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Abstract

We present a technique for doing symbolic simulation of micropro-
cessor models in the functional programming language Haskell. We use
polymorphism and the type class system, a unique feature of Haskell, to
write models that work over both concrete and symbolic data. We offer
this approach as an alternative to using uninterpreted constants. When
the full generality of rewriting is not needed, the performance of symbolic
simulation by evaluation is much faster than previously reported symbolic
simulation efforts in theorem provers. We illustrate our work with both
a simple state-based example and a complex, superscalar, out-of-order,
stream-based microprocessor model. This technical report is a compan-
ion report to Day, Lewis, and Cook [DLC].

1 Introduction

Symbolic simulation of microprocessor models can be used for validation of
microcode [Gre98] and it is a key ingredient to verification techniques such
as symbolic trajectory evaluation [SB95] and Burch-Dill style microprocessor
verification [BD94, JDB95]. Symbolic simulation executes a model for multiple
data values in a single simulation run. For example, a symbolic program that
we discuss in this paper takes the input data z and calculates z* (or zxz*z *x).

Symbolic simulation of microprocessor models written in the Haskell pro-
gramming language [PH97] is possible without extending the language or its
compilers and interpreters. When symbolically simulating a simple micropro-
cessor model, we achieved performance of approximately 58 300 instructions per
second. We describe how Haskell’s type class system allows a symbolic domain



to be substituted for a concrete one without changing the model or explicitly
passing the operations on the domain as parameters. Algebraic manipulations
of values in the symbolic domain carry out simplifications similar to what is
accomplished by rewriting in theorem provers to reduce the size of terms in the
output.

The infrastructure required for using symbolic values and maintaining a
symbolic state set is reusable for simulation of different models. We believe the
approach presented in this paper may be applied in other languages with user-
defined data types, polymorphism, and overloading. However, a key requirement
is that overloading work over polymorphic types. Few programming languages
support this, although a different approach using parameterized modules, as in
SML, might also work well. Haskell’s elegant integration of overloading with
type inference and the clear semantics of the language make it amenable to
formal verification.

2 Example

To illustrate our technique, we use the simple, non-pipelined, state-based pro-
cessor model given in Moore’s paper on symbolic simulation [M0098]. First, we
explain the model and demonstrate concrete simulation. Next, we show how
using more general types for the data in the model makes it possible to simu-
late interchangeably concrete and symbolic values. The full source code for this
example in Haskell is found in the appendix.

2.1 Model

The opcodes of the simple machine are described using a data type:

data Op = MOVE Addr Addr
| MOVI Addr Data
| ADD Addr Addr

| SUBI Addr Data
| JUMPZ Addr Loc
| JUMP Loc

| CALL String

|

RET

For now, interpret the type names Addr (memory address), Loc (location), and
Data as integers.

The machine’s visible state is captured by five values: the program counter,
the stack pointer, the data memory (modeled as a list, and indexed by inte-
gers), the halt signal, and the program. The program is indexed by a name
and location because separate routines are stored in distinct memory. Thus,
the program counter and elements of the stack consist of both a name and a



location. The program consists of names with associated lists of instructions.
The machine’s state is captured using the following data type!:

data MachState = ST ((String,Loc),
[(String,Loc)],
[Data],
Bool,
Program)

The meaning of each instruction is described by individual functions that
take a machine state and return a machine state, such as:

add a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk,
put a (mem ‘at‘ a + mem ‘at‘ b) mem, halt, code)

subi a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk,
put a ((mem ‘at‘ a) - b) mem, halt, code)

jumpz a b (ST ((name,loc),stk, mem,halt,code)) =
if’ ((mem ‘at‘ a) === 0)
(mkState ((name,b),stk, mem,halt,code))
(mkState ((name, loc + 1), stk, mem, halt, code))

The semantics of the ADD instruction increase the program counter by one and
put the result of the “+” operation on the values in memory locations a and b
in memory location a. The function at is an indexing function. In Haskell, to
use a regular identifier as an infix operator, you surround it with backquotes,
as we did above. The SUBI instruction subtracts the immediate value b from
the memory location a. The JUMPZ instruction sets the program counter to the
value b if memory location a has the value 0. The operator === is defined to
be equality over integers and if’ is if-then-else. The function mkState turns a
tuple into a state.

The function execute matches opcodes to the semantic functions. For ex-
ample, execute calls the semantic function for ADD as follows, where s is a
state:

execute (ADD a b) s = add a b s

2.2 Concrete Simulation

We can execute the model on particular concrete programs. One of the example
programs given in Moore’s paper multiplies the value in mem[0] by mem[1] using
repeated addition, leaving the result in mem[2], and clearing mem[0]:

IIn Haskell, list types are represented using square brackets (“[ ... ]”).



prog = [ MOVI 2 O, -- 0, mem[2] <- 0
JUMPZ 0 5, -- 1, if mem[0]=0 goto 5
ADD 2 1, -- 2, mem[2] <- mem[1] + mem[2]
SUBI 0 1, -- 3, mem[0] <- mem[0] -1
JUMP 1, -- 4, goto 1
RET 1] -- b, return to caller

Comments (prefixed by --) on the right describe the meaning of each in-
struction. Beginning with memory containing the values [7,11,3,4,5] (i.e.,
mem[0] containing 7 and mem[1] containing 11), and executing the machine
for 31 cycles, results in the following memory state: [0,11,77,4,5]. Memory
location 2 contains the result of multiplying 7 by 11.

2.3 Overloading: Type Classes

We now use the type class system of Haskell to make all the operations that
manipulate data be overloaded on both concrete and symbolic data.
In the previous concrete simulation, the type of the function subi is?:

subi :: Addr -> Data -> MachState -> MachState

To simulate symbolic values, we will make it so that the type Data can be
interpreted at other types than Int. We cannot allow Data to be any type
(i.e., make subi polymorphic) because numeric operations are not defined for
all types. Alternatively, we could parameterize subi by numeric and other
operations that are type-specific to the type of data in memory (i.e., symbolic or
concrete). This is the approach of Joyce-style representation variables [Joy90],
where all the semantic functions are parameterized by what could become a
long list of any operations that are type-specific for any opcode.

Our solution is to take advantage of the overloading of operators provided
by type classes. A type class groups a set of operations by the type they operate
over. The typechecker is able to determine which instance of the operation is
being invoked based on the type of its arguments.

The existing Haskell type class Num has almost all the operators that we
require for data values for this example. In Haskell, a type class definition
declares the name of the class and the operations on members of the class. The
Num class has the following definition:

class Num a where

(#) :: a->a->a
(=) ::a->a->a
(¥) :: a->a->a
fromInt :: Int -> a

Following the first line in this class definition are operators defined on types
within this class. Parentheses indicate that the operation is infix. The parameter
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2In Haskell, a type expression is preceded by a



a after the name of the class is a placeholder for types belonging in this class.
The type signatures of the operations are described in terms of this type. The
simple machine only requires the use of “+” and “-”. The function fromInt
turns integers into values of type a. This capability is very useful when moving
to the symbolic domain because it means existing uses of constant integers do
not have to be converted by hand into their representation in the symbolic
domain — fromInt is automatically applied to them.

In Haskell, the type Int is declared to be an instance of the Num class.

For the JUMPZ opcode, the equality operation on data values is also needed.
Therefore, we create a new class called Word that inherits all the operations of
Num and includes the operation === for semantic equality.

class Num a => Word a where
(===) :: a ->a -> a

The use of the operator => in Haskell indicates that the type a must be a
member of the type class Num and therefore the types in Word inherit all of Num’s
operations. The type Int is an instance of the type Word where the equals
operator returns true (1) if the two integer operands are equal, and false (0)
otherwise. Boolean values are treated as integers.

The type of values in memory now must be elements of the type class Word.
The types MachState and Program are parameterized by the type of the memory
elements, as in:

data MachState a = ST ((String,Loc),
[(String,Loc)],
[al,
Bool,
Program a)

Opcodes are also adjusted to take immediate values of types in the Word class
rather than just integers. For example, the type of the subi instruction becomes:

subi :: Word a => Addr -> a -> MachState a -> MachState a

The definition of subi does not change.
Concrete simulation of prog results in the same state.

2.4 Symbolic Simulation of Data Flow

Once the model has been set up to accept memory values of types within the
Word class rather than just integers, we can consider an appropriate symbolic do-
main. Our symbolic domain must include representations of all operations that
the model performs on integers. The values of this domain represent syntactic
versions of the expressions performed by the machine. An appropriate symbolic
domain for this example includes representations for constants (Const), symbols
(Var), and the results of addition and subtraction operations. Using a recursive
data type, we describe the values in the symbolic domain as:



instance Num Symbo where

Const x + Const y = Const (x + y)

Const 0 + y =y
x + Const O =x
x +y = x ‘Plus‘ y

Const x - Const y = Const (x - y)
x - Const O =X

X -y = x ‘Minus‘ y

Const x * Const y = Const (x * y)

Const 0 * y = Const 0O

x * Const O = Const 0O
Const 1 * y =y

x * Const 1 =x

X %y = x ‘Times‘ y
fromInt = Const

instance Word Symbo where
(Const x) === (Const y) = if (x == y) then (Const 1) else (Const 0)

Figure 1: Instance declarations for “Symbo”

data Symbo =
Const Int
| Var String
| Plus Symbo Symbo
| Minus Symbo Symbo
| Times Symbo Symbo

Plus and Minus will be used to represent the results of addition and subtraction
operations on numbers. We include a representation of multiplication (Times)
because using algebraic laws we can simplify expressions involving addition and
subtraction to expressions involving multiplication (Section 2.5).

Next, we create an instance of the Num and Word type classes providing
witnesses showing how the required operations of Num and Word are implemented
for Symbo. Fig. 1 shows the instance declarations for Symbo that include function
definitions (using pattern-matching) for these operations. The last case in the
pattern-matching is the default case. We assume for the moment that the
operands to the equality operation will only be concrete values therefore we
define === in terms of Haskell’s syntactic equality operator ==.



After providing these instance declarations, all that is necessary to simulate
symbolically the program prog is to provide symbolic inputs. To calculate 77,
we begin with memory having the values,

[7,Var "j",Var "x" Var uy.u’var uzu]
The result of the program after 31 steps is’:
0,j,j+i+j+3j+3+3+i,y,zl

This result shows that the sequence of opcodes in the program performs repeated
addition resulting in seven additions of 7 being left in memory position 2.

In this example, we only made one input symbolic. If we had made all of
memory symbolic, we would not have been able to execute the program because
the value in memory location 1 is used to determine if a branch is taken. Because
we have not yet defined equality on symbolic values, checking whether a value
like Var "i" is 0 would cause a run-time error. We extend our example with
symbolic branching in Section 2.6.

Symbolic values in memory are used interchangeably with concrete values
in memory (e.g., 7) and in the immediate values within the programs (e.g., 0
in MOVI 2 0). The function fromInt in the Num class turns concrete values into
symbolic values making this interchangeability possible. Programs running on
concrete values and producing concrete output can still be run on the model
with the more general types.

2.5 Algebraic Simplifications

The symbolic domain must have the same behavior as the concrete domain.
For the case of numbers, there are algebraic laws that hold for the concrete
domain that can be used to simplify the output of symbolic simulation. For
example, Var x + Var x is equivalent to Const 2 * Var x. These rules can
be implemented for the symbolic domain by augmenting the instance declaration
for Symbo with cases that describe the algebraic rules. Two algebraic rules useful
for the multiplication program are:

Var x + Var y = if (x == y) then Const 2 * Var x
else Var x ‘Plus‘ Var y

((Const x) ‘Times‘ (Var y)) + (Var z) =
if (y == z) then (Const (x+1)) * (Var y)
else (Const x ‘Times‘ Var y) ‘Plus® Var z

Using these algebraic simplifications, the result of the multiplication program
calculating 7% j is [0,7,7 * j,y,z].

These algebraic simplification rules perform a similar task to rewriting in a
theorem prover.

3This output is pretty printed to remove the “Var” and “Const” prefixes.



2.6 Symbolic Simulation of Control Flow

When control values in a program are symbolic, the output of symbolic simula-
tion captures the multiple execution paths that the program could have followed.
Memory location 1 is a control value in the program prog, because its value is
used to determine whether to take a branch or not. To deal with symbolic
simulation of control values, we have to extend our idea of a state to include
branches representing multiple execution paths. We build this infrastructure on
top of the model.

The branching structure will have states at its leaves. The following is a
data type for capturing trees of states:

data State f a =
CondS a (State f a) (State f a) |
Term (f a)

The type variable a describes the type of the expression that is used to decide
which branch to follow. In our symbolic simulation, this type variable is in-
stantiated to Symbo. The type variable £ describes the form of the leaf states.
For the simple machine, this will be the type MachState. Because MachState
is parameterized by the type of data in its memory, we use the type expression
f a, providing the parameter Symbo to MachState. The data constructor CondS
represents multiple execution paths that are conditional on the first argument
to CondS.

To take a step in this symbolic machine, each leaf state must take a step.
This may result in new branches in the tree. The function step_stateis defined
over leaf states and invokes the function execute described in Section 2.1. Using
step_state, we can define a function to take steps over our symbolic state:

step (Term s) = step_state s
step (CondS a b c¢) = CondS a (step b) (step c)

Next, we need to extend our symbolic domain to include the result of checking
for semantic equality over symbolic values. We add one new symbolic value:

data Symbo =

| Equals Symbo Symbo

The definition of equality in the instantiation of Symbo as a member of the Word
type class is now extended to:

instance Word Symbo where
(Const x) === (Const y)
a ===

if (x==y) then (Comnst 1) (Comst 0)
Equals a b

Finally, we need to create branches in the state data structure when conditional
jumps are encountered in the program and symbolic data determines which
branch to take. The operator if’ used in the semantics of JUMPZ must be able to



sometimes return a terminal state and sometimes return a branch state. We use
a multi-parameter type class to capture the behavior of if’. A multi-parameter
type class allows you to constrain multiple types in a class instantiation. In the
case of if’, we parameterize the type of the first argument (the deciding value),
separately from the type of the other arguments. The result of the function has
the same type as the second and third arguments.

class Conditional a b where
if’> :: a->b ->Db ->b

For working with concrete states, we need an instantiation that uses the reg-
ular if-then-else for concrete values. Since we are treating Booleans as numbers,
it checks if its first argument is 1.

instance Conditional Int (State f Int) where
if’> a b c = if (a==1) then b else c

When the first argument is symbolic, we have a different definition of if’ that
returns a branched state if the argument is symbolic.

instance Conditional Symbo (State f Symbo) where
if’ (Const 1) bc =b
if’ (Const 0) b c = ¢
if’ abc CondS a b ¢

Now without having changed our model, we have the necessary ingredients
to simulate symbolic control values. For example, if we run the program prog
for 20 steps, with all symbolic values in memory, calculating i *x j produces the
output found in Fig. 2. In this output, we have included the value of the halt
flag for each state. If i is 0, then the result in memory location 2 is 0 and the
program has stopped. If i is 1, the result is j and the program has stopped.
The last line of the figure is for the case where ¢ > 4, so the result will be at
least 5 * 7.

3 Symbolic Simulation of a Superscalar, Out-of-
order Microarchitecture

We are modifying an existing Hawk model for a Pentium II-like microarchitec-
ture [CLM98] to use the type class facilities of Haskell for symbolic simulation.
This design is a superscalar, out-of-order, with exceptions, pipelined architec-
ture. We are now able to simulate symbolic data flow for programs running on
the model.

Hawk is a Haskell-based hardware description language for expressing mi-
croarchitecture designs [CLM98, MCL98]. The value of Haskell’s higher-order

4The types of the semantic functions change to return a symbolic state but these type
changes can be inferred by the typechecker.




CondS (i == 0)
([i,7,0,y,2],True)
CondS ((i - 1) == 0)
([i -1,j,j,y,2],True)
CondS ((i - 2) == 0)
([i - 2,3,2 * j,y,zl,True)
CondS ((i - 3) == 0)
([i - 3,3,3 * j,y,z],True)
CondS ((i - 4) == 0)
([i - 4,j,4 * j,y,z],True)
([i - 5,j,5 * j,y,z],False)

(1542

Figure 2: Output of prog after 20 steps with inputs “i” and “}”

functions and polymorphism are illustrated in this Hawk model although we do
not have space to describe them in this paper.

Hawk models usually process transactions. A transaction captures the state
of an instruction as it progresses through the pipeline. A transaction contains
the address of the instruction, its opcode, and the addresses and values of its
operands. The transaction may also contain a speculative PC. As the transac-
tion moves through the pipeline, values for input operands and result operands
get filled in. The speculative PC is compared to the calculated result of a branch
instruction to determine if the pipeline needs to be flushed.

The essential change necessary to use type classes in this design was to
modify the values in registers and memory to be of a type belonging to the type
class Num rather than only integers. This modification also affects the type of
addresses because calculations unite the address and value space. Various Hawk
library devices that manipulate transactions were changed to the more general
type.

The Symbo data type was used to execute a symbolic program calculating
z* on this design. Fig. 3 shows our representation of the symbolic DLX [HP96]
program. The comments beside each instruction indicate the address where the
instruction is placed in memory. The output of simulating a Hawk model is
a stream of transactions describing the instructions that have been executed.
Fig. 4 shows the output of the symbolic z* program for 48 cycles. The number
on the left is the cycle that the transaction leaves the pipeline. Because this pro-
cessor is superscalar, multiple instructions may leave the pipeline in one cycle.
The program counter is after the cycle number on an output line. The values
of the registers used in computation are given in parentheses. If the instruction
is a branch, a speculative program counter is included in the transaction.

We are currently extending the Hawk library to handle symbolic control
paths as well. The key to making this work is to have trees of transactions
flowing along the wires instead of just simple transactions. This is similar to

10



prog_x_4 =
[ImmIns (ALUImm (Add Signed)) R3 RO (Var
ImmIns (ALUImm (Add Signed)) R4 RO 4),
ImmIns (ALUImm (Add Signed)) R6 RO 1,
ImmIns (ALUImm (Add Signed)) R5 RO O,

RegReg ALU (S GreaterEqual) R1 R5 R4,
ImmIns BNEZ RO R1 32,

Nop,

RegReg ALU Inputl F2 R6 RO,

RegReg ALU Inputl F3 R3 RO,

RegReg ALU (Mult Signed) F2 F2 F3,
RegReg ALU Inputl R6 F2 RO,

ImmIns (ALUImm (Add Signed)) R5 R5 1,
Jmp J ((-36)),

Nop,
RegReg ALU (Add Signed) R1 RO R6,
]

llxll)) s

64: R3 <- RO

65: R4 <- RO

66: R6 <- RO

67: R6 <- RO +

loop begins here

68: R4 <- R1 >=R5

69: if (R1==0) then
goto (70+32/4=78)

70: No_op

71: F2 <- R6

72: F3 <- R3

73: F2 <- F2 * F3

T74: R6 <- F2

75: Rb <- R6 + 1

76: goto (77-36/4=68)

end of loop

77: No_op

78: R1 <- RO + R6

+ o+ o+

X
4
1
0

Figure 3: Symbolic DLX program for z*

11



how the state in the earlier example became trees of states. However, a Hawk
model is stream-based and therefore, does not have explicit access to its state
like the earlier example does. Instead of simply having a top-level branching of
state, the branching of state must be threaded through the entire model, just as
transactions are. This means that most components will need to understand how
to handle trees of transactions. We are exploring how to best use a transaction
type class to define easily a new instance of transactions that are trees.

Once these modifications to the Hawk library have been made, all future
models will be able to simulate both concrete and symbolic programs. The
symbolic domain presented in this paper is sufficient for many microarchitec-
tures.

4 Performance

In this section, we consider the performance of our “symbolic simulator”. We
used the Glasgow Haskell Compiler Version 4.02 [Ghc] for running our tests.
Moore provided timing numbers for doing symbolic simulation of the simple
machine in the theorem prover ACL2 on a 200 MHz Sun Ultra 2 with 512
MB [Mo098]. Unfortunately, we did not have an equivalent platform available
and ran our test cases on a 450 MHz Intel Pentium IT with 512 MB memory.
Based on SPEC CPU95 integer benchmarks, our platform is roughly two and
half times faster than Moore’s [SPE].

For concrete simulation, the multiplication program calculating 10 000 «1000
for 40 007 cycles took 0.53 seconds with ACL2 at best and 0.54 seconds for us.
Here we are comparing Lisp execution to Haskell execution. On a larger concrete
test case taking 400 000 cycles for 100 000 = 1000, we achieved approximately
62 200 instructions per second.

In ACL2, the multiplication program with symbolic data flow calculating
1000 = j for 4005 cycles took at best 17 seconds with hints and at worst 55
seconds (72 and 235 instructions per second respectively). Running the same
symbolic program took 0.04 seconds for us. When running a much larger test
case of 100 000 * j for 400 000 instructions (no branches) we achieved 58 300
instructions per second.

The multiplication program with symbolic control flow calculating i x j for
2000 cycles took 1.55 seconds, which is approximately 1290 instructions per
second. With branching symbolic programs, printing time is significant.

ACL2 must use its rewrite engine for symbolic simulation, whereas our ap-
proach involves executing a functional program. Therefore, we do not suffer
a performance penalty for symbolic simulation. Rewriting requires searching
a database of rewrite rules and potentially following unused simplification-
s [Moo098].

12



W N

256: R3(x) <- RO(0) + x
260: R4(4) <- RO(0) + 4
5: 264: R6(1) <- RO(O) + 1
268: R5(0) <- RO(0) + O
T 272 R1(0) <- R5(0) >= R4(4)
7: 276: PC(280) <- if R1(0) then PC(280) + 32 else PC(280)
(SpecPC(256))
8:
16:
17: 292: F2(x) <- F2(1) * F3(x)
18: 296: R6(x) <- F2(x)
300: R5(1) <- R5(0) + 1
304: PC(272) <- PC(308) + -36 (SpecPC(256))
19:
28:
29: 292: F2(x * x) <- F2(x) * F3(x)
30: 296: R6(x * x) <- F2(x * x)
300: R5(2) <- R5(1) + 1
304: PC(272) <- PC(308) + -36 (SpecPC(272))
272: R1(0) <- R5(2) >= R4(4)
276: PC(280) <- if R1(0) then PC(280) + 32 else PC(280)
42:
43: 292: F2(x * x * x * x) <- F2(x * x * x) * F3(x)
44: 296: R6(x * x * x * x) <- F2(x * x * x * Xx)
300: R5(4) <- R5(3) + 1
304: PC(272) <- PC(308) + -36 (SpecPC(272))
272: R1(1) <- R5(4) >= R4(4)
276: PC(312) <- if R1(1) then PC(280) + 32 else PC(280)
(SpecPC(280))
45:
46:
47:
48: 312: Ri(x * x * x * x) <- RO(0) + R6(x * x * x * x)

Figure 4: Stream of transactions resulting from execution of z* program
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5 Related Work

The approach described in this paper is closely related to work on Lava [BCSS98],
another Haskell-based hardware description language. Lava has explored using
Haskell features, such as monads, to provide alternative interpretations of cir-
cuit descriptions for simulation, verification, and generation of code from the
same model. A predominant use of a symbolic circuit interpretation in Lava is
to produce output for theorem provers. Consequently, their symbolic simula-
tion assigns labels to all subterms and produces a sequence of assertions relating
symbolic inputs to outputs. Our emphasis has been more on building symbolic
simulation on top of the simulation provided by the execution of a model as
a functional program. In our descriptions of microprocessors, we rely on the
standard meaning of function application to connect components of circuits.
We use type classes extensively to choose between a symbolic interpretation
or a non-symbolic interpretation of an operation. Both interpretations can be
used within the same simulation run. To achieve this flexibility, we build the
branching structure into the symbolic domain and use type classes to capture
the symbolic operations. The branching structure is threaded through the mod-
el. This threading relies on multi-parameter type classes — a recent extension
to Haskell.

Symbols in Lisp can be used for symbolic simulation. For example, to gen-
erate expressions for input to the Stanford Validity Checker [JDB95], a simple
HDL based on Common Lisp is used [BD94]. In this paper, we show how this
approach can be done in a strongly-typed, higher-order, functional programming
language.

Symbolic simulation can be carried out with uninterpreted constants using
rewriting techniques in a theorem prover (e.g., [Joy89, Win90, M0098, Gre98]) or
using more specialized techniques such as symbolic functional evaluation [DJ].
In this form of symbolic simulation, the model is executed over constants of
unknown value but the same type as a concrete value. It does not require any
changes to the model. However, uninterpreted constants are an element of logic
and their use requires that the model be expressed in a logic. Simulation of
a logical specification requires special-purpose infrastructure such as rewriting
or a means of partial evaluation. Constructors in our symbolic domain play
the same role as uninterpreted constants using a general-purpose programming
language, when the full generality of rewriting is not required.

Type classes provide the infrastructure needed to support the way uninter-
preted constants have been used in logical models of microprocessors. Taking
advantage of polymorphism in higher-order logic, Joyce first used “represen-
tation variables” to bundle operations on data [Joy90]. These operations pa-
rameterize both a reference machine and a model of the implementation. The
verification effort is valid for any instantiation of these operations. Having an
object-oriented flavor, a type class packages the functions of a representation
variable in one location. It is not necessary to parameterize all components
of the model by type-specific operations. The type classes keep track of the
higher-order function parameters. We provide instantiations of the operations

14



of the type class for both concrete and symbolic simulation.

Graph structures such as BDDs and MDGs represent symbolic formulae. Bi-
nary decision diagrams (BDDs) [Bry86] are a canonical form for propositional
logic. Multiway decision diagrams (MDGs) [CZST94] are a canonical repre-
sentation of formulae in many sorted, first-order logic (including uninterpreted
functions). In both cases, by iterating a next state relation, these representa-
tions can be used to carry out symbolic simulation. BDDs and MDGs are used
in decision procedures because of their canonical form. Our form of symbol-
ic simulation for higher-order expressions only calculates terms and does not
produce a canonical form. We have not yet characterized the “decidability” of
verification efforts involving the symbolic terms we produce. Also our terms are
currently not reduced for sharing of subterms and therefore the representation
can become quite large. In more recent work, we have investigated linking sym-
bolic simulation in Haskell directly with decision procedures for verification to
take advantage of the reduced size of representations in these packages [DLL].

6 Limitations

Our approach is limited to models expressed as functions, although they may
be either state-based as in Moore’s simple example or stream-based as in the
Hawk Pentium II-like model.

Compared to carrying out symbolic simulation in a logic, in our approach it
is necessary to introduce a term structure for the symbolic domain. Our symbols
differ from uninterpreted constants in logic in that a programming language has
a built-in assumption that elements of user-defined types are distinct. Creating
the symbolic term structure requires care because the symbolic domain must
have the same properties of the concrete domain. Therefore, the usual equal-
ity operation is only defined for the symbolic domain in special cases such as
Var x = Var x. In this paper, we do not address the issues of how one ensures
the symbolic domain has the same properties as the concrete domain.

Our symbolic simulation cannot determine when multiple symbolic decision
points conflict and therefore prune impossible execution paths.

Finally, type classes can make fixing type errors a more difficult process. For
example, type errors are often masked as missing class instantiations.

7 Conclusion

The most important conclusion of this work is that facilities can be found with-
in some existing programming languages to carry out symbolic simulation of
microprocessor models. Using a programming language means symbolic simu-
lation is accomplished by simply running a program. The speed of our method
compares well with using rewriting techniques to carry out symbolic simulation.
The output of symbolic simulation produced by a model written in a program-
ming language or executable hardware description language can be used as input
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to verification tools.

Type classes in Haskell make it possible to simulate interchangeably con-
crete and symbolic values without changing the model. Type classes provide a
way to exchange domains of values without requiring explicit parameterization.
The class definition specifies the operations on both the symbolic and concrete
domains. Algebraic manipulations of values in the symbolic domain reduce the
size of the symbolic terms in the output.

The symbolic infrastructure is likely to be reusable for future microprocessor
models. Thus, the initial investment in setting up the type classes can be
amortized over the ability to simulate symbolically many models.

We intend to continue this work by considering how this form of symbolic
simulation can be used in verification techniques. For example, symbolic tra-
jectory evaluation (STE) [SB95] is currently being applied at the bit-level using
BDDs as a symbolic representation. To apply STE at a more abstract level a
means of symbolic simulation of abstract values, such as the one we have pre-
sented, is needed. We intend to investigate the use of STE for microarchitecture
verification leveraging off of this work on symbolic simulation.
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A Haskell Code

A.1 Infrastructure.hs

module Infrastructure where

{-
The class Num, which already exists in Haskell, has most
of the operation that we need. The one extra operation that we
need is equality that takes two objects and returns an object of
the same type (not Boolean). This is so we can represent the
result of equality symbolically.

-}

class Num a => Word a where
(===) :: a ->a ->a

The following multi-parameter type class captures conditional
operations. It is multi-parameter because the type of the result
depends on both the type of the first argument (the test condition)
and the result type of the function.

-}

class Conditional a b where
if’> :: a->b ->Db ->b

{-
An instance of the Num class for the type Int
is built-in to Haskell. We just have to provide an instance
of the operations in the Word class. Here equality
returns 1 (true) or O (false).

-}

instance Word Int where
a === = if (a == b) then 1 else 0

{-
Our symbolic domain contains numbers (Const), symbols
(Var) and the syntactic representations of the operations
that can be performed on numbers.

-}
data Symbo =
Const Int
| Var String
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Plus Symbo Symbo

Minus Symbo Symbo
Times Symbo Symbo
Equals Symbo Symbo

Unfortunately, Haskell’s built-in type class structure requires
Num to also be part of the Eq class where normal
equality is defined. We never want to use normal equality over
symbols because that would be comparing syntactic equality not
semantic equality. So we make Haskell happy by defining this
operation to be an error if it’s ever called.

-}

instance Eq (Symbo) where

a == b = error "shouldn’t be calling this: syntactic equality!"

{-
As with the symbolic state, we have to show how to print elements
of our symbolic domain.

-}

instance Show Symbo where
showsPrec p (Const a) = showsPrec p a
showsPrec p (Var s) = showString s
showsPrec p (Plus x y) =
showParen (p > 6) (showsPrec 6 x .
showString " + "
showsPrec 6 y)
showsPrec p (Minus x y) =
showParen (p > 6) (showsPrec 6 x .
showString " - "
showsPrec 6 y)
showsPrec p (Times x y) =
showParen (p > 7) (showsPrec 7 x .
showString " * "
showsPrec 7 y)

showsPrec p (Equals x y) =
showParen (p > 7) (showsPrec 7 x .
showString " == "
showsPrec 7 y)
showsPrec p _ = error '"show not defined for something in Symbo"

{-
Next we define the meaning of the Num class operators
on our symbolic domain. The first four implement algebraic
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simplifications.

-}

instance Num Symbo where

{_

Var x + Var y = if (x == y)
then (Const 2) * (Var x)
else Var x ‘Plus‘ Var y
((Const x) ‘Times¢ (Var y)) + (Var z) =
if (y == z)
then (Const (x+1)) * (Var y)
else (Const x ‘Times‘ Var y) ‘Plus® Var z
(Var x ‘Minus‘ Const y) + Const j = Var x ‘Minus‘ Const (y - j)
(Var x ‘Plus‘ Const y) + Const j = Var x ‘Plus‘ Comnst (y + j)
Const x + Const y = Const (x + y)
Const 0 +y =y
x + Const 0 = x
x +y=x ‘Plus‘ y

Var x ‘Minus‘ Const (y + j)
Var x ‘Plus‘ Const (y - j)

(Var x ‘Minus‘ Const y) - Const j
(Var x ‘Plus‘ Const y) - Const j
Const x - Const y = Const (x - y)
x - Const 0 = x

X -y =x ‘Minus y

Const x * Const y = Const (x * y)
(Const 0) * y = Const O

x * (Const 0) = Const O

Const 1 *xy =y

x * Const 1 = x

X * y=3x ‘Times® y

fromInt = Const
fromInteger = Const . fromInteger

Finally, we need to show how Symbo implements the operations

-}

of the Word class, namely equality.

instance Word Symbo where

(Const x) === (Comnst y) =
if (x == y) then (Const 1) else (Const 0)
a === b = Equals a b
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A symbolic state captures a tree of possible execution paths
that the machine could take.
-}

data State f a =
CondS a (State f a) (State f a) |
Term (f a)

Taking a step in any symbolic state means taking a step at the
leaves of each branch. A step at the leaf of a branch is expected
to be defined individually for particular machines in the function
step_state.

-}

step (Term s) = step_state s
step (CondS a b ¢) = CondS a (step b) (step c)

{-
The following is simple pretty printing functions for symbolic
(tree-like) states. It expects the function printSt to
be defined for particular machines. This pretty printing doesn’t
worry about line wrap, etc.

-}

indent :: Int -> [Char]
indent i = if (i==0) then "" else (" " ++ indent (i-1))

printBranchingState i (Term a) =
showString (indent 1)
showString (printSt a)
printBranchingState i (CondS a b ¢) =
showString (indent i)
showString "CondS "
showsPrec 9 a .
showString "\n"
printBranchingState (i+2) b .
showString "\n"
printBranchingState (i+2) c

Next, we say that symbolic states can be printed (i.e., they are
an instance of the Show class using the above function

that produces a string.

We also have to know that the type a in the Word class and

in the StateComponents class used in the symbolic state
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can be printed.

-}

instance (Word a,StateComponents f a, Show a) => Show (State f a) where
showsPrec p s = printBranchingState 0 s

{-
The following function puts the string resulting from show
on the screen using the I0 monad.
-}
printState :: (Word a, StateComponents f a, Show a) => State f a -> I0(0)
printState s = putStr ((show s)++"\n")

{-
The following function is used by a particular machine to produce
a leaf state from its state elements.

-}

state s = Term s

instance Conditional Int (State f Int) where
if’> a b c = if (a==1) then b else ¢

{-
Operations such as jumpz return different next states
depending on the current state of the machine. When memory can
be symbolic, we may not be able to determine which branch is
followed so we have to create a branching state. The following
instance of the Conditional allows us to do this.
If its argument is concrete, i.e., evaluates to true (1) or
false (0), then we proceed normally. If not, then we return
a branched state.
-}
instance Conditional Symbo (State f Symbo) where
if’ (Const 1) b c =Db
if’ (Const 0) bc = ¢
if> abc=CondS abc

StateComponents is the class that captures the operations
the symbolic state needs to rely on about the machine state.
The values in memory in a state may have a symbolic or non-symbolic
type. This type is captured in the type parameter a. Therefore
a StateComponent is a constructor f that depends on
the type a.
-}

class Word a => StateComponents f a where
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step_state :: (f a) -> State f a
printSt :: (f a) -> String

A.2 Model.hs
{_

This simple example is based on the model found in

J Strother Moore’s paper FMCAD’98 paper entitled ‘‘Symbolic Simulation:
An ACL2 Approach’’.

This is a state-based specification of a non-pipelined machine.

We begin by giving the module a name and importing the definitions
found in the Infrastructure module.

-}
module Model where
import Infrastructure

{-
Programs running on this machine consist of a name, which is
a string and a list of instructions; the name is used in function
calls and the return pc is (name, loc). The stack
stores a list of (name, loc) for RET instructions.

The machine state contains the program counter, the stack, memory
as a list, a halt flag, and programs.

-}
data MachState a = ST
((String, Loc), -- program counter
[(String,Loc)], -- stack
[a], -- memory as a list
Bool, -- halt flag
Program a) -- program

mkState s = state (ST s)

{-
A program consists of a label and a list of opcodes.

-}

type Program a = [(String, [Op al)]

{_

Next, we define a data type to represent the opcodes.
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The only possible symbolic values are immediate operands so the

opcode type is parameterized by this type.
-}

Int
Int

type Reg
type Loc

data Op a =
MOVE Reg Reg
| MOVI Reg a
| ADD Reg Reg
| SUBI Reg a
| JUMPZ Reg Loc
| JUMP Loc
| CALL String
| RET
deriving (Show)

We have to show how MachState is an element of the
type class StateComponents defined in Infrastructure.
We need to show that as a leaf node of a symbolic state,

it can be printed, and we can execute the machine for one step.

-}

instance (Conditional a (State MachState a), Word a) =>
StateComponents MachState a where
printSt (ST ((name,loc),stk,mem,halt,program)) =
show ((name,loc),stk,mem,halt)
step_state (ST s@(pc, stk, mem, halt, code)) =
if halt
then (mkState s)

else (execute (current_instruction pc code) (ST s))

{-

The current instruction is found by looking in the program memory.
-}
current_instruction :: ([Char],Int) -> Program a -> Op a
current_instruction (name,loc) ((x,code):_) | (name == x) =

code ‘at‘ loc
current_instruction pc (_:b) =
current_instruction pc b
current_instruction pc [] = error "code not found"
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{-
Memory is modeled as a list, so the memory operation put
changes the value at a position in the list.

-}

put 0 value (a:b) = (value:b)
put x value (a:b) (a: put (x-1) value b)

(at) = (11

{-
Execute chooses which instruction to execute based on
the opcode. It also takes a statecomponent (the leaf of a symbolic
state) as an argument and returns a state.

-}

execute (MOVE a b) s = move a b s
execute (MOVI a b) s = movi a b s
execute (ADD a b) s = add a b s
execute (SUBI a b) s = subi a b s
execute (JUMPZ a b) s = jumpz a b s
execute (JUMP a) s = jump a s
execute (CALL a) s = call a s
execute (RET) s = ret s

move a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk, put a (mem ‘at® b) mem, halt, code)

movi a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk, put a b mem, halt, code)

add a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk,
put a (mem ‘at‘ a + mem ‘at‘ b) mem, halt, code)

subi a b (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,loc+1), stk, put a (mem ‘at® a - b) mem, halt, code)

jumpz a b (ST ((name,loc),stk, mem,halt,code)) =
if’ ((mem ‘at‘ a)===0)
(mkState ((name,b),stk, mem,halt,code))
(mkState ((name, loc+1), stk, mem, halt, code))

jump a (ST ((name,loc),stk, mem,halt,code)) =
mkState ((name,a), stk, mem, halt, code)
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call a (ST ((name,loc),stk, mem,halt,code)) =
mkState ((a,0), ((name,loc+1):stk), mem, halt, code)

ret (ST ((name,loc), (stkl:stkrest), mem,halt,code)) =
mkState (stkl, stkrest, mem, halt, code)

ret (ST (pc,[], mem,halt,code)) =
mkState (pc, [], mem, True, code)

{-
The following function
runs the machine for n steps starting from state s.

-}

smsn=
if (n == 0) then s else sm (step s) (n-1)

{-
This is the program used as an example in the paper.
If called with mem[0] = i and mem[1] = j,
it leaves i * j in mem[2] and clears mem[O0].

-}

prog :: Word a => [Op al

prog = [
MOVI 2 O, -- 0, mem[2] <- 0
JUMPZ 0 5, -- 1, if mem[0]=0, goto 5
ADD 2 1, -- 2, mem[2] <- mem[1] + mem[2]
SUBI 0 1, -- 3, mem[0] <- mem[0] -1
JUMP 1, -- 4, goto 1
RET -- b5, return to caller
]

{-

Here’s an initial state for the machine to calculate 7 * 11.

-}

statel :: State MachState Int
statel = mkState

(("TIMES",0), -- program counter

1, -- empty stack

[7,11,3,4,5], -- memory

False, -- halt flag is currently false

[("TIMES", prog)l)
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This functions gives us a shortcut, so we can just type psl x
where x is the number of cycles we want to run prog
on statel.
-}
psl :: Int -> 100
psl x =
printState (sm statel x)

{-
To calculate 7 * 11, execute ‘‘psl 31’°

-}

{-
In this example we have symbolic data in the data path but
not in the control path. For prog, this means j
can be symbolic but not 1i.

Here’s a state that runs the same program for 7 * j.

-}

state2 :: State MachState Symbo

state2 = mkState

(("TIMES",0), -- program counter

a, -- empty stack

[7,Var "j",Var "x",Var uy.u’var uzu] s

False, -- halt flag is currently false

[("TIMES", prog)l)

ps2 x =
printState (sm state2 x)

{-
To calculate 7 * j, execute ‘‘ps2 317’

-}

{-
Next, we run the multiplication program with all values in
memory being symbolic.

-}

state3 :: State MachState Symbo
state3 = mkState

(("TIMES",0), -- program counter

1, -- empty stack

[Var "i",Var "j",Var "x",Var "y",Var "z"], -- memory
False, -- halt flag is currently false
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[("TIMES",prog)])

ps3 x =
printState (sm state3 x)

{-
To calculate i * j, execute ‘‘ps3 207’

-}

{-
Now let’s look at a program that takes longer to execute
to get some timing figures on instructions per cycle for
concrete and symbolic simulation.
This program does 10000 repeated additions of 1000 and takes 40007
cycles to complete.

-}

state4 :: State MachState Int
state4 = mkState

(("MAIN",0), -- program counter
, -- empty stack
[0,0,0,0,01, -— memory
False, -- halt flag
[("TIMES", prog), -- program memory
("MAIN", [MOVI O 10000, -- 0, mem[0] <- 10000
MOVI 1 1000, -- 0, mem[1] <- 1000
CALL "TIMES",
RET]
)1

ps4 :: Int -> I00
ps4 x = printState (sm stated x)

{-
To calculate 10 000 * 1000, execute ‘‘ps4 400077’
-}

{_

Moore’s benchmark for symbolic simulation

This example runs 1000 * j in symbolic simulation. There
are no branching states. It take 4007 cycles to complete.

-}

stateb :: State MachState Symbo
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stateb = mkState

(("MAIN",0),

a,

[1000,Var "j",Var "x", Var "y", Var "z"],
False,
[("TIMES", prog),

("MAIN", [CALL "TIMES",

RET]
D

psb :: Int -> I00
psb x = printState (sm stateb x)

{-
execute ‘‘psb 4005’
-}

{-
Bigger test case for concrete simulation

-}

state6 :: State MachState Int
state6 = mkState

(("MAIN",0),

a,

[0,0,0,0,0],

False,

[("TIMES", prog),

("MAIN", [MOVI O 100000, -- 0, mem[0] <- 100000

MOVI 1 1000, -- 0, mem[1] <- 1000
CALL "TIMES",
RET]

)1

ps6 :: Int -> I00)
ps6 x = printState (sm statef x)

{-
execute ¢ ‘ps6 4000007’
-}

{_

Bigger test case for symbolic data flow

-}
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state7 :: State MachState Symbo
state7 = mkState

(("MAIN",0),

a,

[100000,Var "j",Var "x",Var "y", Var "z"],

False,

[("TIMES", prog),

("MAIN", [CALL "TIMES",RET])])

ps7 :: Int -> I00)
ps7 x = printState (sm state7 x)

{-
execute ¢ ‘ps7 4000007’
-}

{-
Test case for symbolic control flow

-}

state8 :: State MachState Symbo
state8 = mkState
(("MAIN",0),
1,
[Var l!ili’var lljll,var llel, Var liyli’ Var "Z"],
False,
[("TIMES", prog),
("MAIN", [CALL "TIMES",
RET]
)ED)

ps8 :: Int -> I00
ps8 x = printState (sm state8 x)

{-
execute ‘‘ps8 2000’
-}
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