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Abstract—We propose a template-based approach to structuring the semantics of model-based specification notations. The basic

computation model is a nonconcurrent, hierarchical state-transition machine (HTS), whose execution semantics are parameterized.

Semantics that are common among notations (e.g., the concept of an enabled transition) are captured in the template, and a notation’s

distinct semantics (e.g., which states can enable transitions) are specified as parameters. The template semantics of composition

operators define how multiple HTSs execute concurrently and how they communicate and synchronize with each other by exchanging

events and data. The definitions of these operators use the template parameters to preserve notation-specific behavior in composition.

Our template is sufficient to capture the semantics of basic transition systems, CSP, CCS, basic LOTOS, a subset of SDL88, and a

variety of statecharts notations. We believe that a description of a notation’s semantics using our template can be used as input to a

tool that automatically generates formal analysis tools.

Index Terms—Model-based specification notations, semantics, composition, concurrency, automated generation of analysis tools.
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1 INTRODUCTION

MODEL-BASED NOTATIONS are notations that allow the
user to specify a system’s dynamic behavior in terms

of an abstract model that describes the possible execution
steps that the system can take. Model-based notations
include process algebras and statecharts variants. Software
practitioners like model-based notations because the nota-
tions’ execution semantics are relatively intuitive and
because their composition operators provide facilities for
decomposing large problems into modules.

One of the key benefits of modeling software is the
ability to detect in the model subtle errors that would be
difficult and time-consuming to find in an implementation.
There are many well-established analysis tools for auto-
matically verifying model-based specifications. Such analy-
sis tools are either customized for particular notations (e.g.,
STATEMATE [17], Concurrency Workbench [11]), or users
write translators that map their notations to the input
language of one or more analyzers [2], [3], [9]. Users can
reduce the number of translators they write by translating
specifications into an intermediate language [4], [7], [8],
from which they translate to the input languages for
different tools. In all of these cases, however, an analyzer
or translator needs to be written for each notation, and
rewritten whenever the notation changes.

To help ease this effort, we and others [13], [15], [33] are
working towards generating analyzers and translators
automatically from the definition of a notation’s semantics–
in the manner that we currently generate parsers from
grammar definitions. Part of this work involves structuring
a notation’s semantics to facilitate automated identification
of key analysis concepts, such as transitions’ enabling

conditions and postconditions. Traditional means for
defining a notation’s semantics, such as operational
semantics and logic, can be structured and constrained to
support easy extraction of this information. In doing so, we
see that many fundamental semantic concepts are common
among notations and vary only in their details.

We propose a template-based approach to structure the
operational semantics of model-based specification nota-
tions. In this approach, which we call template semantics, a
parameterized template predefines behavior that is com-
mon among notations. Template parameters instantiate the
parameterized definitions with notation-specific semantics.
For example, parameters that specify enabling states, enabling
events, and enabling variable values instantiate the template
definition of enabled transitions, to create a notation-specific
function for determining which transitions are enabled in a
given execution state. We define composition operators
separately as relations that constrain how collections of
components execute together, transfer control to one
another, and exchange events and data; the operators’
definitions use the same template parameters to ensure that
the semantics of composition is consistent with the
notation’s execution semantics.

We developed the template by attempting to capture the
common semantics of eight popular specification notations:
CSP [19], CCS [27], LOTOS [20], basic transition systems
(BTS) [24], SDL88 processes [21], and three variants on
statecharts [16], [17], [22]. In doing so, we considered not
only the effects of these eight notations on the template
definitions, but we also tried to hypothesize how new
variants of these notations would be expressed using the
template. In another paper [29], we show how to use the
template to express the semantics of such disparate nota-
tions as SCR [18], SDL88 systems and blocks [21], and basic
Petri Nets [32], whose semantics are quite different from the
notations in our original survey and from each other.

The main contribution of this work is a new way to
structure the operational semantics of a model-based
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notation. By separating a notation’s execution semantics
from its composition and concurrency operators and by
parameterizing notations’ common execution semantics, the
template partitions the definition of a notation’s semantics
into a set of smaller, simpler definitions. As a result, the
template semantics are easier to read and to write, make it
easier to compare variants of the same notation (e.g., to
compare statecharts variants [29]), and are easier to parse
(as the first step in building a semantics-based compiler). By
parameterizing the notations’ distinct behaviors, template
definitions make it easier for students and practitioners to
see precisely the semantic differences between languages.
The template also makes it possible to experiment with new
parameter values, to see if they lead to interesting and
useful languages.

The overall goal of our work is to provide a means to
describe a notation’s semantics so that it can be input to a
tool that generates notation-specific analysis tools. We
believe that our template semantics may be such a
description. By capturing the commonality among the
semantics of notations, we can also begin to consider
optimizations such as symmetry reductions on the common
underlying model rather than on individual notations.

This paper is organized as follows: Section 2 presents our
template for defining notations in terms of hierarchical
transition systems (HTS), which is our computation model
for basic components. In Section 3, we use template
semantics to define several composition operators. Section
4 shows how to use our template to express the semantics of
existing model-based notations. In Section 5, we discuss the
flexibility and limitations of our template in handling
sophisticated notational features, such as statecharts’
history feature or timing conditions. Related work is
discussed in Section 6 and we conclude in Section 7.

2 HIERARCHICAL TRANSITION SYSTEMS

We introduce hierarchical transition systems (HTSs) as our
computation model for model-based notations. An HTS is a
hierarchical, nonconcurrent, extended state machine. In
statecharts terminology, an HTS supports OR-state hier-
archy but not AND-state hierarchy. Its syntax is adapted
from basic transition systems [24] and statecharts [16], and
its semantics are parameterized. Concurrency is introduced
by the composition operators, which are defined in the next
section. Our presentation in this section is more general
than our original work [28], in that it supports nondetermi-
nistic specifications.

2.1 Syntax of HTS

A hierarchical transition system (HTS) is an 8-tuple,
hS; SI; SF ; SH;E; V ; V I; T i. We use these identifiers impli-
citly in definitions throughout the paper to refer to these
HTS elements. S is a finite set of states, and SI and SF are
predicates describing the sets of initial and final states,
respectively. There may be multiple possible initial sets of
states. No transition can exit a final state. Each state s 2 S
is either a superstate, which contains other states, or a
basic state, which contains no other states. Each super-
state has a default child state, which is entered if the
superstate is the destination state of a transition. The state

hierarchy SH defines a partial ordering on states, with the
root state of an HTS as the minimal element and basic
states as maximal elements. E is a finite set of events,
including both internal and external events. V is a finite
set of typed data variables. V I is a predicate describing
the possible initial value assignments to the variables in V .
We assume that the names of unshared events and
variables are distinct among HTSs. T is a finite set of
transitions, each of which has the form,

h src; trig; cond; act; dest; prty i;

where src; dest � S are the transition’s sets of source and
destination states, respectively; trig � E is zero or more
triggering events; cond is a predicate over V ; act is zero or
more actions that generate events and assign values to some
data variables in V ; and prty is the transition’s explicitly
defined priority. We use sets of sources and destinations to
cover notations that allow transitions to have zero or
multiple source or destination states. Depending on the
notation, some transition elements may be optional. We
assume that a specification conforms to the notation’s well-
formedness conditions. Typical well-formedness conditions
prohibit a transition from having multiple destination states
or from making multiple assignments to the same variable.

Throughout the paper, we use the helper functions
described in Table 1 to access information about an HTS.
The first several functions are accessor functions on states
and transitions, whereas the functions below the double line
are calculated from the HTS’s structure. The helper
functions are defined for a single state and a single
transition, but we will also apply them to sets of states
and transitions. A function’s meaning with respect to sets is
the same, except that the function will return a set of results,
one for each combination of argument values.
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TABLE 1
HTS Accessor Functions

� is a transition and s is a state.



2.2 Semantics of HTSs

We define the semantics of an HTS as a snapshot relation. A

snapshot is an observable point in an HTS’s execution, and

a snapshot relation relates two snapshots ss and ss0 if the

system can move from ss to ss0 in a step. We define two

types of steps between snapshots: A microstep is the

execution of a single transition and a macrostep is a

sequence of zero or more microsteps. In this section, we

describe the semantics of HTSs as parameterized definitions

that are common among model-based notations; in

Section 2.3, we describe the parameters used in these

definitions.

2.2.1 Snapshots

A snapshot is an 8-tuple hCS; IE;AV ;O;CSa; IEa;AVa; Iai.
CS is the set of current states (CS � S), such that if any state

s 2 CS, then so are all of s’s ancestors. IE is the set of

current internal events (IE � E). The set AV is a function

that maps each data variable in V to its current value. O is

the current outputs to be communicated to concurrent

components and to the environment. CSa, AVa, IEa, and Ia
are auxiliary elements that accumulate data about the states,

the variable values, and the internal and external events,

respectively, that were used or generated in past transitions.

The template parameters use these auxiliary snapshot

elements to derive the sets of enabling states, of enabling

variable values, and of enabling events, which, in turn,

determine the transitions that are enabled in the current

snapshot. Most model-based notations use only a subset of

the snapshot elements. An HTS’s external inputs, I, are not

part of the snapshot because they lie outside of the system.

Instead, the template parameters must record input events

and data in the snapshot elements. Throughout the paper,

we use notation ss:XX to refer to the value of snapshot

element XX in snapshot ss (e.g., ss:CS).

2.2.2 Microstep Semantics

The microstep relation Nmicroðss; �; ss0Þ means that the HTS

can move from snapshot ss to a next snapshot ss0 by

executing transition � . Because an HTS is nonconcurrent,

only one transition can execute in a microstep. Nmicro is

defined as:

Nmicroðss; �; ss0Þ �
ð� 2 priðenabled transðss; T ÞÞÞ ^ applyðss; �; ss0Þ;

where

. Function enabled trans takes an HTS’s transition
set T and returns the subset that is enabled in a
snapshot ss:

enabled transðss; T Þ �
f� 2 T j en statesðss; �Þ ^ en eventsðss; �Þ

^ en condðss; �Þg;

where predicates en states, en events, and en cond

specify whether a transition � is enabled with respect

to its source states, its triggering events, and its

enabling conditions, respectively. These predicates

are user-provided template parameters, described in
Section 2.3.

. Function pri finds the maximal subset of transitions
with the highest relative priority. It is a user-
provided template parameter and is also described
in Section 2.3. If pri returns more than one transition,
then the specification is nondeterministic, and any of
the transitions in the returned set is an admissible
microstep.

. Predicate apply is defined in terms of user-provided
template parameters, next XX, which specify allow-
able updates to snapshot elements due to the
execution of transition � . The template parameters
are described in Section 2.3.

applyðss; �; ss0Þ �
let h CS0; IE0; AV 0; O0; CS0a; IE0a; AV 0a; I 0a i � ss0

in next CSðss; �; CS0Þ ^ next CSaðss; �; CS0aÞ ^
next IEðss; �; IE0Þ ^ next IEaðss; �; IE0aÞ ^
next AV ðss; �; AV 0Þ ^ next AVaðss; �; AV 0aÞ ^
next Oðss; �; O0Þ ^ next Iaðss; �; I 0aÞ

2.2.3 Macrostep Semantics

A notation’s step-semantics are its macrostep semantics,

which define how many microsteps an HTS executes in

response to a set of external inputs, before sensing the next
set of external inputs. External inputs I may be external

events, variable-value assignments, or both. We have

identified two macrostep semantics, which we call simple

and stable. A simple macrostep is equal to at most one

microstep. A stable macrostep is a maximal sequence of

microsteps, such that the sequence ends only when there
are no more enabled transitions. Stable macrostep semantics

capture the synchrony hypothesis [5], which assumes that the
system can always finish reacting to external input before

the environment changes the inputs’ values.
A macrostep starts with the snapshot that ended the last

macrostep. Function reset removes from this snapshot

information about transitions that executed in the last
macrostep (e.g., events generated). It is defined in terms of

user-provided template functions, reset XX, which clean

up the snapshot elements XX as per the notation’s
semantics. Functions reset XX are described in Section 2.3.

resetðss; IÞ �
h reset CSðss; IÞ; reset CSaðss; IÞ;
reset IEðss; IÞ; reset IEaðss; IÞ;
reset AV ðss; IÞ; reset AVaðss; IÞ;
reset Oðss; IÞ; reset Iaðss; IÞ i

In simple macrostep semantics, an HTS takes at most

one microstep per macrostep in reaction to a set of external

inputs I. Notations differ as to whether an enabled
transition has priority over idle step (i.e., taking no

transition or stuttering). In diligent [24] simple macrostep

semantics, an HTS takes a microstep if a transition is
enabled, and otherwise makes no change to the reset

snapshot.
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Ndil
macroðss; I; ss0Þ �
let ssi ¼ resetðss; IÞ in

if ð9� : � 2 enabled transðssi; T ÞÞ
then ð9� : Nmicroðssi; �; ss0ÞÞ
else ðssi ¼ ss0Þ

In nondiligent simple macrostep semantics, idle steps
have the same priority as diligent steps.

Nnondil
macro ðss; I; ss0Þ �
let ssi ¼ resetðss; IÞ in

ðð9� :Nmicroðssi; �; ss0ÞÞ _ ðssi ¼ ss0ÞÞ

In stable macrostep semantics, a macrostep is a maximal

sequence of microsteps that execute in response to a single

set of external inputs. A snapshot with no enabled

transitions is called a stable snapshot.

stableðssÞ � :ð9� : � 2 enabled transðss; T ÞÞ

When a stable snapshot is reached, a new macrostep starts

with a new set of external inputs I. We define a relation

(Nk) that is true for a pair of snapshots if there is a sequence

of k microsteps from the first snapshot to the second.

N0ðss; ss0Þ � ðss ¼ ss0Þ
Nkþ1ðss; ss0Þ � ð9ss00; � : Nmicroðss; �; ss00Þ ^Nkðss00; ss0ÞÞ

We define a stable macrostep Nmacroðss; ss0Þ as a finite
sequence of microsteps, terminating in a stable snapshot.

Nstable
macroðss; I; ss0Þ �
let ssi ¼ resetðss; IÞ in

if :stableðssiÞ
then ðð9k > 0 : Nkðssi; ss0ÞÞ ^ stableðss0ÞÞ
else ðssi ¼ ss0Þ

Some notations, such as RSML [22], do not guarantee

that a macrostep reaches a stable state; it is not possible to

write a well-founded recursive definition that matches these

macrostep semantics. In practice, an analyst would not

implement the above definition of a stable macrostep.

Rather, the analyst would use the microstep relation as the

next-state relation for the system, and would check proper-

ties at the macrostep level by prepending the stable

predicate as an antecedent to their properties; this is how

macrolevel properties were model checked against the

RSML specification for TCAS II [9].

2.2.4 Initial Snapshot

An HTS starts executing from a set of possible initial

snapshots ssI , whose definition is the same for all macro-

step semantics:

ssI � f hCS; ;; AV ; ;; ;; ;; ;; ;i j AV � V I ^ CS � SI g:

V I and SI are HTS elements constraining the initial sets of

states and of variable assignments, respectively. The sets of

internal events and generated events are initially empty.

The auxiliary elements are initialized by function reset at

the start of the first macrostep. This definition allows there

to be multiple possible initial states or initial variable

assignments.

2.3 Template Parameters

The six definitions enabled trans, apply, reset, stable, Nmicro,

and Nmacro described above constitute the common

semantics in our template. These definitions are parame-

terized by functions and predicates that, for a notation,

specialize how to determine which transitions are enabled

in a snapshot, how to select an enabled transition to

execute, and how to calculate the effects of a transition’s

actions. As such, these parameters capture the semantic

differences among notations. These template parameters

are also used in Section 3 to help define the semantics of

composition operators.

The list of template parameters is provided in Table 2.

For the reset XX template parameters, we use the return

type to show which snapshot element they return. Para-

meter macro semantics specifies the type of macrostep

semantics (simple diligent, simple nondiligent, or stable).

Parameter pri specifies a priority scheme over a set of

transitions. The rest of the template parameters are

predicates. These predicates are passed the entire snapshot

because they may refer to snapshot elements other than the

one they are affecting. Primed arguments (e.g., CS0) refer to

values of snapshot elements in next snapshot ss0.
Table 2 is organized by language construct. For example,

the seven event-related parameters work together to
determine which events can enable transitions:

. reset IE, reset IEa, and reset Ia update elements
IE, IEa, and Ia at the start of each macrostep. Their
main purpose is to record the environment’s input I
and to clean out event-related data accumulated in
the previous macrostep (e.g., reset the set of current
events to be empty).

. en events determines how event information in IE,
IEa, and Ia is used to enable transitions.
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. next IE, next IEa, and next Ia determine how
transition � ’s actions affect the event-related infor-
mation stored in elements IE, IEa, and Ia in the next
snapshot ss0.

The following five sections describe how a specifier can

use these parameter functions to define the step-semantics

for some popular notations. Tables 3, 4, 5, and 6 provide

example definitions. In the tables, abbreviation “n/a”

means “not applicable,” in which case the predicate always

returns “true.”

2.3.1 States

Table 3 shows example definitions for the state-related

template parameters. In RSML and STATEMATE, a

transition is enabled if its source states are a subset of the

current states; this semantics allows infinite loops in a

macrostep. Harel et al.’s [16] original formulation of

statecharts avoids infinite loops by allowing each non-

concurrent component (i.e., each HTS) to execute at most

one transition per macrostep; a sequence of microsteps

comprises transitions from multiple concurrent compo-

nents. We express this semantics by using snapshot

element CS to maintain the set of current states, by using

element CSa to maintain the set of enabling states, and by

setting CSa to the empty set after the HTS takes a step, to

disallow future transitions. We can envision an alternate

state semantics that allows an HTS to take multiple

microsteps in a macrostep, and prevents infinite loops by

prohibiting states from being exited more than once in a

macrostep.

2.3.2 Events

Table 4 shows example definitions for the event-related
template parameters. Events can be internal and/or
external events. Process algebras such as CCS use only
external events. Statecharts-based notations have both
internal and external events. For notations that differentiate
syntactically between internal events and external events,
we use intern evðEÞ to mean the set of internal events and
extern evðEÞ for the set of external events.

In RSML and STATEMATE, only internal events
generated in the previous microstep can trigger a transition,
whereas, in the original statecharts semantics, any internal
event generated since the start of the macrostep is an
enabling event.

In all statecharts variants, external inputs I are enabling
events at the start of the macrostep. In RSML and
STATEMATE, external events can trigger transitions only
in the first microstep of a macrostep. In statecharts, external
events remain enabling events throughout the macrostep.
We can also imagine a new notation in which an external
event remains an enabling event until it is used to trigger a
transition.

Table 4 also shows how the outputs for a microstep are
determined. For all the notations, a macrostep starts with an
empty set of outputs. Statecharts accumulate as outputs all
the events generated during the microstep. RSML accumu-
lates only the external events. STATEMATE considers as
outputs only the events generated in the last microstep of
the macrostep.

2.3.3 Variable Values

Table 5 shows example definitions for variable-related
template parameters. In most notations, transitions’ en-
abling conditions and assignment expressions are evaluated
with respect to the current variable values. In contrast, in
the original statecharts semantics, conditions and expres-
sions are evaluated with respect to variable values that hold
at the start of the macrostep, except for expressions within a
cr operator, which are evaluated with respect to current
variable assignments. Thus, for statecharts, we use snapshot
element AV to maintain the set of current variable values
and use element AVa to maintain the variable values from
the start of the macrostep; and we evaluate enabling
conditions and assignment expressions with respect to both
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snapshot elements. Variable values are updated by over-
riding current value assignments with the transition’s
variable assignments, using the function assign described
in Table 5. In STATEMATE, if a transition makes multiple
assignments to the same variable, only the last assignment
to the variable has an effect. RSML and statecharts do not
allow transitions to make multiple assignments to the same
variable.

Some notations, such as the SMV input language [25],
allow variable assignments to refer to values that hold at the
start of the next microstep. By making the next AV
parameter a predicate that takes the next snapshot’s
variable values as an argument, we can accommodate such
forward-referencing semantics for notations.

2.3.4 Priority

Table 6 shows example definitions for template function

pri, which returns the subset of transitions of highest

priority. STATEMATE prioritizes transitions by the ranks of

their scope, where rank and scope are described in Table 1.

Lower-ranked scopes have priority over higher-ranked

scopes, which means that superstate behavior is favored

over substate behavior. UML [30] prioritizes transitions by

the ranks of their source states. Transitions with higher-

ranked source states have priority over transitions with

lower-ranked source states, which means that substate

behavior overrides superstate behavior. Some notations

allow the specifier to use explicit priorities on transitions

(i.e., prty) to override a notation’s default priority scheme.

3 COMPOSITION OPERATORS

In this section, we describe the semantics of a number of
well-used composition operators found in process algebras,
statecharts variants, and SDL. A composition operator
specifies how multiple HTSs execute concurrently. The
operands of a composition operator are components, where

a component is either a basic component (i.e., an HTS) or a
collection of smaller, composed components. We define our
composition operators by specifying how the components’
snapshots change when the components take a step.

For most composition operators, we define the oper-
ator’s behavior at the microstep level, and we infer its
semantics at the macrostep level as a sequence of zero or
more composed microsteps. This allows components to
communicate events and variable values with each micro-
step. However, for operators in which components share
information only at the end of their macrosteps, we express
composition at the macrostep level. At the start of such a
macrostep, each component’s output from the previous
macrostep is added to the inputs sensed by the other
component. If a notation’s macrostep semantics is not well-
defined (i.e., allows an infinite sequence of microsteps),
then macrostep composition for that notation is also not
well-defined.

We define composition operators as parameterized,
composite, microstep or macrostep relations that relate
pairs of consecutive snapshot collections. For example, the
composite microstep relation for an operator op is

Nop
microðð~ssss1; ~ssss2Þ; ð~��1;~��2Þ; ð~ssss01; ~ssss02ÞÞ;

which describes the relations between snapshot collections
~ssss1 and ~ssss01, and between ~ssss2 and ~ssss02, when components one
and two execute their respective transition collections ~��1

and ~��2 in the same microstep. The snapshot collections and
transition collections are tree structures that match the
specification’s composition hierarchy. We overload the
notation ; to also mean an empty tree.

The definition of Nop
micro is based on the microstep

semantics, Nmicro, of the two components. The composition
operator also defines how the changes in each component’s
snapshots are shared, and how control transfers from one
component to another. We represent these effects by using a
substitution notation:
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ss0 ¼ ss jxv ;

which means that snapshot ss0 is equal to ss, except for

element x, which has value v. Substitution over a collection

of snapshots ð~ssss0 ¼ ~ssss jxvÞ defines substitutions for corre-

sponding pairs of snapshots at the leaves of the trees ~ssss and

~ssss0. For example, substitution ~ssss0 ¼ ~ssssjcs; is equal to snapshot

collection ~ssss, except that the sets of current states CS in all

of ~ssss0’s leaf snapshots are empty. Two snapshot collections

are equal if their corresponding leaf snapshots are equal

(we only compare snapshot collections that have corre-

sponding composition hierarchies).

When applied to collections of snapshots and to

collections of transitions, the template parameters,

next XXð~ssss;~��; ~ssss0Þ, define how snapshot elements XX in

corresponding leaf snapshots in collections ~ssss and ~ssss0

change value due to the execution of all of the transitions

in ~�� . The helper functions from Table 1 that appear in the

template parameters are also generalized to apply to sets of

transitions.
In Table 7, we introduce predicates update and

communicate, which are used in the definitions of the
composition operators to describe how components com-
municate events. The predicate update is used to specify
how the snapshots of a nonexecuting component are
affected by the shared events generated by transitions ~�� in
the executing component. The predicate communicate is
used when both components execute, to specify how the
snapshots of one executing component may be affected by
the shared events generated by the other executing
component. The predicate communicate starts from an
intermediate snapshot (i ~ssss) that reflects the effects of the
component’s own transitions. However, communicate

changes the event-related snapshot elements with respect

to the beginning snapshot collection ~ssss. The predicate
communicate is usually provided with the executing
transitions from both components, so that a rational
ordering among all the transitions’ generated events, if
desired, can be collected into the event-related snapshot
elements. Both predicates use the template parameters, so
that they adhere to their components’ semantics for
updating snapshot elements.

Variable values are not modified by communicate and

update because conflicts among the assignments to shared

variables must be resolved so that all components have the

same value associated with a variable. At the composition

level, there is one template parameter,

resolveð ~AV1AV1; ~AV2AV2; asnAV Þ;

to capture different notations’ policies for resolving
conflicting variable-value assignments. This predicate spe-
cifies how sets of assignments ~AV1AV1 and ~AV2AV2 can be resolved
to a single set of variable-value assignments asnAV . To
handle the communication of shared variable-values, we
introduce the predicate communicate vars, which uses
template parameter resolve:

communicate varsðð~ssss1; ~ssss2Þ; ð~��1;~��2Þ; ð~ssss01; ~ssss02ÞÞ �
9 ~AVAV1; ~AVAV2; asnAV ; � :

next AV ð~ssss1;~��1; ~AVAV1Þ ^ next AV ð~ssss2;~��2; ~AVAV2Þ ^
resolveð ~AVAV1; ~AVAV2; asnAV Þ ^ asnð�Þ ¼ asnAV ^
~ssss01:AV ¼ assignð~ssss1:AV ; asnAV Þ ^
~ssss02:AV ¼ assignð~ssss2:AV ; asnAV Þ ^
next AVað~ssss1; � ; ~ssss1:AV

0
aÞ ^

next AVað~ssss2; � ; ~ssss2:AV
0
aÞ:

Predicate communicate vars creates a dummy transition �

whose actions consist of the resolved assignments; it uses

the template parameters and � to ensure that each

component receives the same variable assignments and

yet is able to treat the assignments as per the notation’s

semantics. Predicates communicate vars and update (or

communicate) can be applied to the same snapshot

collection ~ssss without conflict, because the predicates

constrain complementary elements.

We also introduce predicates bothstep, comp1steps, and

comp2steps (Fig. 1), which combine predicates that com-

monly occur together in the definitions of composition

operators. Predicate bothstep captures the case in which
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TABLE 7
Abbreviations Used in the Semantics of Composition

Fig. 1. Predicates for both components taking a step, component 1 taking a step, and component 2 taking a step.



both components take a microstep: The components’ next

snapshots should satisfy N1
micro and N2

micro, except for the

values of shared variables and events. We introduce

intermediate snapshots i~ssss1 and i~ssss2 that reflect the effects

of the components’ Nmicro relations, and we use the

predicates communicate and communicate vars to define

the next snapshots ~ssss01 and ~ssss02 in terms of the intermediate

snapshots and the shared events and variable values.

Predicates comp1steps and comp2steps capture the cases in

which one component takes a microstep in isolation, and

the other component’s snapshots are simply updated to

include the shared events and variable assignments

generated by the executing component’s transitions. Many

of the composition operators can be defined using these

predicates, combined with additional predicates that reflect

the operator’s unique pre and postconditions.
In the following, we describe six composition operators:

parallel, interleaving, synchronization, sequence, choice,

and interrupt. Although many of these operators can be

defined at both the macrostep and the microstep levels and

for both diligent and nondiligent semantics, we present

only the operator variants that correspond to the key

composition operators in our original survey of eight

notations. In all cases except interrupt composition, the

initial snapshot for the composed machine comprises the

component machines’ initial snapshots (~ssssI ¼ ð~ssssI1; ~ssssI2Þ). We

assume that initial values of shared variables are consistent

among components.

3.1 Parallel

Fig. 2 shows various definitions of parallel composition. In

parallel composition at the microstep level, Npara
micro, both

components execute transitions in the same microstep if

both components have enabled transitions; otherwise, only

one component executes and the other updates shared

variables and events. The case where both components do

not change (i.e., no transition is executed) is not an

allowable microstep. This composition operator matches

the AND-state composition found in most statecharts

variants.
Composition operator, NparaÿHarel

micro , used in Harel’s
statechart semantics [16], differs from Npara

micro in that
NparaÿHarel
micro does not force both components to execute if

they are both enabled and it prohibits parallel transitions
from making assignments to the same variable.

In parallel composition at the macrostep level, both

components must take macrosteps (which may be idle

steps). The components’ Nmacro relations determine whether

this composition is diligent or nondiligent. The outputs

from each component’s previous step are added as inputs to

the other component’s next step. The only notation that we

have surveyed that uses parallel composition at the macro-

step level is SDL processes. In SDL, processes do not share

variables. Therefore, our expression of NparaÿSDL
macro does not

include any resolution for conflicting variable assignments,

which could be needed for another notation.

3.2 Interleaving

In interleaving composition, only one component can

execute transitions in a step (Fig. 3). In microstep interleav-

ing, Nintl
micro, exactly one component takes a step; because idle

transitions are not admissible microsteps, microstep seman-

tics are necessarily diligent.

At the macrostep level, interleaving composition could

be either diligent or nondiligent. In nondiligent interleaving,

Nintlÿnondil
macro , either component, but not both, can take a step,

regardless of which components are enabled. This operator

is used by BTS.
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Fig. 2. Semantics of parallel composition for micro and macrosteps.

Fig. 3. Semantics of interleaving composition for micro and macrosteps.



3.3 Synchronization

We define two synchronization operators at the microstep
level: environmental synchronization and rendezvous
synchronization (Figs. 4 and 5).

In environmental synchronization, Nenvÿsync
micro , both com-

ponents execute in the same microstep if the executing

transitions all have the same trigger event, e, which is a

designated synchronization event (line 1), and if all

components that can react to this event participate in the

step (line 2). This clause refers back to the basic compo-

nents’ sets of transitions ~TT1 and ~TT2, and tests that each HTS

that synchronizes on event e contributes a transition to

either ~��1 or ~��2. In the “unsync” case, none of the executing

transitions is triggered by a synchronization event, so one or

the other component takes a step in isolation (interleaving).

Environmental synchronization corresponds to the parallel

composition operators of CCS (PkQ), CSP (PkQ), and

LOTOS (P j½a; b; c�jQ).
In rendezvous synchronization, Nrendÿsync

micro , exactly one
transition in the sending component generates a synchro-
nization event that triggers exactly one transition in the
receiving component. Rendezvous is the only example of a

composition operator in which events generated in one

component are transferred to the other component within

the same microstep. This requires an extra intermediate

snapshot collection ( ~rssrss2), which is set by comm event to

incorporate ~��1’s generated event into ~rssrss2’s event-related

snapshot elements; ~rssrss2 then becomes the starting snapshot

collection for component two. We use communicate here

with an empty set of transitions to ensure that neither of the

final snapshots ~ssss01 and ~ssss02 store~��1’s generated event since it

has been transferred and processed in this microstep.

Rendezvous is used in CCS (a:P j �aa:Q). Although CCS does

not have variables, we include the communicate vars

constraint in the general definition of this operator.

3.4 Sequence

In sequence composition (Fig. 6), the first component

executes in isolation until it terminates (i.e., reaches its

final basic states) and then the second component executes

in isolation. If component one is a composite component,

then all of its basic components must reach final basic states

before the second component can start. (Recall that no

transition can exit a final state in an HTS.) Sequence
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Fig. 5. Semantics of rendezvous synchronization for microsteps.

Fig. 4. Semantics of environmental synchronization for microsteps.

Fig. 6. Semantics of sequence composition for microsteps.



composition is used in process algebras such as CCS and
CSP (P ;Q).

There are three stages to a sequence composition. In the
first stage, component one executes and the shared
variables of component two are updated. We introduce
the function basic states, which returns the subset of the
current states that are basic states, in the test of whether
component one has terminated. In the second stage,
component one has reached its final states, control transfers
to component two, and component two takes a step. The
operator also clears the states from component one’s
snapshots so that component one can no longer execute.
In the third stage, component two executes and, for
consistency, the snapshots of component one are updated.

3.5 Choice

The choice composition operator (Fig. 7) nondeterministi-
cally chooses one component to execute in isolation. Once
this choice is made, the composite machine behaves only
like the chosen component, and never executes the other
component. Choice composition is used in LOTOS (P ½ �Q),
CCS (P þQ), and CSP (P ½ �Q). We capture these semantics
by clearing the set of current states from the unchosen
component’s snapshots to keep it from executing. For
consistency, we continue to update the unchosen compo-
nent’s snapshots.

3.6 Interrupt

Interrupt composition allows control to pass between two
components via a provided set of interrupt transitions

(Tinterr). These transitions may have sources and destina-
tions that are substates of the components. We use interrupt
composition to describe transitions between statecharts
components that have AND-states as subcomponents.

In interrupt composition (Fig. 8), there are four cases. In
the first case, component one has enabled transitions~��1, and
any enabled interrupt transitions have lower priority than

~��1. Therefore, component one executes and component two
is updated. We introduce the predicate higher priðx; yÞ to
test if a transition in the set x has equal or higher priority
than the transitions in the set y; this predicate is defined in
terms of the template parameter pri, which may be based on
the state and composition hierarchies. The state hierarchy
and the ranks of states grow as components are composed.

In the second case, one of the interrupt transitions is
enabled and has priority over all enabled transitions in
component one, which means that control passes from
component one to component two. We introduce predicate
ent comp to determine the current states of component two;
predicate ent comp uses the state and composition hier-
archy of component two and the set of states entered by the
executing transition to determine which default states also
need to be entered (e.g., default states of concurrent
subcomponents). The composition operator also clears the
current states in component one, so that the component will
not execute, and it applies the actions of the executing
transition to component one’s snapshots.

The final two cases of interrupt composition semantics
are symmetric to the first two cases, in that we now consider
transitions whose source states are in component two. Only
one component ever has current states, so only one
component can have enabled transitions in any snapshot.

The initial composite snapshot for interrupt composition
requires the designation of one of the components as the
starting component. The current states for this component
are set to its default states, and the current states for the
other component are set to empty.

4 SEMANTICS OF NOTATIONS

We can describe the semantics of several specification
notations concisely in template semantics. Table 8 provides
values for the template parameters for eight notations; it
also maps the notations’ composition operators to our
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Fig. 7. Semantics of choice composition for microsteps.

Fig. 8. Semantics of interrupt semantics for microsteps.



template composition operators. This description extends
the information previously provided in Tables 3, 4, 5, and 6.
In this section, we highlight some of the results in Table 8.

We handle CSP’s parallel (k), interleaving (jjj ), sequential
composition (;), and general choice (½ �) operators. We have
not yet formalized CSP’s interrupt (^) operator; it would be
a modification of our sequence composition, where the
second component begins whenever the second component
is enabled rather than waiting for the first component to
terminate.

We can express LOTOS’s parallel (P j ½a; b; c� j Q), pure
interleaving (jjj ), sequential composition (� ), and choice
(½ �) operators. We do not yet handle LOTOS’s disabling
(½> ) construct; it would be a variant of our sequence
composition.

In SDL template semantics, each process (HTS) has its
own input queue that stores unprocessed events, both
internal and external. At the start of each macrostep,
function reset IE appends the new external events to the
end of the event queue (using concatenation operator _ ).
Only the event at the head of the input queue is an enabling
event. To record the effects of executing a transition,
predicate next IE removes from the input queue the head
event (by accessing the tail of the queue) and appends the
events that the transition generates. (There exist implicit
transitions whose sole effect is to remove from the input

queue the head event, if the event does not enable an

explicitly specified transition.) SDL has stable macrostep

semantics (because an SDL transition that contains decision

points maps to a tree of HTS transitions, each of which

executes in a microstep). SDL processes are composed using

macrolevel parallel composition. In [29], we used template

semantics to describe SDL blocks and channel communica-

tion. Template semantics do not support dynamic process

creation or ACT ONE data definitions (used in both SDL

and LOTOS).
A statechart with only OR-states is an HTS. Statecharts’

AND-states are formed using our parallel composition.

OR-state composition of components that contain AND-

states corresponds to our interrupt composition. The three

statecharts variants have stable macrostep semantics, but

they have different microstep semantics, as shown in Table 8

and described in Section 2.3. STATEMATE is the only

notation in Table 8 that permits conflicting variable assign-

ments, thus needing the resolve template parameter; the

conflicts are resolved nondeterministically:

resolvestmðvv1; vv2; vvÞ �
vv � vv1 [ vv2 ^ domðvvÞ ¼ domðvv1 [ vv2Þ ^
ð8ða; bÞ 2 vv � 8ðc; dÞ 2 vv : a ¼ c ¼) b ¼ dÞ:
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Template Parameters and Compositions Operators for Notations

(“n=a” means “not applicable”)



We use a simple example (Fig. 9) to show how the
statecharts variants’ semantics admit different macrosteps
in a specification. Consider the example statechart without
the dotted transition t6 first. The two orthogonal states are
mapped to two HTSs (HTS1 and HTS2) composed with
parallel composition operators: Harel’s AND-state matches
NparaÿHarel
micro and AND-states in RSML and in STATEMATE

match Npara
micro. Tables 9 and 10 show the admissible macro-

steps from the components’ default states, given input
event a.

In Harel’s semantics, there are four admissible macro-
steps, because when two AND-components are both
enabled, Harel’s parallel composition operator nondetermi-
nistically chooses whether one or both of the components
executes in a microstep. If both components execute in the
first microstep, the snapshot reaches a stable state (because
the set of enabling states in both components becomes
empty). If only t1 in HTS1 executes in the first microstep, its
generated event enables t4, and the persistent external event

a enables t3 in the second microstep. After HTS2 executes
one of these two transitions in the second microstep, no
more transitions are enabled.

In contrast to Harel’s statecharts, both RSML and
STATEMATE’s parallel composition requires each HTS to
execute if it is enabled; thus, both t1 and t3 execute in the
first micro step. The enabling states are the current states
CS. Therefore, both t2 and t5 are enabled in and execute in
the second microstep, after which both HTSs are in stable
snapshots. If we assume that e is the only external event,
then RSML and STATEMATE differ only in their outputs
(O). If we add transition t6 to HTS1, the composed machine
in both notations will have an infinite macrostep.

To ensure that our template representations of these
notations’ semantics correspond to existing representations
of their semantics, we would have to prove the correspon-
dence between the two semantics definitions. For many
notations (except process algebras), it is difficult to find a
complete and consistent definition of semantics. When such
a definition is available, the proof would show the
correspondence of a step in the two semantics. The proof
would proceed by structural induction, showing the
correspondence of micro and/or macrosteps at the HTS
level as a base case, and then showing that each of the
composition operators preserves this correspondence. Po-
tentially, the most challenging part of the proof is
determining what the correspondence should be because
the two semantics may involve very different notions of
snapshots. A further complication is that many semantic
representations assume certain well-formedness properties
of the notation (e.g., transition triggers are mutually
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Fig. 9. A statecharts example.

TABLE 9
The Possible Macrosteps of Harel’s Statecharts

TABLE 10
The Possible Macrosteps of STATEMATE Outputs of RSML



exclusive), which allows them to specialize their description
of the notation’s semantics; to be useful in the proof, these
assumptions have to be identified, formalized, and trans-
lated into constraints on the semantics of the template
representation of the notation.

5 GENERALITY

Many sophisticated notations include features beyond
simple states, events, and variables to help specifiers to
structure and to simplify their specifications. This section
discusses three ways in which to incorporate a language
feature into a notation’s template semantics; it concludes by
characterizing the limitations on what types of language
features can be defined using template semantics.

5.1 Syntactic Transliteration

Some language features are simply notational conveniences
or “syntactic sugar” that have no effect on the notation’s
expressiveness, but enable the specifier to state certain
ideas more succinctly or more clearly. Examples of such
conveniences include macros, compound transitions,
AND/OR tables [22], actions associated with entering
and exiting states [16], event hiding and event relabeling
[27], SDL’s save construct, structured variables, and
parameterized machines. We accommodate these features
by working with the features’ expanded definitions (e.g.,
expanding macros, separating compound transitions, in-
stantiating a finite number of parameterized machines). In
doing so, we accommodate these features entirely during
the syntactic transliteration from the specification’s syntax
into HTS syntax; the features have no representation in the
notation’s semantics or composition operators.

5.2 Template Parameters

Language features that affect the sets of enabling states,
enabling events, or enabling variables, or that affect a
transition’s effects on states, events, or variables can be
accommodated using the auxiliary snapshot elements and
the template parameters, without changing the definitions
of the template’s common semantics. Examples of such
features include negated events and other event expres-
sions, event parameters, point-to-point communication,
history states, Maggiolo-Schettini et al.’s compatible transi-
tions [23], and event queues [21], [30].

For example, to handle negated events, we distinguish
between positive trigger events, denoted as posð�Þ, and
negated trigger events (i.e., lack of an event), denoted as
negð�Þ. Snapshot element Ia records the external events, IE
accumulates the events that occur in the macrostep, and
predicate en events ensures that a transition is enabled only
if its trigger events have occurred and its negated trigger
events have not occurred:

en eventsðss; �Þ �
ðposð�Þ � ss:IE [ ss:IaÞ ^ ðnegð�Þ \ ðss:IE [ ss:IaÞ ¼ ;Þ:

Maggiolo-Schettini et. al. [23] have a stronger definition of

enabling events that prohibits two transitions from execut-

ing in the same macrostep if one is triggered by negated

event not a and a subsequent transition in the macrostep

generates a; they call these incompatible transitions. To model

these semantics, we use IEa to accumulate the negated

events that trigger transitions in the macrostep [29].

Subsequent transitions are enabled only if their actions are

consistent with this set IEa:

reset IEaðss; IÞ � ;
next IEaðss; �; IE0aÞ � IE0a ¼ ss:IEa [ negð�Þ

en eventsðss; �Þ � ðposð�Þ � ss:IE [ ss:IaÞ ^
ðnegð�Þ \ ðss:IE [ ss:IaÞ ¼ ;Þ ^
ððnegð�Þ [ ss:IEaÞ \ genð�Þ ¼ ;Þ:

As a more complicated example, we show how to

accommodate statecharts history. Briefly, history is a

mechanism by which a reentered superstate can continue

executing from the substate that was current when control

last transitioned out of the superstate. To accommodate

history, we partition the set of states S into basic states;

history states, denoted by ; deep-history states, denoted by

; and superstates. If a transition’s destination is a history

state , then the transition enters the most recently current

substate in ’s parent state. If a transition’s destination is a

deep-history state , then enter-by-history applies not only

to ’s parent state but also to all of the parent’s

descendents.

We use auxiliary variable CSa (or extend CSa to have

multiple data fields, if it is already being used to collect

other state-related information) to record for each super-

state the most recent substate that the superstate entered:

reset CSaðss; IÞ � CS0a ¼ ss:CSa
next CSaðss; �; CS0aÞ �

CS0a ¼ ss:CSa � fðparentðsÞ; sÞ j s 2 enteredð�Þg;

where � is a function-override operator that updates its first

operand with new elements and new functional mappings

from the second operand. Specifically, each time a state s is

entered, history information CSa is updated to map s’s

parent state with its newly entered substate s. This history

information is unchanged at the start of a macrostep. At the

start of the system’s execution, CSa maps superstates to

their default initial states.
Accommodating history states also changes how the set

of current states is determined after a transition executes.

Without history states, the set of current states CS after

executing transition � is the set of states entered by � :

next CSðss; �; CS0Þ � CS0 ¼ enteredðdestð�ÞÞ:

In hierarchical systems, the definition of enteredðdestð�ÞÞ is

nontrivial: The set of entered states includes not only � ’s

destination state destð�Þ, but also all of destð�Þ’s ancestor

states plus the default states of destð�Þ and of its entered

descendents. Adding history states changes this definition

to include cases in which � ’s destination is a history state.

We define enteredðCSa; sÞ as a fixed-point definition; the

definition uses functions superðSÞ, histðSÞ, and hist�ðSÞ to

identify superstates, history states, and deep-history states,

respectively:
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enteredðCSa; sÞ �

�Y :

s [ ancestðsÞ [

S
u2Y t

ðu2histðSÞ ^ CSaðparentðuÞÞ¼tÞ _

ð9r 2 Y :½r 2 hist�ðSÞ ^ u 2 descendðparentðrÞÞ� ^

u 2 superðSÞ ^ CSaðuÞ¼tÞ _

ð:9r 2 Y :½r 2 hist�ðSÞ ^ u 2 descendðparentðrÞÞ� ^

u 2 superðSÞ ^ ðchildðuÞ \ Y¼;Þ ^ defaultðuÞ¼tÞ

����������������

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

266666666666664

377777777777775
:

That is,

. The state s is entered.

. Any ancestor of s is entered.

. If entered state u is a history state , then its
parent’s most recently current substate is entered.

. If entered superstate u descends from the parent of
an entered deep-history state , then s’s most
recently current substate is entered.

. If entered state u is a superstate not descended from
the parent of an entered deep-history state, and if
none of u’s substates is designated as entered, then
u’s default state is entered.

The fixed-point computation terminates when it finds no
more new states to be entered.

Predicate ent comp, which was introduced by the
interrupt composition operator, is similar to the above
definition of entered. Predicate ent comp includes an
additional case: If entered state u is an AND-state, then
u’s sibling states are also entered.

5.3 Template Extension

Some language features fit within state-transition semantics
but are orthogonal to states, events, and variables. Exam-
ples of such features include real-time conditions and
constraints, or any alternative enabling condition on
transitions, assertable and retractable constraints, dynamic
creation/destruction of processes, and inherited and poly-
morphic behaviors. We cannot accommodate these features
without extending the template, which means adding new
elements to the snapshot, adding new template parameters,
or extending the template definitions. Fortunately, such
extensions are incremental, in that they can be appended to
the template definitions without overriding the existing
definitions.

Consider SDL timers, which are set and reset by
transitions and which generate events when the timers time
out. This construct requires extensions to the HTS syntax, to
the set of snapshot elements, to the set of template
parameters, and to a subset of the template definitions.1

The HTS syntax is extended to include a set of clocks C and
to include SET(t,a) and RESET(a) as allowable transition
actions in asnð�Þ for a transition � . The snapshot is extended
to include two new elements, TM, representing the current
absolute time, and AL : C ! Integer, the set of activated
timers (alarm clocks) and their respective settings. The

template is extended to include new template parameters
for updating TM and AL at the start of each macrostep and
at the end of each microstep, respectively. In addition, a
template-extending language feature may also affect the
values of existing template parameters, as in the case of
SDL timers, which affect the event-related parameters:
When a timer times out, a signal is generated and is inserted
into the process’s event queue:

reset TMðss; IÞ � I:T ime
next TMðss; �; TM 0Þ � ss:TM ¼ TM 0

reset ALðss; IÞ � ss:AL	fða; tÞjða; tÞ2ss:AL ^ t � I:T imeg
next ALðss; �; AL0Þ �

AL0 ¼ ss:AL� fða; tÞjSET ðt; aÞ 2 asnð�Þg	
fða; tÞjða; tÞ 2 AL ^RESET ðaÞ 2 asnð�Þg

reset IEðss; IÞ �
ss:IE_ðI:EventsÞ_fa j ða; tÞ 2 ss:AL ^ t � I:T imeg

next IEðss; �; IE0Þ �
IE0¼½removeðtailðss:IEÞ;

fajRESET ðaÞ 2 asnð�ÞgÞ�_ðgenð�ÞÞ;

where � is a function-override operator that updates its first
operand with new elements and new functional mappings,
	 is a set difference operator, and _ concatenates two
sequences. In the above definitions, system time TM is
changed only by sensing a new time from the environment;
microsteps do not affect the passage of time. An alarm clock
will time-out at the start of a macrostep if time TM reaches
or exceeds its setting; if an alarm clock a times out, the
signal a is appended to the process’s event queue by
template parameter reset IE, and the timer is removed
from AL. A transition may SET an inactive timer, which
causes the clock and its setting to be added to AL; it may
SET an already active timer, which causes the timer entry in
AL to be updated; or it may RESET an active timer, which
causes the timer entry to be removed from AL. If an expired
timer a is RESET when the event queue contains time-out
signal a (i.e., if a timer times-out, but is RESET before its
time-out signal is processed), this signal is removed from
the event queue. The underlined clauses are those that are
added to existing template-parameter definitions to accom-
modate SDL timers.

Of the six template definitions (enabled trans, apply,
reset, stable, Nmicro, and Nmacro), only apply and reset
need to be modified. Function reset is modified to
include additional function calls reset TMðss; IÞ and
reset ALðss; IÞ, so that the new snapshot elements are
appropriately reset at the start of a macrostep; and
predicate apply is modified to include additional con-
juncts next TMðss; �; TM 0Þ and next ALðss; �; AL0Þ, so
that the new snapshot elements are appropriately
updated after the execution of every transition � .

If timing conditions were a new way to enable transi-
tions, then in addition to the above extensions, a new
enabling template parameter would be needed, and the
template definition enabled trans would be modified to
include this predicate as an additional conjunct. Because
such modifications involve only appending new clauses to
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the existing template definitions, we say that these template
extensions are incremental.

5.4 Limitations

Language features whose steps are coarser- or finer-grained
than our microsteps and macrosteps, or are features that
modify the snapshot in ways that cannot be described by
transitions, cannot be described using template semantics.
Examples of such features include operations, methods, and
statecharts activity states (all of which can have their own
triggering conditions and can span multiple macrosteps),
features that need to observe future snapshots (e.g., Pnueli
and Shalev’s nonfailure global consistency semantics
requires advanced knowledge of all the transitions execut-
ing in the macrostep [34]), and continuous-time behavior.
Accommodating such features would at best require major
modifications to the template beyond appending clauses to
existing definitions and, thus, lie outside the scope of our
template-semantics framework.

6 RELATED WORK

To the best of our knowledge, there has been no comparable
attempt to classify formally the step-semantics and compo-
sition semantics for model-based specifications. There has
been work on informally classifying the semantics of
specifications languages [10], the most famous of which is
von der Beeck’s comparison of statecharts variants [35].
These catalogues of composition operators (parallel, inter-
leaving, etc.) and communication operators (synchronous,
asynchronous, etc.) are similar to ours, but we go further
and define formally how each operator affects a model’s
behavior. We also express variations in step-semantics as
parameters, which makes it easier to define new notations
and to highlight subtle differences among notations’
semantics.

There has been substantial related work on formalizing
the semantics of individual specification languages, such as
defining the operational semantics of LOTOS [20]. Usually,
the purpose of such work is to document a language’s
precise semantics, possibly as a first step towards develop-
ing verification tools. Such formalizations tend to be
language specific, making it difficult to compare the
semantics of different languages and difficult to generalize
the semantics or resulting tools to accommodate multiple
languages.

A number of researchers have proposed translating
specification notations into more fundamental modeling
notations, such as first-order logic [36], hierarchical state
machines [26], labeled transition systems [6], and hybrid
automata [3]. Such notations are general enough to
represent a variety of specification notations and can even
accommodate specifications written in multiple notations.
The verification tools and techniques associated with the
more fundamental modeling notation can be applied to the
translated specification. Degano and Priami proposed
general semantic models that are capable of capturing the
structured operational semantics of notations by enhancing
the transition labels [14]. In Rosetta [1], multiple views of a
system are composed using different kinds of composition
operators that support renaming and instantiation.

Researchers have introduced intermediate languages, such
as SAL [4], IF [7], and Action Language [8], that are
expressive target languages that ease translations between
notations. In the case of IF and SAL, there exist translators
between several specification notations and the intermedi-
ate language, between the intermediate language and the
input languages of several verification tools, and vice versa.
These approaches allow the specification to be analyzed
using multiple verification tools. However, a translator
needs to be built for each specification notation and needs
to be continuously modified as the notation’s semantics
evolves. With our approach, we hope to reduce substan-
tially the effort involved in updating analysis tools when a
notation changes because we have decomposed the defini-
tion of the semantics into smaller, more cohesive concerns
that are likely to change independently of one another.

Work with similar goals to ours is that of Day and Joyce
[13], Pezzè and Young [33], and Dillon and Stirewalt [15].
The goal of these works is to generate analysis tools
automatically from a description of a notation’s semantics.
Day and Joyce embed the semantics of a notation in higher-
order logic and automatically compile a next-state relation
from the notation’s semantics and specification using
symbolic functional evaluation. Embedding avoids the
translation step and the effort to construct and maintain
translators. Notations have also been embedded in the
theorem prover PVS [31], and PVS’s connection to a model
checker has been used to analyze these specifications.

Pezzè and Young embed the semantics of model-based
notations into hypergraph rules, which specify how enabled
transitions are selected, and how executing transitions affect
the specification’s hypergraph model. The composition
semantics of heterogeneous components can also be
described.

Dillon and Stirewalt define operational semantics for
process-algebra and temporal-logic notations and semiauto-
matically translate these semantic descriptions into a tool
that accepts a specification and generates an inference graph.
This inference graph calculates all of the specification’s
possible next snapshots, expressed as specifications, which,
in turn, can be fed into the tool to produce their respective
inference graphs. Their approach cannot accommodate
model-based notations with data variables. Similarly, Clea-
veland and Sims [12] have developed a semantics-based
compiler for translating process algebra notations into CCS,
the input language of the Concurrency Workbench [11].

In contrast to these approaches, our paper separates step-
semantics and composition operators. This separation
allows us to simplify each of these aspects of semantics, to
the point where one can define the semantics of a new
notation as parameter values rather than an embedding.
Also, our work is expressed using traditional state-transi-
tion relations rather than introducing a new execution
model.

7 CONCLUSIONS

We have introduced an operational-semantics template for
model-based specification notations, which predefines
behavior that is common among notations and parame-
terizes a notation’s distinct semantics. We have defined a set
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of composition operators as the concurrent execution of
components, with appropriate changes to snapshot ele-
ments to reflect inter-component communication and
synchronization. Using this template, one can define the
semantics of a new notation simply by 1) instantiating the
template’s parameters and by 2) defining how composition
operators control components’ executions and change
snapshot elements.

We are able to express as instantiations of our template
most of the semantics of eight popular specification
notations: CSP [19], CCS [27], LOTOS [20], basic transition
systems (BTS) [24], a subset of SDL88 [21], and three
variants on statecharts [16], [17], [22]. Template-semantics
definitions for SDL blocks and channel communications
[21], SCR [18], Petri Nets [32], and additional statecharts
variants and aspects of UML appear elsewhere [29].

There are many model-based notations that we have not
yet used template semantics to describe (e.g., value-passing
CCS [27]). As explained in Section 5, many specification
features can be represented using the existing HTS syntax
and template parameters. Support for additional features
may involve adding parameters and snapshot elements,
but, as is the case for supporting SDL timers, if the additions
are orthogonal to the original template model, they may be
accommodated by appended clauses to the template
definitions without overriding the existing definitions.
Template semantics provide enough flexibility that the
addition of nonorthogonal features, such as history states,
can usually be incorporated just by changing the parameter
definitions.

We plan to implement our template definitions, to
generate automatically notation-specific, formal analysis
tools from the description of a notation’s template seman-
tics. We are particularly interested in model-compiler gen-
erators, where a model compiler is a program that compiles a
specification into a more primitive representation. Example
target computation models include Kripke structures,
binary decision diagrams (BDDs), and logic formulae. The
use of template semantics should substantially reduce the
effort involved in creating an analysis tool for a model-
based notation.
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