
ALDB: Debugging Alloy Models
of Behavioural Requirements

Aman Dureja, Aditya Keerthi, Andrew Liang, Paul Zhang, and Nancy A. Day
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada N2L 3G1
Email: {adureja, a2keerth, a29liang, jl5zhang, nday} @uwaterloo.ca

Abstract—Declarative modelling languages, such as Alloy, are
becoming popular for describing behavioural requirements very
early in system development because automated analysis of these
models provides valuable feedback. Typically, these languages
are supported by constraint solvers (SAT, SMT) for providing
instances or model checking properties. However, a user can
quickly find simple bugs and gain confidence in their model by
concretely simulating steps of the transition system. We present
ALDB: a debugger for models of transition systems written in
the Alloy language. It provides a familiar debugging interface
to walk around in the behaviour of the model, enabling users
to quickly explore scenarios, find errors via concrete simulation,
and incrementally build up to bounded model checking.

I. INTRODUCTION

Model-driven engineering (MDE) [1] seeks to conquer
complexity through the use of more abstract descriptions of
a system than code. While MDE approaches generally centre
around the Unified Modelling Languages (UML) [2], there
is a growing area of research surrounding declarative formal
modelling languages. These languages, such as Alloy [3],
TLA+ [4], and Event-B [5], are well-suited for describing
behavioural requirements because they allow users to write for-
mal models very early in the development process to explore
designs and catch errors before going to the effort of creating
a UML model or coding. These models are precise, but not
necessarily detailed, through the use of uninterpreted functions
and constraints rather than operational language constructs.
For example, an Alloy model consists of constraints over sets
and relations where the constraints are written in terms of
set operators plus the transitive closure operator. There are
several examples of the effective use of declarative modelling
languages, such as using Alloy to find bugs in the CHORD
protocol [6] and using TLA+ to find bugs in concurrency
designs at Amazon [7]. In this paper, we focus on declarative
behavioural models (transition systems).

Generally, declarative modelling languages are supported by
automated formal analysis tools that search for instances or
counterexamples over a finite scope of values for each set.
Limiting the search to a finite scope makes it tractable, but
such analysis may take time, and it can be harder to debug
a model from static feedback such as a model instance or
an entire counterexample trace. In particular, for the popular
Alloy Analyzer, an instance of a behavioural model is a
static representation of either a path or the entire transition
system. Techniques for temporal logic model checking of

Alloy models are being developed (e.g., [8], [9]), but users
might like to explore the behaviour of an abstract model of
a transition system through debugging/simulation first to find
simple bugs and to understand the behaviour prior to waiting
for a solver to complete.

Driven by the goal of providing quicker, more interactive
feedback to Alloy users, we have created a debugger for
Alloy models of transition systems. The idea is to provide
a modeller with the functions needed to explore an Alloy
model of a transition system by stepping through it in the
fashion of a typical debugger. Currently, iterating through a
relation must be done by including facts in the Alloy model
that either create a path by explicitly iterating the relation a
fixed number of times (as in bounded model checking [10]) or
writing formulas in the Alloy Analyzer’s interactive evaluator
component. What is missing is a tool that focuses particularly
on transition systems and provides the commonly-understood
interactive debugging interface.

Providing debugging functionality for declarative modelling
languages has different challenges than creating a debugger for
code. Declarative models are abstract (e.g., sets/relations/func-
tions) and the transition relation can be non-deterministic. The
next step cannot be “computed” directly, but rather interaction
with a solver is needed to determine the possible next states.
Because of the non-determinism, the choice of a particular
next state may eliminate some future paths of interest for
exploration. Debugging needs both functions for step-by-
step and backtracking interaction, and goal-based functions
to find paths that reach or follow states based on user-chosen
constraints. Debugging a declarative model is an incremental
process that goes from local exploration all the way to bounded
model checking.

Existing tools for declarative modelling provide some of
these debugging/simulation features, although we are not
aware of any such tool for Alloy. TLC [11], the model checker
for TLA+ can generate a randomly chosen path through the
model. ProB [12] provides users with the ability to take
individual steps of the model. NuSMV [13] and NuXMV [14]
provide interactive simulation functions that allow both step-
ping through a model and finding paths that satisfy constraints
but their modelling languages are less abstract than Alloy.

In this paper, we describe a set of functions for our new tool
ALDB, which is a debugger for Alloy models of transition
systems. ALDB provides a command-line interface but is



integrated with the code base of the Alloy Analyzer through
the use of debugging function templates. ALDB is available for
download at: HTTPS://GITHUB.COM/WATFORM/ALDB. We
also describe how ALDB can be used in a case study.

Declarative modelling languages provide users with the
ability to write even more abstract models than those of UML
and thus provide a stepping stone in conquering complexity
between requirements and design. A familiar debugging-like
interface for Alloy models will support modellers in transition-
ing to this new modelling paradigm by immediately providing
feedback on their models. We believe ALDB provides valuable
functionality to both novice and advanced Alloy users. For
novice users, it helps them learn the effects of Alloy language
structures. For advanced users, it helps them zero in quickly
on modelling mistakes or problematic cases in the model.

II. BACKGROUND

Alloy is a declarative language based on relational logic and
models system components as sets. A user can create a set as
a signature, declare relations between sets, and write facts,
which are invariants about the relations and sets. Predicates
(similar to macros) are used to define formulas, and may be
parametrized. Alloy’s graphical tool - the Alloy Analyzer -
produces satisfying instances of a model and exposes invariant
violations by generating counterexamples. Finite scopes (sizes)
for each set are required, which restrict the universe that the
Analyzer explores.

The focus of our work is on Alloy models of transition
systems. A transition system consist of a set of states and
a transition relation that operates on them. In Alloy, there
are two idioms for defining a transition system, which we
will call implicit and explicit state. Implicit state transition
system models encode the changing behaviour in relations
from an object to a state or time [3]. Explicit state systems
utilize a dedicated state signature and the transition relation is
a binary relation between states [15]. Additionally, there are
relations from the states to the dynamic elements of the model
(similar to treating the state as a record/structure). Sullivan et
al. compare these styles of modelling in Alloy [16]. ALDB
assumes explicit state models since it localizes the definition
of the state and it has only one transition relation (rather than
multiple relations that together form the transition relation).

In detail, ALDB assumes that state models consist of a
State signature, an init predicate, and a next predicate,
as follows:

1 sig State { ... }
2 pred init [s: State] { ... }
3 pred next [s, s’: State] { ... }

The names of these elements are configurable. The State
signature contains the elements of the state that change value
with transitions. There can be other non-dynamic elements in
the model that do not need to be part of the State signature.
The init predicate contains constraints on the initial state
of the system. The next predicate is the transition relation,
and relates s and s′ where s is the current state and s′ is

the next state. As it is common, we assume that the user
has defined a unique (although possibly non-deterministic)
transition relation.

As an illustrative example of an Alloy transition system, we
use the classic River Crossing Problem (RCP). In the RCP,
there exists a farmer, a fox, a chicken, a bag of grain, and
a small boat. There is a river dividing two sides of land: the
near side and the far side. Every entity starts on the near side.
The goal is to use the boat to transport all entities to the far
side of the river. There are some restrictions:
• The boat can only hold two entities at any time. One of

the entities must be the farmer, as only they can operate
the boat.

• If left together without the farmer, the fox will eat the
chicken.

• If left together without the farmer, the chicken will eat
the bag of grain.

Listing 1 is an explicit state Alloy model representing the
RCP1 [17].

Currently, in the Alloy Analyzer, if a user wishes to inves-
tigate what happens in two steps of their model, in addition
to the above model, they must perform the following process:

1) Load the model into the Analyzer.
2) Optionally (but commonly), import the util/ordering

module to create a path via a total ordering on states.
3) Define a fact that constrains the first state in the total

order to satisfy the init predicate.
4) Define a fact that constrains the linear order to respect

the transition relation, meaning a state can follow an-
other in the order only if it is related by the next
predicate.

5) Add a line to the end of the model that searches for an
instance of the linear order of a certain length.

6) Observe the entire path in the Analyzer visualizer.
The facts mentioned above could be written in the evaluator
and the visualizer can be configured to isolate parts of the
model or show the states in different views.

But this process either requires non-trivial manual model
instrumentation which bloats the model with debugging
specifics, or requires the modeller to type in long formulas
in the evaluator. If the user desires to see a path that reaches
a state where a certain condition is true, as in bounded model
checking, then they must further instrument the model.

Activities such as stepping and running a system until
specific constraints are satisfied (breakpoints) are commonly
performed when designing programs (which are transition
systems), in order to debug incorrect behaviour or to observe
system execution. Manual model instrumentation as previ-
ously mentioned is fragile and opens the model up to more
faults. The process also requires the user to always load the
graphical Analyzer tool, which can be undesirable for those
who work primarily in command-line environments, disrupting

1The model presented here very closely matches the Alloy of RCP
found in https://github.com/AlloyTools/org.alloytools.alloy/blob/master/org.
alloytools.alloy.extra/extra/models/examples/tutorial/farmer.als .



1 /* Farmer and his possessions are objects. */
2 abstract sig Object {
3 /* eats is a binary relation on Objects */
4 eats: set Object
5 }
6 /* Particular objects of the model */
7 one sig Farmer, Fox, Chicken, Grain
8 extends Object {}
9
10 /* Define what eats what
11 when the farmer is not around. */
12 fact { eats = Fox->Chicken + Chicken->Grain }
13
14 /* States of the transition relation consist of:
15 1) a set of Objects on the near side
16 2) a set of Objects on the far side
17 */
18 sig State { near, far: set Object }
19
20 /* In the initial state, all objects
21 are on the near side. */
22 pred init [s: State] {
23 (s.near = Object) && (no s.far)
24 }
25
26 /* At most one item to move from
27 ’from’ to ’to’; eating occurs if possible. */
28 pred crossRiver
29 [from, from’, to, to’: set Object] {
30 one x: from | {
31 from’ = from - x - Farmer - from’.eats
32 to’ = to + x + Farmer
33 }
34 }
35
36 /* Transition Relation */
37 pred next [s, s’: State] {
38 Farmer in s.near =>
39 /* cross from near to far */
40 crossRiver [s.near, s’.near, s.far, s’.far]
41 else
42 /* cross from far to near */
43 crossRiver [s.far, s’.far, s.near, s’.near]
44 }

Listing 1. Alloy model of River Crossing Problem (RCP)

their workflow. Hence, there is a need for a command-line
tool that performs desired debugging functions on transition
systems.

III. ILLUSTRATIVE EXAMPLE

In order to demonstrate its functionality, in this section we
show the use of ALDB to explore and find a solution to the
RCP that was introduced earlier.

We begin by loading the model into ALDB:

1 (aldb) load river_crossing.als
2 Reading model from river_crossing.als...done.
3 (aldb) current
4
5 S1
6 ----
7 far: { }
8 near: { Chicken, Farmer, Fox, Grain }

The changing state in the RCP Alloy model is the set of objects
that are on the near and far sides. There is only one initial

state that satisfies the init constraint: everything is on the
near side and nothing is on the far side. The river can only be
crossed starting from where the farmer currently is, and ending
on the opposite side. When crossing the river, the farmer has
the option to take any one of the other objects with them,
with the consequence that some object may be eaten if left
unattended.

Using ALDB, a modeller can incrementally explore the
model’s state space by stepping (continuing the example run
from above):

1 (aldb) step
2
3 S2
4 ----
5 far: { Farmer, Grain }
6 near: { Fox }

The reached state in this step does not contain all the objects.
The chicken is missing because in this specific execution path,
the farmer took the grain and left the fox to eat the chicken.
This behaviour is undesired. The reverse-step function
can be used to go back to the initial state, or using the alt
command we can explore other states that could have been
reached (continuing the example run above):

1 (aldb) alt
2
3 S3
4 ----
5 far: { Farmer, Fox }
6 near: { Chicken }
7
8 (aldb) alt
9
10 S4
11 ----
12 far: { Chicken, Farmer }
13 near: { Fox, Grain }

In the first alternate state, the farmer takes the fox, leaving
the chicken to eat the grain. The second alternate state from
the initial state may lead to a valid solution to the puzzle as all
objects are still present. If the user wishes to see only steps that
lead to states where all entities exist, then they can leverage
constrained stepping with a formula alias. We begin by using
the init command to return to the model’s initial state, as
follows:

1 (aldb) init
2
3 S1
4 ----
5 far: { }
6 near: { Chicken, Farmer, Fox, Grain }
7
8 (aldb) alias myFormula "near + far = Object"
9 (aldb) step [myFormula]
10
11 S2
12 ----
13 far: { Chicken, Farmer }
14 near: { Fox, Grain }

Here, the user specifies a formula where the union of the near
and far sets is equal to the Object set (i.e., all entities). The



formula is aliased as myFormula for convenience. When the
step is performed, ALDB takes one step in the transition system
that has a destination state that satisfies myFormula.

The question that we want to answer in this puzzle is: what
sequence of events – if any – results in every entity safely
reaching the far side of the river? Since the desired end state
of the puzzle is known, using ALDB’s until command with
a breakpoint is the quickest method to get a solution to the
puzzle. The breakpoint is set to a constraint where the far side
contains all the objects, and there is nothing on the near side,
as follows:

1 (aldb) init
2
3 S1
4 ----
5 far: { }
6 near: { Chicken, Farmer, Fox, Grain }
7
8 (aldb) break "far = Object && no near"
9 (aldb) until
10
11 S8
12 ----
13 far: { Chicken, Farmer, Fox, Grain }
14 near: { }

The desired state has been reached. By default the until
function takes up to 10 steps, but a user can choose an

alternative number of steps. We can use the history function
to show the sequence of transitions that resulted in this end
state as shown in Listing 2. From this history, we know that
the desired end state can be reached in seven transitions.

The process of manually exploring the state space exposes
execution states that a user might not see in an instance
produced by the Alloy Visualizer. Looking at concrete states
allows the user to quickly find errors in the model.

IV. DEBUGGING FUNCTIONS

Inspired by common code debugging tools, we created the
functions described in this section for Alloy debugging. We
describe how these functions are customized for a declarative
model. For any of our functions that require constraint solving,
a template is populated to pass to the Alloy Analyzer’s solver.
ALDB then interprets the solver’s result to display the concrete
states of the model as needed for the output of the function.
The template instantiation uses information stored internally
to ALDB about the explored states. This method is easily
extensible to add more functionality to ALDB.

In order to understand the function descriptions, we first
introduce the internal data structures that ALDB uses to keep
track of states and execution traces. StateGraph is a directed
graph that represents the parts of the transition system that
the user has explored so far in the debugging session. Each
node represents a concrete state (with unique values for its
state elements), and each edge represents a transition. We build
StateGraph incrementally as the user steps through a transition
system and explores its state space. Two states are equivalent

1 (aldb) history 10
2
3 S1 (-7)
4 ---------
5 far: { }
6 near: { Farmer, Fox, Chicken, Grain }
7
8 S2 (-6)
9 ---------
10 far: { Chicken, Farmer }
11 near: { Fox, Grain }
12
13 S3 (-5)
14 ---------
15 far: { Chicken }
16 near: { Farmer, Fox, Grain }
17
18 S4 (-4)
19 ---------
20 far: { Chicken, Farmer, Fox }
21 near: { Grain }
22
23 S5 (-3)
24 ---------
25 far: { Fox }
26 near: { Chicken, Farmer, Grain }
27
28 S6 (-2)
29 ---------
30 far: { Farmer, Fox, Grain }
31 near: { Chicken }
32
33 S7 (-1)
34 ---------
35 far: { Fox, Grain }
36 near: { Chicken, Farmer }

Listing 2. Output of History for RCP Debugging Interaction

if they have same values for their state elements2. Thus, the
StateGraph may contain loops. While this graph may grow
large, because it is based on interactive use, we do not expect
state space explosion problems. StatePath is a subgraph of
StateGraph, and represents the path of the transition system
currently being followed in this debugging session.

Next, we describe the functions of ALDB, how they match
to constraint problems in Alloy, and how they change the
StateGraph and StatePath.

A. Configuration

ALDB operates on transition systems modelled using the
explicit state modelling idiom. The names of the expected
signatures and predicates can be set in a custom configuration.

The configuration is defined in YAML. It can be
specified within a comment block in the model file,
or set via a separate YAML file using the set conf
[path/to/config/file] function. Listing 3 shows an
example of a configuration block within an Alloy model. It
has the following parts:
• stateSigName is the name of the signature that rep-

resents the state set.
2Alloy allows different atoms of the state set to relate to the same values

for state elements, which gives the appearance of two different state names
for the same state. In ALDB, we collapse these differences for the user.



1 /* BEGIN_ALDB_CONF
2 *
3 * stateSigName: State
4 * transitionRelationName: next
5 * initPredicateName: init
6 * additionalSigScopes:
7 * Team: 4
8 * Runner: 15
9
10 * END_ALDB_CONF
11 */
12
13 sig State { ... }
14 pred init[s: State] { ... }
15 pred next[s,s’:State] { ... }

Listing 3. ALDB Configuration File

• transitionRelationName is the name of the tran-
sition relation predicate.

• initPredicateName is the name of the predicate that
constrains the initial states of the transition system.

• additionalSigScopes is an optional map of
(String, Integer) pairs that define specific scopes for
signatures (other than the State signature) within the
model. These override any choice of scopes included in
the model. The scope of a set cannot be changed in
the middle of a debugging session without reloading the
model and restarting execution.

When a model is loaded, the session begins with ALDB
choosing an initial state by asking the Alloy solver to return a
state that satisfies the init predicate. This initial state forms
the first node of the internal StateGraph and StatePath data
structures.

B. Step and Reverse-Step Functions

Input to the step function is the number of steps to take.
The template for the step function is shown in Listing 4.
A temporary Alloy file is created from this template. In the
template, ALDB creates a new init predicate based on the
current state, which is maintained in an internal data structure.
The util/ordering module is imported to create a path
of states via imposing a total ordering on the State set. The
ordering module reserves the names first and next (as in
s.next) to be the first element in the order and the function
to get the next element in the order respectively. The first
state must satisfy the new init predicate (line 19). Then, we
must tell Alloy that all consecutive states are related by the
next predicate of the transition system (lines 21–23). Finally,
Alloy must actually run the system for the given number of
steps. We set the scope of the State set to one more than
the desired number of steps to account for states at both ends
of the path (line 25).

The Alloy solver returns an instance of the appropriate
length path. ALDB displays the last of the states in the path to
the user, but also updates the internal StateGraph structure
to keep track of visited states. If Alloy returns two states
with identical values for their state elements, internally, this

1 open util/ordering[State]
2
3 // Information about current state
4 // Example:
5 // field1 -> {}
6 // field2 -> {a, b}
7 // ...
8
9 < all of original model (except init predicate) >
10
11 // Generated init predicate
12 pred init[s: State] {
13 // Example:
14 s.field1 = none
15 s.field2 = a + b
16 ...
17 }
18
19 fact { init[first] }
20
21 fact {
22 all s: State, s’: s.next { next[s, s’] }
23 }
24
25 run {} for exactly <1 + inputNumStates> State

Listing 4. Template for Step Function

is represented as a loop in StateGraph3. The step function
output shows only the fields that have changed in the step.

The reverse-step function returns the previous step
on the path and does not require interaction with the solver
because of the internal StatePath data structure.

C. Alt Function

The alt function allows users to explore alternate states
that are reachable from the previous state as was shown in
Section III. Using the alt function the user can incrementally
explore the complete state space of a transition system. It can
also be used at the initial state to view the set of all possible
initial states.

Using the StateGraph, ALDB first looks to see if there
are any previously discovered alternative states that have not
yet been displayed to the user (at this time) to choose an
alternative state. If not, rather than using a template, it is more
efficient to leverage the previous solver run by asking the Alloy
solver for its “next” solution.

D. Until and Break Functions

The until function is used together with breakpoints. The
user can add any number of formulas that are breakpoints to
halt continued exploration of a path in the model. The formula
of a breakpoint is entered via the break function (possibly
using a formula alias for convenience).

The input to the until function is the maximum number
of steps to explore. ALDB generates a path from the current

3The ordering module will not present a path with a loop in it (because
then the states are not in a total order), thus it is appropriate to allow Alloy
to have multiple states related to the same state values. A modeller should
avoid including a fact that two states cannot contain the same values for their
state elements.



state that is either as long as this maximum number of steps
or reaches a state where one of the breakpoints is true.

To instantiate the template for the until function, the
formulas entered as breakpoints are disjuncted together to
create a predicate in Alloy. There are two different stopping
points for the until function: when the breakpoint is reached
or when the maximum path length is checked. We sequentially
run the Alloy solver for every path length between one and the
specified maximum number of steps. For each of these runs
we use a template similar to the one for the step, except that
the break predicate must be true in the last state of the run,
as in:

1 // User-specified breakpoint formulas:
2 // Example
3 // breakpoint1 = "field1 = a"
4 // breakpoint2 = "field1 + field2 = a + b"
5
6 // Generated break predicate:
7 pred break[s: State] {
8 (s.field1 = a) or
9 (s.field1 + s.field2 = a + b)
10 }
11
12 fact {
13 break[last]
14 }
15
16 run { } for exactly <numSteps + 1 > State

If the solver finds a solution that satisfies the break predicate
at a certain path length, then we do not check longer path
lengths. If we execute the solver with the maximum number of
steps and it still returns no satisfiable solution, then we inform
the user that the breakpoint could not be satisfied within the
specified maximum path length. This iteration over path length
ensures that less solver time will be taken when shorter paths
(than the maximum) satisfy the breakpoint.

Our function until is bounded model checking but
phrased in terms of common debugging functions for the user.
For example, model checking that an invariant is true for all
paths of lengths up to k can be done using a breakpoint on the
negation of the invariant and running ALDB’s until function
for k steps.

E. Step Function with Path Constraints

As an alternative to providing the number of steps as input to
the step function, users can provide a comma-separated list
of formulas to be satisfied at each state in a path. This function
can be used to simulate inputs for the transition system by
setting a constraint that includes a formula containing a value
for an input. Also, using formula aliases, it is easy to constain
a path where every step satisfies an invariant. For a list of
length n, the function will execute n steps, and each state i
in the path will satisfy the formula at position i in the list.

In order to perform the path-constrained step, we instantiate
an Alloy model template with predicates to represent the
constraint at each step in the path and apply these constraints
to the appropriate state in the ordering of the State set
(lines 22– 26) as shown in Listing 5. If no such execution path
exists, then the user is informed that the constrained step could

1 // User specified formula aliases:
2 // Example:
3 // f1 = "field1 = a"
4 // f2 = "field1 + field2 = a + b"
5
6 // User enters: step [f1, f2, f1]
7
8 // Generated Alloy code:
9
10 pred path_s1[s: State] {
11 s.field1 = a
12 }
13
14 pred path_s2[s: State] {
15 s.field1 + s.field2 = a + b
16 }
17
18 pred path_s3[s: State] {
19 s.field1 = a
20 }
21
22 pred path[s: State] {
23 path_s1[s.next] and
24 path_s2[s.next.next] and
25 path_s3[s.next.next.next]
26 }
27
28 fact {
29 init[first]
30 path[first]
31 }
32
33 run { } for
34 exactly <length of constraint list> State

Listing 5. Template for Step with Path Constraints

not be completed. Otherwise, it is guaranteed to find a path if
one exists. Note that this is unlike other simulation methods
that do not ‘look ahead’ to ensure that the state chosen in the
next step has a future path that satisfies all the constraints.

F. Trace Mode

The Alloy Analyzer is able to generate counterexample
paths when inconsistencies are found during bounded model
checking. A counterexample can be exported from the An-
alyzer as an XML file that encodes a specific erroneous
execution trace. ALDB is able to load a counterexample file,
parse the XML, and convert it to an internal representation for
user exploration. Loading a counterexample does not require
the user to load the original Alloy model from which the
counterexample was derived. As such, a limitation is that
ALDB cannot find alternate states, nor step beyond the final
state of the counterexample. Trace mode is useful however to
highlight what state elements change in each step.

G. Session Log

Every execution of ALDB is considered to be a unique
session. When ALDB is started, a session log is created in a
temporary file. This file records every full, completed function
executed in the current session. If a session is terminated, it can
be recovered up to the point of the last completed command
by starting ALDB with the --restore flag and the file path



of the desired session log to restore from. A new session log
with the contents of the previous session’s log - and any further
commands - will be created for the new session. This file can
also be used for scripting a debugging session.

H. Additional Functions

ALDB implements a number of additional functions such as:
• alias: label a formula. As shown in the example

in Section III, to avoid having to type large formulas
multiple times, a label can be given to a formula and
reused in any function that has formulas as arguments.

• init: return to an initial state. This function returns to
the first initial state selected by ALDB in this session.
Multiple initial states can be explored by using the alt
function when an initial state is the current state.

• scope: show the elements in the scope of a set. This
function is useful to learn what values are possible for a
state element.

• dot: output a graph of the state space explored so far in
the DOT graph description language [18] where it can be
visualized using packages such as graphviz [19].

V. IMPLEMENTATION

In order to implement ALDB functions, we leverage the
public Alloy Analyzer code4. Interfacing directly with the
Alloy API maximizes compatibility between Alloy and ALDB.
Whenever Alloy introduces new features or better solvers, the
changes will be immediately reflected in ALDB when it is
updated to use the latest Alloy JAR.

We use the Alloy Analyzer’s existing code to parse models
and use the Alloy API to call its solvers to find satisfying
instances of Alloy models created using our template.

A key Alloy data structure we rely on is the one containing
the instances returned from the solver. This object contains
information about the system state at every step. Furthermore,
the instance data structure exposes a “next” method which
returns another instance with an alternate path. This method
allows us to show the user alternate states at each step, and
build a complete StateGraph for the model.

We are currently considering how ALDB might be integrated
directly into the Alloy evaluator, which is part of its graphical
user interface, but there is value in continuing to have ALDB’s
functionality at the command-line.

VI. EVALUATION

Beyond testing for correctness, to evaluate the effectiveness
of ALDB as a debugger for Alloy models of transition systems,
we tackled creating a new model using ALDB to help with
the debugging process. Our goal in this section is to provide
readers with a sense of how ALDB can be used in their
workflow.

We received an informal written specification of a program
called FastFeet (FF) [20], which had been previously used
as formal specification exercise in a second year course at

4https://github.com/AlloyTools/org.alloytools.alloy

the University of Waterloo. From this informal description,
we wrote a formal Alloy model5 FF manages a running race.
There are multiple teams of runners, and a runner can belong
only to a single team. A team consists of a maximum of
five runners, and a minimum of one. When a race is over,
FF returns the result: a list of runners in the order that they
finished in the race. Initially, nobody is entered in a race and
no result exists. The following are the system operations:
• Register Team: Add a team and its runners to the race.
• Substitute Runner: Replace a runner on a particular team

with another runner.
• Run Race: Obtain an ordered list of finishing runners.

Some runners may not have finished.
• Disqualify Team: Remove all runners from a particular

team from the results.
• Compute Score: For each team that has a full set of

runners that finished, obtain the sum of finishing positions
for the team.

When writing the Alloy model for FF, we began by encod-
ing information about the changing entities into a State sig-
nature. We wrote a predicate that encapsulates the behaviour
of each system operation (sys op). Then we defined an init
predicate to specify initial conditions, and a next predicate as
the transition relation. In each step, one of the FF operations
is taken.

We utilized ALDB to incrementally test and build
a correct model. Within the ALDB config, we used
additionalSigScopes to set the scope of the Team and
Runner signatures. For simplicity, we used four teams and
fifteen runners.

Our primary debugging strategy was to leverage
ALDB’s constrained step functionality. The various
system operations were tested using the command: step
["operation=SYS_OP_NAME"]. The debugging method
allowed us to examine individually the effects of each
operation. We then verified that the output corresponded
to what we expected. If the output was surprising, then it
signalled that the sys op predicate was erroneous, particularly
the statements that referenced the state elements with
unexpected results.

Next, we wanted to inspect how a race would progress once
it began, so we used ALDB’s until function to get to a
state where the race has started, and then manually stepped
to observe transitions. Listing 6 shows an unexpected state
transition. The operation in S4 is “SUBSTITUTE RUNNER”.
According to the informal specification, it does not make sense
for a team to substitute a runner during a race. As such, ALDB
exposed a flaw in the model where we neglected to ensure
that the “SUBSITUTE RUNNER” operation should only be
possible if the current mode is “REGISTRATION”, meaning
that it occurs before a race begins.

ALDB’s until functionality allowed us to test reachability
of the end of the race. We set a breakpoint for the existence

5Our complete model in Alloy is available at: https://github.com/WatForm/
aldb/blob/master/models/river crossing.als .



1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "mode=RACE"
4 (aldb) until
5
6 S3
7 ----
8 mode: { RACE }
9 operation: { RUN_RACE }
10 results: { }
11 roster: { Team_3->Runner_1, Team_3->Runner_10 }
12 runners: { Runner_1, Runner_10 }
13 scores: { }
14 teams: { Team_3 }
15
16 (aldb) step
17
18 S4
19 ----
20 operation: { SUBSTITUTE_RUNNER }
21 roster: { Team_3->Runner_1, Team_3->Runner_14 }
22 runners: { Runner_1, Runner_14 }

Listing 6. Unexpected State Transition Discovered using Step Function

of results and scores and used the until function to check
if such a state was reachable. This use of ALDB is essentially
bounded model checking. The history function showed us how
the system reached the desired state in Listing 7. This output
shows a simple path of state transitions that can be manually
examined for errors.

Once we had a correct model, one member of our team
seeded three bugs in it and tasked another member to discover
and fix the bugs. We will now discuss how ALDB was used to
discover the bugs. Listing 8 shows the output from ALDB that
helped us find the first seeded bug. After stepping through team
registration operations, we see that no state can be reached
where all runners have completed the race – a situation that
obviously should be possible. The issue here was a scope
problem. The seq (sequence) relation used for the list of
results had been set to five in the model configuration, meaning
that the results set could not contain more than five elements,
hence the #(results)=#(runners) constraint could not
be satisfied. The appropriate fix is to set the scope of seq to
match the scope of the set of runners.

Listing 9 shows a series of states during team registration,
from which we discovered the second seeded bug. After each
step during the team registration, teams and rosters are updated
but the set of runners is not updated correctly. The set of
runners only contains the new added runners and not the
previously registered runners. The cause of this bug was an
omission in the operation for registering teams to ensure that
the next state keeps all the runners of the existing state.

Listing 10 shows the ALDB output that helped us discover
the third seeded bug. The teams that did not participate in
the race were unexpectedly assigned scores. The fix was to
ensure that scores are only assigned to registered teams in the
operation that computes the scores.

It was sufficient to use ALDB to discover the bugs discussed
above rather than the full Alloy Analzyer. ALDB has a familiar

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "#(results) > 0 and #(scores) > 0

and mode=RESULTS"
4 (aldb) until
5
6 S4
7 ----
8 mode: { RESULTS }
9 operation: { COMPUTE_SCORES }
10 results: { 0->Runner_0, 1->Runner_14 }
11 roster: { Team_3->Runner_0, Team_3->Runner_14 }
12 runners: { Runner_0, Runner_14 }
13 scores: { Team_3->1 }
14 teams: { Team_3 }
15
16 (aldb) history
17
18 S1 (-3)
19 ---------
20 mode: { REGISTRATION }
21 operation: { }
22 results: { }
23 roster: { }
24 runners: { }
25 scores: { }
26 teams: { }
27
28 S2 (-2)
29 ---------
30 mode: { REGISTRATION }
31 operation: { REGISTER_TEAM }
32 results: { }
33 roster: { Team_3->Runner_0, Team_3->Runner_14 }
34 runners: { Runner_0, Runner_14 }
35 scores: { }
36 teams: { Team_3 }
37
38 S3 (-1)
39 ---------
40 mode: { RACE }
41 operation: { RUN_RACE }
42 results: { 0->Runner_0, 1->Runner_14 }
43 roster: { Team_3->Runner_0, Team_3->Runner_14 }
44 runners: { Runner_0, Runner_14 }
45 scores: { }
46 teams: { Team_3 }

Listing 7. History Function shows Path to Reach End of Race

interface for programmers and gives quick results making it
possible to fix these simple bugs right away while developing
the model.

VII. RELATED WORK

Various forms of simulation of transition systems are avail-
able in the tools supporting the formal specification languages
TLA+ and B.

TLC is a model checker for a subclass of TLA+ spec-
ifications and it has a graphical user interface [11]. TLC’s
main usage modality is model checking: it generates a finite
state space and checks for invariant violations within it.
TLC can generate a random path of finite-length through the
model [21], which is conceptually similar to systematically
stepping through a model. TLC does not allow for incremental
debugging and stepping to gradually build the state space. If



1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) step ["operation=REGISTER_TEAM"]
4
5 S2
6 ----
7 mode: { REGISTRATION }
8 operation: { REGISTER_TEAM }
9 results: { }
10 roster: { Team_0->Runner_0, Team_0->Runner_14 }
11 runners: { Runner_0, Runner_14 }
12 scores: { }
13 teams: { Team_0 }
14
15 (aldb) step ["operation=REGISTER_TEAM"]
16
17 S3
18 ----
19 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_3->Runner_1, Team_3->Runner_2 }
20 runners: { Runner_0, Runner_1, Runner_14,

Runner_2 }
21 teams: { Team_0, Team_3 }
22
23 (aldb) step ["operation=REGISTER_TEAM"]
24
25 S4
26 ----
27 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_2->Runner_3, Team_2->Runner_4, Team_3->
Runner_1, Team_3->Runner_2 }

28 runners: { Runner_0, Runner_1, Runner_14,
Runner_2, Runner_3, Runner_4 }

29 teams: { Team_0, Team_2, Team_3 }
30
31 (aldb) step ["operation=RACE and #(results)=#(

runners)"]
32 Cannot perform step. Transition constraint is

unsatisfiable.

Listing 8. Discovery of First Seeded Bug

TLC finds an erroneous trace that violates model invariants,
then users can step through that trace using the error-trace
explorer, which is part of the TLA+ Toolbox [22].

The ProB Animator simulates the execution of specifications
written in the B modelling language. It is available as both
graphical and command-line tools. The animator allows users
to step through a model’s state space but we could not find
a command similar to our until or constrained stepping
commands. ProB has been extended to load Alloy models
and translate them into B models for analysis with ProB [23],
however this work is still experimental. Our tool allows users
to write constraints directly in the Alloy language while
debugging.

NuSMV [13] and NuXMV [14] provide lower-level lan-
guages for specifications, but they do provide some simu-
lation capabilities. For example, in both tool sets, there is
a command-line interactive tool called simulate. Within it
the user can choose an initial state based on constraints,
and generate a finite-length trace from the current state that
satisfies constraints by using the next state temporal operator
for different constraints over each step.

The Alloy Analyzer contains various method of customizing

1
2 S5
3 ----
4 mode: { REGISTRATION }
5 operation: { REGISTER_TEAM }
6 results: { }
7 roster: { Team_0->Runner_0, Team_0->Runner_14 }
8 runners: { Runner_0, Runner_14 }
9 scores: { }
10 teams: { Team_0 }
11
12 (aldb) step
13
14 S6
15 ----
16 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_3->Runner_1, Team_3->Runner_2 }
17 runners: { Runner_1, Runner_2 }
18 teams: { Team_0, Team_3 }
19
20 (aldb) step
21
22 S7
23 ----
24 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_2->Runner_3, Team_2->Runner_4, Team_3->
Runner_1, Team_3->Runner_2 }

25 runners: { Runner_3, Runner_4 }
26 teams: { Team_0, Team_2, Team_3 }

Listing 9. Step Function shows Runners are Missing

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "mode=RESULTS"
4 (aldb) until
5
6 S4
7 ----
8 mode: { RESULTS }
9 operation: { COMPUTE_SCORES }
10 results: { }
11 roster: { Team_0->Runner_11, Team_0->Runner_13,

Team_0->Runner_14 }
12 runners: { Runner_11, Runner_13, Runner_14 }
13 scores: { Team_1->0, Team_2->0, Team_3->0 }
14 teams: { Team_0 }

Listing 10. Last State in Path has Unexpected Scores

the layout of an instance. For example, Rayside et al. [24]
describes using inferred properties of a model to customize its
visualization, including views of projections of the instance to
show individual states and their relations to illustrate steps in a
dynamic execution. Sterling is a new visualizer for Alloy [25]
under development. However, none of these methods are
customized for transition systems or support the common code
debugging steps such as breakpoints.

VIII. CONCLUSION

We have presented ALDB, a debugger for Alloy models
of transition systems. Our debugger supports users in locally
exploring concrete steps of their model and incrementally
building up all the way to bounded model checking. It
provides an alternative interface to the Alloy Analyzer that



is customized for interactive analysis of transition systems.
ALDB uses the existing Alloy solver via templates, which is
an example for how additional functionality can be provided
for creating and exploring Alloy models.

We envision a variety of uses for ALDB. First, it can be
used in a basic exploratory model just after the user has
initially composed a model. Many errors are likely to be
found just walking around in the graph. Second, it can be
used in a what-if exploratory mode, where the user follows
particular paths via the constrained stepping function. For
example, asking questions such as “what if this input occurs?”
Third, the user might want to investigate coverage by looking
at all the alternative paths. Fourth, ALDB can be used in a
diagnostic mode where the user is either using the until

command to do bounded model checking, or the user is
reviewing a counterexample XML file previously found by the
Alloy Analyzer. In these cases, the user is trying to diagnose
the error in the model. However, a user case study is needed to
determine the utility of ALDB in an Alloy modellers’ workflow.

ACKNOWLEDGMENTS

We thank Amin Bandali for his help with learning Alloy.
This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[2] “OMG unified modeling language,” http://www.omg.org/spec/UML/2.5/
PDF/, 2015, [Online; accessed 16 May 2020].

[3] D. Jackson, Software abstractions: logic, language, and analysis, rev.
ed ed. MIT Press, 2012.

[4] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston: Addison-Wesley, 2002.

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
New York, NY, USA: Cambridge University Press, 2010.

[6] P. Zave, “Using lightweight modeling to understand Chord,” in ACM
SIGCOMM Computer Communication Review, vol. 2, no. 42, 4 2012,
pp. 50–57.

[7] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, 2015.

[8] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight specification and analysis of dynamic systems with rich
configurations,” in Foundations of Software Engineering (FSE). ACM,
2016, pp. 373–383.

[9] S. Farheen, N. A. Day, A. Vakili, and A. Abbassi, “Transitive-closure-
based model checking in Alloy,” Journal of Software and Systems
Modelling, vol. 19, p. 721–740, 2020.

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” ser. Advances in Computers. Elsevier, 2003, vol. 58,
no. Supplement C, pp. 117 – 148.

[11] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+ spec-
ifications,” in Correct Hardware Design and Verification Methods
(CHARME), ser. Lecture Notes In Computer Science, no. 1703.
Springer, 1999, pp. 54–66.

[12] M. Leuschel and M. Butler, “ProB: A Model Checker for B,” in
FME 2003: Formal Methods, ser. Lecture Notes In Computer Science.
Springer, 2003, vol. 2805, pp. 855–874.

[13] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren et al., NuSMV
2.6 User Manual, 2010 (accessed May 11, 2020). [Online]. Available:
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

[14] M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio
et al., nuXmv 2.0.0 User Manual, 2019 (accessed May 11,
2020). [Online]. Available: https://es.fbk.eu/tools/nuxmv/downloads/
nuxmv-user-manual.pdf

[15] D. Jackson and A. Fekete, “Lightweight analysis of object interactions,”
in Theoretical Aspects of Computer Software. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 492–513.

[16] A. Sullivan, K. Wang, and S. Khurshid, “Evaluating State Modeling
Techniques in Alloy,” SQAMIA 2017 - Proc. 6th Work. Softw. Qual.
Anal. Monit. Improv. Appl., pp. 11–13, 2017.

[17] “River crossing problem in Alloy,” Accessed 11 May 2020.
[Online]. Available: https://github.com/AlloyTools/org.alloytools.alloy/
blob/master/org.alloytools.alloy.extra/extra/models/examples/tutorial/
farmer.als

[18] “The dot language,” Accessed 11 May 2020. [Online]. Available:
https://www.graphviz.org/doc/info/lang.html

[19] “Graphviz - graph visualization software,” Accessed 11 May 2020.
[Online]. Available: http://graphviz.org

[20] N. A. Day, “University of Waterloo SE212 Assignment 7,” 2018.
[21] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu, “Specifying and veri-

fying systems with TLA+,” Proc. 10th Work. ACM SIGOPS European
Workshop – EW10, p. 45, 2002.

[22] TLA+ Toolbox User’s Guide, Accessed May 16 2020. [Online].
Available: https://tla.msr-inria.inria.fr/tlatoolbox/doc/contents.html

[23] The ProB Animator and Model Checker, 2020 (Accessed May 11
2020). [Online]. Available: https://www3.hhu.de/stups/prob/index.php/
Main Page

[24] D. Rayside, F. S. Chang, G. Dennis, R. Seater, and D. Jackson,
“Automatic visualization of relational logic models,” Electronic Com-
munications of the EASST, vol. 7, 2007.

[25] T. Dyer, “Sterling,” Accessed May 22 2020. [Online]. Available:
https://sterling-js.github.io


