
A Formal Analysis of the Will-Retire Correctness Statement
Nancy A. Day∗, Mark D. Aagaard†, and Meng Lou‡

University of Waterloo Department of Computer Science Technical Report 2002-14

March, 2002

Abstract

We relate two microprocessor correctness statements and show that they are equivalent. The first correctness
statement in question uses synchronization at retirement over a series of steps of the implementation and external
equality as the required correspondence between states. The second correctness statement is the classic single-step
commuting diagram with external equality as the match. We prove that if any microprocessor implementation and
specification are shown to satisfy one of these correctness statements, they also satisfy the other correctness statement.
This technical report is a continuation of Technical Report 2002-11 [DAL02] and includes little introductory material.

1 Introduction
In this paper, we describe a proof relating two commonly-used microprocessor correctness statements. One is a point-
wise commuting diagram with external equivalence as the relation (match) between corresponding implementation
and specification states. This correctness statement is similar to that of Burch and Dill [BD94] except it uses external
equivalence to relate implementation and specification states rather than a flushing abstraction function. The second is
a correctness statement based on synchronizations at retirement, where states are matched using external equivalence.
This second correctness statement is used by Fox and Harman [FH00]. We show that under reasonable assump-
tions about the behaviour of microprocessors, these two correctness statements are equivalent for any implementation
and specification machines. The machines may be non-deterministic. This result means that if any implementation
and specification pair are shown to satisfy one of the correctness statements, they also satisfy the other correctness
statement. Our result is for singlescalar implementations although we do not anticipate problems generalizing it for
superscalar implementations, which may retire more than one instruction in a single step.

This technical report is a continuation of Technical Report 2002-11 [DAL02]. It is meant to be read after that
report and therefore contains no introductory material on terminology or the Microbox framework [ACDJ01].

Figure 1 shows all the correctness statements currently described in the Microbox framework and the relation-
ships between them. In all cases the missing last two letters in the name of the correctness statements are NN for
non-deterministic implementation and specification. Details on the verification of the non-shaded relationships are
described in Day et al. [DAL02]. The shaded area shows the two correctness statements and the relationship described
in this paper.

In Sections 2 and 3, we describe the two correctness statements used in this paper. In Section 4, we describe the
proof of the relationship between the two correctness statements.

2 Informed pointwise with equality
Pointwise alignment is the classic commuting diagram due to Milner [Mil71]. Informed-pointwise (I) (Definition 1) is
a variation of pointwise alignment that allows the implementation to inform the correctness statement about how many

∗Computer Science, University of Waterloo, nday@cs.uwaterloo.ca
†Electrical and Computer Engineering, University of Waterloo, markaa@swen.uwaterloo.ca
‡Computer Science, University of Waterloo, mlou@student.math.uwaterloo.ca

1

FOFAFU

FE

FR

SOSASU

SE

SR

IOIAIU

IE

IR

MOMAMU

ME

MR

WOWAWU

WE

WR

POPAPU

PE

PR

R E U A O

P

W

M

I

S

F

Match Options

A
lig

nm
en

t O
pt

io
ns

Figure 1: Partial order for alignment and match options

2

steps to take. If used with synchronization at fetch, the number of instructions relevant is the number fetched in the
implementation step that will eventually retire. This accommodates pipeline stalls. For synchronization at retirement,
which is our interest in this paper, the relevant number is how many instructions are retired (numRetire).

Definition 1 (Informed-pointwise induction clause: IONN)
IONN(numInstr,R, Ni, Ns) ≡
∀ qi, q′i . ∀ qs. ∃ q′s.

let j = numInstr(qi, q′i) in[
∧ Ni(qi, q′i)

R(qi, qs)

]
=⇒

[
∧ N j

s (qs, q′s)
R(q′i , q′s)

]

Ni

NsNsqs q′s

qi q′i

RR

numInstr

In this paper, we are concerned with the particular instance of informed pointwise alignment where R is external
equivalence. We call this match equality (E). Definition 2 is the IENN correctness statement.

Definition 2 (Informed-pointwise induction clause: IENN)
IONN(numInstr,R, Ni, Ns) ≡
∀ qi, q′i . ∀ qs. ∃ q′s.

let j = numInstr(qi, q′i) in[
∧

Ni(qi, q′i)
qi

π= qs

]
=⇒

[
∧

N j
s (qs, q′s)

q′i
π= q′s

]

Ni

NsNsqs q′s

qi q′i

numInstr

π
=

π
=

3 Will-retire with equivalence
In will-retire alignment (W) (Definition 3), the implementation retires an instruction in the first step of the trace. The
implementation continues to take steps until it is ready to retire an instruction again. The implementation state just
before an instruction is retired is matched against a specification state. The number of steps the specification takes
depends on how many instructions are retired in the first implementation step.

Definition 3 (Will-retire induction clause: WONN)
WONN(numRetire,R, Ni, Ns) ≡
∀ q0

i , q
1
i , . . . , q

k
i . ∀ qs. ∃ q′s.

let r = numRetire(q0
i , q

1
i) in⎡

⎢⎢⎢⎢⎣

∧
∧
∧
∧

Ni(q0
i , q

1
i)

willRetire(q0
i , q

1
i)

(∀j ∈ 1 . . . k − 1. Ni(qj
i , q

j+1
i) ∧ ¬willRetire(qj

i , q
j+1
i))

(∃ qi. Ni(qk
i , q′i) ∧ willRetire(qk

i , q′i))
R(q0

i , qs)

⎤

⎥⎥⎥⎥⎦
=⇒

[
∧ N r

s (qs, q′s)
R(qk

i , q′s)

]

Ni NiNiNi

NsNsqs q′s

q0
i q1

i q′iqk
i

RR

numRetire

¬w
illR
eti
re

¬w
illR
eti
re

wi
llR
eti
re

wi
llR
eti
re

Because will-retire alignment involves synchronization at retirement, it can be combined with the equality match
rather than a flushing abstraction. Will-retire with the equality match (WENN, Definition 4) is an instance of WONN
with external equivalence (q i

π= qs) as the match between specification and implementation states. The implementation
projection function (πi) must associate the program counter in the specification with the address of the next instruction
to be retired.

3

Definition 4 (Will-retire with equality induction clause: WENN)
WONN(numRetire,R, Ni, Ns) ≡
∀ q0

i , q
1
i , . . . , q

k
i . ∀ qs. ∃ q′s.

let r = numRetire(q0
i , q

1
i) in⎡

⎢⎢⎢⎢⎣

∧
∧
∧
∧

Ni(q0
i , q

1
i)

willRetire(q0
i , q

1
i)

(∀j ∈ 1 . . . k − 1. Ni(qj
i , q

j+1
i) ∧ ¬willRetire(qj

i , q
j+1
i))

(∃ qi. Ni(qk
i , q′i) ∧ willRetire(qk

i , q′i))
q0
i

π= qs

⎤

⎥⎥⎥⎥⎦
=⇒

[
∧

N r
s (qs, q′s)

qk
i

π= q′s

]

r

NiNiNi

NsNsqs q′s

qi qk+1
iqk+1

i

¬w
illR
eti
re

wi
llR
eti
re

wi
llR
eti
re

π
=π

=

4 Proof
We prove that will-retire equality (WENN, Definition 4) is equivalent to informed-pointwise with equality (IENN,
Definition 2). The first insight in the proof of WENN ⇐⇒ IENN is the introduction of an alternative way of
expressing WONN that appears to be a tighter correctness criteria, but is actually equivalent to WONN with a reasonable
assumption about the relationship between the predicate willRetire and the function numRetire. We call this equivalent
formulation single-step will-retire (ssWONN, Definition 5). ssWONN decomposes WONN into two simpler, single-
step, properties based on whether the implementation will retire an instruction.

Definition 5 (Single-step will-retire induction clause: ssWONN)
ssWONN(willRetire,R, Ni, Ns) ≡

∀ qi, q′i , qs.[
Ni(qi, q′i)
R(qi, qs)

]
=⇒

[
∧ willRetire(qi, q′i) =⇒ ∃ q′s. Ns(qs, q′s) ∧R(q′i , q′s)

¬willRetire(qi, q′i) =⇒ R(q′i , qs)

]

Single-step will-retire is similar to informed-pointwise (IONN, Definition 1) in examining only a single step of
the implementation. We prove the two correctness statements are equivalent under Condition 1, the willretire cond,
(Theorem 1).

Theorem 1 (IONN ⇐⇒ ssWONN)
∀ willRetire, numRetire,R, Ni, Ns.
willretire cond(numRetire,willRetire) =⇒ — Condition 1

(IONN(numRetire,R, Ni, Ns) ⇐⇒ ssWONN(willRetire,R, Ni, Ns))

Condition 1 states that if willRetire is true of a step then numRetire is one, otherwise it is zero.

Condition 1 (willRetire and numRetire)
willretire cond(numRetire,willRetire) ≡

∀ qi, q′i . numRetire(qi, q′i) = if willRetire(qi, q′i) then 1 else 0

By specialized R in Theorem 1 to the equality match, we are able to conclude IENN is equivalent to ssWENN as
long as Condition 1 holds.

The next and more challenging step in the proof is to show that will-retire with the equality match is equivalent to
single-step will-retire (WENN ⇐⇒ ssWENN). Showing ssWENN =⇒ WENN is straightforward by induction. The
other direction of showing WENN =⇒ ssWENN, stated in Theorem 2, holds under the conditions listed. Figure 2 is

4

an illustration of the proof of Theorem 2. In Step 0, we start with the left and lower side of the commuting diagram
for ssWENN.

In Step 1, we use a liveness condition, called the eventually retires condition (Condition 2), to reach a future state,
q⋆
i , that retires an instruction. Condition 2 states that from any implementation state it is always possible to reach a

state that will retire an instruction.

Condition 2 (Eventually Retires)
eventually retires(willRetire, Ni) ≡
∀ qi. ∃ k. q0

i , . . . , q
k
i , q

k+1
i .

qi = q0
i ∧ (∀ j < k. Ni(qj

i , q
j+1
i) ∧ ¬willRetire(qj

i , q
j+1
i))

∧ Ni(qk
i , qk+1

i) ∧ willRetire(qk
i , qk+1

i)

In Step 3, we use the πi no retire cond condition (Condition 3) to conclude the projection of q ′
i and q⋆

i are equal.
Condition 3 relates the predicate willRetire to the implementation projection function π i. It says that if an instruction is
not retired in a step where the implementation transitions from q i to q′i , then the projections of qi and q′i are equivalent.
This condition assumes that πi is appropriate for synchronization at retirement.

Condition 3 (willRetire and πi)
πi no retire cond(willRetire, πi, Ni) ≡
∀ qi, q′i . ¬willRetire(qi, q′i) ∧ Ni(qi, q′i) =⇒ πi(qi) = πi(q′i)

In Step 4, we use WENN to complete the commuting diagram. Step 5 shows WENN where the left case follows
from Step 3 and the right case follows directly from Condition 3.

Theorem 2 (WENN =⇒ ssWENN)
∀ willRetire, πi, πs, Ni, Ns.[

∧ πi no retire cond(willRetire, πi, Ni) — Condition 3
eventually retires(willRetire) — Condition 2

]

=⇒ (WENN(willRetire, πi, πs, Ni, Ns) =⇒ ssWENN(willRetire, πi, πs, Ni, Ns))

Theorem 3 (WENN ⇐⇒ IENN)
∀ willRetire, πi, πs, Ni, Ns.⎡

⎣ ∧
∧

πi no retire cond(willRetire, πi, Ni) — Condition 3
eventually retires(willRetire, Ni) — Condition 2
willretire cond(numRetire,willRetire) — Condition 1

⎤

⎦

=⇒ (WENN(willRetire, πi, πs, Ni, Ns) ⇐⇒ IENN(numRetire, πi, πs, Ni, Ns))

Combining Theorems 1 and 2 and ssWENN =⇒ WENN, we can conclude WENN is equivalent to IENN under
the conditions listed (Theorem 3). Using previous results, where it was shown that IENN implies FENN [DAL02], we
conclude that WENN implies FENN (flushpoint alignment with the equality match).

The match relation R (abs(qi) = qs) ∧ qi
π= qs) reduces to the match E when the specification has no internal state

(i.e. πs = id). Therefore we can also conclude that WRNN ⇐⇒ IRNN, when the specification has no internal state.
The proof presented in this section is similar in flavour to a proof relating informed-pointwise flushing (IUNN)

with the must-issue correctness statement where the implementation taking one step where it fetches an instruction
followed by some number of stalled steps. Details on this proof can be found in Day et al. [DAL02].

5 Conclusions
In this paper, we described a proof of the equivalence of the following two microprocessor correctness statements:
informed pointwise alignment and will-retire alignment both with the equality match. This result means that if any
implementation and specification pair are shown to satisfy one of the correctness statements, they also satisfy the other
correctness statement. This proof was mechanized in the HOL theorem prover [GM93].

5

 Step 0

Step 1: using eventually_retires

Step 2: using πι _no_retire

Step 3: using WENN

Step 4: left case from Step 3;
 right case from πι _no_retire

NiNi

NiNiNiNi

NiNiNiNi

NiNiNiNi

Ni

Ns

Ns

qsqs

qs

qs

qs

qs

q′s

q′s

qiqi

qi

qi

qi

qi

q⋆
i

q⋆
i

q⋆
i

q′iq′i

q′i

q′i

q′i

q′i

¬willRetire

¬willRetire¬willRetire

¬willRetire¬willRetire

¬willRetire¬willRetire

willRetire

willRetirewillRetire

willRetirewillRetire

willRetire

willRetirewillRetire

πi
πiπiπi

πi
πiπi

πiπiπi

πi

πi

πsπsπs

πsπs

πs

πs

πs

Figure 2: Steps in proof of WENN =⇒ ssWENN

Acknowledgments
We thank Byron Cook of Prover Technologies, and Robert Jones of Intel for early discussions on this topic. The
authors are supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). Aagaard
is supported in part by Intel Corporation.

References
[ACDJ01] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for microprocessor correctness

statements. In CHARME, volume 2144 of LNCS, pages 433–448. Springer, 2001.

[BD94] J. Burch and D. Dill. Automatic verification of pipelined microprocessor control. In D. L. Dill, editor,
CAV, volume 818 of LNCS, pages 68–80. Springer Verlag; New York, 1994.

[DAL02] N. A. Day, M. D. Aagaard, and M. Lou. A mechanized theory for microprocessor correctness statements.
Technical Report 2002-11, University of Waterloo, Department of Computer Science, 2002.

6

[FH00] A. Fox and N. Harman. Algebraic models of correctness for microprocessors. Formal Aspects in Comput-
ing, 12(4):298–312, 2000.

[GM93] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press, 1993.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Joint Conference on Artificial
Intelligence, pages 481–489, 1971.

7

