
A Mechanized Theory for
Microprocessor Correctness Statements

Nancy A. Day1, Mark D. Aagaard2, and Meng Lou1

University of Waterloo Department of Computer Science Technical Report 2002-11

1 Computer Science, University of Waterloo, Waterloo, ON, Canada
nday@cs.uwaterloo.ca, mlou@student.math.uwaterloo.ca

2 Electrical and Computer Engr., University of Waterloo
markaa@swen.uwaterloo.ca

Abstract Microprocessor verification has become increasingly challenging with
the use of optimizations such as out-of-order execution. Because of the complex-
ity of the implementations, a wide variety of microprocessor correctness state-
ments have been proposed and used in verification efforts. In this work, we have
mechanized a previously proposed framework for classifying these correctness
statements. We have verified the relationships between the different points in the
framework, and developed a characterization of the commonly used flushing ab-
straction function. The relationships between points in the framework are general
theorems that provide “verification highways” to connect different correctness
statements and provide reusable verification strategies. We have used these high-
ways to determine the precise relationships between top-level correctness state-
ments used in verification efforts.

1 Introduction

The keystone of a microprocessor verification is the correctness statement, which de-
scribes the intended relationship between the implementation and specification. Recent
advances in microprocessor complexity and verification technology have resulted in a
wide variety of correctness statements. Comparisons between and extensions of verifi-
cation efforts is difficult because of the diversity of correctness statements. Aagaard et
al. [ACDJ01,ACDJ02] introduced a framework, which we call Microbox, to classify
and compare simulation-style microprocessor correctness statements about safety – i.e.
that any behaviour of the implementation is also a behaviour of the specification. They
formally defined correctness statements in a common notation and proposed an infor-
mal ordering of the correctness statements based on notions of generality.

In this paper, we describe the formalization and proofs of the relationships between
the different correctness statements of Microbox. These proofs have been mechanized
in the HOL theorem proving system [GM93]. This process validated previous intuition
in this regard but also pointed out some non-obvious relationships and assumptions.
Formalizing the relationship between the correctness statements forced us to formal-
ize requirements of several functions commonly used in microprocessor verification.
Most notably, we have identified two conditions on the flushing abstraction function.

2

These two conditions allow us to separate the behaviour of flushing from the next-state
function of the implementation.

Microbox was originally conceived as a way of understanding existing work. While
working with Microbox, we hypothesized that it could provide “verification highways”
that would bridge the gap from implementation-specific verification strategies to gen-
eral notions of correctness. The mechanization of Microbox provides these verification
highways. Our vision is that Microbox will now be useful both in choosing correctness
statements and in structuring verification strategies. We illustrate this by stating and
proving a previously unknown relationship between two top-level correctness state-
ments used in the literature. One of these correctness statements, which we call flush-
point alignment with an equality match, is the one used by Sawada and Hunt [SH97]. In
this correctness statements, the projection of the external state of flushed implementa-
tion states is compared with specification states. The second correctness statement uses
the flushing abstraction mechanism of Burch and Dill [BD94] and compares implemen-
tation traces in which only the last step of the trace fetches an instruction. This second
correctness statement, which we call must-issue alignment with a flushing abstraction,
is used by Berezin et al. [BBCZ98]. In this paper, we show that must-issue with the
flushing match logically implies flush-point alignment with the equality match. This re-
sult relies on the two conditions characterizing the behaviour of the flushing abstraction
function.

We begin with a description of the Microbox framework in Section 2. Section 3
states conditions on the behaviour of microprocessor-specific functions used in correct-
ness statements. Sections 4 and 5 describe our proofs of the relationships between the
elements within the framework. Section 6 outlines the proof of the relationship between
two top-level correctness statements, demonstrating how the “verification highways”
make it possible to relate verification efforts. Section 7 summarizes the paper and de-
scribes future directions.

2 The Microbox Framework

Formal verification of sequential microprocessors has generally been done using sim-
ulation-style correctness statements, where a step of the implementation is compared to
a step of the specification. Pipelining and other optimizations increase the gap between
the behaviour of the implementation and the specification, making it more difficult to
consider only one step of the implementation and specification traces. Thus, the cor-
rectness statements have become more complex.

The Microbox framework uses four parameters to characterize a correctness state-
ment: alignment, match, implementation execution, and specification execution. Align-
ment is the method used to align the executions of the implementation and specification
(Section 2.1).Match is the relation established between the aligned implementation and
specification states (Section 2.2). Implementation execution and specification execution
describe the type of state machines used – either deterministic or non-deterministic. The
Microbox framework provides a list of options for each of these parameters based on
verification efforts discussed in the literature.

3

By choosing options for the parameters, we arrive at a variety of correctness state-
ments. The Microbox framework uses four-letter acronyms to describe the choice of
option for each parameter: ⟨alignment⟩ ⟨match⟩ ⟨impl. execution⟩ ⟨spec. execution⟩.
The options identified in Microbox for these parameters are listed in Table 1. For exam-
ple, “IUDD” denotes informed-pointwise alignment (I), flushing match (U), and deter-
ministic implementation (D) and specification (D). All of these correctness statements
describe the induction step of the verification effort. We omit the base case as it is
generally quite straightforward.

⟨alignment⟩ ⟨match⟩ ⟨impl. execution⟩ ⟨spec. execution⟩
(M) Must-issue (O) Other (N) Non-deterministic (N) Non-deterministic
(W) Will-retire (A) Abstraction (D) Deterministic (D) Deterministic
(F) Flush-point (U) Flushing
(S) Stuttering (E) Equality
(I) Informed pointwise (R) Refinement Map
(P) Pointwise

Table1. Options for correctness statement parameters

The alignment parameter determines the overall form of the induction clause, while
the other parameters provide substitutions into the alignment definitions. The alignment
options are described for a general relation match (O) and non-deterministic implemen-
tation (N) and specification machines (N) and therefore labelled by the alignment letter
and ONN. Different matches are substitutions of the relation match. For deterministic
machines, next state functions can be substituted for the next state relations.

In the Microbox framework, both the specification and implementation machines
have program memories as part of their state, and so do not take instructions as inputs.
We assume that invariants, which limit the state space of a machine to reachable states
or an over-approximation of reachable states, are encoded in the set of states for a
machine. We use the following notation:

N is a next-state relation;N k(q, q′) means q′ is reachable from q in k steps ofN .
Π is an external state projection function.
qi

Π= qs says that qi and qs have equivalent external state: πi(qi) = πs(qs).
The components are subscripted with “s” for specification and “i” for implementation.

In the following subsections, we describe the options for the alignment and match
parameters identified by Aagaard et al. [ACDJ02]. This previous work proposed an
ordering amongst the options for each parameter. It is this ordering that we have made
precise and verified in this paper. For the third and fourth parameters, the execution of
the implementation and specification machines, it is easy to consider deterministic as
an instance of non-deterministic, thereby providing the ordering amongst these options.
Therefore we omit further consideration of these last two parameters, and the results of
this paper are all for non-deterministic specifications and implementations.

4

2.1 Alignment
Alignment describes which states in the execution trace are tested for matching. The
following paragraphs briefly introduce five options for alignment.

Pointwise alignment (P) (Definition 1) is the classic commuting diagram. Informed
pointwise (I) (Definition 2) is a variation of pointwise alignment that allows the imple-
mentation to inform the correctness statement as to whether it fetched an instruction,
in which case the specification should take one step. If no instruction was fetched, then
the specification should not take a step. This accommodates pipeline stalls. Stuttering
alignment (S) (Definition 3) allows the specification to stutter, i.e. two or more consec-
utive implementation states can match the same specification state.
Definition 1 (Pointwise induction clause: PONN).

PONN(R, Ni, Ns) ≡
∀ qi, q′i . ∀ qs. ∃ q′s.[

∧Ni(qi, q′i)
R(qi, qs)

]
=⇒

[
∧Ns(qs, q′s)
R(q′i , q′s)

]

Ni

Nsqs q′s

qi q′i

RR

Definition 2 (Informed pointwise induction clause: IONN).
IONN(numFetch,R, Ni, Ns) ≡
∀ qi, q′i . ∀ qs. ∃ q′s.
let j = numFetch(qi, q′i) in[

∧Ni(qi, q′i)
R(qi, qs)

]
=⇒

[
∧N j

s (qs, q′s)
R(q′i , q′s)

]

j

Ni

NsNsqs q′s

qi q′i

RR

Definition 3 (Stuttering induction clause: SONN).
SONN(R, Ni, Ns) ≡

∀ qi, q′i . ∀ qs. ∃ q′s.[
∧Ni(qi, q′i)
R(qi, qs)

]
=⇒

[
∧ (Ns(qs, q′s) ∨ (q′s = qs))
R(q′i , q′s)

]

NiNi

Ns qsqs q′s

qiqi q′iq′i

RRRR

Flush-point alignment (Definition 4) (F) says that if there is a trace between flushed
implementation states (i.e. no in-flight instructions), then there must exist a trace in
the specification between a pair of states that match the flushed implementation states.
A predicate isFlushed indicates when an implementation state is flushed. Definition 4
says that if the implementation is in a flushed state q i and can transition through some
number of steps k to another flushed state q ′

i , then all specification states qs that match
qi (viaR) must transition through some number of steps j to a state q ′

s that matches q′i .
Definition 4 (Flush-point induction clause: FONN).

FONN(isFlushed,R, Ni, Ns) ≡
∀ qi, q′i , qs. ∃ q′s.⎡

⎢⎢⎣
∧
∧
∧

isFlushed(qi)
∃ k. Nk

i (qi, q′i)
isFlushed(q′i)
R(qi, qs)

⎤

⎥⎥⎦ =⇒
[
∧∃ j. N j

s (qs, q′s)
R(q′i , q′s)

]

j

k
NiNi

NsNsqs q′s

qi q′i

RR

isF
lus
he
d

isF
lus
he
d

5

In must-issue alignment (M) (Definition 5), the specification takes one step. The
implementation takes steps until it reaches a state where it can fetch an instruction,
followed by one more step from qk

i to qk+1
i where it fetches an instruction.

Definition 5 (Must-issue induction clause: MONN).
MONN(doesFetch,R, Ni, Ns) ≡
∀ q0

i , q
1
i , . . . , q

k+1
i . ∀ qs. ∃ q′s.⎡

⎢⎢⎢⎢⎣
∧
∧
∧

(∀ j < k. Ni(qj
i , q

j+1
i) ∧

¬ doesFetch(qj
i , q

j+1
i))

Ni(qk
i , qk+1

i)
doesFetch(qk

i , qk+1
i)

R(q0
i , qs)

⎤

⎥⎥⎥⎥⎦
=⇒

[
∧Ns(qs, q′s)
R(qk+1

i , q′s)

]
Ni NiNi

Nsqs q′s

qi qk
i qk+1

i

RR

do
esF
etc
h

¬ d
oe
sFe
tch

¬ d
oe
sFe
tch

Aagaard et al. [ACDJ02] proposed that an ordering among these alignment op-
tions based on generality is pointwise (P), informed pointwise (I), stuttering (S), and
flush-point (F). We prove this order is logical implication with some side conditions in
Section 4. Characterizing the relationship between must-issue and the others was more
challenging, and depends on the match parameter chosen (Section 6).

In the presentation of Microbox given in [ACDJ02], the correctness statements P,
S, and I are generalized to superscalar machines of arbitrary width. In our proofs, we
worked with the singlescalar correctness statements, but do not anticipate any difficul-
ties in generalizing to superscalar.

2.2 Match

Instantiations for thematch parameter are relations,R, between an implementation state
qi and specification state qs that mean “qi is a correct representation of qs”. Figure 1
shows the matches identified by the Microbox framework as used in microprocessor
verification. These options are substituted in for R in an alignment option to create
a correctness statement. The arrows show the partial order proposed by Aagaard et
al. [ACDJ02], where definitions lower in the order are instances of higher options. Our
verification of these relationships is described in Section 5.

An other match (O) is any relation between implementation and specification states.
The abstraction match (A) uses a function (abs) to map an implementation state to a
point that is externally equivalent to the specification state. The flushing match (U) is
a particular type of abstraction match that uses a flushing function to compute the im-
plementation state that should be externally equivalent a specification state. The equal-
ity match (E) requires that the implementation and specification states be externally
equivalent. The refinement match (R) uses an abstraction function that preserves the
externally-visible part of the implementation state. If the specification does not have
any internal state (i.e. all of the state components are externally visible), then equality
and refinement both reduce to Π(q i) = qs, depicted by the dashed line connecting E
and R in Figure 1.

6

(O)
General relation

qs•!!

R

""
qi•

R(qi, qs)

(A)
Abstraction

qs• ##
Π
=$$

•

qi•
abs

%%

abs(qi)
Π

= qs

(E)
Equality
qi

Π

= qs

qs•!!

Π
=

""
qi•

(U)
Flushing

flush(qi)
Π

= qs

qs• ##
Π
=$$

•

qi•
flush

%%

(R)
Refinement Map
abs(qi) = qs
∧ qi

Π

= qs

qs•!!

Π
=

""
qi•

abs

%%

&&&&

''!!!!!!!!!!

%%

((""""""""""""""""""""""""""""""

Figure1. Options and partial order for the match parameter

2.3 Correctness Space

The classification of correctness statements in Microbox together with the relationships
proposed among the points in the framework allow us to map out the space of correct-
ness statements in the partial order of Figure 2. For clarity we have omitted the NN
suffix on all the points. Options for the alignment parameter run up the vertical axis and
the options for the match parameter span the horizontal axis. Aagaard et al. [ACDJ02]
show where most verification efforts described in the literature fit on this map.

In the following sections we describe our verification of this map. We show that
IUNN and MUNN are equivalent under the conditions given in Section 3. Also FENN
and FUNN are equivalent. Our proofs create “verification highways” that allow us to
precisely describe the relationships between top-level correctness statements. In Sec-
tion 6, we use these highways to prove that MUNN implies FENN.

3 Characterization of Microprocessor-Specific Functions

The proofs described in the following sections relating the points in the Microbox
framework depend on certain information about the microprocessor-specific functions
used in the definitions of the framework points. In order to remain general for differ-
ent implementations, we describe the minimum amount of information necessary as
conditions on these functions. All of the following conditions are reasonable for mod-
ern microprocessor implementations. These conditions were discovered in carrying out
the proofs of the theorems of the next section, but form a general specification of the
behaviour of these functions for particular implementations.

The microprocessor-specific functions used in the correctness statements are:

7

FU FA FO

FR

FE

SA SO

SR

SE

IU IA IO

IR

IE

MU MA MO

MR

ME

PU PA PO

PR

PE

SU

Figure2. Space of correctness statements

doesFetch(qi, q′i) – true if an instruction is fetched in the step from q i to q′i .
numFetch(qi, q′i) – returns the number of instructions fetched in a step. In a determin-

istic implementation, this function usually depends only on q i.
flush(qi) – produces an implementation state with no in-flight instructions.
isFlushed(qi) – true if a state is flushed.

We characterize the relationship amongst these functions using Conditions 1–4.
Our first condition relates the behaviour of doesFetch and numFetch. In a singlescalar

implementation, these two functions are different ways of stating the same information
about whether an implementation step fetches an instruction. We need both of them
because they are used in different correctness statements. Condition 1 states that if
doesFetch is true of a step then numFetch is one, otherwise it is zero.

Condition 1 (doesFetch and numFetch)
doesfetch cond(numFetch, doesFetch) ≡

∀ qi, q′i . numFetch(qi, q′i) = if doesFetch(qi, q′i) then 1 else 0

We characterize the required behaviour of a flushing function with two conditions.
Condition 2 relates the function flush to the predicate isFlushed and says that if a state
q is flushed, then flushing q returns q.

Condition 2 (isFlushed and flush)
fl no effect cond(isFlushed, flush) ≡ ∀ q. isFlushed(q) =⇒ flush(q) = q

8

Condition 3 says that if an instruction is not fetched in a step where the implemen-
tation transitions from qi to q′i , then flushing qi returns the same state as flushing q ′

i .
Equivalently, flushing a stalled state results in the same state as allowing the machine
to take one (unproductive) step and then flushing.

Condition 3 (doesFetch and flush)
fl no fetch cond(doesFetch, flush) ≡
∀ q, q′. ¬ doesFetch(q, q′) ∧ N(q, q′) =⇒ flush(q) = flush(q′)

Conditions 2 and 3 are the only restrictions on flushing functions. The construction
of the flushing function is up to the verifier. The most common method for constructing
a flushing function was originated by Burch and Dill [BD94]. They iterate a determin-
istic implementation’s next-state function without fetching new instructions. Another
method for constructing flushing functions was developed by Hosabettu et al. [HSG98],
who write completion functions for each stage in the pipeline and then compose the
completion functions to create a flushing function.

The final condition we need in our proofs is the restriction that we are, for the
moment, only handling singlescalar machines. This condition is needed to relate the
singlescalar versions of IONN and SONN. We expect the generalization to superscalar
machines to be straightforward and we could then eliminate the need for Condition 4.

Condition 4 (Singlescalar)
singlescalar cond(numFetch) ≡
∀ q, q′. (numFetch(q, q′) = 0) ∨ (numFetch(q, q′) = 1)

4 Verification of Alignment Ordering

Aagaard et al. [ACDJ02] ordered the options for the alignment parameter based on
“generality”. We have formally proven that four of the five options for the alignment
parameter with the most general match can be ordered using logical implication. Theo-
rems for the alternative options (A, U, E, R) are derived by substituting the appropriate
match option into the general theorems. The fifth option, M (must-issue), fits in the
order only for the flushing match and is the focus of Section 6.

4.1 Pointwise to Informed Pointwise

Pointwise alignment (PONN — Definition 1) implies informed pointwise alignment
(IONN — Definition 2) under the condition that the function numFetch returns one
for each step of the implementation (Theorem 1). This restriction is not surprising,
because informed pointwise is a more general case of pointwise that accommodates
implementations that can stall.

Theorem 1 (Pointwise implies informed pointwise).
∀R, Ni, Ns, numFetch .

(∀ qi, qi′. numFetch(qi, qi′) = 1) =⇒
PONN(R, Ni, Ns) =⇒ IONN(numFetch,R, Ni, Ns)

9

4.2 Informed Pointwise to Stuttering
Informed pointwise (IONN—Definition 2) uses numFetch to say whether the specifica-
tion should take a step. Stuttering alignment (SONN—Definition 3) allows a step of the
implementation to match either a step of the specification, or the current specification
state. To show that informed pointwise implies stuttering, we only need the singlescalar
condition, which states that numFetch always returns one or zero.

Theorem 2 (Informed pointwise implies stuttering).
∀R, Ni, Ns, numFetch
singlescalar cond(numFetch) =⇒

IONN(numFetch,R, Ni, Ns) =⇒ SONN(R, Ni, Ns)

4.3 Stuttering to Flush-Point
We proved that stuttering alignment (SONN — Definition 3) implies flush-point align-
ment (FONN—Definition 4) by introducing an intermediate correctness statement that
we call multi-step stuttering (msSONN — Definition 6). In multi-step stuttering, for
any implementation trace of length k from q i to q′i , and all specification states qs that
match qi under R, there exists a specification trace of length j from q s that leads to a
specification state, q′s, that matches q′i underR. We used induction over the trace length
to prove that stuttering alignment implies multi-step stuttering alignment (Theorem 3).

Definition 6 (Multi-step stuttering induction clause: msSONN).

msSONN(R, Ni, Ns) ≡
∀ qi, q′i . ∀ qs. ∃ q′s.[

∧ ∃ k. Nk
i (qi, q′i)

R(qi, qs)

]
=⇒

[
∧∃ j. N j

s (qs, q′s)
R(q′i , q′s)

]

j

k
NiNi

NsNsqs q′s

qi q′i

RR

Theorem 3 (Stuttering implies multi-step stuttering).
∀R, Ni, Ns.

SONN(R, Ni, Ns) =⇒ msSONN(R, Ni, Ns)

The identification of multi-step stuttering alignment was a critical step in verify-
ing the relationship between the stuttering and flush-point alignment options, but we
have not seen it used in practice. Flush-point alignment is just multi-step stuttering lim-
ited to checking only implementation traces that start and end in states that satisfy the
isFlushed predicate (Theorem 4).

Theorem 4 (Multi-step stuttering implies flush-point).
∀ isFlushed,R, Ni, Ns.

msSONN(R, Ni, Ns) =⇒ FONN(isFlushed,R, Ni, Ns)

We used Theorems 3 and 4 to prove Theorem 5.

Theorem 5 (Stuttering implies flush-point).
∀ isFlushed,R, Ni, Ns.

SONN(R, Ni, Ns) =⇒ FONN(isFlushed,R, Ni, Ns)

10

5 Verification of Match Ordering

The partial order of the matching options (Figure 1) is based on implication with some
instantiation. Identifiers such as R and abs are intended to be substituted with specific
relations or abstraction functions in a correctness statement. In this section we show the
most general instance of each theorem: flush-point alignment with non-deterministic
implementation and specification. We have also verified each theorem for the other
alignment and execution instances.

5.1 Abstraction to Other

Abstracting the implementation state and testing for externally visible equality is a re-
lation between an implementation state and a specification state. As such, abstraction is
an instance of the most general match (Theorem 6).

Theorem 6 (Abstraction is other with abstraction).
∀ isFlushed, abs, πi, πs,R, Ni, Ns.
R = (λ (qi, qs). πs(qs) = πi(abs(qi))) =⇒

FANN(isFlushed, abs, πi, πs, Ni, Ns) ⇐⇒ FONN(isFlushed,R, Ni, Ns)

5.2 Flushing to Abstraction

Theorem 7 says that flushing is a special form of abstraction.

Theorem 7 (Flushing is abstraction with flush).
∀ isFlushed, flush, abs, πi, πs, Ni, Ns.
flush = abs =⇒

FUNN(isFlushed, flush, πi, πs, Ni, Ns) ⇐⇒ FANN(isFlushed, abs, πi, πs, Ni, Ns)

5.3 Equality to Abstraction

The equality match says that the externally visible state components are equal. Theo-
rem 8 says that equality match is equivalent to abstraction where the abstraction func-
tion is identity.

Theorem 8 (Equality is abstraction with identity).
∀ isFlushed, abs, πi, πs, Ni, Ns.
abs = (λq. q) =⇒

FENN(isFlushed, πi, πs, Ni, Ns) ⇐⇒ FANN(isFlushed, abs, πi, πs, Ni, Ns)

5.4 Refinement to Other

Theorem 9 says that a verification of flush-point refinement is equivalent to a flush-point
other verification with the relation R being that the specification state is a refinement
of the implementation state. As discussed in Section 5.5, a refinement match does not
necessarily imply an equality match or an abstraction match.

11

Theorem 9 (Refinement is other with refinement as R).
∀ isFlushed, abs, πi, πs,R, Ni, Ns.
R = (λ (qi, qs). (πi(qi) = πs(qs)) ∧ (qs = abs(qi))) =⇒

FRNN(isFlushed, abs, πi, πs, Ni, Ns) ⇐⇒ FONN(isFlushed,R, Ni, Ns)

5.5 Special Cases

There are a number of special cases in the ordering of matching relations. First, we
explain why flush-point alignment with equality match is the same as flush-point align-
ment with flushing match. Second, we explain why the refinement match does not imply
the equality match for commuting diagrams.

Flush-point Equality is Flush-Point Flushing Flush-point alignment with a flushing
match is equivalent to flush-point alignment with equality match because, from Condi-
tion 2, flushing a flushed state results in the same state (Theorem 10). A similar theorem
was proved by Hosabettu et al. [HSG98].

Theorem 10 (Flush-point flushing is flush-point equality).
∀ isFlushed, flush, πi, πs, Ni, Ns.
fl no effect cond(isFlushed, flush) =⇒

FUNN(isFlushed, flush, πi, πs, Ni, Ns) ⇐⇒ FENN(isFlushed, πi, πs, Ni, Ns)

Why Refinement Does not Imply Equality In general, the refinement match does not
imply the equality match. Refinement implies equality only if the specification has no
internal state (the projection function πs is the identity function), in which case, the two
correctness statements are equivalent.

The lack of a relationship between equality and refinement might be surprising, and
indeed, we tried several times to prove that refinement is stronger than equality. But, in
hindsight, the problem is clear. To prove a commuting diagram (the induction step of a
correctness statement), we assume that the match holds on the current states q i and qs
and then prove that it holds in the resulting states q ′

i and q′s. As illustrated in Figure 3, the
equality match is insufficient to discharge the antecedent of the assumption for the re-
finement match. This problem is independent of the alignment used. Refinement match
does not imply abstraction match or flushing match for the same reason that refinement
does not imply equality.

absπ=

qi’qi

qs

qi’

qs

abs π=

qs’

qi’qi

qs

qi’

qs qs’
π= π=

Refinement Equality

because

absπ=

qi

qs

qi

qs
π=

Figure3. Refinement does not imply equality

12

Our intuition that refinement is stronger than equality was based on considering
traces, rather than individual steps of the implementation and specification. As part of
our future work, we are extending the framework to connect the commuting diagrams
to notions of trace containment. At the level of traces we expect to verify a relationship
between refinement and equality.

6 Must-Issue Flushing and Flush-Point Equality

In this section, we describe the relationship between the must-issue parameter and other
points of the framework. TheMONN correctness statement (Definition 5) compares one
specification step with an implementation trace that fetches only one instruction. Start-
ing from any implementation state, the implementation may take a number of steps
where it is unable to fetch an instruction before fetching an instruction. Thus, the im-
plementation trace is dependent on a doesFetch predicate that is true if an instruction
is fetched in an implementation step. With a general relation as the match, we have not
found that must-issue relates to any of the other points in the framework. Also, as re-
ported in Aagaard et al. [ACDJ02], we have not found the general case of MONN used
as a correctness statement in any verification efforts.

However, must-issue alignment with the flushing abstraction match (MUNN—Def-
inition 7) is used in verification efforts. For example, Berezin et al. [BBCZ98] use
MUDD, which is must-issue with flushing and deterministic specification and imple-
mentation machines as their top-level correctness statement.

Definition 7 (Must-issue with flushing match induction clause: MUNN).

MUNN(doesFetch, flush, πi, πs, Ni, Ns) ≡
∀ q0

i , q
1
i , . . . , q

k+1
i . ∀ qs. ∃ q′s.⎡

⎢⎢⎢⎢⎣
∧
∧
∧

(∀ j < k. Ni(qj
i , q

j+1
i)∧

¬ doesFetch(qj
i , q

j+1
i))

Ni(qk
i , qk+1

i)
doesFetch(qk

i , qk+1
i)

πi(flush(q0
i)) = πs(qs)

⎤

⎥⎥⎥⎥⎦
=⇒

[
∧Ns(qs, q′s)

πi(flush(qk+1
i)) = πs(q′s)

]

Because of the required behaviour of the flush function, we are able to connect
MUNN with the rest of the framework. Once connected, we can use the verification
highways to show MUNN implies FENN (Definition 8), another common top-level cor-
rectness statement used in verification efforts. The proof is done with six theorems and
transitivity as illustrated in Figure 4, where the lighter lines are instances of the bold
lines on the right of the picture.

Definition 8 (Flush-point with equality induction clause: FENN).
FENN(isFlushed, πi, πs, Ni, Ns) ≡
∀ qi, q′i , qs. ∃ q′s.⎡

⎢⎢⎣
∧
∧
∧

isFlushed(qi)
∃ k. Nk

i (qi, q′i)
isFlushed(q′i)
πi(qi) = πs(qs)

⎤

⎥⎥⎦ =⇒
[
∧∃ j. N j

s (qs, q′s)
πi(q′i) = πs(q′s)

]

13

FE
FU FOTheorem 10

Theorem 5

SU SO

MU

ssMU ssMO

IU IO
Theorem 11Theorem 12

Theorem 2

Theorem 13

Figure4. Verification path for must-issue flushing implies flush-point equality

The first insight in this proof was the introduction of an alternative way of express-
ing MUNN that appears to be a tighter correctness criteria, but under the assumed be-
haviour of the flush function, is actually equivalent to MUNN.

We introduced a new correctness statement, which we call single-step must-issue
(ssMONN – Definition 9). We proved that ssMUNN (ssMONN with the flushing match)
is equivalent to MUNN. ssMONN decomposes MONN into two simpler, single-step,
properties based on whether the implementation will fetch an instruction. ssMONN is
similar to informed pointwise, except that instead of having the knowledge of howmany
instructions are fetched in an implementation step, the predicate doesFetch is used to
indicate whether an instruction is fetched in the implementation step.

Definition 9 (Single-step must issue induction clause: ssMONN).
ssMONN(flush, doesFetch,R, Ni, Ns) ≡
∀ qi, q′i , qs.

doesFetch(qi, q′i) =⇒

⎡

⎣
∃ q′s.[

∧Ni(qi, q′i)
R(qi, qs)

]
=⇒

[
∧Ns(qs, q′s)
R(q′i , q′s)

]
⎤

⎦

∧

¬ doesFetch(qi, q′i) =⇒
[[

∧Ni(qi, q′i)
R(qi, qs)

]
=⇒ [R(q′i , qs)]

]

We proved that single-stepmust-issue is equivalent to informed pointwise alignment
under Condition 1, the doesfetch cond, which relates the predicate doesFetch with the
function numFetch (Theorem 11).

Theorem 11 (Informed pointwise is single-step must-issue).
∀ numFetch, doesFetch,R, Ni, Ns.
doesfetch cond(numFetch, doesFetch) =⇒

(IONN(numFetch,R, Ni, Ns) ⇐⇒ ssMONN(doesFetch,R, Ni, Ns))

By specializing R in Theorem 11 with the flush match, we were able to conclude
that IUNN is equivalent to ssMUNN (Theorem 12).

14

Theorem 12 (Informed pointwise with flushing match is single-step must-issue
with flushing match).
∀ doesFetch, numFetch, flush, πi, πs, Ni, Ns.
doesfetch cond(numFetch, doesFetch) =⇒
IUNN(numFetch, flush, πi, πs, Ni, Ns) ⇐⇒ ssMUNN(doesFetch, flush, πi, πs, Ni, Ns)

Next, we proved that single-step must-issue (ssMUNN) and must-issue (MUNN) are
equivalent for the flushingmatch. The proof that ssMUNN impliesMUNNwas a straight-
forward application of induction over the number of implementation steps inMUNN and
a case split on whether the added step in the trace would fetch an instruction. In fact,
this direction of the proof holds for the general matching relation of “other” (O). The
proof thatMUNN implies ssMUNN required Condition 3, which states that if an instruc-
tion is not fetched in a step from q i to q′i then the flush function results in the same state
for both qi and q′i . This is illustrated in Figure 5 and stated in Theorem 13. The lighter
lines in MUNN in Figure 5 show Condition 3.

Putting together Theorems 12 and 13, we are able to conclude that MUNN im-
plies IUNN as long as Conditions 1 (relating doesFetch and numFetch) and 2 (relating
doesFetch and flush) hold.

Theorem 13 (Single-stepmust-issue with flush match is multi-step must issue with
flush match).

∀ doesFetch, flush, πi, πs, Ni, Ns.
fl no effect cond(doesFetch, flush) =⇒

ssMUNN(doesFetch, flush, πi, πs, Ni, Ns) ⇐⇒
MUNN(doesFetch, flush, πi, πs, Ni, Ns)

At this point, we were able to ride a verification highway to connect MUNN to
FENN. Showing IUNN implies FUNN can be done by transitivity using the flush match
instances of IONN, SONN, and FONN, and the implications relationships of Theorem 2
(IONN implies SONN) and Theorem 5 (SONN implies FONN). FUNN and FENN are
equivalent as given by Theorem 10. Therefore, we are able to conclude that any imple-
mentation and specification that satisfy the must-issue with flushing correctness state-
ment (MUNN), where the flushing abstraction function obeys our four conditions, will
also satisfy the flush-point with equality correctness statement (FENN) (Theorem 14).

The result that MUNN implies FENN states precisely the previously unknown result
about the logical relationship between these two top-level correctness statements. Thus
from Berezin et al.’s [BBCZ98] proof of MUDD for a microprocessor, they can also
conclude FEDD holds for that microprocessor, thereby making it possible to precisely
relate their work to that of Sawada and Hunt [SH97].

Theorem 14 (Must-issue with flushing match implies flush-point with equalitymatch).

∀ flush, πi, πs, ni, ns, doesFetch, isFlushed .⎡

⎢⎢⎣
∧
∧
∧

doesfetch cond(numFetch, doesFetch)
fl no effect cond(isFlushed, flush)
fl no fetch cond(doesFetch, flush)
singlescalar cond(numFetch)

⎤

⎥⎥⎦=⇒

⎡

⎣
MUNN(abs, πi, πs, ni, ns, doesFetch)

=⇒
FENN(πi, πs, ni, ns, isFlushed)

⎤

⎦

15

flush

π=

π=

flush

MUNN ssMUNN

flush

π=

flush

π=

flush

π=

Ni

Ni

NiNiNi

Ns

Ns

qs

qs

qs

q′s

q′s

qi

qi

qi

q′i

q′i

qk
i qk+1

i

doesFetch

doesFetch

¬ doesFetch

¬ doesFetch¬ doesFetch

Figure5.Must-issue implies single-step must-issue showing ¬ doesFetch and doesFetch cases

7 Conclusions and Future Work

In this paper, we describe the verification of the precise relationships between correct-
ness statements in the Microbox framework. These proofs depend on several quite rea-
sonable conditions relating the microprocessor-specific functions used in the correct-
ness statements. These conditions are stated generally and therefore should be applica-
ble to most implementations.

By verifying these relationships, we have created “verification highways” for proofs
of microprocessor correctness. Once a verification effort is associated with one point in
the correctness space, it is possible to follow the highways to determine the relationship
to correctness statements used in other verification efforts. We demonstrated the use
of these highways to determine the previously unknown relationship between two top-
level correctness statements, namely that must-issue alignment with the flushing match
logically implies flush-point alignment with the equality match.

The proofs described in this paper have been mechanized in the HOL theorem prov-
ing system [GM93]. We mechanized each point in the framework and then verified its
relationship (both horizontal and vertical connections) to the points around it. Transitiv-
ity links the points creating the verification highways. We expect the verification could
easily be repeated in other theorem proving systems.

There are several directions for future research. We still have to determine the rela-
tionship of the “will-retire” alignment option identified in Microbox to the other points
in the correctness space. We would like to further clarify the relationship between IUNN
(informed pointwise with flushingmatch), and FENN (flush-point alignment with equal-
ity match). From this paper, we can conclude IUNN implies FENN. It is possible the im-
plication can be reversed following a different line of reasoning than through stuttering

16

alignment. Flush-point is less strict than stuttering because it only considers traces that
start and end in flushed states. Sawada and Hunt [SH97] were able to prove IUNN and
FENN for an implementation so it is possible that flush-point alignment is just a conve-
nience, not a necessity. We would also like to relate these simulation-style correctness
statements to trace-containment-style correctness statements. This relationship is clear
for pointwise alignment, but less clear for the other alignment parameters. Finally, we
want to connect our mechanized framework to verification strategies to create common
on-ramps to our microprocessor verification highways.

Acknowledgments

We thank Byron Cook of Prover Technologies, and Robert Jones of Intel for early
discussions on this topic. Some figures and equations were taken from Aagaard et
al. [ACDJ02]. The authors are supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). Aagaard is supported in part by Intel
Corporation.

References

[ACDJ01] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for micropro-
cessor correctness statements. In CHARME, volume 2144 of LNCS, pages 433–448.
Springer, 2001.

[ACDJ02] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for superscalar
microprocessor correctness statements, 2002. To appear in Software Tools for Tech-
nology Transfer.

[BBCZ98] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. In FMCAD, vol-
ume 1522 of LNCS, pages 369–386. Springer Verlag; New York, 1998.

[BD94] J. Burch and D. Dill. Automatic verification of pipelined microprocessor control. In
CAV, volume 818 of LNCS, pages 68–80. Springer Verlag; New York, 1994.

[GM93] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.

[HSG98] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the proof of correct-
ness of pipelined microprocessors. In CAV, volume 1427 of LNCS, pages 122–134.
Springer Verlag; New York, 1998.

[SH97] J. Sawada and W. Hunt. Trace table based approach for pipelined microprocessor
verification. In CAV, volume 1254 of LNCS, pages 364–375. Springer Verlag; New
York, 1997.

