
Softw Syst Model (2012) 11:251–272
DOI 10.1007/s10270-010-0176-6

SPECIAL SECTION PAPER

Code generation for a family of executable modelling notations

Adam Prout · Joanne M. Atlee · Nancy A. Day ·
Pourya Shaker

Received: 30 June 2009 / Revised: 5 September 2010 / Accepted: 20 September 2010 / Published online: 27 October 2010
© Springer-Verlag 2010

Abstract We are investigating semantically configurable
model-driven engineering (MDE). The goal of this work is
a modelling environment that supports flexible, configurable
modelling notations, in which specifiers can configure the
semantics of notations to suit their needs and yet still have
access to the types of analysis tools and code generators
normally associated with MDE. In this paper, we describe
semantically configurable code generation for a family of
behavioural modelling notations. The family includes vari-
ants of statecharts, process algebras, Petri Nets, and SDL88.
The semantics of this family is defined using template seman-
tics, which is a parameterized structured operational seman-
tics in which parameters represent semantic variation points.
A specific notation is derived by instantiating the fam-
ily’s template semantics with parameter values that specify
semantic choices. We have developed a code-generator gen-
erator (CGG) that creates a suitable Java code generator for a
subset of derivable modelling notations. Our prototype CGG
supports 26 semantics parameters, 89 parameter values, and
7 composition operators. As a result, we are able to produce
code generators for a sizable family of modelling notations,
though at present the performance of our generated code is

Communicated by Prof. Krzysztof Czarnecki.

A. Prout · J. M. Atlee (B) · N. A. Day · P. Shaker
David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada
e-mail: jmatlee@uwaterloo.ca

A. Prout
e-mail: aprout@uwaterloo.ca

N. A. Day
e-mail: nday@uwaterloo.ca

P. Shaker
e-mail: p2shaker@uwaterloo.ca

about an order of magnitude slower than that produced by
commercial-grade generators.

Keywords Model-driven engineering · Code generation

1 Introduction

A significant obstacle to successful model-driven engineer-
ing (MDE) is the semantic mismatch between the problem or
system being modelled and the chosen modelling notation.
A primary reason for this mismatch is that many modellers
restrict themselves to notations that have tool support (i.e.,
model editors, simulators, analyzers, and code generators).
However, only a small fraction of notations—or, more spe-
cifically, a small fraction of the semantic variants of nota-
tions—are supported by substantial tool suites.

There is ample anecdotal evidence to suggest that mod-
ellers want to be able to use a wider set of notations and
semantics. Consider the many variants of statecharts [62],
some of which were invented precisely because neither
the original variants [23,24] nor the tool-supported variants
[12,25] suited the modellers’ needs. As another prominent
data point, consider the semantics of the United Modeling
Language (UML) [50,59], which includes several seman-
tic variation points because the Object Management Group
(OMG) members who define and maintain the UML spec-
ification could not agree on a single semantics. As addi-
tional evidence, the authors have witnessed cases where
notations are tweaked in ad hoc ways to ease the modelling of
a particular problem. We have also witnessed graduate-level
formal-methods students who, when given the flexibility to
do so, combine the features and semantics of multiple model-
ling notations rather than express their modelling problems
in some (single) standard notation. For example, they will

123



252 A. Prout et al.

create models that have a statecharts execution semantics but
that employ rendezvous for some critical synchronization, or
they will create models with CCS semantics augmented with
global shared variables.

In this paper, we focus on semantic variability within the
family of behavioural modelling notations. Most obviously,
this family includes statecharts and its variants, but more gen-
erally it encompasses any notation whose semantics can be
expressed operationally as a set of execution traces. Exam-
ple notations include variants of process algebras, variants
of dataflow languages, Petri Nets, SDL, and so on. At a very
high level, these notations have a common semantics: they
all have notions of specified transitions, enabled transitions,
executing transitions, effects of transitions. But there are sub-
tle variations in the semantics of these shared concepts:

• the choice of event(s) to trigger the next execution step
• the duration of processed and unprocessed events
• the choice of variable values when evaluating expres-

sions
• the choice of default priorities among transitions
• the effects of environmental inputs (i.e., input events,

sensor values) on the execution state
• the effects of an executing transition on the execution

state

We are interested in developing modelling tools and environ-
ments that support these types of semantic variations.

The intended use case is the organization that works on
multiple projects whose modelling needs are different. We
have found that, in our own experience, different seman-
tic choices are appropriate for different modelling problems.
The fact that UML StateMachines have semantic variation
points confirms the need to support variability. If an organiza-
tion finds itself using the same variant of modelling notation
and semantics on a number of its projects, then it should
invest time and effort in creating development tools that are
optimized for that language [3,36,46,58]. But if an organiza-
tion uses multiple notation variants, then it would be better if
its infrastructure team could maintain a product line of mod-
elling tools whose semantics variations can be configured
and extended.

With this use case in mind, we propose semantically
configurable modelling tools and environments that sup-
port a family of related notations. We use template seman-
tics [47,48] to define a family of modelling notations.
A template semantics is effectively a parameterized struc-
tured operational semantics [53]. The templates are param-
eterized semantics of concepts that are common among
notations in the family (e.g., set of enabled transitions).
Parameters within a template represent semantic variation
points (e.g., how the set of enabled transitions is determined),
and parameter values define semantic variants. For example,

notations differ with respect to which events can trigger the
next execution step (e.g., the single event at the head of an
event queue, or any event generated in the last execution
step, or any event that has not yet been processed). Given a
template-semantics definition for a family of notations, the
semantics for a distinct notation within this family can be
succinctly specified by instantiating the templates’ parame-
ters with specific parameter values.

In previous work [48,49], we defined the template seman-
tics for a family of behavioural modelling notations. The fam-
ily comprises notations whose semantics can be expressed
operationally as sequences of execution steps. The family
includes process algebras (e.g., CCS [44], CSP [28], basic
LOTOS [32]), statecharts variants (e.g., statecharts [23,24],
STATEMATE [12], RSML [38], UML StateMachines [50]),
and even more sophisticated notations like SCR [27], SDL88
[33], and BoxTalk [66]. We have started to develop semanti-
cally configurable tools that support this family of notations.
Metro [47] is a suite of semantically parameterized analysis
tools (e.g., model checkers) that can be configured with arbi-
trary parameter values. Express [39] is a semantically config-
urable translator that converts models into the input language
of the Symbolic Model Verifier (SMV) [43]; Express is con-
figurable via a fixed menu of possible parameter values.

In this paper, we provide an extended description of a pro-
totype of a semantically configurable code-generator gener-
ator (CGG), which was first presented in [55]. The CGG
takes as input a description of a modelling notation’s seman-
tics expressed as a set of template parameter values, selected
from fixed menus of semantics choices; it produces a code
generator for models expressed in that notation. Our current
prototype CGG supports 26 semantics parameters, 89 param-
eter values, and 7 composition operators (e.g., interleaving,
parallel composition, rendezvous, choice, sequential com-
position)—including new template parameters and parame-
ter values to support communication queues between model
components.

Given the number of semantics parameters and combina-
tions of choices, we would not expect the average modeller
to configure her modelling environment. For one thing, not
all combinations of parameter values result in a consistent
semantics definition (this issue is discussed in Sect. 7.2).
The individual who is making semantics decisions must
understand the consequences of the decisions and their inter-
dependencies. This level of understanding is comparable
to that needed to define the semantics of a new domain-
specific language (DSL)—which is the expected input to
most modelling-tool frameworks [3,36,46,58]. What makes
our approach unique is that we have simplified the configura-
tion task to one of selecting from menus of semantic options,
rather than writing the semantics from scratch. A conse-
quence of this decision is that the set of code generators that
can be produced by the CGG is fixed, but we have structured

123



Code generation for a family of executable modelling notations 253

the CGG so that it is easily extensible to support new seman-
tic options.

Problems that we addressed in the course of this work
include

• Configurable CGG A primary contribution of this work
is the design of a CGG as a parameterized software prod-
uct line that encapsulates semantic variation points. This
work is unique in that (1) the type of variability focuses
on execution semantics, (2) the semantics variability is
fine grained, and (3) a wide variety of semantics choices
are supported. Moreover, the design of the CGG is struc-
tured to ease the task of incorporating new semantic
options. In contrast, other approaches to configurable
model-based code generation are parameterized with
respect to modelling-language constructs [58]; object
types [61]; the target language or platform [13,18]; opti-
mizations in the generated code [40]; or a small set
of coarse-grained semantic variations, such as parallel
versus interleaving semantics [30], synchronous versus
asynchronous message passing [57], or default priority
schemes [64].

• Configurable execution semantics A secondary contri-
bution is the design of the run-time architecture of the
generated Java programs. The generated programs have
a common skeletal algorithm that simulates the exe-
cution of an input model in terms of abstract execu-
tion steps. This simulation algorithm is parameterized
by template-semantics parameters and is specialized by
composition operators (similar to the execution step of
SMV models generated by Express [39]). This run-time
architecture facilitates semantic configurability.

• Diverse composition operators in Java A side effect
of the above contribution is a means for implement-
ing a variety of composition operators in Java—and
for accommodating models that have heterogeneous
composition operations. The Java scheduler imposes an
interleaving semantics on concurrent threads, whereas
many modelling notations have composition operators
that are more tightly synchronized, such as parallel com-
position and rendezvous. Support for these operations
requires explicit synchronization of components.

• Resolving nondeterminism There are several natural
sources of nondeterminism in models (e.g., selecting
one of many enabled transitions to execute). Although it
may be appropriate to leave such nondeterminism unre-
solved during the modelling phase, nondeterminism in
source code is unnatural. Our code generators employ a
number of strategies for eliminating nondeterminism.

• Configurability evaluation Using von der Beeck’s com-
parison of statecharts variants as a coverage metric, we
assess the degree to which the CGG family of notations
covers von der Beeck’s set of semantic variabilities.

• Performance evaluation A long-term concern of this
work is how efficient CGG-generated code is, given
the competing concern that a configurable CGG sup-
port a family of modelling notations. As a baseline, we
compare the performance of our generated code against
the performance of code generated by three commercial
tools: IBM Rational Rose RT [29], IBM Rational Rhap-
sody [30], and SmartState [1]—each of which has been
optimized for a particular modelling notation.

The rest of this paper is organized as follows. In Sect. 2,
we review template semantics, which we use to configure the
semantics of modelling notations. This section includes sum-
maries of the semantics parameters and composition opera-
tors that are implemented in our prototype. In Sects. 3 and 4,
we describe our CGG and the architecture of the generated
code, respectively. We discuss techniques for resolving non-
determinism in Sect. 5. We present the results of our variabil-
ity assessment and performance evaluations in Sect. 6, and
discuss some of the advantages, limitations, and trade-offs of
semantically configurable tools in Sect. 7. We conclude the
paper with discussions on related and future work.

2 Semantically configurable notations

In this section, we describe the syntax and semantics of our
semantically configurable modelling language. The intended
scope of configurability is the family of executable behav-
ioural modelling notations—that is, those notations whose
semantics can be expressed operationally as sequences of
execution steps. We achieve semantic configurability by
using template semantics [48,49] to define the family of
notations. The semantics are configurable via a set of user-
provided parameter values. Thus, modellers create models
using the syntax of our notation, and they configure the
semantics of their models by selecting template-semantics
parameter values. As will be seen, the CGG implements a
fixed set of parameter values, so it supports only a subset of
the intended family of notations.

2.1 Syntax

We base the syntax of our modelling notation on a form
of extended finite-state machine that we call hierarchical
transition systems (HTS), which are adapted from statecharts
[23]. An example HTS is shown in Fig. 1. It includes control
states and state hierarchy, state transitions, events, and typed
variables. An HTS designates a default initial state for each
hierarchical state and initial values of all the variables (not
shown).

123



254 A. Prout et al.

Fig. 1 Example HTS

Transitions have the following form:

Each transition has a source state, is triggered by zero or more
events, may have a guard condition (a predicate on variable
values), and may have an explicit priority. If a transition
executes, it leads to a destination state, may generate events
(specified by zero or more ∧gen actions), and may assign new
values to variables (specified by zero or more /asn actions).
For example, the HTS in Fig. 1 models the states of an airport
runway. The transition t1 from state clear to state landing is
triggered by a request to land on the runway (event landonR1)
and has an action of assigning variable busyRW1 to true. To
ease discussion of HTS models, we annotate each transition
with a name (e.g., t1) that we use to reference the transition.

HTSs do not model concurrent behaviour. In UML ter-
minology, an HTS corresponds to a simple-composite state
with only one region. Concurrency is achieved by composing
multiple HTSs.

2.2 Semantic domain

A notation’s semantics is expressed as a transition relation
over execution states, which is a compact representation of
the possible executions of a model.

More formally, the semantic domain of HTS execution is
sequences of snapshots, where a snapshot records informa-
tion about a model’s execution at a discrete point in the exe-
cution. Snapshot information is stored in distinct elements:

C S the configuration of current states
I E the events to be processed
AV the variable valuation
Ia data about inputs to the HTS
O the generated events (to be communicated to other
HTSs)
Q the contents of communication queues between HTSs

In addition, the snapshot includes auxiliary elements that,
for different notations, store different types of information
about an HTS’s execution:

C Sa data about states, such as enabling or history states
I Ea data about events, such as enabling or nonenabling
events
AVa data about variable values, such as previous values
Qa data about queues, such as the chosen input queue

The expression ss.C S refers to element C S in snapshot
ss.

The execution of an HTS starts with an initial snapshot
of initial states, initial variable values, and an empty pool
of events. Consecutive snapshots ssi and ssi+1 represent a
“step” in the model’s execution. There are two levels of gran-
ularity for steps: a micro-step is the execution of a single
transition, and a macro-step is a sequence of zero or more
micro-steps taken between consecutive inputs I .

2.3 Template semantics

We use template semantics [48], a parameterized structured
operational semantics [53], to specify how an execution step
(in a model) affects the execution’s snapshot. A template-
semantics definition is expressed as a set of functions and
relations over a model’s elements (e.g., input events, transi-
tions) and its snapshot elements. Parameterized definitions,
called templates, define the most generic aspects of a model’s
execution. Our definition of an execution step of an HTS
comprises five templates:

1. sensing inputs from the environment
2. determining the set of enabled transitions
3. executing a transition
4. executing a micro-step (which uses the previous two

templates)
5. executing a macro-step

Each template definition is heavily parameterized by
semantic variation points. Consider template enabled_
trans, which defines the set of enabled transitions:

enabled_trans(ss, T )

≡ {τ ∈ T | en_state(ss, τ ) ∧ en_event(ss, τ )

∧ en_cond(ss, τ )}
Predicates en_state, en_event, and en_cond are tem-

plate parameters that specify how the state-, event-, and
variable-related snapshot elements, respectively, are evalu-
ated to determine whether a transition τ is enabled in snapshot
ss. Parameter values are discussed in the next subsection.

As another example, the template definition apply_trans
applies the effects of an executing transition τ to a snapshot

123



Code generation for a family of executable modelling notations 255

Fig. 2 The list of template parameters that specialize the template-
semantics definitions. Argument ss refers to the current snapshot of a
model’s execution, I refers to system inputs, τ refers to an executing
transition, and primed arguments (e.g., C S′) refer to updated snapshot
elements (e.g., updated due to sensed inputs or the execution of a transi-
tion). Argument T refers to the set of transitions specified in the model

ss, to derive the resultant next snapshot ss′. In the definition,
unprimed elements refer to snapshot values before the transi-
tion τ executes and primed elements refer to snapshot values
after the transition executes.

apply_trans(ss, τ, ss′)
≡ let 〈C S′, I E ′, AV ′, O ′, C S′

a, I E ′
a, AV ′

a, I ′
a〉

≡ ss′ in next_CS(ss, τ, C S′) ∧ next_CSa(ss, τ, C S′
a)

∧ next_IE(ss, τ, I E ′) ∧ next_IEa(ss, τ, I E ′
a)

∧ next_AV(ss, τ, AV ′) ∧ next_AVa(ss, τ, AV ′
a)

∧ next_Q(ss, τ, Q′) ∧ next_Qa(ss, τ, Q′
a)

∧ next_O(ss, τ, O ′) ∧ next_Ia(ss, τ, I ′
a)

The template uses parameters next_X, one for each snap-
shot element ss.X , as placeholders for how the execution of
a transition τ affects the individual snapshot elements. For
example, executing a transition might result in a new set of
current control states (specified by next_CS); it might also
update variable values (specified by next_AV), update the
set of enabling events (specified by next_IE), and so on.

In this manner, the templates are effectively logic expres-
sions over the template parameters, with the details of a
notation’s semantics being defined by the choice of template
parameter values.

2.4 Template parameters

Our template definitions have a total of 26 parameters
that represent variations on how a model’s snapshot can
change during execution. The parameters are listed in Fig. 2,
organized by language construct. For example, the seven
event-related parameters work together to determine which

events can enable transitions and which events remain
to-be-processed.

Ten parameters are of the form reset_X(ss, I, X ′), each
specifying how one snapshot element, ss.X , is updated to a
new value X ′ in response to new environmental inputs I at
the start of a macro-step. Example values for some of these
parameters include

• reset_IE Empty the set of events (in snapshot element
ss.I E) that were generated in the previous macro-step.

• reset_Ia Add inputs I to the events already in snapshot
element Ia .

• reset_CS Make no change to the set of current states C S.

Another ten parameters are of the form next_X(ss, τ, X ′),
each specifying how a snapshot element, ss.X , is updated due
to the effects of an executing transition τ . Example values
for some of these parameters include

• next_IE Update the set of events ss.I E to be exactly
the events generated by τ

• next_IE Add the events generated by τ to the set of
events already in ss.I E

• next_AV Update the current variable values in ss.AV
based on τ ’s variable assignments

There are three enabled_trans parameters that spec-
ify how the snapshot elements are evaluated to identify
enabled transitions. Specifically, the parameters en_cond,
en_event, and en_state determine if a transition is enabled
based on its guard condition, triggering events, and source
state, respectively. Template parameter pri specifies a default
priority scheme on transitions (e.g., transitions whose source
states are higher in the model’s state hierarchy might have pri-
ority over transitions whose source states are lower in the state
hierarchy). Parameter macro_semantics specifies when new
inputs are sensed from the environment (e.g., after every
micro step, or when no more transitions are enabled). Param-
eter resolve specifies how to resolve concurrent assignments
to shared variables.

To define the semantics of a particular modelling nota-
tion, the user specifies a parameter value for each of these
26 template parameters. Example parameter values for just
the event-related template parameters are listed in Table 1.
However, not every combination of parameter values results
in a meaningful semantics definition. Parameters that are
associated with the same language construct tend to have
inter-dependent values. To give an obvious example, if it
is important to process events in a specific order, then
the snapshot element that maintains events (ss.I E) might
be structured as a queue, in which case the operations
over that snapshot element (reset_IE, next_IE, en_event)
should be expressed in terms of enqueue, dequeue and

123



256 A. Prout et al.

Table 1 Sample event-related template parameter values

Parameter Parameter value Informal definition

reset_IE(ss, I, I E ′) I E ′ = ∅ Make IE empty

I E ′ = ss.I E Make no change to IE

I E ′ = I Assign IE to be the inputs I from the environment

I E ′ = ss.I E ∪ I Add inputs I to the events already in set IE

I E ′ = ss.I E � I Append inputs I to end of the queue IE of events

next_IE(ss, τ, I E ′) I E ′ = gen(τ ) Assign IE to the events generated by τ

I E ′ = ss.I E ∪ gen(τ ) Add the events generated by τ to the events already in set IE

I E ′ = ss.I E � gen(τ ) Append the events generated by τ to the end of queue IE

I E ′ = (ss.I E \ tr ig(τ )) ∪ gen(τ ) Remove the trigger event from IE, and add the generated events

I E ′ = tail(ss.I E) � gen(τ ) Remove head element from IE’s queue, and append generated events

reset_IEa(ss, I, I E ′
a) I E ′

a = ∅ Make IEa empty

I E ′
a = {head(ss.Ia)} Assign IEa to be the head element in event queue Ia

∃q ∈ ss.Q · [I E ′
a = {head(q)}] Assign IEa to be the head element of an arbitirary input queue in Q’s set

of queues

next_IEa(ss, τ, I E ′
a) I E ′

a = ∅ Make IEa empty

I E ′
a = ss.I Ea Make no change to IEa

I E ′
a = ss.I Ea ∪ gen(τ ) Add the events generated by τ to the events already in set IEa

I E ′
a = ss.I Ea

� gen(τ ) Append the events generated by τ to the end of queue IEa

reset_Ia(ss, I, I ′
a) I ′

a = ∅ Make Ia empty

I ′
a = I Assign Ia to the inputs I from the environment

I ′
a = ss.Ia ∪ I Add inputs I to the events already in set Ia

I ′
a = ss.Ia

� I Append input events I to the end of input queue Ia

I ′
a = tail(ss.Ia) � I Remove head element from queue Ia, and append the inputs I

next_Ia(ss, τ, I ′
a) I ′

a = ∅ Make Ia empty

I ′
a = ss.Ia Make no change to Ia

I ′
a = ss.Ia ∪ gen(τ ) Add the events generated by τ to the events already in set Ia

I ′
a = ss.Ia

� gen(τ ) Append τ ’s generated events to the end of input queue Ia

I ′
a = ss.Ia \ tr ig(τ ) Remove τ ’s triggering event from Ia

reset_Q(ss, I, Q′) ∀q ∈ ss.Q · [if ss′.I Ea = head(q)

then q ′ = tail(q) � I
else q ′ = q � I ]

Remove selected event IE_a′ from the appropriate q and append input
events I to the end of all queues inQ

∀q ∈ ss.Q · [q ′ = q � directed(q, I ) ] Append to each q in Q the subset of inputs that are directed to q

next_Q(ss, I, Q′) ∀q ∈ ss.Q · [if head(q) ∈ tr ig(τ )

then q ′ = tail(q) � directed(q, gen(τ ))

else q ′ = q � directed(q, gen(τ )) ]

Remove τ ’s triggering event from the appropriate queue, and append to
each q in Q the subset of generated events directed to q

en_event(ss, τ ) tr ig(τ ) ⊆ ss.I Ea Transition’s triggering event(s) must be in IEa

tr ig(τ ) ⊆ (ss.Ia ∪ ss.I E) Transition’s trigger(s) must be in Ia or IE

tr ig(τ ) ⊆ (ss.Ia ∪ ss.I Ea) Transition’s trigger(s) must be in Ia or IEa

tr ig(τ ) = head(ss.I E) Transition’s trigger matches the event at the head of queue IE

view-head-of-queue operations. To give a more subtle exam-
ple, the states, events, or variables used to determine whether
a transition is enabled may be different from the snapshot’s
current states, events, and variable values: for example, the
set of enabling states may be a subset (or empty set) of the
current states, as a means of constraining the set of enabled
transitions; a single event may be chosen from the pool of
events at the start of a macro-step and be the only enabling

event throughout the macro-step; transition guards may be
evaluated with respect to variable values that held at the
start of the macro-step rather than values assigned during
the macro-step. To realize these semantic choices, auxiliary
snapshot elements are needed to record enabling information
(distinct from the snapshot elements that record the model’s
executable state); the template parameter values need to keep
both types of snapshot elements up-to-date and in sync as the

123



Code generation for a family of executable modelling notations 257

Rendezvous

A
ir

po
rt

 C
on

tr
ol

le
r

R
un

w
ay

 R
1

R
un

w
ay

 R
2

Ta
xi

w
ay

 C
1

Ta
xi

w
ay

 C
2

Ta
xi

w
ay

 C
3

Env SyncInterlv
Interlv Interlv

Fig. 3 Compositional hierarchy for a ground-traffic control system

execution proceeds; and the template parameters (en_state,
en_event, en_cond) need to be specified over the enabling
snapshot values.

Template parameter values must be specified or selected
by someone who understands the semantics choices and
dependencies—such as a local MDE infrastructure expert—
to ensure that the parameter values are mutually support-
ive and result in a consistent and desired modelling-notation
semantics. This limitation is discussed more thoroughly in
Sect. 7.2.

2.5 Composition operators

So far, we have discussed the execution of a single HTS.
Composition operators specify how multiple HTSs execute
concurrently and how they share information. Informally,
a composition operator defines an “allowable (collective)
step” that a collection of HTSs takes. What differentiates
one composition operator from another are the conditions
under which it allows, or forces, its component HTSs to take
a step.

The operations are defined as additional templates, and
they are parameterized with the same template parameters
as described above. More formally, each operation takes two
operands, each of which is either an HTS or a collection
of previously composed HTSs, and specifies how the oper-
ands execute together. The result of a nested composition of
HTSs is a binary tree, whose internal nodes are all composi-
tion operators and whose leaf nodes are all HTSs. We use the
term composition hierarchy to refer to a model’s composition
structure (see the shaded modules in Fig. 4).

Our prototype CGG supports variations of seven compo-
sition operators:

• interleaving One of the operands takes a step if enabled,
but not both.

• parallel Both operands execute simultaneously if both
are enabled. Otherwise, one or the other operand exe-
cutes, if enabled.

• sequence One operand executes to completion, then the
other operand executes to completion.

• choice One operand is chosen to execute, and thereafter
only the chosen operand executes.

• interrupt Control passes between the operands via a set
of interrupt transitions.

• environmental synchronization All HTS components
that have a transition enabled by a specified synchro-
nization event execute those transitions simultaneously.
Otherwise, the operands’ executions are interleaved.

• rendezvous A pair of HTS components (one in each
operand) execute simultaneously only if (1) one HTS
component has an enabled transition that generates a
specified rendezvous event, and (2) the other HTS com-
ponent has a transition that is enabled by that rendezvous
event. Otherwise, the operands’ executions are inter-
leaved.

Composition operators may be combined in the same
model to affect different types of synchronization and com-
munication among the model’s components.

Figure 3 shows the composition hierarchy for a Ground-
Traffic Control System [65] that is used throughout the paper
to exemplify aspects of our approach. The airport-controller
component responds to airplanes’ requests to take off, land,
and taxi by telling them which runway or taxiway to use.
The models for runways (Fig. 1) and taxiways keep track of
the current states of the real-world entities they represent.
The runways are interleaved with each other, as are the taxi-
ways. The environmental synchronization operator synchro-
nizes the runways with the taxiways, so that both are aware
when an airplane is at the intersection of a runway and a
taxiway. The rendezvous operator synchronizes the control-
ler and all of the roadways to ensure that they have a shared
understanding of the status of the roadways.

3 Configurable CGG

We use template semantics as the basis for structuring a
prototype CGG as a software product line for a family of

123



258 A. Prout et al.

code generators. Each code generator in the family trans-
forms models, written in a specific behavioural modelling
notation, into representative Java programs. The core of the
CGG product line comprises code that is common to all of
code generators in the family. This core includes the pars-
ing of an input model into an internal representation of the
model’s syntactic structure (e.g., state hierarchies of HTSs,
transitions in HTSs, compositions of components); the defi-
nition and initialization of the model’s execution state (i.e., a
class definition for each snapshot element); and the genera-
tion of a skeletal algorithm that simulates an input model.
The skeletal part of the simulation algorithm reflects the
parameterized execution semantics that is common to all
notations in our modelling-language family. Specifically, it
simulates abstract execution steps of an input model. Like
the template-semantics definitions described in the previ-
ous section, the algorithm is parameterized with semantic
choices. The simulation algorithm is described in more detail
in Sect. 4.

The features of the CGG product line are the seman-
tic choices of the notation family. Thus, they correspond
to the template parameter values discussed in the previ-
ous section. They are implemented as subroutines that flesh
out the skeletal simulation algorithm—in an analogous way
that primitive operations complete the implementation of
a template method in the Template Method design pattern
[19].

To produce a code generator for a particular behavioural
modelling notation, the user instantiates the CGG product
line by specifying parameter values for each of the 26 tem-
plate-semantics parameters. Our CGG prototype supports a
fixed collection of parameter values, so this task reduces to
selecting from among menus of supported values. The output
of the CGG is the core code that is shared among all code
generators and a set of relevant features (subroutines) that
implement the selected semantic choices.

Our prototype CGG is implemented using preprocessor
directives and conditional compilation, as a primitive form
of generative programming. The user provides a file that
lists a preprocessor #define declaration for each template
parameter, specifying the value of that parameter. The CGG
source code is annotated with preprocessor directives that
indicate the parts of the source that are specific to each sup-
ported parameter value—namely, the routine definition that
corresponds to the parameter value. Compiling the CGG
source code along with the parameter-definition file com-
piles only the parts of the CGG code that are associated
with the specified parameter values, thereby producing a code
generator for the user’s modelling notation. Generative-pro-
gramming technologies other than conditional compilation
could have been explored [4,8,11,34]. However, preproces-
sor directives are sufficiently powerful and their technology is
stable.

Our prototype CGG supports 89 parameter values, roughly
2–11 values per parameter. We have not attempted to identify
or implement a complete set of parameter values, as “com-
pleteness” depends on the desired family of notations to be
supported. We expect specifiers to devise new semantic vari-
ants as they try to model unusual problems.

What is important is that we have structured the CGG to
ease the task of extending it to support new semantic options
for the given semantic variation points. Each new semantic
option entails (1) specifying a new parameter value (name
or expression), (2) implementing the execution semantics of
the new option as a subroutine, and (3) encapsulating the new
subroutine implementation within a conditional preprocessor
directive (whose condition is the newly defined parameter
value).

4 Generated Java code

Our CGG generates code generators that take as input a
model and produce as output a Java program that sim-
ulates the input model. The resultant Java program is
effectively an interpreter that maintains an internal rep-
resentation of the input model and its current execu-
tion state, and that derives the next execution state of
the model by simulating an execution step. The run-
time structure of the Java program resembles the compo-
sition hierachy of the input model. Consider the object
model of the program generated from our model of the
Ground-Traffic Control System (from Fig. 3), shown in
Fig. 4. Each composition operator and HTS is imple-
mented as a (shaded) Java object, and these classes are
organized as a tree that mirrors the model’s composition
hierarchy. Moreover, every HTS object has member vari-
ables that refer to local objects implementing local snap-
shot elements (C S, I E, I Ea, etc.). The snapshot elements
Ia, AV, AVa, Q, Qa are shared, and every HTS object has
references to these global objects.

The generated program simulates the “steps” of the
model’s possible behaviours. A step has two phases. In the
first phase, the System object requests information about
all enabled transitions in all HTSs. This request is trig-
gered by the sensing of input events from the environment
(object Inputs in Fig. 4), and is recursively passed down the
composition hierarchy, with each operator class requesting
information from its operands. At the leaf nodes of the hier-
archy, each of the HTS objects identifies its enabled tran-
sitions, stores its results locally in member variables, and
passes its results back to its parent node in the compo-
sition hierarchy. In turn, each operator class combines its
operands’ results and passes the information to its parent
node, and so on until the System object receives all of the
information.

123



Code generation for a family of executable modelling notations 259

Fig. 4 Code structure for the ground-traffic control system example.
Shaded objects mimic the composition hierarchy of the model from
Fig. 3

In the second phase, execution decisions in the form of
constraints flow from the System object down the composi-
tion hierarchy to the HTSs: every operator object (1) receives
constraints from its parent node, restricting which enabled
transition(s) should be selected for execution, (2) possibly
asserts additional constraints, and (3) recursively sends the
cumulation of constraints to one or both of its operands. Con-
straints may be as specific as stipulating that a particular
transition be executed or as general as requiring that some
enabled transition execute. Constraints reach only the HTSs
that are chosen to execute. Each chosen HTS executes a tran-
sition that satisfies its constraints and updates its snapshot.

In the rest of this section, we discuss the generated Java
classes in more detail. The discussion is structured in terms
of the phased execution described above: we consider each
class’s contribution to the identification of enabled transi-
tions followed by each class’s contribution to the selection
and execution of transitions. The generated code preserves
any nondeterminism in the input model, which is useful for
simulation and reasoning about all possible executions. In
Sect. 5, we discuss ways of resolving nondeterminism, to
produce deterministic code from nondeterministic models.
We conclude this section with a discussion of how we opti-
mize the generated code.

4.1 HTS: enabled transitions

A separate class is generated for each HTS in the input model.
Figure 5 sketches the class generated for the C1Taxiway

HTS from the Ground-Traffic Control System example. The
Taxiway class contains a member variable for each of the
HTS’s snapshot elements, some of which are local objects
and some of which are references to global objects. In addi-
tion, there are member variables that store information about
enabled transitions.

Each HTS object is responsible for determining which of
its HTS’s transitions are enabled in the current snapshot. It
has an IsEnabled() method (shown on the left in Fig. 5) that
identifies the enabled transitions. Much of this task is done by
methods that implement the semantic parameters en_state,
en_event, and en_cond (line 4). These methods compare a
transition’s source state, triggering event, and guard against
the contents of the snapshot objects and determine whether
the transition is currently enabled. IsEnabled() also computes
and stores any enabledness information that is needed by any
of the composition operators in the model: enabled rendez-
vous transitions are stored in rendTrans (lines 6–8), enabled
transitions that are triggered by a synchronization event are
stored in syncTrans (lines 9–11), and ordinary enabled tran-
sitions are stored in enabledTrans (lines 12–13). Abstract
information about enabled transitions—such as that there
exists some enabled transition, or that there exists a tran-
sition enabled by a particular synchronization event—are
passed back to the HTS’s parent node via assignments to
the method’s parameters (lines 1, 5, 7, 10).

4.2 Composition operators: enabled components

In this section, we describe the Java implementations of com-
position operators. To ease presentation, we first assume that
a model employs only one type of operator. In Sect. 4.4, we
describe how an operator’s implementation changes when it
is combined with other types of composition. Details beyond
the implementation sketches provided below can be found in
[54].

A Java class is generated for each operator type used in the
input model, and an object is instantiated for each operator
instance in the model. Thus, the code for our Ground-Traffic
Control example includes three operator classes: rendezvous,
environmental synchronization, and interleaving. The inter-
leaving class is instantiated three times.

The implementations of composition operators are model
independent. Each operator class has an IsEnabled() method
that determines whether the operator’s components have
enabled transitions. This method (1) recursively calls the
IsEnabled() methods of its two operands (each of which is
either an HTS or a composition operator with its own oper-
ands), (2) combines its operands’ enabledness information,
(3) stores the results in member variables, and (4) passes the
results to its parent node via pass-by-reference parameters.

123



260 A. Prout et al.

Fig. 5 Pseudocode for taxiway
HTS. Configurable code is
shown in small caps

Fig. 6 Pseudocode for
interleaving composition

4.2.1 Interleaving and parallel composition

The IsEnabled() method for the interleaving operator is
shown on the left in Fig. 6. The parameter encodes the
enabledness information that is returned. In interleaving, the
only enabledness information is an enabled flag that indi-
cates whether the operator has any descendent HTS with
enabled transitions. The method calls the IsEnabled() meth-
ods of its two operands and stores the results in member
variables (L/R)Enabled (lines 2–3). The method then com-
putes the operator’s own enabledness, which is true if either
of the operands is enabled (line 4), and returns the result via
its parameter (line 1). The IsEnabled() method for the paral-
lel composition operator is the same as that for interleaving
composition.

4.2.2 Environmental synchronization

The operators that synchronize the execution of multiple
HTSs have more intricate implementations. Figure 7 presents
the pseudocode for the Java class that implements environ-
mental-synchronization composition. Associated with each
instance of this operator is a set of synchronization events
(variable syncEvents). All enabled transitions in component

HTSs that are triggered by the same synchronization event
execute simultaneously. Member variables (L/R)Enabled
record whether the left or right operands, respectively, have
enabled transitions. Member variables (L/R)SynEv record the
synchronization event(s) that trigger the currently enabled
transitions in the left and right operands, respectively.

The IsEnabled() method collects information about its
operands’ enabledness (lines 2–3), and then computes its own
enabledness. The operator is enabled if both of its operands
have transitions enabled by one of the operator’s syncEvents
(line 5) or if either of its operands has a transition that is
enabled by some non synchronization event (line 4). The
operator passes back to its parent a flag indicating whether it
is enabled and the set of synchronization events that enable
its components’ transitions.1

4.3 Composition operators: execution phase

At the end of the first phase, each object in the compo-
sition hierarchy is populated with information about the

1 Note that any synchronization event that enables any of the operands’
transitions is passed to the parent node (lines 1, 7), not just those identi-
fied in line 5, because other operators in the composition hierarchy may
be interested in these other events.

123



Code generation for a family of executable modelling notations 261

Fig. 7 Pseudocode for environmental synchronization

transitions enabled in its HTS or component HTSs. In the
second phase, a subset of these transitions is selected for
execution. The selection process is incremental, with each
composition operator contributing to the process by impos-
ing constraints on the final selection of transitions. These
constraints can be light constraints (e.g., an arbitrary enabled
transition from among its right operand’s HTSs) or can be a
tight constraint (e.g., transitions enabled by a specific event).

The selection process starts at the top of the compo-
sition hierarchy with a call to the root node’s Execute()
method. Each operator class has an Execute() method that

propagates and contributes selection constraints to its oper-
ands. In general, the method (1) receives selection constraints
via its parameters, (2) possibly asserts additional, operation-
specific constraints, and (3) recursively calls the Execute()
method of one or both of its operands, providing an aug-
mented set of constraints

At the end of the execution phase, the selection constraints
reach the HTS objects, each of which selects and executes
one of its enabled transitions that satisfies all imposed con-
straints.

4.3.1 Interleaving and parallel composition

The Execute() method for an interleaving operator is shown
on the right in Fig. 6. If both of an operator’s operands are
enabled, then one is nondeterministically chosen to exe-
cute (lines 2–4).2 Otherwise, the solely enabled operand is
instructed to execute (lines 5–8). It is guaranteed that at least
one of the operands is enabled, otherwise the operator’s Exe-
cute() method would not have been invoked. The Execute()
method for the parallel-composition operator is almost the
same, except that in parallel composition, if both operands are
enabled then both are instructed to execute simultaneously.

4.3.2 Environmental synchronization

Synchronization operators typically have more complicated
Execute() methods because they sometimes impose con-
straints on which enabled transitions should execute, as a
means of synchronizing components. The Execute() method
for environmental synchronization is separated into three
cases:

1. Imposed constraint The invocation of Execute() includes
as a parameter a constraint asserting that the selected
transition(s) be triggered by a particular synchronization
event. If the imposed constraint involves one of the opera-
tor’s own syncEvents, then the operator will synchronize
its operands’ executions: if both operands have transi-
tions triggered by this event, then both are instructed to
execute (lines 4–6). Otherwise, at most one operand may
execute, and only if it has transitions enabled by the con-
straint’s sync event (lines 7–14).

2. Constraint free The invocation of Execute() does not
include as a parameter a constraint asserting that the
selected transition(s) be triggered by a particular syn-
chronization event, which means that the operator is free
to impose its own constraint.

2 The generated Java program uses random-number generators to make
such nondeterministic choices.

123



262 A. Prout et al.

a. Sync If both operands have transitions that are trig-
gered by one of the operator’s syncEvents, then the
operator may choose to synchronize its operands’
executions (lines 17–19), asserting a new event con-
straint (lines 17, 23–26).

b. Nonsync The operator instructs one of its enabled
operands to execute some transition that does not
involve any of the operator’s sync events (lines
27–36).

In all cases, all imposed and new constraints are propagated
in the recursive calls to the operands’ Execute() methods.

Note that if the Sync and the Nonsync cases are both possi-
ble, then one is nondeterministically chosen. Thus, the com-
position hierarchy of a model does not impose a priority
scheme among composition operators and their selection of
enabled transitions to be executed.

4.3.3 Other composition operators

Our CGG also supports rendezvous, interrupt, sequence,
and choice composition operators. The Java classes gener-
ated for these operators resemble the class generated for
the environmental synchronization operator, in that they
introduce member variables to keep track of operator-spe-
cific enabledness information, and their Execute() methods
are structured into three cases: accommodating an imposed
transition-selection constraint, imposing an operator-specific
constraint, or imposing no constraint. The details of how
all supported composition operators are implemented can be
found in [54].

4.4 Heterogenous compositional hierarchies

In this section, we describe how the implementations of
composition operators, as presented in the previous section,
change when multiple types of operators are used in the same
model. For example, most of the composition operators track
distinct enabledness information: environmental synchroni-
zation keeps track of the synchronization events that trigger
enabled transitions, and rendezvous composition keeps track
of the rendezvous events that are generated by enabled tran-
sitions as well as the rendezvous events that would enable
transitions.

In a heterogeneous composition hierarchy, each operator
node must keep track of, and pass as IsEnabled() param-
eters, all information needed by any operator in the com-
position hierarchy. Thus, all operator classes have member
variables for all types of enabledness information, and all
of their IsEnabled() methods include parameters for these
data. In fact, all of the operator classes’ IsEnabled() meth-
ods are the same, except for how their respective enabled

parameters are computed, which are operator specific and
are as described in the previous section.

The operators’ Execute() methods must expand to accom-
modate any transition-selection constraint imposed by any
type of ancestor operator. In fact, it is only the code that
enforces the constraints passed by parameter that needs to be
changed to accommodate heterogeneous composition oper-
ators; the rest of an operator’s Execute() method remains
unchanged. Among all of the composition operators sup-
ported by CGG, there are only four types of constraints:

1. A particular (interrupt) transition
2. Transitions triggered by syncEvents
3. Some (one) transition triggered by a rendezvous event
4. Some (one) transition that generates a rendezvous event

Of these, an Execute() method would receive at most one
constraint specifying a particular transition and at most one
constraint specifying a particular event (and would receive
both only if the specified transition were triggered by the
specified event). In the case of an imposed constraint, an
operator asserts its semantics within the set of enabled tran-
sitions satisfying the constraints.

4.5 HTS: execute transitions

Each HTS object is responsible for making the final selection
of transitions to execute and for realizing their executions.
Each HTS has an Execute() method (shown on the right in
Fig. 5) that is called when the HTS is instructed to execute
as part of a step. In this method, one of the enabled transi-
tions identified by IsEnabled() is chosen for execution and
assigned to variable exec. Constraints on which transition is
selected are given as parameters (line 1) and are enforced by
the method (lines 2-5). If there are no selection constraints,
then the top-priority transition in enabledTrans is selected
to execute (lines 6-7). In the end, the chosen transition is
“executed” via inline procedures that implement the next_X
template parameters, which in turn update all of the snapshot
elements (lines 10-19).

4.6 Optimizations

The CGG employs a number of simple optimizations to
improve the performance of the generated Java code. Some
optimizations are model independent and are incorporated
into every generated code generator. For example, if a nota-
tion’s semantics does not make use of all the snapshot ele-
ments, then the Java classes for unused snapshot elements
are not generated.

Other optimizations are based on the structure of the input
model. For example, the IsEnabled() method that is gener-
ated for each HTS component is more efficient than presented

123



Code generation for a family of executable modelling notations 263

above: the search for enabled transitions is done in order of
the transitions’ priority (based on the model’s composition
hierarchy, the HTS’s state hierarchy, and the value of the
priority template parameter). Thus, when an enabled transi-
tion is found, no transition of lower priority is checked. As
another example, some computations performed by HTS or
composition-operator modules can be statically computed or
optimized, such as the determination of which HTS states
are entered and exited when a transition executes. As a third
example, if a composition operator is associative, then con-
secutive applications of that operator can be compressed into
a single operator with multiple operands. A flattened com-
position hierarchy results in a more efficient execution step
because there are fewer recursive calls and less caching of
enabledness information.

5 Resolving nondeterminism

The code described in the previous section simulates a
model’s nondeterminism. Such a semantics-preserving trans-
formation is useful during modelling and analysis, but is not
appropriate for a deployable implementation. Our CGG can
either generate a nondeterministic program that completely
simulates the input model or generate a deterministic pro-
gram that satisfies the model’s specification.

To generate a deterministic program, we resolve the
model’s natural nondeterminism using priorities (e.g., prior-
itizing among multiple enabled transitions within an HTS).
If the priorities provided by the specifier—in the form of
explicit priorities on transition labels, on synchronization
events, or the notation’s priority scheme pri—are not suf-
ficient to make the model deterministic, then we impose
default priorities on the remaining nondeterministic choices.
Because the specifier has implicitly indicated that all choices
are equally valid, any default priority that we choose should
be acceptable. In cases where a default priority would intro-
duce an asymmetry that could lead to unfair executions (e.g.,
starvation of a frequently enabled HTS or enabled transition),
we rotate priority among the enabled entities:

• HTSs Simultaneously enabled transitions within an HTS,
if they are not prioritized by explicit priorities on the
transition labels or by the template parameter values, are
“prioritized” according to the order in which they are
declared.

• interleaving The interleaving of two simultaneously
enabled components is “prioritized” by alternating which
component is executed when both are enabled.

• synchronized operations Simultaneously enabled syn-
chronized transitions (enabled by multiple simulta-
neously occurring synchronization or rendezvous
events), if not prioritized by an explicit ordering on the

events, are “prioritized” by the order in which the events
are declared.

• synchronized operations If synchronized and non-
synchronized transitions are simultaneously enabled, the
synchronized transitions are given higher priority, so that
components do not miss the opportunity to react to a syn-
chronization event.

• rendezvous operations If a component can synchronize
either by sending or receiving a rendezvous event, the
role (sender or receiver) that a component plays alter-
nates.

The result of these decisions is a deterministic program
that satisfies the model. A beneficial side effect is improved
performance, because less enabledness information is com-
municated and there is no generation of random choices.

6 Evaluation

We evaluated two aspects of our approach: the degree of
semantic variability that is supported by CGG and the effi-
ciency of the generated code.

6.1 Semantic variability

In this section, we examine the degree of semantic variability
in CGG by comparing its semantic choices with the list of
modelling features and semantic variations given in von der
Beeck’s “A Comparison of Statecharts Variants” [62].

Table 2 lists the semantic variations: the leftmost column
lists variation points as they are numbered in the von der
Beeck paper,3 and the second column lists choices for each
variation point. The variations include how long an event can
persist and continue to enable transitions, how simulta-
neously enabled transitions are prioritized, whether multi-
ple transitions can execute in response to the same input
event, whether a number of advanced modelling features are
supported (e.g., negated events, in(state) references, history,
timing), and the semantic consequences of those features
(e.g., global consistency, compositionality). For example, if
negated trigger events are supported, it raises a question of
macro-step consistency: if a transition that is triggered by
a negated event ∼e is followed in the same macro-step by
another transition that produces that event e as an action,
then is the second transition disallowed because its actions
would contradict the first transition’s enabling conditions
(global consistency) or is it allowed because each transition is
enabled in its respective execution state (local consistency)?

3 The one variation that is missing from the table is (8): operational ver-
sus denotational semantics, which is not really a semantics variation.

123



264 A. Prout et al.

Table 2 Coverage of semantic variations in CGG (grey rows highlight non-coverage, and light-grey rows indicate semantics can be added)

The semantic choices that have been implemented in
CGG—which is over half of the choices listed in the table—
are those listed in white rows in Table 2; for redundancy,
these rows have value “YES” in the last column. In each
of these rows, the values in the third column indicates how
the semantics choice is supported in CGG in terms of the
relevant template definitions and parameters. With respect
to the unsupported choices, we distinguish between those
that belong to our intended family of notations and those
that do not. The former choices, while not implemented in
CGG, have been expressed as template parameter values in
previous papers on template semantics. Thus, they could be
added to CGG as new menu choices for existing template
parameters, without changing other parts of CGG’s imple-
mentation. These implementable semantic choices are high-
lighted in lighter-grey rows in Table 2; the values in last
column of these rows cite references where the interested
reader can find more information. The semantic choices that
appear in darker-grey rows have not been included in the fam-
ily of notations to be supported; the last column of these rows
is empty. One of these choices (self-triggering transitions) is
explicitly excluded from the family.

In summary, 21 of the 37 semantic variations listed in von
der Beeck are currently implemented in CGG, and another 9
are considered implementable.

6.2 Efficiency

By employing an architecture that supports semantic con-
figurability, we incur a penalty in the performance of our
generated code. In this section, we report on that penalty
by comparing the performance of our generated code to that
of three commercial tools: IBM’s Rational Rose Realtime
(Rose RT) [29], IBM Rational Rhapsody (Rhapsody) [30],
and SmartState [1]. We re-expressed the semantics of each of
the commercial tools’ modelling language in terms of CGG
parameter values and produced our own code generator for
that notation. We then used the code generators to generate
Java programs for four models:

• PingPong is an example model provided in the distribu-
tion of Rose RT. It consists of two concurrent machines
that execute a simple request-reply protocol.

• A room Heater, whose components model the controller,
the furnace, and sensors in a room whose temperature is
being controlled.

• A hotel-room Safebox, whose components model a key-
pad for entering security codes, a display, and the status
of the lock.

• An Elevator for a three-story building, whose compo-
nents model the controller, service-request buttons, the

123



Code generation for a family of executable modelling notations 265

Fig. 8 Comparison of UML tools

engine, and the door and door timer. This model is the
largest of the four, comprising 11 components.

The PingPong model is a simple request-reply protocol that
passes a token between two components a set number of
times before terminating. The other three models are small
but typical software controllers for embedded systems. Each
of the embedded-system models is composed with an appro-
priate environment component that feeds input events to the
system. By forming a closed-world model of the system and
its simulated environment, we are able to evaluate the perfor-
mance of the generated code without having to interact with
the program while it executes.

The first two studies, shown in Fig. 8, compare our gener-
ated code against that generated by Rose RT and Rhapsody.
These two tools support the UML and have similar semantics:
communication between components is via message passing,
all generated messages are sent to a single global queue4 and
only the event at the head of this queue can trigger transitions.
One difference between them is that, in Rose RT, a message
event triggers only one (compound) transition, whereas in
Rhapsody an event can initiate a sequence of transitions; this
difference is not manifested in the models in our study.

Using CGG, we generated code generators that simulate
the semantics of Rose RT and Rhapsody. We ran all four code
generators on all four models, and then measured the execu-
tion times of the generated programs. The results reported in
Fig. 8 are the average execution times over 10 runs, with each
run consisting of 100,000 iterations between the system and
environment components in Heater, Elevator, and Safebox,
and 500,000 iterations between the Ping and Pong compo-

4 Both Rose RT and Rhapsody also allow multiple event queues and
allow the specifier to indicate which components share which event
queues. CGG does not currently support this option, but it could via
new parameter values for queue-related template parameters [59].

Fig. 9 Comparison of statecharts tools

nents in PingPong. All runs were performed on a 3.00 GHz
Intel Pentium 4 CPU with 1GB of RAM, running Windows
XP Professional Version 2002. We used the default code
generation settings of both Rhapsody and Rose RT. Alter-
native settings (e.g., the time-model setting of Rhapsody)
were not applicable to our models, and so the possible code-
generation optimizations afforded by these settings were not
applied in our evaluation. On average, deterministic CGG-
generated programs (CGG-Det) took 8.8 times longer to run
than Rose-RT-generated programs, and 1.9 times longer to
run than Rhapsody-generated programs. The deterministic
CGG version of PingPong performed slightly better than the
Rhapsody version. Similar comparisons with nondeterminis-
tic CGG-generated programs had similar results. This is not
surprising given that all of the models in our evaluation suite
are deterministic.

We also generated a statecharts-based code generator and
compared its generated code to that generated by Smart-
State. SmartState semantics uses parallel composition and
broadcasting of events. In addition, SmartState assumes
open-world models, so we removed the environmental
component from each input model and provided an appli-
cation wrapper that generates environmental events for the
model. The performance results are summarized in Fig. 9.
On average, SmartState-generated programs ran 1.2 times
longer than deterministic CGG-generated programs (CGG-
Det). The SmartState-generated PingPong program slightly
outperformed the deterministic CGG-generated program.

Overall, the cost of semantically configurable code gener-
ation appears to vary with the semantics chosen and the num-
ber of concurrent components. Our statecharts-based code
generator performs slightly better than SmartState on the
larger models, but not as well on the toy model PingPong.
Our UML-based code generators are competitive with Rhap-
sody for models with fewer components (PingPong, Heater,

123



266 A. Prout et al.

Safebox), but less so on the larger model, Elevator. Rose
RT significantly outperforms Rhapsody and CGG-Det on all
models. We theorize that much of the performance gap can
be attributed to the hierarchical architecture of our generated
programs; this issue is discussed further in Sect. 7.1.

In addition to the above case studies, we generated
code for the Ground-Traffic Control System described in
Sect. 2.5, composed with an environment component as in the
embedded-system case studies. The code for this case study
could not be compared with that of commercial code gen-
erators because it uses notation semantics and composition
operators (namely environment synchronization and rendez-
vous) that are not supported by the other tools. The aver-
age execution time over 10 runs, with each run consisting
of 100,000 iterations between the system and environment
components, was 15.1 seconds. The runs were performed on
the same platform as the other case studies.

7 Discussion

Our approach to semantically configurable code generation
is distinguished in that (1) a notation’s semantics is user con-
figured from a fixed set of semantics choices, rather than
user defined, (2) the semantic choices are fine grained, and
(3) the approach accommodates models that have hetero-
geneous composition operators. In this section, we discuss
some of the advantages, disadvantages, and trade-offs of our
approach.

7.1 Performance

The most significant limitation of our work is its inefficiency.
We were pleasantly surprised by how well our generated code
performed against comparable programs generated by Rhap-
sody and SmartState. But our generated programs run almost
an order of magnitude slower than comparable programs gen-
erated by Rose RT.

We hypothesize that the primary cause of our perfor-
mance overhead is our interpreted execution step, which is
described in Sects. 4.1–4.4. Recall that the execution step
collects enabledness information about each of the compo-
nents and filters this information through each of the pro-
gram’s composition operators; likewise, the execution step
collects execution decisions imposed by each of the compo-
sition operators and applies them to the affected components.
The execution step is interpreted, so that models (and thus
generated programs) can employ heterogeneous combina-
tions of composition operators. In contrast, the commercial
tools with which we compare our work do not support het-
erogeneous composition operators in the same model; thus,
they can optimize their generated programs for a single type
of composition.

If our hypothesis is correct, then it may be that the longer
execution times of our generated programs are due to our
approach’s flexibility with respect to composition operators,
and are not due to the configurability in execution seman-
tics. If this is the case, it may be possible to support seman-
tic configurability with respect to execution semantics (i.e.,
the template parameters) and incur a smaller performance
penalty by restricting the set of possible composition opera-
tors in the notation family.

There may also be other opportunities for improving per-
formance. We have not seriously explored efficient data
structures that could help to optimize the execution of our
generated code [63].

7.2 Usability

What distinguishes our approach from others [3,9,14,16,20,
52,58] is that the user does not need to construct a seman-
tics definition for the modelling language. Instead, the user
specifies parameter values for a given parameterized seman-
tics definition—a semantics task that we believe, but have
not validated, is simpler and less error prone than writing a
semantics definition from scratch. Moreover, we have sim-
plified this task further by asking users to select from menus
of predefined parameter values. The result is a single tool
that a user can use to experiment with several fine-grained
semantics choices.

Although the task of defining a semantics is simplified, the
expertise needed is not significantly reduced. The user who
selects template parameter values needs to understand the
consequences of those decisions: how the parameter values
interact with the template definitions (and ultimately with
the snapshot elements), and how the parameter values inter-
act with each other. Most of the dependencies among tem-
plate parameter values are obvious. For example, the set of
state-based template parameters are interdependent, as are
the set of event-based template parameters; and there are no
dependencies between state-based and event-based parame-
ter values. The more subtle interdependencies are between
the choice of composition operator and template parame-
ter values. For example, if the composition operator has an
interleaving semantics, and events have a duration of “one
micro-step”, then a transition may miss the chance to react
to an event because it might not be chosen to execute in the
micro-step in which the event exists and enables transitions.

At present, it is the user’s responsibility to choose tem-
plate parameter values that result in a consistent and coher-
ent semantics. This expertise is comparable to that needed
in approaches in which the user writes the full semantics
for their customized modelling notation. In the future, we
plan to provide more guidance to users. In particular, we
want to restrict a user’s choice of parameter values based
on the semantics decisions that he or she has already made.

123



Code generation for a family of executable modelling notations 267

To provide this kind of support, we are currently analyzing
the dependencies among the template parameter values and
composition operators in our family of notations.

Our template-semantics approach can also be helpful
in communicating a model’s intended semantics. A con-
sequence of notation variants is that a single model can
have multiple interpretations. This is currently the case with
statecharts models, and the model reader needs to be
instructed as to how to interpret a given model. If the intended
semantics is that of a popular or standard notation, then it usu-
ally suffices to state the name of the notation in which the
model is written. If the semantics deviates from widely recog-
nized notations or variants, then another means of communi-
cating semantics needs to be devised. One of the strengths of
template semantics is that it highlights the semantics variabil-
ities in a family of notations, and separates these out from the
family’s common semantics. This separation makes it easier
to compare notations’ semantics by comparing their template
parameter values [49]. In a similar way, template parameter
values could be a concise and focused way of communicat-
ing the semantics of a model. This use of template semantics
still needs to be explored.

7.3 Extensibility

Our approach to semantic configurability has the same advan-
tages and disadvantages of other software product lines:
one can quickly and easily create a code generator for a
particular notation that is within the family of supported
notations, but configurability is limited to the set of com-
binations of supported template parameter values. Notable
modelling features that are not supported by our CGG include
transitions triggered by the absence of an event occurrence,
pseudostates (shallow history, deep history, join, fork, junc-
tion, choice), state activities or operations, object creation
or termination, change events, completion events, and time
events. In previous work, we have been able to incorporate
the semantics of many of these features into the template-
semantics definition of our family of behavioural notations
[48,49,59]. Thus, CGG could be extended to include, at least,
negated event triggers and pseudostates. In general, the var-
iability supported in CGG trails the variability in the tem-
plate-semantics definition of our notation family.

The CGG is designed to ease extensibility with respect to
execution semantics. In particular, the CGG is structured to
localize into distinct subroutines the code that implements
the various semantics choices. Thus, extending our CGG to
support a new template parameter value entails (1) adding
a new subroutine that implements it and (2) adding a new
menu choice to the set of supported semantics options.

If CGG were to support dataflow languages, such as SCR
[27] or Stateflow [41], it would need to be extended to include
a new composition operator that allows for ordered execution

of a model’s components. Such an extension is not as easy as
adding support for a new template parameter value. In addi-
tion to implementing a new class for the composition opera-
tor itself, the HTS and other operator classes would have to
be extended to compute and communicate any new enabled-
ness information needed by the new operator, and to realize
and communicate any new transition-selection constraints
asserted by the new operator. We have limited experience
in adding a new composition operator to CGG: an operator
that prioritizes executions in one component over those in
another. This operator was added (designed, implemented,
and tested) by a new team member, who was unfamiliar with
the code, in the course of two days.

Adding new syntax and accompanying semantics to our
family of modelling notations is currently outside the scope
of our approach. That said, we have some experience in
extending a template-semantics definition to incorporate new
modelling features and syntax: a timing feature that supports
real-time clocks and timers. This particular change to our
template-semantics definition was relatively easy because it
was additive. For example, the template enabled_trans is
extended with an additional conjunct that checks the enabl-
edness of new clock snapshot elements, and the template
apply_trans is extended with new template parameters that
update the clock snapshot elements. It is quite possible that
implementing the feature in CGG would similarly be addi-
tive. Our experience with this template-semantics extension
is discussed in [48].

7.4 Correctness

A threat to the validity of our results is the correctness of our
implementation of CGG. The CGG is a proof-of-concept pro-
totype, so we have applied only basic testing strategies in its
verification.

Specifically, we developed a test suite that covers each of
the 89 template parameter values and covers all pairs of com-
position operators. In addition, we developed ad-hoc tests
that exercise more complicated composition hierarchies. Ini-
tially, all tests were examined manually. To assess whether a
generated program matches the semantics of its correspond-
ing model, with respect to a particular sequence of input
events, we compared the program’s and model’s respective
“outputs”: that is, their sequences of snapshots. Each pro-
gram outputs the contents of its shapshot elements at the end
of each execution step, and this output was compared against
the expected output as determined by the model and its
semantics definition. If the generated program was deemed
correct, then its verified output was subsequently used in
automated regression testing. Nondeterministic programs,
however, were always assessed manually.

A more convincing method of testing CGG would be to
employ coverage and adequacy metrics that are appropriate

123



268 A. Prout et al.

for testing a software product line [10,42] and that provide a
more thorough coverage of feature combinations.

7.5 Generality of the approach

While this work focuses on behavioural modelling notations,
our approach to semantically configurable code generation
could be transferred to other families of modelling notations
(e.g., sequence diagrams). The general steps of this approach
are

1. Perform a commonality analysis on the family of nota-
tions, to identify the commonalities and variabilities in
their semantics.

2. Devise or identify a normal-form syntax that is general
enough to express models in any of the notations in the
family. (We used hierarchical state machines.)

3. Express the semantics of the family in terms of the iden-
tified commonalities and variabilities. The key here is
to identify the semantic variation points and the set of
possibilities at those points. (We used a parameterized
structured operational semantics that we call template
semantics, and menus of semantic parameter values for
each template parameter.)

4. Encode as data structures in the target programming lan-
guage both the model (in our case, the state hierarchy,
composition hierarchy, state transitions, etc.) and the ele-
ments that make up the semantic domain (in our case,
the configuration of states, pool of events, variable valu-
ations, etc.)

5. Encode in the target programming language a skeletal
algorithm that simulates the model taking an execution
step.

• The algorithm should simulate the common seman-
tics expressed in step 3, and operate on the data struc-
tures defined in step 4.

• The algorithm should be parameterized (e.g., using
subroutines) with respect to the variation points
expressed in step 3, to support semantic variability.

6. For each subroutine in the simulation algorithm (rep-
resenting a semantics variation point, as described in
step 5), encode for each possible variant an appropriate
implementation of the subroutine. Exactly one imple-
mentation for each subroutine name is included in any
actual code generator, so there is no need to worry about
name clashes.

A CGG, then, is implemented as a software product line;
and individual code generators instantiate the product line
with specific subroutines for each semantic variation point.

8 Related work

Most model-driven-engineering environments are centred
on a single modelling notation that has a single semantics
[5,7,12,26,29,56,31,30,60]. Configurability in such sys-
tems is geared more towards flexibility in the target lan-
guage or platform [13,18] or optimizations in the generated
code than in the semantics of the modelling notation. There
are a few exceptions. For example, Rational Rose RT and
Rhapsody have options to choose whether event queues are
associated with individual objects, groups of objects, or the
whole model. Rhapsody allows both parallel and interleaving
execution of concurrent regions and objects. BetterState sup-
ports multiple priority schemes on transitions and choices
on the ordering of state entry/exit actions versus transition
actions. ObjecTime supports both synchronous and asyn-
chronous message passing. Such options allow the specifier
some control over the modelling notation, but the scope of
configurability is much smaller and coarser grained than that
of our template-semantic approach, which enables multiple
options for event handling, transition priority, and composi-
tion operators.

There has been increasing interest in flexible and extensi-
ble modelling notations and their support tools. At the most
basic level are modelling tools that allow users to configure
their modelling notations with new language features (e.g.,
state variables, tabular expressions) or multiple target lan-
guages. These tools support a collection of optional language
features or target platforms that are predefined in the tool
and are selected by the user when appropriate for a specific
modelling problem [20,58]. The effort required to extend
the set of predefined features seems to be roughly compa-
rable to the effort we have experienced in extending a tem-
plate-semantics definition with new language features, such
as history and deep history pseudostates (as in statecharts)
and clocks [48]. We have not implemented these advanced
features in our CGG, nor we have incorporated other types
of variability (e.g., target platforms, optimization settings)
because CGG is meant to be a proof-of-concept prototype;
but we do not see any obstacles to adding these features and
variabilities.

Starting in the late 1990s, there was interest in more
general modelling environments in which the modelling
notation could be completely defined by the user. Model-
ling-tool frameworks take as input the definition of a mod-
elling notation, including its semantics, and generate an
MDE tool, such as a model checker or simulator, that is
appropriate for the notation’s semantics. A number of dif-
ferent methods for expressing a notation’s semantics were
explored, such as hypergraphs [52], inference graphs [16],
graph-grammar mappings to Petri Nets [3], attribute gram-
mars [20], structured-operational-semantics rules [9,16], and
higher-order logic [14]. More generally, compiler generators

123



Code generation for a family of executable modelling notations 269

[35] are able to construct compilers directly from a lan-
guage’s semantics expressed using denotational semantics
[2,51], operational semantics and rewrite rules [21,22],
natural semantics [15], and language algebras [37]. More
recent MDE frameworks, such as MetaEdit+ [36] and Ker-
meta [46], allow users to define their own domain-specific
modelling notation and corresponding code generator; the
user is responsible for expressing a model’s executable
semantics via the tool’s own action language [46] or rule
language [36], which is designed to be easier to use by
developers.

A key disadvantage of all these approaches is that the user
has to write a complete semantics for the modelling notation,
or at least must provide a complete definition of the semantic
mapping [3]. The main premises behind our work on seman-
tically configurable modelling environments are that (1) writ-
ing a notation’s formal semantics is hard (sometimes worthy
of a research publication), and (2) we can simplify the task of
defining a semantics by taking advantage of the commonal-
ities among notations’ semantics. In the template-semantics
approach, specifying the semantics of a modelling notation
is reduced to providing or selecting a collection of relatively
small semantics-parameter values that instantiate a prede-
fined semantics definition. The trade-off is that our CGG
creates code generators only for the family of notations that
is scoped by our template-semantics definition and the sup-
ported parameter values. That said, template semantics has
been shown to be expressive enough to represent a wide vari-
ety of language semantics, including several variants of state-
charts, process algebras, Petri Nets, and SDL88 [48,49,59].
Moreover, the CGG is structured to facilitate the adding of
new template parameter values.

The decomposition of our template-semantics definition
is fine grained: each template parameter represents a dis-
tinct query of the model and snapshot (e.g., identify the set
of enabling states) or a distinct variation point in how one
aspect of an execution step (e.g., sensing of inputs from
the environment, executing a set of transitions) affects one
of the snapshot elements [i.e., the configuration of states
(CS), the variable evaluation (AV), etc.]. This decomposi-
tion enables us to construct highly configurable modelling
tools, including code generators. The downside is that the
user must be aware of the interdependencies among tem-
plate parameters and must provide or select parameter val-
ues that, together, result in a comprehensible semantics. An
alternative decomposition is a semantics definition that is
organized into a hierarchy of higher-level concepts (e.g.,
event policy, concurrency policy, synchronization policy,
data-store policy) and that better corresponds to a user’s
view of semantic variations in languages [6,17,45]. These
approaches promote modularity and orthogonality in seman-
tic definitions, with the intent to ease the task of constructing
or understanding a notation’s semantics. However, because

each semantic variation point affects a broader scope of the
semantic domain, configurable tools that are based on these
types of semantic decomposition [6] have more complex
implementations of the semantic choices. We are currently
exploring how to combine the approaches: if the higher-
level semantic concepts can be mapped to lower-level que-
ries and changes to snapshot elements, then it may be pos-
sible to develop semantically configurable tools where the
user’s view is in terms of highly abstract semantic choices,
but the implementation is in terms of lower-level semantic
choices.

Lastly, our CGG can be viewed as an instance of gen-
erative programming, where generative software develop-
ment [4,8,11,34] aims at developing families of related
systems by creating generators for DSLs. In generative
programming, a DSL describes the features of a system
family and is used to specify individual members of the
family. A generator transforms a DSL specification into
an implementation. In our case, template semantics is
a domain-specific language for describing the “semantic
features” of behavioural modelling notations, and CGG
is a generator for a corresponding family of code
generators. What distinguishes our work from typical
generative programming is that our “features” are not func-
tional requirements or components, but instead are seman-
tic parameters of a general-purpose behavioural modelling
notation. Thus, our contribution is not so much a gen-
erator of product instances, but rather a flexible model-
driven-engineering environment, where the modeller is able
to experiment with multiple modelling notations and is
able to generate corresponding code generators for those
notations.

9 Conclusion

In this work, we explore semantically configurable code gen-
eration for a family of behavioural modelling notations. Con-
figurability is in the form of semantics parameters, so that the
user is spared from having to provide a complete semantics
definition. Moreover, the configuration task is reduced to
selecting from menus of semantics parameter values, rather
than defining parameter values.

We built a proof-of-concept CGG that supports 7 differ-
ent composition operators, 26 semantics parameters, and 89
parameter values that can be combined in multiple ways.
Using this environment, we are able to create and generate
code for models whose semantics vary from that of standard
modelling notations, in ways that better fit the problem being
modelled.

We view semantically configurable MDE as an appropri-
ate compromise between a general-purpose, single-
semantics notation that has significant tool support and a

123



270 A. Prout et al.

domain-specific language that has a small user base and
few tools. The result is an environment in which modelling-
notation designers can experiment with alternative seman-
tics. Another potential use is to provide tool support for UML,
which has a number of semantic variation points that match
template semantics’ variation points [59]. Our technology
does not yet compete with commercial-grade code genera-
tors, but its future looks promising.

References

1. ApeSoft. Smartstate v4.1.0. http://www.smartstatestudio.com
(2008)

2. Appel, A.W.: Semantics-directed code generation. In: Proceed-
ings of ACM Symposium on Principles of Programming Language
(POPL’85), pp. 315–324. ACM Press, New York (1985)

3. Baresi, L., Pezzè, M.: Formal interpreters for diagram nota-
tions. ACM Trans. Softw. Eng. Methodol. 14(1), 42–84 (2005)

4. Batory, D., O’Malley, S.: The design and implementation of hier-
archical software systems with reusable components. ACM Trans.
Softw. Eng. Methodol. 1(4), 355–398 (1992)

5. Berry, G., Gonthier, G.: The esterel synchronous programming lan-
guage: design, semantics, implementation. Sci. Comp. Prog. 19(2),
87–152 (1992)

6. Bjrklund, D., Lilius, J., Porres, I.: A unified approach to code gen-
eration from behavioral diagrams. In: Proceedings of Forum on
Specification and Design Languages (FDL), pp. 21–34 (2003)

7. Burmester, S., Giese, H., Schfer, W.: Code generation for hard
real-time systems from real-time statecharts. Technical Report
tr-ri-03-244, University of Paderborn (2003)

8. Cleaveland, C.: Program Generators with XML and Java. Prentice-
Hall, UK (2001)

9. Cleaveland, R., Sims, S.: Generic tools for verifying concurrent
systems. Sci. Comp. Prog. 41(1), 39–47 (2002)

10. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in
software product line testing. In: Proceedings of the ISSTA 2006
Workshop on Role of Software Architecture for Testing and Anal-
ysis (ROSATEA), pp. 53–63 (2006)

11. Czarnecki, K., Eisenecker, U.W.: Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co., New York/USA (2000)

12. Harel, D. et al.: STATEMATE: a working environment for the
development of complex reactive systems. IEEE Trans. Softw.
Eng. 16(4), 403–414 (1990)

13. D’Ambrogio, A.: A model transformation framework for the auto-
mated building of performance models from UML models. In: Pro-
ceedings of International Workshop on Software and Performance
(WOSP’05), pp. 75–86. ACM Press, New York (2005)

14. Day, N.A., Joyce, J.J.: Symbolic functional evaluation. In:
TPHOLs, Volume 1690 of LNCS, pp. 341–358. Springer, Berlin
(1999)

15. Diehl, S.: Natural semantics-directed generation of compilers and
abstract machines. Form. Asps. Comp. 12(2), 71–99 (2000)

16. Dillon, L., Stirewalt, R.: Inference graphs: a computational struc-
ture supporting generation of customizable and correct analysis
components. IEEE Trans. Softw. Eng. 29(2), 133–150 (2003)

17. Esmaeilsabzali, S., Day, N., Atlee, J.M., Niu, J.: Deconstruct-
ing the semantics of big-step modelling languages. Requir.
Eng. 15(2), 235–256 (2010)

18. Floch, J.: Supporting evolution and maintenance by using
a flexible automatic code generator. In: Proceedings of

International Conference on Software Engineering (ICSE’95),
pp. 211–219. ACM Press, New York (1995)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
patterns: elements of reusable object-oriented software.
Addison-Wesley, USA (1995)

20. Gao, J., Heimdahl, M.P.E., Wyk, E.V.: Flexible and extensible
notations for modeling languages. In: Proceedings of Fundamental
Approaches to Software Engineering (FASE), pp. 102–116 (2007)

21. Hannan, J.: Operational semantics-directed compilers and
machine architectures. ACM Trans. Program. Lang. Syst. 16(4),
1215–1247 (1994)

22. Hannan, J., Miller, D.: From operational semantics to abstract
machines. Math. Struct. Comput. Sci. 2(4), 415–459 (1992)

23. Harel, D.: On the formal semantics of statecharts. In: Symposium
on Logic in Computer Science, pp. 54–64 (1987)

24. Harel, D.: Statecharts: a visual formalism for complex systems. Sci.
Comput. Program. 8(3), 231–274 (1987)

25. Harel, D., Naamad, A.: The STATEMATE semantics of state-
charts. ACM Trans. Softw. Eng. Methodol. 5(4), 293–333 (1996)

26. Heimdahl, M.P.E., Keenan, D.J.: Generating code from hierar-
chical state-based requirements. In: Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE’97),
pp. 210–220 (1997)

27. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consis-
tency checking of requirements specifications. ACM Trans. Softw.
Eng. Methodol. 5(3), 231–261 (1996)

28. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, UK (1985)

29. IBM: Rational Rose RealTime v7.0.0. http://www.ibm.com/
rational (2005)

30. IBM: Rational Rhapsody in J v7.4. http://www.ibm.com/software/
awdtools/rhapsody/ (2007)

31. IBM: Rational SDL Suite. http://www.ibm.com/software/
awdtools/sdlsuite/ (2010). Accessed Sept 2010

32. ISO8807: LOTOS: a formal description technique based on the
temporal ordering of observational behaviour. Technical Report,
ISO (1988)

33. ITU-T: Recommendation Z.100. Specification and description lan-
guage (SDL). Technical Report Z-100, International Telecommu-
nication Union-Standardization Sector (1999)

34. Jones, N., Gomard, C., Sestoft, P. (eds.): Partial Evaluation and
Automatic Program Generation. Prentice-Hall, UK (1993)

35. Jones, N. (ed.): Semantics-Directed Compiler Generation, volume
LNCS 94. Springer, Berlin (1980)

36. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling
Full Code Generation. Wiley, NY (2008)

37. Knaack, J.L.: An algebraic approach to language translation. PhD
Thesis, University of Iowa (1995)

38. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.:
Requirements specification for process-control systems. IEEE
Trans. Softw. Eng. 20(9), 684–707 (1994)

39. Lu, Y., Atlee, J.M., Day, N.A., Niu, J.: Mapping template seman-
tics to SMV. In: Proceedings of Automotive Software Engineering
(ASE’04), pp. 320–325 (2004)

40. MathWorks. Simulink. http://www.mathworks.com/products/
simulink (2010). Accessed Sept 2010

41. Mathworks. Stateflow 7. http://www.mathworks.com/products/
stateflow/ (2010). Accessed Sept 2010

42. McGregor, J.D.: Testing a software product line. Technical Report
CMU/SEI-2001-TR-022, Carnegie Mellon, Software Engineering
Institute (2001)

43. McMillan, K.: Symbolic Model Checking: An Approach to the
State Explosion Problem. Kluwer Academic, Dordrecht (1993)

44. Milner, R.: Communication and Concurrency. Prentice-Hall,
New York (1989)

123

http://www.smartstatestudio.com
http://www.ibm.com/rational
http://www.ibm.com/rational
http://www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/software/awdtools/sdlsuite/
http://www.ibm.com/software/awdtools/sdlsuite/
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/


Code generation for a family of executable modelling notations 271

45. Mosses, P.: Action Semantics. Cambridge University Press, Lon-
don (1992)

46. Muller, P.-A., Fleurey, F., Jzquel, J.-M.: Weaving executability into
object-oriented meta-languages. In: Proceedings of International
Conference on Model Driven Engineering Languages and Systems
(MoDELS), LNCS 3713, pp. 264–278 (2005)

47. Niu, J.: Metro: a semantics-based approach for mapping specifica-
tion notations to analysis tools. PhD Thesis, University of Waterloo
(2005)

48. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-
based notations. IEEE Trans. Softw. Eng. 29(10), 866–882 (2003)

49. Niu, J., Atlee, J.M., Day, N.A.: Understanding and comparing
model-based specification notations. In: Proceedings of IEEE
International Requirements Engineering Conference (RE’03),
pp. 188–199. IEEE Computer Society Press, USA (2003)

50. Object Management Group.: Unified modelling language: super-
structure. version 2.0, formal/05-07-04. http://www.omg.org
(2005)

51. Paulson, L.: A semantics-directed compiler generator. In: Proceed-
ings of ACM Symposium on Principles of Programming Language
(POPL ’82), pp. 224–233. ACM Press, New York (1982)

52. Pezzè, M., Young, M.: Constructing multi-formalism state-space
analysis tools. In: IEEE International Conference on Software
Engineering (ICSE), pp. 239–249. ACM Press, New York (1997)

53. Plotkin, G.: A structural approach to operational semantics. Com-
puter Science Department, Aarhus University, Aarhus (1981)

54. Prout, A.: Parameterized code generation from template seman-
tics. Master’s Thesis, School of Computer Science, University of
Waterloo (2005)

55. Prout, A., Atlee, J., Day, N., Shaker, P.: Semantically configura-
ble code generation. In: ACM/IEEE International Conference on
Model-Driven Engineering Languages and Systems, pp. 705–720
(2008)

56. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented
Modeling. Wiley, New York (1994)

57. Smith, K.: Real-time object-oriented modeling: ObjecTime CASE
tool simplifies real-time software development. Dr. Dobbs J Softw
Tools 22(12), 64–74 (1997)

58. Swint, G.S., et al.: Clearwater: extensible, flexible, modular code
generation. In: Proceedings of IEEE/ACM International Confer-
ence on Automotive Software Engineerig (ASE’05), pp. 144–153.
ACM Press, New York (2005)

59. Taleghani, A. Atlee, J.M.: Semantic variations among UML sta-
temachines. In: ACM/IEEE International Conference on Model-
Driven Engineering Languages and Systems, pp. 245–259 (2006)

60. Tiella, R., Villafiorita, A., Tomasi, S.: FSMC+, a tool for the gen-
eration of Java code from statecharts. In: Proceedings of the 5th
International Symposium on Principles and Practice of Program-
ming in Java, pp. 93–102 (2007)

61. Varró, D., Pataricza, A.: Generic and meta-transformations for
model transformation engineering. In: UML 2004—The Unified
Modeling Language, volume LNCS 3273, pp. 290–304, October
2004 (2004)

62. von der Beeck, M.: A comparison of statecharts variants. In: Pro-
CoS: Proceedings of the Third International Symposium Orga-
nized Jointly with the Working Group Provably Correct Systems on
Formal Techniques in Real-Time and Fault-Tolerant Systems, pp.
128–148 (1994)

63. Wasowski, A.: On efficient program synthesis from statecharts. In:
Proceedings of the 2003 ACM SIGPLAN conference on Language,
compiler, and tool for embedded systems, pp. 163–170 (2003)

64. WindRiver.: Betterstate. http://www.windriver.com/portal/server.
pt (2005)

65. Yavuz-Kahveci, T., Bultan, T.: Specification, verification, and syn-
thesis of concurrency control components. In: Proceedings of Inter-
national Symposium on Software Testing and Analysis (ISSTA’02),
pp. 169–179. ACM Press, New York (2002)

66. Zave, P., Jackson, M.: A call abstraction for component coor-
dination. In: International Colloquium on Automata, Languages,
and Programming: Workshop on Formal Methods and Component
Interaction (2002)

Author Biographies

Adam Prout (BMath. and
MMath., Computer Science, Uni-
versity of Waterloo) is employed
by Microsoft as a software engi-
neer. His graduate studies were
focused on software modeling.

Joanne M. Atlee (Ph.D. and
M.S., Computer Science, Uni-
versity of Maryland; B.S., Com-
puter Science and Physics,
College of William and Mary;
P.Eng.) is an Associate Profes-
sor in the David R. Cheriton
School of Computer Science at
the University of Waterloo. Her
research interests include soft-
ware modelling, automated anal-
ysis of software models, modular
software development, feature
interactions, and software-engi-
neering education. Atlee serves

on the editorial boards for Software and Systems Modeling and Require-
ments Engineering. She is an at-large member of the ACM SIGSOFT
Executive Committee and is a member of the International Federa-
tion for Information Processing (IFIP) Working Group 2.9 on Software
Requirements Engineering. She was Program Co-Chair for the 31st
International Conference on Software Engineering (ICSE’09) and was
Program Chair for the 13th IEEE Requirements Engineering Confer-
ence (RE’05).

123

http://www.omg.org
http://www.windriver.com/portal/server.pt
http://www.windriver.com/portal/server.pt


272 A. Prout et al.

Nancy A. Day received the
M.Sc. and Ph.D. degrees in com-
puter science from the Univer-
sity of British Columbia in 1993
and 1998 respectively, and the
B.Sc. degree in computer science
from the University of Western
Ontario in 1991. From 1998 to
2000, she was a postdoctoral
research associate at the Oregon
Graduate Institute. She is cur-
rently an associate professor in
the Cheriton School of Com-
puter Science at the University
of Waterloo and is a member of

the Waterloo Formal Methods (WatForm) research group. Her research
interests include formal methods, requirements engineering, and system
safety. She is a member of the ACM and IEEE Computer Society.

Pourya Shaker is a Ph.D. student
in the Waterloo Formal Meth-
ods group of the School of Com-
puter Science at the University
of Waterloo. He received B.Eng.
and M.Eng. degrees in Computer
Engineering at Memorial Uni-
versity. His research interests are
in the area of model-driven soft-
ware development, specifically
aspect-oriented and feature-ori-
ented modelling languages.

123


	Code generation for a family of executable modelling notations
	Abstract
	1 Introduction
	2 Semantically configurable notations
	2.1 Syntax
	2.2 Semantic domain
	2.3 Template semantics
	2.4 Template parameters
	2.5 Composition operators

	3 Configurable CGG
	4 Generated Java code
	4.1 HTS: enabled transitions 
	4.2 Composition operators: enabled components
	4.2.1 Interleaving and parallel composition
	4.2.2 Environmental synchronization

	4.3 Composition operators: execution phase
	4.3.1 Interleaving and parallel composition
	4.3.2 Environmental synchronization
	4.3.3 Other composition operators

	4.4 Heterogenous compositional hierarchies
	4.5 HTS: execute transitions
	4.6 Optimizations

	5 Resolving nondeterminism
	6 Evaluation
	6.1 Semantic variability
	6.2 Efficiency

	7 Discussion
	7.1 Performance
	7.2 Usability
	7.3 Extensibility
	7.4 Correctness
	7.5 Generality of the approach

	8 Related work
	9 Conclusion
	References


