Understanding and Comparing Model-Based Specification Notations

Janwei Niu, Joanne M. Atlee, Nancy A. Day
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada
N2L 3G1
{jniu,jmatlee,nday} @uwaterloo.ca

Technical Report CS-2003-01
February 7, 2003

Abstract

Specifiers must be able to understand and compare the
specification notations that they use. Traditional means for
describing notations’ semantics (e.g., operational seman-
tics, logic, natural language) do not help users to iden-
tify the essential differences among notations. In previous
work, we presented a template-based approach to defining
model-based notations, in which semantics that are com-
mon among notations (e.g., the concept of an enabled tran-
sition) are captured in the template and a notation’s dis-
tinct semantics (e.g., which states can enable transitions)
are specified as parameters. In this paper, we demonstrate
the template’s expressivity by using it to document the se-
mantics of Petri Nets, SDL, and SCR. We also show how the
template can be used to compare notation variants. We be-
lieve template definitions of notations ease a user’s effort in
understanding and comparing model-based notations.

1. Introduction

A requirements writer must have a solid understanding
of specification notations to be able to choose appropriate
notations and to use them properly. However, it can be
difficult to acquire this expertise from published descrip-
tions of notations. Notation developers tend to write ei-
ther for a formal-methods audience (providing an opera-
tional semantics or logic definition), or for a software engi-
neering audience (providing a pseudo-code or natural lan-
guage definition). Formal definitions are precise, enabling
tool development and inviting comparisons between nota-
tions; but such definitions are complex, involving multiple
inter-dependent mathematical relations. Pseudo-code def-

initions provide a more intuitive understanding of seman-
tics, describing when computations are performed and when
variables change value; but such definitions tend to be less
precise and less helpful for comparing notations.

We have developed a template approach to describe the
semantics of model-based notations [13]. Our goal with
the template is to make it easier to document the seman-
tics of notations by focussing on how notations differ and
requiring a user to describe only these differences. In our
method, a parameterized template pre-defines the seman-
tics that are common to all notations, and users specify the
notation-specific semantics via parameter values. For exam-
ple, the template defines the notion of enabled transitions
in terms of enabling states, enabling events, and enabling
variable values; parameters specify these predicates. Com-
position operators are defined separately from the execu-
tion semantics, and are parameterized by the same template
parameters. The result is a semantics definition that iso-
lates a notation’s distinctive semantics, making it easier for
requirements writers and students to compare the essential
differences among model-based notations.

Our template was developed after surveying the exe-
cution semantics of seven popular specification notations:
CSP [5], CCS [11], LOTOS [6], basic transition systems
(BTS) [10], ESTELLE [7], a subset of SDL88 [8], and three
variants of statecharts [2, 3, 9]. In this paper, we demon-
strate the template’s expressivity by using it to describe the
semantics of Petri Nets, SCR, and a larger subset of SDL,
whose semantics are quite different from the notations in
our original survey and from each other. We also show how
to use our template approach to compare notation variants
(e.g., statecharts, RSML [9], UML state models [14]). We
assume that the reader is familiar with all of these nota-
tions.

2. Overview of the Template

In this section, we give an overview of our template ap-
proach to defining model-based notations. The approach
separates the definition of a notation’s step semantics from
the definition of its composition operators. We define a no-
tation’s step semantics in terms of the semantics of a sin-
gle, sequential hierarchical transition system (HTS) — an
extended finite state machine, adapted from basic transition
systems [10] and statecharts [1]. An HTS supports no con-
currency. Composition operators specify how collections
of HTSs execute concurrently, transferring control to one
another and exchanging events and data. Our presentation
in this section is slightly more general than in our original
work [13].

2.1. Syntax of HTS

A hierarchical transition system (HTS) is an 8-tuple,
(S,H,Sr, F, E,V,V,Ty. S is a finite set of states, H is
the state hierarchy, Sy C S is the set of initial states, and
F C S'is the set of final basic states. No transition can exit
a final state. F is a finite set of events, including both inter-
nal and external events. V is a finite set of data variables,
with an initial value assignment of V;. We assume that the
names of unshared events and variables are distinct across
HTSs. T is a finite set of transitions, each with the form,

(src, trig_ev, cond, act, dest, prty)

where src, dest C S are the transition’s source and destina-
tion states, respectively; trig-ev C FE is zero or more trig-
gering events; cond is an optional predicate over V; act is
zero or more actions that generate events and assign values
to some variables in V; and prty is the transition’s optional
priority. We use identifiers S, H, I, F, E,V, V;, T through-
out the paper to refer to these HTS elements.

The state hierarchy consists of super states, which con-
tain other states, and basic states, which contain no other
states. Each super state has a default child state, such that
this default state is entered if the super state is a transition’s
destination state. A state hierarchy H defines a partial or-
dering on states, with the root state as the minimal element
and basic states as maximal elements. The function rank
assigns a number to a state based on the HTS’s hierarchy:

rank(s) = rank(parent(s)) + 1
where rank(root) = 0.

Helper functions access the elements of a transition

e source(r) are the source states of 7.

e exited(r) are the states exited when 7 executes, includ-
ing the source’s ancestor and descendant states that are
also exited.

e entered(r) are the states entered when 7 executes,
including the destination’s ancestor and descendant
states and relevant default states that are also entered.

e trig(r) are the events that trigger .
e pos(r) are the positive events that trigger .

e neg(r) are the negative events (i.e., lack of event) that
trigger 7.

e cond(r) is 7’s predicate guard condition
e gen(r) are the events generated by 7’s actions.
e asn(r) are variable-value assignments in ’s actions.

e scope() is the lowest common ancestor state of the
transition’s source and destination states.

e priority(r) is 7’s priority value

We will also apply these functions to sets of transitions.
Their meanings are the same, but those functions that return
a single result (e.g., scope) will return a set of results.

2.2. Step Semantics

We define the semantics of an HTS as a snapshot
relation. A snapshot is an observable point in an
HTS’s execution, and a snapshot relation relates con-
secutive snapshots. Formally, a snapshot is an 8-tuple
CS,1E,AV,0,CS,,IE,, AV,, EEg, where CS, IFE,
and AV are the sets of current states (C'S C S), current
internal events (/£ C FE), and current variable values, re-
spectively; the set AV is a function that maps each variable
in V' to its current value. O is the set of current outputs
to be communicated to concurrent components. Snapshot
elements CS,, AV,, I F,, and F'E, are auxiliary variables
that accumulate data about states, variable values, and in-
ternal and external events, respectively. Inputs to an HTS
(e.g., external events) are not part of the snapshot because
they lie outside of the system. Instead, the template parame-
ters will incorporate input events and data into the auxiliary
snapshot elements. If a notation does not need some snap-
shot element (e.g., process algebras have no variables), then
the related template parameters need not be provided.

A step moves an HTS from one snapshot to a succes-
sor snapshot. A micro-step results from executing exactly
one transition. A macro-step is a sequence of zero or more
micro-steps that is initiated by new input 7 from the envi-
ronment. In simple macro-step semantics, new input from
the environment is sensed at the start of every step, and a
macro-step is either a single micro-step or an idle step (i.e.,
the snapshot does not change). In stable macro-step se-
mantics, input from the environment is sensed only at the
start of a macro-step, and a macro-step is a sequence of
micro-steps that represents the HTS’s response to the en-
vironmental input; the macro-step ends with a stable snap-
shot, in which no transition is enabled.

The step semantics of a notation are a parameterized
macro-step, Nmacro, defined formally in [13]. The template
parameters describe the values of the snapshot elements at

Snapshot || Start of Macro-step Micro-step

Element 1 2 5 I
cSs' = init_states(ss, I) n_cur_states(ss, 7) er13era
IE = init_.int_ev(ss, I) n.intev(ss,) en_states(ss, 7)
AV = initvar_val(ss, I) n_var_val(ss, 7) en_events (58’)

O = init_gen_ev(ss, I) n_gen_ev(ss, 7) en_cond(ss 7’_)

cs, = init_states_aux(ss) n_states_aux(ss,) macro_semz:mtics
IE! = || initlint.ev_aux(ss, I) | n.int_ev_aux(ss,) pri(T)
AV] = || initvar_val_aux(ss) | n_var_val_aux(ss,)

EE! = || initextev_aux(ss,I) | n_ext_ev_aux(ss,)

Table 1. Set of parameter functions to be provided by template user

the beginning of the macro-step, the change to the snap-
shot elements as a result of following a transition = in snap-
shot ss, and determine whether a transition is enabled based
on its source state, triggering events and triggering condi-
tion. Parameters also determine the type of macro-step and
how priority is handled. There are 21 parameters, which are
listed in Table 1.

Start of Macro-step (Column 1) These functions execute
at the start of each macro-step, clearing snapshot infor-
mation about transitions that executed in the previous
macro-step, and recording inputs 7. For example in
statecharts, the set of current internal events / ' is re-
set to be empty at the start of a macro-step.

Micro-step (Column 2) These functions apply the effects
of a transition 7 to the snapshot elements. For example
in statecharts, variable values are updated with assign-
ments made by .

Enabling Predicates (Column 3) These predicates are
used to determine whether a transition 7 is enabled
in the snapshot ss. The predicates test states, events,
and conditions to see if they enable a transition =
in snapshot ss. For example in SDL, events are
maintained in a queue and only the front-most event
that can enable a transition.

Macro-step semantics (Column 3) Macro-semantics are
either simple or stable, as described above; simple se-
mantics are either diligent, meaning that enabled tran-
sitions have priority over idle steps, or non-diligent.

Priority (Column 3) The function pri(T") for a set of tran-
sitions T' implements the notation’s priority scheme.
For example in scope-based priority, a transition’s pri-
ority is the rank of its scope. A priority scheme that
favours super-state behaviour over sub-state behaviour
would give priority to transitions with the lowest-
ranked scope.

2.3. Composition Operators

Composition operators specify how HTSs execute con-
currently. The operands of a composition operator are com-
ponents, where a component is either a single HTS or a
collection of HTSs that have been composed via some com-
position operator(s). Semantically, a composition operator
specifies how the components’ snapshots change when the
components take a collective step.

We define composition operators as parameterized, com-
posite micro-step and/or macro-step relations that relate
pairs of consecutive snapshot collections. For example, the
composite micro-step relation for an operator op is

Nrorﬁcro((s_él, 8_:92), (S_éll, 8_5{2), (Fl, 7_:2))

which relates snapshot collections ss; and s?s’l and transi-
tions 7; in component one, and s3, and S_S‘.IZ and transitions
75 in component two in a single micro-step. The defini-
t!on of Nrorﬁcm is parametermled by the m;cro-step seman-
tics of the two components, Npi.ro @and Nyjjicro» Modulo the
side effects on each component’s snapshots from the other
component’s execution (shared events and assignments to
shared variables) and modulo effects of the operator op
(e.g., transfer of control from one component to the other).
We represent these effects by using substitution to modify
snapshots: ss [5 is a snapshot that is equal to snapshot ss,
except that element z has value y. Substitution over a set of
snapshots s3 [; defines a substitution to each snapshot in s3.
For example, functions update and communicate in Figure 1
update the snapshot elements I, I F,, AV, AV, in snap-
shots s3, with events and variable assignments from a set of
transitions 7. Function update is used to update the snap-
shots of a non-executing component with the side effects
from the executing component. Function communicate is
used when both components execute. It starts from an in-
termediate snapshot that reflects the effects of one compo-
nent’s transitions but not yet the side effects of the other
component’s transitions. Composition operators use the
template parameters, so that they adhere to their compo-
nents’ semantics for updating snapshot elements.

update(ss, 7) = s% |LE IEa Av

communicate(ss, s§,7) = TEq

% |IE_ | 2
n_int_ev(ss,7) n_int_ev_aux(ss,7) n_var_val(s‘s,f

AV,

n_int_ev(ss,7) 'n_int_ev_aux(ss,7) 'n_var_val(ss,7) 'n_var_val_aux(ss,#

AV |AVa
n_var_val_aux(ss,7)

Figure 1. Abbreviations used in the semantics

ara - = - = S S
NPAR (551, 553), (531, 535), (71, 72)) =

if (353, 7. Nr'lnicro(s_‘%l’ §5,7)) A (353, 7. N2

micro

1

R Nmicro(

dissq,is89. | A N2
micro(

else)
(* symmetric case *)

(532, $5,7)) then

S8q,1882,Ta) A s5h = communicate(issg, s82, 1 UT3)

(* both can take a step *)

S81,1881,71) A §5) = communicate(iss, , 551, 1 UT3)

(* both take a step *)

1 - -/ = - =/ __ - —
Vv Niicro (531,581, 71) A 73 =0 A s5; = update(ss;, 7i)] (* only one executes; the other changes

shared variables and events *)

Figure 2. Micro-step semantics for parallel composition

Below, we review the definition of parallel composition.
A more detailed presentation of a richer set of operators can
be found in [13]. Because they use the template parameters
and the snapshot relations of the two components, all the
composition operators have a similar form.

In parallel composition, in each micro-step, the two com-
ponents execute simultaneously if they are both enabled
(Figure 2): their next snapshots should satisfy ernicro and
Nt?mcro’ except for the values of shared variables and events
that must be communicated to each other. We introduce
intermediate snapshots iss; and iss, that are reachable in
the components’ Npicro relations, and we use the function
communicate to describe how the components’ next snap-
shots in the composed machine differ from these interme-
diate snapshots. If only one component can execute, then
the other component’s snapshot stays the same, except for
updating shared variables and events. The case where both
components do not change is not a possible micro-step, be-
cause it implies that a stable snapshot has been reached, ini-
tiating a new macro-step.

3. Petri Nets

In this section, we show how to represent the semantics
of Petri Nets using our template. Petri Nets are a well-used
formal notation for modelling and analyzing software sys-
tems (e.g., concurrent systems, distributed systems, com-
munication protocols) [12, 15]. Many extensions of Petri
Nets notation have been developed for modelling different
applications by researchers, however, we only consider tra-
ditional Petri Nets in this paper.

A Petri net, usually represented as a directed graph, con-
tains five types of elements: places, transitions, arcs, a
weight function, and an initial marking. A place, drawn

¥ A

@ (b) (©
Figure 3. Example Petri Nets

as a circle, contains zero or more tokens (dots). A transi-
tion is drawn as a bar or a box. An arc, drawn as a directed
line, represents an input-output relation between a place and
a transition. A pair (p;,t) is used to denote an arc from a
source place p; to a transition ¢, and a pair (¢, p,) is used to
denote an arc from a transition ¢ to a destination place p,.
In Petri Nets, each place (or each transition) can have more
than one input transitions (or more than one input places),
and more than one output transitions (or more than one out-
put places). A weight is an integer attached to each arc, and
a weight function, w, maps an arc, (pi,t) or (t,p,), to its
weight. If the weight is 1, it is usually omitted. A distri-
bution of tokens in a Petri net is called a marking, which
represents a state of the net.

First, we describe how a Petri net can be represented as
an HTS. Each place of a Petri net is represented as a unique
variable of an HTS, whose type is integer and whose value
is the number of tokens in the place. An initial marking of a
Petri net determines the HTS’s initial variable-value assign-
ment. Since a Petri net has no control states, the HTS’s set
of states is empty (S = (). Similarly, the set of events is
empty (F = (). A transition is expressed in the form,

(cond, act)

where cond is a predicate on the set of place variables that
are the input places of the transition and the weight con-

N en_states(ss,7) = true
Snapshot || Start of Macro-step | Executing Transition en_events(ss,7) = true
Element encond(ss,7) = AV [=cond(r)
[av = | AV [assign(AV,asn(r)) | macro_seman_'zi;? = ;imple, diligent
pri =

Table 2. Template parameters for Petri Nets

stants, and act is zero or more actions that assign values to
some place variables for the output places of the transitions.

The transitions of a Petri net determine its behaviour.
A transition ¢ is enabled if each of its input places i con-
tains at least w(p;, t) tokens, where (p;,t) denotes an arc
from place p; to transition ¢. The firing of transition ¢ re-
moves w(p;, t) tokens from each input place p; of ¢ and adds
w(t, p,) tokens to each output place p, of ¢. Consider case
(@) in Figure 3, a transition with three input places p1, pa,
ps3, two output places pq4, ps, three input arcs with weights
w(p1,t) = w(pz,t) = w(ps,t) = 1, and two output arcs
with weight w(t, ps) = w(t, ps) = 1. The transition is en-
abled since each of its three input places contains a token.
After firing, a token is removed from each input place and a
token is added to the output place. The transition is repre-
sented as an HTS transition with,

cond = v > w(p,i)
A va Z w(pZat)
A vz > w(ps,t)
asn = vy =wv —w(p1,t); va = vy — w(pz,1);

V3 = v3 — w(pg,t); V4 = V4 + w(t7p4);
vs = vs + w(t, ps);

where variables vq, v, v3, v4 and vy are the number of
tokens in the places p1, p2, p3, pa, ps respectively.

At most one transition executes at a time in a Petri net
and its firing changes the marking of a net, which is cap-
tured by the semantics of an HTS. Petri Nets do not use any
composition operators. This descriptionas an HTS captures
all the cases of Petri Nets. For example, in case (b) of Fig-
ure 3, two transitions are in conflict. They share one input
place and both are enabled, but only one of them can exe-
cute in a step. The one that executes disables the other until
its input place is populated again.

A place can have an upper limit b on the number of to-
kens it can hold, which can affect the behaviour of cases
such as (c) of Figure 3, where the firing of one transition
may disable the other because they share a common output
place. We can capture this in an HTS by adding the extra
condition »; + w(t,p;) < b to each transition that has an
output with a bound.

Petri Nets use the simple, diligent option for macro-step
semantics, since they do not have any events. There is no
priority to the transitions (pri(I') = T'). Table 2 shows the
values for any relevant template parameters for Petri Nets.

AV is the only snapshot element in use and the variable
values are modified by the executing transition.

4. SDL

In this section, we present the template semantics for the
Specification and Description Language (SDL), as defined
in SDL88 [8]. An SDL specification has three types of com-
ponents. SDL processes, the most basic components, are
extended finite state machines that send and react to signals.
SDL blocks contain multiple, concurrent processes, which
are inter-connected by non-delaying, signal-passing routes;
more abstract SDL blocks compose lower-level blocks that
are inter-connected by delaying communication channels.
An SDL system, the root component, is like an abstract SDL
block that communicates with the environment.

An SDL process consists of states, variables, signals, de-
cisions, and transitions. A transition has a source state; is
triggered by an input signal; and has multiple possible ac-
tions and destination states, depending on decision points
in the transition. We model each process as an HTS, whose
states, variables, and events represent the process’s states,
variables, and signals, respectively. We model each con-
ditional path through an SDL transition’s actions as a se-
quence of HTS transitions: we add an auxiliary state for
each decision construct, the initial transition is triggered by
the input signal and leads to the first auxiliary state, and
each subsequent transition is enabled by its source-state’s
decision-construct’s condition and leads to a subsequent
auxiliary state or to a destination state. Because these con-
ditions are disjoint and complete, the HTS transitions are
guaranteed to terminate in a distinct destination state.

Each process has an unbounded input queue to store the
signals it receives from its signal routes. A signal is re-
moved from the head of the queue (if not empty) when the
process is inan SDL state. If the signal can trigger a transi-
tion, the process executes the transition; otherwise, the sig-
nal is discarded. To model the latter semantics, we add from
every state a transition whose event is any signal that does
not trigger an SDL transition from that state and whose sole
effect on the snapshot is to remove the signal from the input
queue. Variables are local to processes in SDL, and variable
values are passed among processes only via signals.

The template semantics for an SDL’s process is de-
scribed in Table 3. SDL has stable macro-step semantics

Snapshot " Start of Macro-step Executing Transition 7 —
Element en_states(ss, 7) = src € OS5
- = en_events(ss,) = trig(r) = head(IFE)
CS/ cs (C'S\ exited(7)) U entered(7) en_cond(ss,7) = AV [=cond
IE enQ(IE,I) enQ(deQ(IE, head(I1E)),9en(7)) || macro_semantics — stable
AV’ AV assign(AV, asn (7)) prilf) = T
o' ¢ O Ugen(r)

Table 3. Template parameters for SDL Process

Nadho' (551, 83a), (531, 5%), (CTh, CTh), (CTHy, CIY), (CHhva, Cll), (CHyy, Cly,)) =
Nr_lnacro(s_él,isgl,frgnt(Cf{l,m)_‘U front(gﬁzl, 'm))_i B B B
L A CHY = enQ(deQ(CHy, front(CHjy,n)),iss1.0) ACHiy = enQ(deQ(CHyz, front(CHya,n)),iss1.0)
Jissy, issz. | A N,?nacro(s_éz,isgz,front((;'ffz,n) u front(CFIlz, n))
" C’f{i = enQ(deQ(CﬁIl, front(C’fIl, m)), is_éz.O) A Cﬁél = enQ(deQ(Cﬁzl, front(C’FIzl, m)), isgz.O)

Figure 4. Macro-step semantics for SDL parallel composition

(because an SDL transition that has a decision construct
maps to a sequence of HTS transitions) and no priority
scheme. In every micro-step, the set of current states C'S
is updated according to the states the transition exits and
enters. Variable values AV are updated according to data
carried by the trigger event and by transition’s sequence of
variable assignments. The input queue for each process is
modelled as a queue in snapshot element 7E. SDL treats
internal and external signals as the same, so a process’s in-
put queue holds both. Output signals are accumulated in
O'. Enabling states (en_states) depend on the current states,
and enabling conditions (en_cond) are conditions that eval-
uate to true given the current variable values. The enabling
event (en_events) is the signal at the head of the queue.

Processes are composed using the parallel composition
operator described in Section 2.3. Our template seman-
tics assumes that events are broadcast to all components.
We simulate SDL’s point-to-point communication by as-
suming that every event contains its address, and a process
engueues an input signal only if the signal’s address is the
process’s address. Parallel composition implements non-
delaying communication among processes.

One or more blocks are composed into an SDL system
specification. Blocks are connected with channels, which
may nondeterministically delay signals.

We define a variant parallel-composition operator for
composing SDL blocks. CH, and CH, represent the sets
of delaying communication channels (queues) that pass sig-
nals among blocks in components one and two, respectively.
The composition operator adds delaying channels CHy,
that pass signals from blocks in component one to blocks
in component two; channels Cﬁn act similarly. In each
macro-step, some number of signals are removed from each
channel set CTS’l and C§2 and are treated as input to their

respective components’ processes; the components execute;
and the output signals from each components processes are
enqueued in the corresponding new and old channels.

5. SCR

In this section, we use our template to document the se-
mantics of the Software Cost Reduction (SCR) notation, as
defined in [4]. In SCR, a system specification is a collec-
tion of mathematical functions, represented as tables. A
table specifies the states (called modes) and transitions for
one state machine (called a modeclass), or it specifies as-
signments to one variable. Variables are partitioned into
monitored variables, whose values are set by the environ-
ment; controlled variables, whose values are set by the sys-
tem and are output to the environment; and terms, internal
variables whose values are set by the system. An SCR spec-
ification defines functions only for modeclasses, terms, and
controlled variables.

Each of the specification’s functions is applied exactly
once in every macro-step. The monitored variables are up-
dated at the start of a macro-step. Each micro-step changes
one of the specification’s modes and variables based on
either values at the beginning of the macro-step or new
monitored-variable values and entered modes as a result of
micro-steps. The order in which the functions are applied
depends on the modes and terms used in their calculations:
each function that depends on updated values of modes and
terms must execute after the functions that perform those
updates. These dependencies impose a partial order on the
tables!, which the composition operator follows when se-
lecting the next function for “execution”.

1The specification is ill-formed if the dependency graph has a cycle.

Mode Event Mode Condition
Off X @T(Dial=bake) @T(Dial=bake) Off, Heat, | Temp<100 | Temp>100
WHEN[Temp<SetT] | WHEN[Temp>SetT] Maintain
Heat @T(Dial=0ff) X @T(Temp>SetT) [Warning’= [off [on |
Maintain | @T(Dial=off) | @T(Temp< (SetT-20))
| Mode'= | Off | Heat | Maintain |

Table 4. Partial SCR specification of a control system for an oven

Consider a simple control system for an oven. The sys-
tem’s monitored variables are

e Dial : {off, bake} — the user-set command
e SetT : integer — the user—set temperature
e Temp : integer — the air temperature in the oven

The modes are Off, Heat (the oven is warming to temper-
ature SetT), and Maintain (the system is maintaining an
oven temperature around SetT). The system sets controlled
variable Warning whenever the oven temperature is above
100° C, to warn children (and parents) when the oven tem-
perature is hot enough to burn.

SCR uses two types of tables to express mathematical
functions: condition tables and event tables. A condition
table defines a case-based assignment to a variable. Ta-
ble 4 shows a condition table for controlled variable Warn-
ing. The header information in the bottom row specifies the
variable being assigned and its possible values. The Mode
column decomposes the function’s cases by mode value.
Each table entry defines a transition that is enabled by the
system being in one of the modes at the head of the row, and
the table entry’s condition and by any of the modes in the
corresponding Mode-column entry. The action of the tran-
sition is to assign the table variable to the value specified at
the bottom of the table entry’s column. The table’s condi-
tions refer to values of modes and variables from the previ-
ous micro-step. For example, the Warning light is set to On
whenever the oven temperature is above 100° C, regardless
of the system’s mode. The table’s cases are mutually dis-
joint and are complete; hence, the function always assigns
its variable to exactly one new value.

An event tabledefines a case-based assignment to a vari-
able or a mode, where each case is enabled by being in a
mode and by a change (i.e., an event) in the values of modes
and variables. Table 4 shows an event table for updating the
system’s modeclass. Event tables have a similar structure to
conditiontables, in that every table entry defines a transition
that is triggered by the table entry’s event when the system
is in any of the modes in the corresponding Mode-column
entry; the transition’s action assigns the table variable (pos-
sibly a mode) to the value specified at the bottom of the
table entry’s column. The Mode column refers mode val-
ues from the start of the macro-step. The conditions used
in the table entries also refer to variable-value assignments

at the beginning of the macro-step. However, the events are
any changes that have occurred since the beginning of the
macro-step. A simple event @T'(cond) occurs if the condi-
tion cond becomes true during the prefix of the macro-step
that executes before the event table is evaluated. A con-
ditional event @T(cond1) WHEN [cond2] occurs if simple
event @T(condl) occurs and the value of cond2 was true at
the start of the macro-step. The enabling conditions of an
event table’s transitions are mutually disjoint but not com-
plete; hence, the table’s function includes an implicit idle
transition that re-assigns its variable to the variable’s current
value if none of the diligent transitions’ enabling conditions
are satisfied.

In instantiating our template to represent SCR semantics,
we define separate templates for condition and event tables.
In both cases, a table defines an HTS whose set of states S
is the set of modes that appear in the table and whose set
of variables V' consists of the monitored variables, terms,
and controlled variables that appear in the table. Each table
entry defines a distinct transition whose action updates the
variable being assigned or changes the mode (state). Tran-
sition events are modelled as changes in conditions between
the values at the beginning of a macro-step and the cur-
rent values after the last micro-step. The event set E' is not
needed in SCR.

Tables 5 and 6 are the template instantiations for SCR
condition tables and event tables, respectively. In both
cases, the environment’s input E'E are monitored-variable
assignments, which update the values AV at the start of
every macro-step. (Function assign(X,Y’) takes variable-
value assignments X and Y and updates the assignments in
X with the assignments in Y.) Similarly, the system’s out-
put O are the assignments made to controlled variables. The
main difference between the two template definitions is that
the instantiation for event tables defines enabling states and
enabling conditions in terms of both old and new values of
modes and variables, and uses the auxiliary variables C'S,
and AV, to store the modes and variable values that hold at
the start of the macro-step. Auxiliary snapshot element I £,
is used to ensure that each table’s function executes exactly
once per macro-step: We add to the triggering event of ev-
ery transition the event enabled; I F, is set to {enabled} at
the start of a macro-step, thereby enabling the table’s transi-
tions; and I, is set to @ when any of the table’s transitions

Snapshot || Start of Macro-step Executing Transition . .
Element en_states(ss, T) = so_urqe(r) cCS
- = — _ en_events(ss, 7) = trig(7) C T E,
cS' = cs | (CS\ exited(7)) U entered(7) en_cond(ss, 7) = AV |= cond()
AV = assign(AV, EE) assign(AV, asn(t)) macro_semantics — stable
0 = 0 O U asn(controlled()) pri(l’) = T
[1E,= | {enabled} | 0 |

Table 5. Template parameters for SCR condition tables

en_states(ss, 7) = source(t) C (CSUCS,)

en_events(ss, 7) = AV, |=—trig(t) A
AV |=trig(T) A
trig(7) C 1E,
en_cond(ss, 7) = (AVUAV,) = cond(r)

' Snapshot I Start of Macro-step Executing Transition
Element
cS' = CcsS (C'S'\ exited(7)) U entered(7)
AV = assign(AV, EE) assign(AV, asn(7))
0= 0 O U asn(controlled(t))

CS! = CsS CSa

AV) = AV AV,

IE, = {enabled}]

macro_semantics = stable
pril) =T

Table 6. Template parameters for SCR event tables

executes, thereby disabling subsequent transitions until the
next macro-step. Diligent transitions have priority over the
idle transition in event tables; there are no idle transitions
in a condition table. Lastly, because transitions’ enabling
conditions are mutually disjoint, the priority scheme is the
identity function.

The composition operator Np..c =" interleaves the ta-
ble specifications, adhering to a given partial order PO on
the HTSs, which we describe as a partial order on the tran-
sition sets 7. One HTS executes per micro-step, and the
executing HTS chosen is such that no other function that
has enabled transitions has a lower rank in the partial order-
ing. With each micro-step, the modes and variables values
of all snapshots are updated with the assignment made by

the executing transition.

po_interr

6 StatechartsVariants

Statecharts, first introduced by Harel [2], are one of the
most popular model-based specification notations. Many
users have redefined subtle aspects of the statecharts se-
mantics to better suit a particular problem, thereby creat-
ing a plethora of statecharts variants. For specifiers, it can
be very difficult to understand the similarities and differ-
ences among these variants. von der Beeck’s work compar-
ing statecharts variants [17] is well cited because it provides
a number of criteria for comparing variants. Our template
parameters highlight the variants’ differences in a more for-
mal and succinct manner than previously possible.

Syntactically, all statecharts variants map into HTSs that
are composed using parallel composition (i.e., AND com-
position) and interrupt composition, which combines com-
ponents via a set of interrupt transitions that pass control

between the components. Table 7 shows the template pa-
rameter values for five popular statecharts variants (Harel’s
original semantics [2], Pnueli & Shalev [16], RSML [9],
STATEMATE [3], and UML [14]). UML has simple, dili-
gent macro-step semantics; the other statecharts variants
have stable macro-step semantics.

The C'S, C'S,, and en_states parameters capture the dif-
ferences in which states can enable transitions. In Harel and
in Pnueli & Shalev, transitions can be taken in a macro-step
only if their source state was a current state at the start of
the macro step. The snapshot element C'S, contains this
set. RSML, STATEMATE, and UML do not have this re-
striction, so it possible for a macro-step to have an infinite
loop. Variable values (AV, AV,) are handled similarly.

Harel and Pnueli & Shalev allow external events to trig-
ger transitions throughout a macro-step; parameter EFE,
holds these events. In RSML and STATEMATE, external
events can trigger transitions only in the first micro-step.
We assume that timeout events are external events

Similarly, Harel and Pnueli & Shalev allow internal
events generated in a micro-step to trigger future transi-
tions in the same macro-step; hence, parameter I E accu-
mulates generated events. RSML and STATEMATE, al-
low only events generated in the last micro-step to trigger
a transition. In UML, each object has an event queue that
emits one event per (simple) macro-step. Note that tran-
sitions may trigger on implicit internal events, such as the
entering and exiting of states or changes in conditions or in
variable values. Parameter I F' uses function ev_gen to re-
turn all explicit and implicit internal events generated in the
micro-step where transition 7 is taken in snapshot ss.

Many startcharts variants allow transitions to trigger on
event expressions, such as negated events (i.e., lack of an

Npo_interr

micro ((851,S§2), (S_EII,S_E-IZ), (7_:1,7_:2)) PO:

7. (ﬁeTeﬁ A (

A

1
Nmicro(

- o o - ./ re
581,851, 71) N Ta=0 A s8,=s5, |ﬁ§:ur_stateS(

—~3U €T, . (enabled_trans(s31, U)) #0 A PO(U,T) A
—~3U €T, . (enabled_trans(ss,, U)) £0 A PO(U,T)

o |AV
$82,71) n_Var_VaI(sgz,fl)

VvV (* symmetric case of above, replacing 1 with 2 and 2 with 1 *)

Figure 5. Micro-step semantics for SCR composition

event) or disjunctions of events. To handle negated events,
we distinguish between trigger events pos(r) and negated
trigger events neg(r). Pnueli & Shalev do not allow two
transitions to execute in the same macro-step, if one is trig-
gered by negated event not a and the other is triggered by
subsequently generated event a; they call this scenario a
global inconsistency. To model Pnueli & Shalev’s seman-
tics, we use I F, to accumulate the events that trigger tran-
sitions in the macro-step. Subsequent transitions are en-
abled only if their actions are consistent (consis) with this
set IE, (see Table 7’s definition for en_events). Harel’s
statecharts and STATEMATE allow global inconsistencies;
RSML does not allow negated events; UML cannot exhibit
global inconsistency because it has simple macro-step se-
mantics. We treat disjunctive events as a notational conve-
nience for combining transitions that have similar actions.

Harel, Pnueli & Shalev, and RSML place no priority
scheme on transitions. STATEMATE gives priority to tran-
sitions whose scope has the lowest rank:

{T € T|Vt € T. rank(scope(r)) < rank(scope(t))}

UML favours transitions with the highest-rank source state:
{r € T|Vt € T. rank(source(r)) > rank(source(t))}

Some of the statecharts features not modelled here (i.e.,
compound transitions, AND/OR tables) are simply nota-
tional conveniences. Other features, such as history states,
and method calls (UML), would require an extension to our
HTS model, which is outside of the scope of this paper.

7 Conclusion

We have demonstrated that our template approach for
describing model-based notations is expressive enough to
define the semantics of Petri Nets, SDL, and SCR. A no-
tation’s template definition is succinct and better facilitates
comparison among notations than traditional descriptions,
because the template separates the different concerns of the
step semantics. This separation is particularly helpful when
comparing notation variants, as demonstrated for the stat-
echarts variants. Template definitions of some notations

(e.g., SCR) stretch the intended uses of some of the snap-
shot elements, and it is not clear whether the resulting def-
inition is easier to understand than a traditional definition,
although we can compare the semantics more easily.

We are currently working on using template definitions
of notations to generate notation-specific analysis tools,
such as model checkers. We believe this work will make
it possible to create formal analysis tools for custom nota-
tions with considerably less effort than previously possible.

References

[1] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computing, 8:231-274, 1987.

[2] D. Harel et al. On the formal semantics of statecharts. In
Symp. on Logic in Comp. Sci., pages 54—64, 1987.

[3] D. Harel and A. Naamad. The Statemate semantics of stat-
echarts. ACM Trans. on Soft. Eng. Meth., 5(4):293-333,
1996.

[4] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Trans. on Soft. Eng. Meth., 5(3):231-261, 1996.

[5] C.A.R.Hoare. Communicating Sequential Processes. Pren-
tice Hall, UK, 1985.

[6] 1SO8807. LOTOS - a formal description technique based on
the temporal ordering of observational behaviour. Technical
report, 1SO, 1988.

[7] 1SO9074. ESTELLE - a formal description technique based
on an extended state transition model. Technical report, I1SO,
1989.

[8] ITU-T. Recommendation Z.100. Specification and Descrip-
tion Language (SDL). Technical Report Z-100, International
Telecommunication Union - Standardization Sector, 1999.

[9] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D.
Reese. Requirements specification for process-control sys-
tems. IEEE Trans. on Soft. Eng., 20(9), September 1994.

[10] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
1991.

[11] R. Milner. Communication and Concurrency. Prentice Hall,
New York, 1989.

[12] T. Murata. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541-580, April 1989.

[13] J. Niu, J. M. Atlee, and N. A. Day. Composable semantics
for model-based notations. In FSE, pages 149-158, 2002.

[14]
[15]

[16]

[17]

Object Management Group. Unified Modelling Language
(UML), v1.4, 2001. Internet: www.omg.org.

J. L. Peterson. Petri Nets. ACM Computing Surveys,
9(3):223-252, September 1977.

A. Pnueliand M. Shalev. What is in a step: On the semantics
of statecharts. In Proceedings of the Symposium on Theoret-
ical Aspects of Computer Software, volume 526 of LNCS,
pages 244-264. Springer-Verlag, 1991.

M. von der Beeck. A comparison of statecharts variants. In
Formal Techniquesin Real Time and Fault-Tolerant Systems,
number 863 in LNCS, pages 128-148. Springer, 1994.

10

(e1geoljdde 10u sueaw ,.B/u,,) SIUBLIBA SlIeyd3le]s 1o} sialaweled ajejdwa] "/ ajqel

JayBiy a2.1nos Jauul Jaybiy adoas Js1no Auoud ou Auoud ou Aoud ou (Dud
wabiip ‘ejdwis a|gels a|gels a|qels a|gels | sonuewss oioew
(+)puod = Ay (+)puod = Ay (+)puod = Ay (+)puod = *Ay (4)puod = "Ay | (+‘ss)puodus

(@1)proy = (£)ne b1

*TANAT D (£)re7b1n

AN T D (L)nably

((+‘ss)usfne N 2+ J)sISU0 v
0= (("gand 1)U (+)bsu)
vV PgANAT D (£)sod

0= (("gang1) U (+)6au)
vV *gaNd1 D (+)sod

(£ ‘ss)sjuanaus

§0 3 (L)s §0 3 (L)s §0 3 (L)s »g S (<)as g S (£)us | (£ 4ss)sareisus
e/u 0 0 KK PHH el
e/u I I 7 I (wers) e o
e/u e/u e/u "AV "AV AV
e/u e/u /U AV AV (ue1s) Ay
e/u e/u e/u ()b n =g 1 /U ST
’/U ’/U ’/U 0 0 (ues)?g 1
e/u e/u e/u | ((+)passpuen(+)panxe)\"s | ((+)paserusn(+)pauxe)\ "5 S0
e/U /U /U (0] S0 (Wes)”s o
(£ ‘ss)usbne N O (£)B1\ ((+ ‘ss)usbae N O) 0
0 0 i 0 i 0 i 0 (e1s)O
(((+)use)sinjuoTanjosal ‘A)ubisse LAY
AV AV AV AV AV (Hes) Ay
((+)uabns ‘(7 1)pray ‘o [)D2p)Dus (£ ‘ss)uab e (£ ‘ss)uab e (£ ss)usb o N/ (£‘ss)usb Ao N/ AT
(1‘anbue 0 0 0 0 (es) 1
(+)passua N ((+)pauxe \ §) SO
0 | 0 | 0 | 0 | SO (Wes)5D
[v11 NN | [€] 31vINT VLS | [6] TSy | [o1] 1jenud | [2] oreH | Jajowresed |

11

