ⊗ Q such that no state in Illegal(P, Q) × VE is reachable in
(P ⊗ Q) ⊗ E from the state ((v, u), iE). Cmp(P, Q) is the set of all such states.

Having defined the compatibility of two composable IAs, we can now formally define the
composition of two IAs.

Definition 8. Given two composable IAs, P and Q, P ∥ Q is an IA with the same actions as
P ⊗ Q, states VP∥Q = Cmp(P, Q), initial state iP∥Q = {iP⊗Q} ∩ Cmp(P, Q), and transitions
τP∥Q = τP⊗Q ∩ {Cmp(P, Q) ×AP⊗Q × Cmp(P, Q)}.

Let us look at our example in Figure 2 again. In state (0,2’) of the interleaved product of A
and B, IA B is immediately ready to send b but IA A is not yet ready to receive it. State (0,2’)
is an illegal state, as are (2,2’) and (3,2’), shown in black boxes. These states are not included in
the composition. States and transitions on paths that lead to these illegal states where the path
consists entirely of output and hidden actions are also not included; we call such paths autonomous
paths. The environment does not have any control over output and hidden transitions. State (0,1’)
(shown with filled in circle) is enabled with e! and as such can lead to an illegal state. Thus, state
(0,1’) is itself an illegal state, because even in the presence of a helpful environment, execution
may lead to illegal state (0,2’), from state (0,1’). Non-reachable states are also eliminated. The
IA resulting from the composition of IAs A and B is labelled A ∥ B in Figure 2.

The composition of two composable IAs is non-empty if their interleaved product’s initial state
belongs to their set of “compatible states.” IA composition, in practice, can be computed by a
simple backtracking algorithm, shown in Figure 3, which starts from all illegal states and considers
any other states that can reach them through autonomous paths, as illegal states themselves. The
states that survive the backtracking algorithm are compatible states of the interleaved product
and will appear in the composition.

As another example, the composition of the IAs Prod and Pay in Figure 1 is shown in
Figure 4. All states where Prod generates the output us price and Pay is not ready to receive it
are considered illegal states and are not included in the composition. In this example, by removing
such illegal states, transitions on in us? are removed. However, in us? still appears as an input
of the composition.

2.2 Refinement

IA Q refines IA P if Q provides the services of P . Q can have more inputs than P , but no
more outputs. As an example, GenPay in Figure 5 refines Pay in Figure 1. GenPay provides

8

A

a b c

30 1 2

a? b? c?

0 1 2 3

0’

1’

2’

3’

a?

a?

a?

c?

c?

c?

c?
b;

a c d

e

Computing the Product of A and B A||B

b;e!d?a? c?d?

e! a? e!

d? d?

e!

d?

e!

d

be

d? e! b!

0’ 1’ 2’ 3’

B

Fig. 2: Two composable IAs, A and B, and their composition A ∥ B.

Algorithm RemoveIllegal(P , Q, τP⊗Q, VP⊗Q) ;
Variables : τP∥Q, VP∥Q, L[], i, temp ;

begin

i = 0 ;
Li = Illegal(P, Q) ;
repeat

/* Backtrack one transition to identify more illegal states */
temp = {(p, q)| ∃((p, q), a, (p′, q′)) ∈ τP⊗Q · (p′, q′) ∈ Li ∧ a ∈ (AO

P⊗Q ∪AH
P⊗Q)} ;

/* Add to the set of illegal states */
Li+1 = Li ∪ temp ;

until Li == Li+1;
VP∥Q = VP⊗Q\Li;
τP∥Q = τP⊗Q\{((p, q), a, (p′, q′))| ((p, q) ∈ Li) ∨ ((p′, q′) ∈ Li)} ;
return τP∥Q, VP∥Q;

end

Fig. 3: Algorithm for computing the composition of two composable IAs P and Q.

9

ISBNname in_us credit_no

ISBN?

name?
err_no! err_no!

author!

ref_no!

ref_no!credit_no?

author!

authorerr_noref_no

in_cdn

cdn_price;in_cdn?
author!

credit_no?

Prod || Pay

Fig. 4: Prod ∥ Pay is the composition of two composable IAs in Figure 1.

ref_no!

err_noref_no

GenPay

credit_no us_price

us_price?

cdn_price?
credit_no?

err_no!

cdn_price

Fig. 5: GenPay refines Pay in Figure 1.

10

more services than Pay since it can carry out payments in both Canadian and US dollars. As an
interface model, top-down design guarantees that (Prod ∥ GenPay) refines (Prod ∥ Pay).

The refinement of IA is defined using a refinement relation between the states of two IAs. If
IA Q refines IA P , stated as Q ≼ P , then an alternating simulation relation [2] exists between the
states of Q and P .2 For simplicity, we refer to the alternating simulation relation as the refinement
relation on states. For q ∈ VQ and p ∈ VP , q refines p, q ≼ p, if q has more than or the same input
actions as p, and less than or the same output actions as p. Also, for any state q′ reachable from
q, immediately or through hidden actions, there is a corresponding state p′ similarly reachable
from p such that q′ ≼ p′. All states reachable from a state only through hidden transitions are
considered the same state for the purposes of refinement. The initial state of Q must refine the
initial state of P .

In the following, we formally describe the IA refinement relation. For a state u ∈ VP ,
closureP (u) is a set containing u and all states that can be reached from u through internal
transitions. The externally enabled input and externally enabled output actions of a state can
then be defined.

Definition 9. For IA P , and state u ∈ VP , the set of externally enabled input (ExtEnI
P (p))

and externally enabled output (ExtEnO
P (p)) actions are:

ExtEnI
P (u) = {a| ∀u′ ∈ closureP (u) · a ∈ AI

P (u′)}
ExtEnO

P (u) = {a| ∃u′ ∈ closureP (u) · a ∈ AO
P (u′)}

The externally enabled input and output actions are used to model the fact that an envi-
ronment cannot detect the hidden transitions which may happen in a certain state of an IA. An
environment does not distinguish between all different states that it may reach through hidden
transitions. As such, to define a proper refinement for an IA P , for any of its states u ∈ VP ,
we need to identify all the states that P can move through its hidden transitions, i.e., identify
closureP (u). A proper refinement of P , IA Q, needs to only be receptive to input actions, i.e.,
output actions from the environment that are enabled in all states belonging to closureP (u). In
other words, the environment of P is careful not to invoke an input that may not be enabled
in one of the states in closureP (u), and Q would be a proper refinement, in its corresponding
state for u, if it can handle all input actions (and possibly more) that belong to ExtEnI

P (u).
Output transitions may be issued from any of the states in closureP (u), and therefore Q would
be a proper refinement if, in its corresponding state for u, it does not issue more output to the
environment than P does in any of the states belonging to closureP (u).

To check for refinement relation between two IAs, we should check for the existence of a
refinement relation which includes the pair of the initial states of the two IAs, and furthermore,
appropriately propagates the refinement relation to the other states of the two IAs. The following
three definitions formalize the refinement relation.

2 An alternating simulation relation can be distinguished from a regular simulation relation, in that an alternating
simulation relation can be defined for composite systems consisting of multiple components. P ′ is related to P ,
a component of a composite system, by an alternating simulation, if P ′ can mimic the transitions of P , and
furthermore it does not constrain the other components in the composite system more than P does. It is also
possible to define an alternating simulation relation with respect to a set of components belonging to a composite
system; i.e., P can be a set of components. All other components not being involved in an alternating simulation,
are considered as the environment.

11

Definition 10. For a state p and an externally enabled action a ∈ ExtEnI
P (p) ∪ ExtEnO

P (p),
the externally reachable states are defined as:

DestP (p, a) = {p′| ∃(r, a, p′) ∈ τP · r ∈ closureP (p)}

Definition 11. The binary relation, alternating simulation ≼ ⊆ VQ × VP , between two states
q ∈ VQ and p ∈ VP (represented as q ≼ p) holds if the following conditions are true:

- ExtEnI
P (p) ⊆ ExtEnI

Q(q)
(q has more, or the same, externally enabled inputs than p.)

- ExtEnO
P (p) ⊇ ExtEnO

Q(q)
(q has less, or the same, externally enabled outputs than p.)

- ∀ a ∈ (ExtEnI
P (p) ∪ ExtEnO

Q(q)) · ∀ q′ ∈ ExtDestQ(q, a) · ∃ p′ ∈ ExtDestP (p, a) · q′ ≼ p′

(For all common externally enabled actions at p and q, and all states reachable from q via
those actions, there exists a state in P that simulates q’s behaviours.)

This relation essentially defines the basics of a recursive refinement relation where a state
in the refined IA can have more inputs and less outputs enabled, than the original interface.
Furthermore, all neighboring states in the refined IA have a corresponding state in the original
IA (the third condition of the relation).

Definition 12. IA Q refines IA P , Q ≼ P ,if:

- AI
P ⊆ AI

Q

- AO
P ⊇ AO

Q

- iQ ≼ iP

IA refinement is a reflexive and transitive relation.

3 Interface Automata with Complex Actions

Interface automata with complex actions (IACA) extends interface automata with the ability
to declare a sequence of transitions to be a complex action. The transitions within a complex
action are not interleaved with transitions from another component during IACA composition.
Complex actions in an IACA are meant to model software artifacts such as methods or complex
messages, which can have multiple constituent elements but should not be interleaved with other
actions in composition. As an example, Figure 6 shows an IACA, CompPay, with a complex action
pay in cdn, represented by the dashed transition. IACA CompPay is similar to IA Pay of Figure 1,
except that the actions cdn price? and credit no? cannot be interleaved with actions from another
component during composition with another IACA. Intuitively, we do not want pay in cdn to
be interleaved since it represents a single method that has more than one parameter. From
the perspective of interface models, the complex action pay in cdn captures the environmental
assumption of IACA CompPay, that all of its parameters should arrive in the correct order.

Complex actions represent either input or output behaviours, and thus should consist entirely
of either inputs or outputs, possibly along with some hidden actions in the beginning of the
sequence of actions of a certain complex action. Complex actions can only be a linear sequence

12

us_pricecredit_no

4

ref_no!

err_no!321

err_noref_no

cdn_price

pay_in_cdn

cdn_price?

CompPay

credit_no?

Fig. 6: IACA CompPay represents similar functionality as IA Pay in Figure 1.

of transitions. The states within a complex action are called internal states and are represented
by circles with an “x” in them. In Figure 6, states 1, 3, and 4 are normal states of CompPay and
state 2 is the only internal state.

In the remainder of this section, we first introduce IACA formally, and then define its com-
position operator and refinement relation.

Definition 13. An interface automaton with complex actions (IACA) P = ⟨V N
P , V int

P , iP ,AI
P ,AO

P

,AH
P ,AC

P , τP , φP ⟩, has the following elements:

- V N
P is the set of normal states.

- V Int
P is the set of internal states. V N

P ∩ V Int
P = ∅. The internal states are the ones inside a

complex action. We denote VP = V N
P ∪ V Int

P as the set of all states.
- iP is the initial state. iP ∈ V N

P .
- AI

P ,AO
P ,AH

P are disjoint sets of input, output and hidden actions. These are normal, non-
complex actions. We denote AN

P = AI
P ∪AO

P ∪AH
P .

- AC
P is the set of complex actions where AC

P ∩AN
P = ∅. We denote AP = AC

P ∪AN
P .

- τP ⊆ VP × AN
P × VP is the set of normal (non-complex) transitions. We require that each

v ∈ V Int
P is the source of exactly one transition and the destination of exactly one transition

in τP .
- φP ⊆ V N

P ×AC
P × V N

P is the set of complex transitions. Every (u, c, v) ∈ φP is associated with
a sequence of non-complex transitions in τp called a complex fragment, shown as frag(u, c, v).
A complex fragment is defined as an alternating sequence of states and normal actions:
frag(u, c, v) = ⟨u, a0, s0, a1, s1, . . . , sn−1, an, v⟩ where
- ∀i · si ∈ V Int

P (all si’s are internal states.), and
- (∀i · (ai ∈ (AI

P ∪ AH
P))) ∨ (∀i · (ai ∈ (AO

P ∪ AH
P))) (all actions either belong to the union

of input and hidden normal actions, or belong to the union of output and hidden normal
actions.), and

- ((u, a0, s0) ∈ τP)∧ ((sn−1, an, v) ∈ τP)∧ ∀i(0 < i < n) · (si−1, ai, si) ∈ τP (every transition
is a non-complex transition.)

As an example, in Figure 6, frag(1, pay in cdn, 3) = ⟨1, cdn price?, 2, credit no?, 3⟩. We use
the function sched(u, c, v) to represent the schedule of a complex transition as the sequence of

13

normal actions that appear in the complex transition. As an example, sched(1, pay in cdn, 3) =
⟨cdn price?, credit no?⟩.

An IACA is well-formed if, first, each complex action is associated with a unique schedule,
and second, it is input deterministic.

Definition 14. An IACA P = ⟨V N
P , V int

P , iP ,AI
P ,AO

P ,AH
P ,AC

P , τP , φP ⟩ is well-formed if:

- (∀(u, c, v) ∈ φP · ∀(u′, c, v′) ∈ φP · sched(u, c, v) = sched(u′, c, v′)) ∧
(∀(u, c, v) ∈ φP · ∀(u′, d, v′) ∈ φP · sched(u, c, v) = sched(u′, d, v′) ⇒ d = c)
(Complex transitions with the same complex actions have same schedules, and complex actions
with same schedules have the same complex action names.)

- ∀(u, a, v) ∈ τP , (u, a, v′) ∈ τP · a ∈ AI
P ⇒ (v = v′)

(Similar to IA, IACA is input deterministic.)

In the remainder of the report we are only interested in well-formed IACAs and whenever we
refer to an IACA, we mean a well-formed IACA.

The constraint that internal states have exactly one incoming transition and exactly one out-
going transition, together with the constraints on φP above guarantee that a complex transition is
associated with a unique sequence of non-complex transitions, and such a sequence is associated
with a unique complex action.

Every IA is an IACA with empty sets of complex transitions and complex actions. We call the
IA that consists of all parts of an IACA except the complex transitions and the complex actions,
the equivalent IA to an IACA. Formally:

Definition 15. Given an IACA, P = ⟨V N
P , V int

P , iP ,AI
P ,AO

P ,AH
P ,AC

P , τP , φP ⟩, Q = ⟨VP , iP ,AI
P ,

AO
P ,AH

P , τP ⟩ is the equivalent IA for P .

3.1 Composition

IACA composition is a binary function mapping two composable IACAs into a new IACA. The
main difference between IACA and IA composition is that transitions within a complex action
are not interleaved in IACA composition. This behaviour is necessary to ensure all parameters of
a method call or a message arrive together in the exact order required. Synchronization between
actions of the two components may occur within a complex fragment, but each complex fragment
in the two IACAs maintains its sequence of actions in the composition (possibly with some
actions having become hidden actions). Synchronization, similar to IA, create hidden transitions,
however, unlike IA, with a complex fragment, no interleaving can happen. In the composition of
two IACAs, similar to IA composition, we combine the environmental assumptions of two IACAs.
The assumption that a complex fragment has about its environment, i.e., its schedule cannot be
interleaved, is translated as the assumption that the other IACA in the composition provides
appropriate actions, that belong to their shared actions, exactly in the order of the schedule of
the complex fragment.

Furthermore, either the whole complex fragment is present in the composition or the complex
fragment should not appear in the composition at all. The IACA composition of two composable
IACAs is a subset of the IA composition of the equivalent IAs for the two IACAs.

Figure 7 shows the composition of CompPay, in Figure 6, and component Prod (now viewed as
an IACA), in Figure 1. The transitions within the complex transition pay in cdn in CompPay are

14

not interleaved with other actions, and pay in cdn remains a complex action in Prod ∥ CompPay.
The composition involved a synchronization between the input cdn price in CompPay and the
output cdn price in Prod, which results in a hidden action within the complex action pay in cdn.

ISBN?

name? err_no!

err_no!
author!

author!
ref_no!

ref_no!

credit_no?in_cdn? cdn_price;

pay_in_cdn

credit_no

ref_no err_no author

name ISBN in_cdn in_us

Fig. 7: Prod ∥ CompPay

The composability criteria in IACA includes the composability criteria of IA plus extra re-
strictions to handle complex transitions. If the schedule of two complex transitions, one from
each IA, overlap without the schedule of one being a prefix of the schedule of the other, then it is
not possible to maintain the sequentiality of either complex action. Furthermore, such a resulting
complex transition cannot be associated with any of the complex transitions belonging to the two
IACAs. As an example, in Figure 8 the complex action M of IACA B is a prefix of the complex
action L of IACA A, i.e., M ⊑ L, and thus A and B are composable.

Definition 16. Two IACAs are composable, if their equivalent IAs are composable, and for any
given pair of complex transitions belonging to two IACAs, either their schedules do not overlap,
or the schedule of one is a prefix of the other.

Similar to IA, the set of shared actions for two composable IACAs can be defined with respect
to their normal actions.

Definition 17. For two composable IACAs, P and Q, their set of shared actions is:

Shared(P, Q) = AN
P ∩AN

Q

We define the composition of two IACAs using the following sequence of constructive steps:

1. Compute the interleaved product of two IACAs, P ∗Q. The IACA interleaved product differs
from the IA interleaved product, in that interleavings of transitions within complex actions
are not allowed.

2. Remove illegal normal states from the interleaved product as for IA.
3. Remove illegal internal states from the interleaved result of (2). We call the result the legal

interleaved product, P ! Q.

15

4. Compute the complex transitions. The result is P ∥ Q.

Next, we define these steps mathematically, and use the simple IACAs of Figure 8 to illustrate
these steps.

30 1 2

a? c?

4

b? d?
L

A

0’

1’

2’

3’

4’

5’

a?

a?

a?

a?

a?

b;

g? g?

h? h?
d?

d?

d?

d?

d?

h?
c;

0 1 3 42

(a) Step 1: Computing A*B

0’

1’

2’

3’

4’

5’

a?

b;

c;

g?

h?
d?

0 1 2 3 4

db ca

g?

1’ 2’ 3’

0’ g? b! c!

hg

M

b c
B

4’

5’

h?

b!

a? g? c; d?

a hgd

b;
L

h?

0’

1’

2’

3’

4’

5’

a?

b;

c;

g?

h?
d?

0 1 2 3 4

(b) Step 2: A*B without normal illegal states

(d) Step 4: Computing A||B(c) Step 3: Removing illegal internal states

b;

b;

Fig. 8: Computing IACA composition for two composable IACAs.

Step 1: Interleaved Product for IACA In the first step, we compute the interleaved product
of two composable IACAs P and Q, P ∗ Q. Part (a) of Figure 8 illustrates the first step of
computing the composition of two IACAs in our example.

Definition 18. For two composable IACAs, P and Q, we define their interleaved product, P ∗Q,
as follows:

16

VP∗Q = VP × VQ

V Int
P∗Q = {(p, q) ∈ (VP × VQ)| (p ∈ V Int

P) ∨ (q ∈ V Int
Q)}

iP∗Q = (iP , iQ)
AI

P∗Q = (AI
P ∪AI

Q) \ Shared(P, Q)
AO

P∗Q = (AO
P ∪AO

Q) \ Shared(P, Q)
AH

P∗Q = AH
P ∪AH

P ∪ Shared(P, Q)
AC

P∗Q = AC
P ∪AC

Q

τP∗Q =
{((p, q), a, (p′, q)) | (p, a, p′) ∈ τP ∧ a /∈ Shared(P, Q) ∧ p ∈ V N

P ∧ q ∈ V N
Q } (1)

∪ {((p, q), a, (p, q′)) | (q, a, q′) ∈ τQ ∧ a /∈ Shared(P, Q) ∧ q ∈ V N
Q ∧ p ∈ V N

P } (2)
∪ {((p, q), a, (p′, q′)) | (p, a, p′) ∈ τP ∧ (q, a, q′) ∈ τQ ∧ a ∈ Shared(P, Q)} (3)
∪ {((p, q), a, (p′, q)) | (p, a, p′) ∈ τP ∧ a /∈ Shared(P, Q) ∧ p ∈ V Int

P ∧ q ∈ V N
Q } (4)

∪ {((p, q), a, (p, q′)) | (q, a, q′) ∈ τQ ∧ a /∈ Shared(P, Q) ∧ q ∈ V Int
Q ∧ p ∈ V N

P } (5)

We call the sets VP∗Q and τP∗Q, the set of interleaved states and interleaved transitions of P and
Q, respectively.

The interleaved product of two composable IACAs is not an IACA. In particular, we cannot
define φP∗Q for the interleaved product of P and Q. We can define a new IACA only after following
the four steps of creating the composition.

For each state (p, q) ∈ VP∗Q, if either p or q is an internal state, then (p, q) is an internal state.
For example, in part (a) of Figure 8, all states associated with state 3 are internal states, and
have transitions only on action d?. Internal states of P ∗ Q do not interleave with other actions.

The third set of interleaved transitions, in Definition 18, consists of synchronizations that
can happen between two IACAs on shared actions. The composability criteria guarantee that
each action a is an input action of one IACA and an output of the other IACA. The first set of
interleaved transitions consists of those transitions that do not involve shared actions, and are
transitions that exit normal states of P . The fourth set is for transitions originating from internal
states of P ; these are not interleaved with the transitions from Q. The second and fifth sets of
the interleaved transitions are similarly defined as the first and fourth sets, but for IACA Q’s
transitions.

The definition of the fourth and fifth sets of interleaved transitions exclude the transitions
where two internal states of two IACAs collide. Two internal states, belonging to two complex
transitions of two IACAs, collide when each internal state wants to enforce its schedule, and as
such none of the them can enforce its schedule. If two internal states have the same shared action
enabled, they do not collide, and can synchronize to create a mutual hidden transition, as allowed
by the third set of interleaved transitions in the definition. As an example of a collision of internal
states, state (3, 2′), in part (a) of Figure 8, does not have any transitions because both 3 and 2
are internal states, and synchronization is not possible for their enabled transitions.

Definition 18 guarantees that each internal state of the interleaved product has a maximum
of one transition entering it, and a maximum of one transition exiting it. We defer the proof of
this claim to when we remove all illegal states, in Section 3.1, and then prove a stronger claim
for internal states.

Step 2: Remove illegal normal states Similar to IA composition, the states where a shared
output action is enabled, but there is no input ready from the other IACA are illegal states, and

17

are not included in the composition. In this step, we remove the illegal normal states from the
interleaved product. The illegal normal states of two IACAs are the same as the illegal states for
their equivalent IAs, as defined in Definition 5. Illegal normal states can include internal states
of the interleaved product.

Part (a) of Figure 8 shows the illegal normal states of the two IACAs as black-filled boxes in
the interleaved product. Part (b) of Figure 8 shows the result of removing illegal normal states
for the interleaved product of A and B. Similar to IA, we remove all illegal normal states, as
well as, transitions that are on paths to illegal states that consist entirely of output and hidden
actions, i.e., autonomous paths. We then remove all non-reachable states and transitions. A
similar algorithm to the one in Figure 3, which we used for removing illegal states for IAs, can
be used to remove illegal normal states in IACA.

Step 3: Remove illegal internal states Since in step 2, we treat normal and internal states
similarly, and also since some of the internal states of two composable IACAs may collide, some
of the internal states do not appear in the interleaved product of two IACAs. As such, there
could exist some partial complex fragments that cannot be associated with any complex actions.
Those internal states of the interleaved product that have no outgoing transitions are called illegal
internal states, and should be removed. Illegal internal states cannot be part of a complex action
because all complex fragments must terminate in a normal state. For example, the empty box in
part (b) of Figure 8 is an illegal internal state.

We use a backtracking algorithm to remove all illegal internal states. Removing an illegal
internal state can create a new illegal internal state. The algorithm in Figure 9 needs to backtrack
until no illegal internal states exist in the interleaved product of two IACAs. However, unlike
removing illegal normal states, we do not have to remove autonomous paths which lead to illegal
internal states, because a helpful environment can avoid creating partial complex fragments by
not issuing certain inputs. In fact, in Step 2 we have already removed such autonomous paths,
and at this stage a helpful environment is able to avoid the undesired states. Part (c) of Figure 8
shows the result of removing illegal internal states of the interleaved product of Part (b). In the
following, we formally define the set of illegal internal states, and then present the algorithm for
removing those states.

Definition 19. Given two composable IACAs P and Q and their sets of interleaved transitions,
τP∗Q, and interleaved states, VP∗Q, the set of illegal internal states of P and Q,
IllegalInternal(P, Q), is defined as follows:

IllegalInternal(P, Q) = {(p, q) ∈ V Int
P∗Q | !((p, q), a, (p′, q′)) ∈ τP∗Q}

For two composable IACAs P and Q, we call the result of removing all illegal internal states
and transitions defined on them, as carried out in the algorithm in Figure 9, their legal interleaved
product, denoted as P ! Q. Other elements of P ! Q are defined similar to the ones defined for
their interleaved product in Definition 18, with the necessary adjustments for those states and
transitions that do not belong to VP!Q and τP!Q anymore. Again, we still cannot compute φP!Q

at this stage.
The important property of an internal state in a legal interleaved product is that it is the

source of exactly one transition and the destination of exactly one transition.

18

Algorithm RemoveIllegalInternal(P , Q, τP∗Q, VP∗Q) ;
Variables : τP!Q, VP!Q, L[], i, temp ;

begin

i = 0 ;
Li = IllegalInternal(P, Q) ;
repeat

/* Backtrack to identify more illegal internal states */
temp = {(p, q) ∈ V Int

P∗Q | ∃((p, q), a, (p′, q′)) ∈ τP∗Q · (p′, q′) ∈ Li} ;
/* Add to the set of illegal internal states */
Li+1 = Li ∪ temp ;

until Li == Li+1;
VP!Q = VP∗Q\Li;
τP!Q = τP∗Q\{((p, q), a, (p′, q′))| ((p, q) ∈ Li) ∨ ((p′, q′) ∈ Li)} ;
return τP!Q, VP!Q;

end

Fig. 9: Algorithm for removing illegal internal states and creating the legal interleaved product of
two composable IACAs P and Q.

Lemma 1. For each state (p, q) ∈ VP!Q, if (p, q) is an internal state, i.e., (p, q) ∈ V Int
P!Q, then

there is exactly one transition in τP!Q with source (p, q), and exactly one transition in τP!Q with
destination (p, q).

Proof. The way VP!Q and τP!Q are computed, in the algorithm in Figure 9, guarantees that the
only internal states in VP∗Q that are not removed are those that, first, appear as the source of at
least one transition, and second, appear as the destination of at least one transition, otherwise
they are removed. Therefore, we only need to prove that for each internal state (p, q), there
exists maximum one transition with source (p, q), and maximum one transition with destination
(p, q). We first show that for any (p, q) ∈ V Int

P∗Q, there exists maximum one transition in τP∗Q

with source (p, q), and then show that there also exists maximum one transition in τP∗Q with
destination (p, q).

We show by contradiction that there does not exist more than one transition with source
state (p, q). We first remark that the five sets of transitions for defining τP∗Q, in Definition 18,
are disjoint sets, because of the constraints on the source states, and actions being shared or
non-shared. Also, the transitions with source that are internal states can be only created by sets
(3), (4), and (5), in Definition 18. Furthermore, for (p, q) ∈ V Int

P∗Q, we claim that only one of the
sets (3), (4), or (5) can define a transition with source (p, q). This claim is true because, first, sets
(4) and (5) represent disjoint source states for their transitions, and second, if set (3), along with
either set (4) or (5), can create an extra transition, it would mean that an internal state, either
p or q, or both, have two transitions enabled on them, one being a shared and one a non-shared
action of P and Q, which cannot be true.3 As such, for (p, q) ∈ V Int

P∗Q, if there are more than one
transition with source (p, q), then all of them should be created by the same set, i.e., either (3),
(4), or (5). However, for that to happen, either P or Q, or both, should have internal states that
are the source of more than one transition, which cannot be true.

Having shown that (p, q) can be the source of exactly one transition, next, we show that there
could not exist more than one transition with destination (p, q). For state (p, q) ∈ VP∗Q, either p,
q, or both are internal states. In the following, we consider the three possibilities separately.

3 For the general case when (p, q) /∈ V Int
P∗Q, mutual exclusiveness among sets (3), (4), and (5) does not hold.

19

1. p ∈ V Int
P and q ∈ V N

Q : According to Definition 18, only sets (1), (3), and (4) can contribute to
creating transitions with destinations in (p, q). We argue that only one of the three sets can
create transitions with destination (p, q).
Let us consider a transition ((p′, q′), a, (p, q)) ∈ τP∗Q. By the definition of sets (1), (3), and
(4) in Definition 18, ((p′, q′), a, (p, q)) exists only if (p′, a, p) ∈ τP . Furthermore, (p′, a, p) is a
part of the complex fragment of a complex transition in P , because p ∈ V Int

P . As such, there
exists only one transition in P with destination p. Furthermore, considering the definition of
sets (1) and (4), for transition ((p′, q′), a, (p, q)) ∈ τP∗Q, we have q = q′, and since there exists
exactly one (p′, a, p) ∈ τP , sets (1) and (4) can create exactly one, and the same transition,
i.e., ((p′, q′), a, (p, q)) ∈ τP∗Q.
As for set (3), we first remark that similar to the justification mentioned above, there could not
exist more than one transition created by set (3) with destination (p, q) in τP∗Q. Furthermore,
set (3) can only contribute to τP∗Q, when neither set (1) nor (4) can contribute, because there
is only one (p′, a, p) ∈ τP , and action a can be either a shared or non-shared action.4

As such, we showed that either sets (1) and (4) can contribute a transition to τP∗Q, or set (3)
can, and none of the sets can create more than one transition with destination (p, q).

2. p ∈ V N
P and q ∈ V Int

Q : This case is symmetric with the previous case.

3. p ∈ V Int
P and q ∈ V Int

Q : Such a (p, q) is the destination of the transitions that can only
be created by set (3). Therefore, any such transition ((p′, q′), a, (p, q)) ∈ τP∗Q, is a hidden
transition. Considering internal state (p, q), if there exists more than one transition in τP∗Q

with destination (p, q), then we need to have more than one transition in P and Q, with
destination p ∈ V Int

P and q ∈ V Int
Q , respectively, which is not possible. Thus, there is exactly

one transition in τP∗Q with destination (p, q).
For all possible cases, we showed that there could not exist more than one transition with
destination (p, q), which concludes this part of the proof.

We showed that for any internal state (p, q) ∈ V Int
P!Q there is exactly one transition in τP!Q

with source (p, q), and exactly one transition in τP!Q with destination (p, q), which concludes our
proof.

Next, in Lemma 2, we show that each internal state (p, q) ∈ V Int
P!Q belongs to a complex

fragment. We then, in Section 3.1, show that such a complex fragment indeed represents a complex
fragment of P or Q.

Lemma 2. For each internal state (p, q) ∈ V Int
P!Q, there exists exactly one sequence ⟨(p0, q0), a0,

(p1, q1), . . . , (pn, qn)⟩, represented as ∆(p, q), such that the following conditions are true:

- ∃(pj , qj) · (0 < j < n) ∧ (pj = p) ∧ (qj = q)
((p, q) belongs to a complex fragment.)

- ∀i · (0 < i < n) ⇒ ((pi, qi), ai, (pi+1, qi+1)) ∈ τP!Q

(All transitions of the complex fragment are in the legal interleaved product.)
- (p0, pn ∈ V N

P) ∧ (q0, qn ∈ V N
Q) ∧ (∀i · (0 < i < n) ⇒ (pi, qi) ∈ V Int

P!Q)
(The source and destination states of the sequence are normal states and the other states are
internal states.)

4 Again, this mutual exclusiveness holds only in this particular case.

20

Proof. From Lemma 1, it follows that for any internal state (p, q) ∈ V Int
P!Q, there is exactly one

transition with source (p, q), and one transition with destination (p, q). As such, any internal
state (p, q) ∈ V Int

P!Q belongs to a unique alternating sequence of states and actions. We should
now show that such sequences follow the criteria mentioned in the lemma. Let us now consider
the alternating sequence of states and actions that contains internal state (p, q). Since there are
finite number of internal states, such an alternating sequence of states and actions eventually
terminates in a normal state, i.e., in a state (u, v) where u ∈ V N

P and v ∈ V N
Q . Such a (u, v) in

fact represents the state (pn, qn) in ∆(p, q).
Next, we show that there also exists a state (p0, q0) as characterized in ∆(p, q). Let us assume

that there does not exist such a (p0, q0). Then, for any reachable internal state (p, q) ∈ VP!Q,
there always exists an initial state (iP , iQ), as a normal state, such that (p, q) can be reached
from that state, and such a state can be considered as (p0, q0) for ∆(p, q).

Since we chose an arbitrary (p, q) ∈ V Int
P!Q, we can conclude that for any state in V Int

P!Q there
exists a complex fragment ⟨(p0, q0), a0, (p1, q1), . . . , (pn, qn)⟩ such that all the above conditions
hold.

Step 4: Deriving the complex transitions The fourth and final step in computing the
composition of two composable IACAs, is to determine the complex action associated with each
complex fragment. Given two composable IACAs, P and Q, we introduced ∆ as a function that
returns a complex fragment associated with an internal state of the interleaved product. Each
complex fragment s = ⟨(p0, q0), a0, (p1, q1), . . . , (pn, qn)⟩ returned by the function ∆ can itself be
projected into two alternating sequence of states and actions, one belonging to P the other to
Q. We define πP (s) = ⟨p0, a0, p1, . . . pn⟩ and πQ similarly. For these complex fragments, we prove
the following:

Lemma 3. For a reachable internal state (p, q) ∈ V Int
P!Q, its complex fragment s = ∆(p, q), and

the projections of s, πP (s) and πQ(s), one of the following is true:

- ∃!(p, d, p′) ∈ φP · frag(p, d, p′) = πP (s)
- ∃!(q, e, q′) ∈ φQ · frag(q, e, q′) = πQ(s)

where ∃! means “there exists a unique.”

Proof. Consider s = ∆(p, q) to be an alternating sequence of states and actions ⟨(p0, q0), a0, (p1, q1)
, . . . ,
(pn, qn)⟩. To prove our claim, we identify the complex transition, which either belongs to P or Q,
and s follows its schedule.

According to the definition of ∆, for all (pi, qi), where (0 < i < n), either pi ∈ V Int
P or

qi ∈ V Int
Q . Consider the first internal state (pj , qj), such that either pj ∈ V Int

P or qj ∈ V Int
Q , but

not both, if such a state exists at all. According to Definition 18, (pj , qj) can be the source of
transitions that are created via sets (3), (4), or (5). Depending on whether pj or qj is an internal
state, according to the definition of sets (3), (4), and (5), the sequence s at (pj , qj) will either
follow the only transition with source pj in τP , or will following the only transition with source
qj in τQ, respectively. Furthermore, the next state in s, i.e., (pj+1, qj+1), where (j + 1) < n,

21

depending on whether pj or qj is an internal state, should certainly have either pj+1 or qj+1 as an
internal state of P or Q, respectively.5 It can be observed that for all (pk, qk), where j < k < n,
if pj (or alternatively qj) is an internal state then all pks (or respectively all qks) are internal
states and follow the complex fragment that pj (or qj) follows in P (or Q). We notice that a state
(pk, qk), where j < k < n, could have both pk and qk as internal states. Such states have hidden
transitions enabled, and do not violate our above observation that all (pk, qk)s follow the complex
fragment that pj or qj belong to, depending on whether pj ∈ V Int

P or qj ∈ V Int
Q .

Next, we show that all states (pl, ql), where (0 ≤ l < j), follow the same complex frag-
ment that (pk, qk)s, where j < k < n, follow. Consider (pj−1, qj−1) where (j − 1) ≥ 0. Let
us assume that pj is an internal state, then according to τP∗Q definition, (pj−1, aj−1, pj) ∈ τP ,
and ((pj−1, qj−1), aj−1, (pj , qj)) ∈ τP∗Q. Similarly, if we assume that qj is an internal state, then
(qj−1, aj−1, qj) ∈ τQ and ((pj−1, qj−1), aj−1, (pj , qj)) ∈ τP∗Q. In other words, the action of tran-
sition ((pj−1, qj−1), aj−1, (pj , qj)), depending on whether pj or qj is an internal state, can be
identified by the action of the transition with source pj−1 or qj−1 in P or Q, respectively. Simi-
larly, for transition ((pj−2, qj−2), aj−2, (pj−1, qj−1)), where (j − 2) ≥ 0, its action, depending on
whether pj−1 or qj−1 is an internal state, can be identified by the action of the transition with
source pj−2 or qj−2 in P or Q, respectively. But the action of the transition with source state
(pj−1, qj−1) was identified by whether pj ∈ V Int

P or qj ∈ V Int
Q , and so is (pj−2, qj−2). Similarly, we

can show that for all other internal states (pl, ql), the transition with source (pl, ql), depending on
whether pj or qj is an internal state, has the same action that pl or ql has in P or Q, respectively.6

Let us now consider state (p1, q1).7 Based on pj or qj being an internal state, there exists
(p0, a0, p1), or respectively (q0, a0, q1) in τP or τQ. Furthermore, if pj ∈ V Int

P , then (p0, a0, p1) is
the first transition in the complex fragment that pj belongs to, and similarly for qj .

As such we can conclude that all states in s follow the states in complex fragments of pj or
qj , depending whether pj ∈ V Int

P or qj ∈ V Int
Q . Furthermore, there could not exist any transitions

in the complex fragment that contains pj or qj , that do not have a counterpart in s, because if
there were some missing transitions, some states in s would have become illegal internal states
and would have already been removed in step 3 of the composition. Also, since an internal state
in P or Q can be uniquely identified by a complex transition, then the sequence s can also be
uniquely identified by the same complex transition.

Lastly, we notice that, there may not exist such a (pj , qj), as we described above, meaning
that all pms and qms, where 0 < m < n, are internal states. According to τP∗Q definition, in Def-
inition 18, only set (3) can have transitions with such (pm, qm)s, which implies that two complex
transitions from P and Q completely overlap each other and this situation is an acceptable case
according to the lemma.

Using Lemma 3, we can define a mapping function that maps an internal state (p, q) ∈ V Int
P!Q

into a complex transition.

5 Note that if pj ∈ V Int
P , or if qj ∈ V Int

Q , it is not possible that pj+1 /∈ V Int
P and qj+1 ∈ V Int

Q , or qj+1 /∈ V Int
Q

and pj+1 ∈ V Int
Q , respectively. The composablity criteria for IACAs, which states that the schedule of complex

actions should not partially overlap, disallows such a situation.
6 It is well to note that all transitions appearing before state (pj , qj) are created by set (3) in Definition 18. As

such, all transitions appearing before (pj , qj) in s are hidden transitions.
7 It is possible that (p1, q1) is the same as (pj , qj), i.e., there are no (pl, ql) states.

22

Definition 20. Given an internal state (p, q) ∈ V Int
P!Q, the injective function complexP!Q(p, q)

maps (p, q) into exactly one complex transition ((p0, q0), c, (pn, qn)) where the action c belongs to
P , Q or both.

The complex action, c, is uniquely identified by Lemma 3 except in the case where both
conditions of the lemma are true, i.e., when two complex fragments overlap entirely but the
name of their corresponding complex actions are different. In that situation, we pick the name
of the complex action that has normal inputs. Considering our example in Figure 8, part (d) of
Figure 8 shows the composition of A and B. The complex transition of A ∥ B is on complex
action L.

We are now ready to define the composition operation formally.

Definition 21. The composition of two composable IACAs P and Q, P ∥ Q, is an IACA defined
as follows:
VP∥Q = VP!Q

V Int
P∥Q = V Int

P!Q

iP∥Q = iP!Q

AI
P∥Q = AI

P!Q

AO
P∥Q = AO

P!Q

AH
P∥Q = AH

P!Q

AC
P∥Q = AC

P!Q

τP∥Q = τP!Q

φP∥Q = {complexP!Q(p, q)| (p, q) ∈ V Int
P∥Q}

In practice, we can use only one of the internal states (the first one) of a complex fragment to
compute the complex action rather than all of them.

Finally, we prove that IACA composition is commutative.

Theorem 1. Given two composable IACAs P and Q, P ∥ Q = Q ∥ P .

Proof. By inspecting the composability criteria, and the four steps of composition, it can be
observed that the composition operation is defined entirely symmetricly with respect to P and
Q, and thus is commutative.

Discussion IACA is not a full-fledged interface model because composition is not associative.
Lack of associativity in IACA is unavoidable, because within a complex transition, there could
exist multiple normal actions that can be synchronized through composition(s) with other IACAs.
Such normal actions can only synchronize if their preceding normal actions in the schedule of
complex transition have already synchronized. As such, the order that we consider for composition
of multiple IACAs can matter in the success or failure of synchronization for normal transitions
within a complex fragment. Considering Web services, for example, if a complex XML message is
supposed to be received, we can only afford to receive the elements of that XML message if they
arrive as a stream in a correct order. But, the order of arrival of messages, in IACA, depends on
the order of composition between multiple IACAs (Web services). In other words, the success of
synchronization for a complex transition can rely on the order of the composition of more than
two IACAs, and as such, a binary associative composition operator cannot be achieved.

23

The major consequence of the lack of associativity is that we cannot reason about the com-
position of multiple IACAs in an arbitrary order of composition. Instead, we have to consider
multiple groupings of components. We plan to investigate ways to determine groupings for com-
position that would yield a maximal result, i.e., choosing composition parenthesizations that
would increase the chance of synchronization among different IACAs. In the absence of shared
actions among multiple IACAs, their composition is associative.

3.2 Refinement

A refined version of an IACA may replace it in a composition. As with IA, a refined IACA may
have more inputs and less outputs than the model it refines. For Q to refine P , there must be
an alternating simulation relation between the states of Q and P . A state q refines a state p if
q has more than or the same inputs as p and less than or the same outputs as p. Additionally,
for all states q′ reachable from q immediately or through hidden transitions, there must be a
p′ reachable from p such that q′ refines p′. For the complex actions of IACA, a refinement may
have additional inputs at the end of the complex fragment or fewer outputs from the end of the
complex fragment. This restriction ensures that other IACAs that synchronize with an IACA
during composition are still able to synchronize with the refined version of that component.

As an example, the IACA in Figure 10 is the refinement of IACA CompPay in Figure 6. IACA
GenCompPay is capable of carrying out payments in Canadian and US dollars (more inputs),
however, it only provides a reference number as output and does not provide an error number as
output (less outputs). Furthermore, the credit card payment accepts the province to determine
appropriate taxation (more inputs at the end of a complex action).

ref_no

ref_no!

pay_in_cdn

GenCompPay

us_price? acc_no?

credit_no?

pay_in_us

credit_no cdn_price us_price province

cdn_price?province?

Fig. 10: GenCompPay is the refinement of the IACA in Figure 6.

24

Our goal in introducing IACA is to capture the idea of parameters to methods or complex
messages in Web services using complex actions. IACA refinement matches the programming
languages concepts of optional parameters and subclasses. In programming languages, such as
C/C++, conventionally, optional parameters must appear at the end of a function signature.
In programming languages, such as Java and C++, a subclass of a class can have additional
methods, but also has the methods of its parent. Similarly, a refined version of an IACA provides
all of the original IACA’s complex actions and possibly more.

To define IACA refinement, we first need to partition the complex actions into three sets
based on whether the associated complex fragment has: (1) input and hidden actions (CI

P), (2)
output and hidden actions (CO

P), and (3) only hidden actions (CH
P). The definition of refinement

is as follows:

Definition 22. IACA Q refines IACA P , Q ≼ P , if:

1. AI
P ⊆ AI

Q (Q has the same or more normal inputs than P .)

2. AO
P ⊇ AO

Q (Q has the same or fewer normal outputs than P .)

3. CI
P ⊆ CI

Q (Q has the same or more complex inputs than P .)

4. CO
P ⊇ CO

Q (Q has the same or fewer complex outputs than P .)
5. iQ ≼ iP (there is an alternating simulation relation ≼ between the initial states of Q and P .)

Constraint (5) above propagates the alternating simulation relation to apply to all states of the
two IACAs. By starting from the initial states of two IACAs, the alternating simulation relation
is checked on all corresponding states. Next, we define this relation.

Before defining the refinement relation, we need to introduce some notation. First, we define
the set of states that are reachable immediately or through hidden transitions from a normal
state:

Definition 23. For each normal state p ∈ V N
P , the set closureP (p) is defined as the set of

reachable states of p which contains p itself and the normal states that can be reached from
p through normal transitions with hidden actions. These may include transitions of a complex
action.

Next, we define the sets of enabled normal and complex actions, which are the actions that
occur on transitions immediately exiting a state or reachable from a state through hidden ac-
tions. States that are reachable through hidden actions are considered the same for the purpose of
refinement. We consider only the inputs that are enabled at all of these states (because the envi-
ronment may send an input to any of such state without knowing which of them exactly receives
it and so all of them should be receptive to the input), but consider all outputs from these states
(because the environment should accept any of such outputs). The functions AI

P (p),AO
P (p),AC

P (p)
return the set of input, output, and complex actions, respectively, on transitions exiting normal
state p ∈ V N

P .

Definition 24. For each normal state p ∈ V N
P of IACA P ,

- The sets of enabled normal input and enabled normal output actions are:
EnNormI

P (p) = {a | ∀p′ ∈ closureP (p) · a ∈ AI
P (p′)}

EnNormO
P (p) = {a | ∃p′ ∈ closureP (p) · a ∈ AO

P (p′)}

25

- The sets of enabled complex input and enabled complex output actions are:
EnCompI

P (p) = {a ∈ CI
P | ∀p′ ∈ closureP (p) · a ∈ AC

P (p′)}
EnCompO

P (p) = {a ∈ CO
P | ∃p′ ∈ closureP (p) · a ∈ AC

P (p′)}
- EnO

P (p) = EnNormO
P (p) ∪ EnCompO

P (p)
- EnI

P (p) = EnNormI
P (p) ∪ EnCompI

P (p)

Having defined the sets of actions that can be expected from a state p and states reachable
from p through hidden transitions, i.e., states belonging to closureP (p), we now define the sets
of states that can be reached from a normal state through transitions via a certain action.

Definition 25. For IACA P , a normal state p ∈ V N
P , and action a ∈ EnI

P (p)∪EnO
P (p), the set

of reachable states of p by a is:

DestP (p, a) = {p′ ∈ V N
P | ∃ r ∈ closureP (p) · (∃ (r, a, p′) ∈ τP) ∨ (∃ (r, a, p′) ∈ φP)}

Finally, we can define the refinement relation between two states. This relation intuitively
says that for every state p ∈ V N

P , there is an alternating simulation through state q ∈ V N
Q . State q

is receptive to all inputs, normal or complex, to which p is receptive, and q does not issue outputs
that p does not.

Definition 26. For two IACAs, P and Q, the binary relation alternating simulation ≼ ⊆
V N

Q ×V N
P between two states q ∈ V N

Q and p ∈ V N
P holds if all of the following conditions are true:

- EnNormI
P (p) ⊆ EnNormI

Q(q)
(q may have the same or more normal inputs.)

- EnNormO
P (p) ⊇ EnNormO

Q(q)
(q may have the same or fewer normal outputs.)

- EnCompI
P (p) ⊆ EnCompI

Q(q)
(q may have the same or more complex inputs.)

- EnCompO
P (p) ⊇ EnCompO

Q(q)
(q may have the same or fewer complex outputs.)

- ∀a ∈ EnCompI
P (p) · ∀(m, a, n) ∈ φP · m ∈ closureP (p) ⇒

∃(r, a, s) ∈ φQ · r ∈ closureQ(q) ∧ sched(m, a, n) ⊑ sched(r, a, s)
(For every enabled complex input action a at p, there is the same enabled complex input action
at q. Furthermore, the schedule of complex action a in q can have some more input optional
parameters at its end.)

- ∀a ∈ EnCompO
Q(q) · ∀ (r, a, s) ∈ φQ · r ∈ closureP (q) ⇒

∃(m, a, n) ∈ φP · m ∈ closureP (p) ∧ sched(r, a, s) ⊑ sched(m, a, n)
(For every enabled complex output action a at q, there is the same enabled complex output
action at p. Furthermore, the schedule of complex action a in q may omit some output pa-
rameters at its end.)

- ∀a ∈ EnI
P (p) ∪ EnO

Q(q) · ∀ q′ ∈ DestQ(q, a) ⇒ ∃p′ ∈ DestP (p, a) · q′ ≼ p′

(≼ holds for all reachable normal states under inputs for p and outputs for q.)

Intuitively, input complex actions can be refined to input complex actions that have some
extra input elements at the end of the fragment, and output complex actions can be refined to
output complex actions that have some missing output elements missing from the end.

The purpose of refinement is to support top-down design, the following theorem states this
property.

26

Theorem 2. Given three IACAs, P , Q and P ′, such that P ′ ≼ P , P and Q are composable, and
P ′ and Q are composable, then (P ′ ∥ Q) ≼ (P ∥ Q), if the following conditions hold:

1. Shared(P, Q) = Shared(P ′, Q)
(P ′ and P communicate with Q through the same set of shared actions)

2. ∀(p′, p) · (p′ ≼ p) ⇒
((AI

P ′(p′)\AI
P (p)) /∈ Shared(P, Q)) ∧

((AO
P (p)\AO

P ′(p′)) /∈ Shared(P, Q))
(States of P ′ that are in the simulation relation with P do not introduce extra (nor eliminate)
actions that belong to the shared actions of P and Q.)

3. ∀(p′, p) · (p′ ≼ p) ⇒
(∀(p, c, u) ∈ φP · ∃(p′, c, v) ∈ φP ′ ∧ (c ∈ CO

P ′)
⇒ ((set(sched(p, c, u)))\(set(sched(p′, c, v))) ∩ (Shared(P, Q))) = ∅)

(States of P ′ that are in the simulation relation with P should not have output complex actions
that are shared with P , and miss some normal output actions in their schedules that belong
to the shared actions of P and Q.)

4. ∀(p′, p) · (p′ ≼ p) ⇒
(∀(p′, c, v) ∈ φP ′ · ∃(p, c, u) ∈ φP ∧ (c ∈ CI

P)
⇒ ((set(sched(p′, c, v)))\(set(sched(p, c, u))) ∩ (Shared(P, Q))) = ∅)

(States of P ′ that are in the simulation relation with P should not have input complex actions
shared with P that introduce new simple input actions in their schedules that belong to the
shared actions of P and Q.)

Proof. To prove that (P ′ ∥ Q) ≼ (P ∥ Q) we should show that the five conditions for refinement, as
stated in Definition 22, hold. To show that condition (1) holds consider AI

P∥Q, by the definition

of composition, AI
P∥Q = (AI

P ∪ AI
Q)\Shared(P, Q). Since Shared(P ′, Q) = Shared(P, Q) and

AI
P ′ ⊇ AI

P , it follows that AI
P ′∥Q ⊇ AI

P∥Q. Similarly it can be shown that condition (2) holds, i.e.,

AO
P ′∥Q ⊆ AO

P∥Q. To show that condition (3) holds, we should show that CI
P ′∥Q ⊇ CI

P∥Q, which is

true since because P ′ ≼ P we know that CP ′ ⊇ CP , and also CP ′∥Q = CP ′ ∪CQ. Similarly it can
be shown that condition (4) of the refinement definition holds.

As for condition (5) of the refinement relation definition, we can construct an alternating
simulation relation from the states of (P ′ ∥ Q) to (P ∥ Q). We define our simulation relation
as (p′, q) ≼

′
(p, q) for all reachable states (p, q) ∈ V N

P∥Q and all states p′ such that p′ ≼ p. All

such (p′, q) ∈ V N
P∥Q are reachable states because for all such states, based on the conditions of

the theorem, if (p′, q) is an illegal normal state, then (p, q) should be an illegal normal state as
well. Condition 2 of the theorem does not allow P ′ not to provide the shared actions that P
provides, and therefore it is impossible for (p′, q) to be an illegal normal state while (p, q) is not.
Furthermore, conditions 3 and 4 of the theorem guarantee that P ′ ∥ Q does not have more illegal
internal states than P ∥ Q does, on the common complex actions between P ′ and P . If P ′ ∥ Q
has an illegal internal state (u′, v) that P ∥ Q does not have, then it means that P ∥ Q has an
internal state (u, v) belonging to a complex transition of P ∥ Q, and (u, v) can synchronize on a
shared action and (u′, v) cannot synchronize on the same shared action in P ′ ∥ Q. This situation
is impossible, because conditions 3 and 4 of the theorem disallows this situation. As such, for any
(p, q), we have (p′, q) which can simulate (p, q), and this concludes our proof.

27

Discussion The conditions of Theorem 2 require that P ′ preserves the same shared actions that
P has with Q, and requires P ′ to behave in accordance to P on the shared actions of P and Q. In
other words, we require that P ′ neither increases nor decreases the shared actions that P and Q
have. Additionally, we also require that at the state level, the refined state and the original state
use the same set of shared actions. Comparing IACA’s top-down design criteria with IA, IA is
more lenient. IA only requires Shared(P ′, Q) ⊆ Shared(P, Q) for a similar top-down design result
as in Theorem 2. Our restriction arises from the fact that we not only deal with illegal normal
states (as with IA) but also deal with illegal internal states. To support top-down design, P ′, a
refinement of P , should behave in such a way that it does not cause new illegal internal states
that the composition of P and Q does not create. To avoid new illegal internal states, we should
ensure that if P and Q have a chance to synchronize on actions of their complex transitions, P ′

and Q have the same chance.
Another issue is that in our theorem we require that P ′ and Q are composable, but there is no

guarantee that since P and Q are composable, then P ′ and Q should be composable as well. This
requirement in our theorem is necessary because P ′, as refinement of P , can have extra complex
actions at its states, and there is no way to guarantee that such extra complex actions observe
the overlapping composability criteria of IACAs. We could have instead defined our refinement
relation in such a way that it would have disallowed the extra complex actions, and hence avoided
requiring explicitly that P ′ and Q be composable. However, since it is very well likely for P ′ and
Q to be composable, we prefer our definition of refinement, which allows extra complex actions.

Figure 11 illustrates the composition (GenCompPay ∥ Prod). Considering the composition
of GenCompPay, in Figure 10, with IACA of Prod in Figure 1, since GenCompPay ≼ CompPay
then (GenCompPay ∥ Prod) ≼ (CompPay ∥ Prod).

4 Related Work

The idea of grouping activities in a sequential, non-interruptible manner is common in many con-
texts. For example, in databases, the concept of a transaction is pivotal and resembles our complex
actions. Within the context of concurrency theory, different approaches have been proposed to
augment process algebraic-like languages to support non-interruptible sequences of actions. Such
approaches can be generally categorized into two groups: (1) atomic actions (e.g., [10, 3]), and
(2) action refinement (e.g., [1]).

In the work most comparable to ours, Gorrieri, Marchetti, and Montanari enhance CCS [16]
to support non-interruptible actions [10]. Their proposed composition operator is non-associative
and they suggest that non-associativity may be an intrinsic property of handling complex actions.

Action refinement approaches allow stepwise refinements of models into their more concrete
equivalents. For a recent comprehensive treatment of action refinement, in a not entirely algebraic
setting, readers can refer to [17].

Promela, the language of the Spin model checker [12], implements complex actions using the
keywords atomic and d step. Promela’s atomic sequences may block and allow interleaving if an
input is not available or an output cannot be consumed. d step sequences must be deterministic
and do not allow interleaving. A run-time error will occur if actions grouped in a d step cannot
synchronize when necessary. Our complex actions are similar to d step. Composition in Promela
is an n-ary operator and there is no defined notion of refinement. As such, associativity in its
composition is irrelevant.

28

ISBN?

name?

in_cdn?

in_us?

author!
ref_no!

author!
ref_no!

cdn_price;

pay_in_cdn

pay_in_us

province?

credit_no?

credit_no?

ISBNname in_us credit_no provincein_cdn

GenCompPay || Prod

us_price;

authorref_no

Fig. 11: Composition of IACA GenCompPay, in Figure 10, with IACA equivalent IACA of IA
Prod in Figure 1.

While our approach has the same goals as much of the work mentioned above, we differ because
we have created an automata-based interface model with complex actions that has most of the
properties of interface models, which are designed to be a concise way to specify component-based
systems.

5 Conclusion and Future Work

We have introduced interface automata with complex actions (IACA), which add complex actions
to de Alfaro and Henzinger’s interface automata. The transitions within a complex action are not
interleaved with transitions from another component in composition. Complex actions allow us
to model non-interruptible behaviour, which is needed to describe parameters of methods or
Web services complex messages. IACA has all the properties of an interface model except for
associativity of composition.

An immediate application for IACA is in modelling Web services. Web services communicate
with other Web services and their service requesters through input and output XML messages.
Complex XML messages are streams of data items that should not be interleaved with other
messages. Web Service Description Language (WSDL) [4, 5], the Web services standard for spec-
ifying Web services messages and their communication patterns, allows for specification of the
functionality of Web services by: (1) specifying input and output messages of Web services, each
with potentially multiple elements, and (2) specifying the temporal order of message exchange in
Web services. IACA is a natural formalism for modelling WSDL and reasoning about the com-
patibility of Web services. First, complex actions are a good way to model Web service input and

29

output XML messages, and second, IACA, as an automaton model, can effectively capture the
temporal order of messages in Web service.

In our future work, we plan to investigate how we can overcome the challenge of the lack of
associativity for composition in IACA. We may need to relax the way elements of complex actions
synchronize. Alternatively, it may be useful to define an n-ary composition operator, but that
approach does not entirely follow the well-formedness criteria of interface models. Also, for Web
services, we may need to combine services in response to a search query. Through heuristics, we
may be able to reduce the need to search all possible associativity orderings.

References

1. Luca Aceto. Action Refinement in Process Algebras. Cambridge University Press, 1992.
2. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating refinement relations. In

Proceeding of the 9th Conferance on Concurrency Theory, volume 1466 of Lecture Notes in Computer Science,
pages 163–178. Springer-Verlag, 1998.

3. Gérard Boudol. Atomic actions (note). Bulletin of the European Association for Theoretical Computer Science,
38:136–144, 1989. Technical Contributions.

4. Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language, 2006.

5. Roberto Chinnici, Hugo Haas, Jean-Jacques Moreau, David Orchard, and Sanjiva Weerawarana. Web Services
Description Language (WSDL) Version 2.0 Part 2: Adjuncts, 2006.

6. Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Volker Gruhn, editor, Proceedings of the
Joint 8th European Software Engeneering Conference and 9th ACM SIGSOFT Symposium on the Foundation
of Software Engeneering (ESEC/FSE-01), volume 26, 5 of Software Engineering Notes, pages 109–120. ACM
Press, 2001.

7. Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-Based Design. In Proceedings
of the First International Workshop on Embedded Software, volume 2211, pages 148–165. Lecture Notes in
Computer Science 2211, Springer-Verlag, 2001.

8. Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Proceedings of the Marktoberdorf Summer
School, Kluwer, Engineering Theories of Software Intensive Systems, 2004.

9. Shahram Esmaeilsabzali, Farhad Mavaddat, and Nancy A. Day. Interface automata with complex actions.
In Proceeding of IPM International Workshop on Foundations of Software Engineering (FSEN), volume 159,
pages 79–97. Electronic Notes in Theoretical Computer Science, 2006.

10. Roberto Gorrieri, Sergio Marchetti, and Ugo Montanari. A2CCS: atomic actions for CCS. Theoretical Com-
puter Science, 72(2-3):203–223, 1990.

11. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. An interleaving model for real time. In JCIT:
Proceedings of the fifth Jerusalem conference on Information technology, pages 717–730, Los Alamitos, CA,
USA, 1990. IEEE Computer Society Press.

12. Gerard J. Holzmann. The model checker Spin. IEEE Trans. Soft. Eng., 23(5):279–295, 1997.
13. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings

of the 6th ACM Symposium on Principles of Distributed Computing, pages 519–543, 1987.
14. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer-Verlag, New York, 1991.
15. Robin Milner. Calculi of synchrony and asynchrony. Theoretical Computer Science, 25:267–310, 1983.
16. Robin Milner. Communication and Concurrency. International Series in Computer Science. Prentice Hall,

1989. SU Fisher Research 511/24.
17. Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for concurrent systems.

Acta Inf., 37(4-5):229–327, 2000.

