
Int J Softw Tools Technol Transfer (2003) 4: 298–312 / Digital Object Identifier (DOI) 10.1007/s10009-002-0087-0

A framework for superscalarmicroprocessor
correctness statements

Mark D. Aagaard1, Byron Cook2, Nancy A. Day3, Robert B. Jones4

1Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
E-mail: m.aagaard@ece.uwaterloo.ca
2Prover Technology, Portland, Ore., USA; E-mail: byron@prover.com
3Computer Science, University of Waterloo, Waterloo, Ontario, Canada; E-mail: nday@cs.uwaterloo.ca
4Strategic CAD Labs, Intel Corporation, Hillsboro, Ore., USA; E-mail: rjones@ichips.intel.com

Published online: 17 December 2002 –  Springer-Verlag 2002

Abstract.Most verifications of superscalar, out-of-order
microprocessors compare state-machine-based imple-
mentations and specifications, where the specification is
based on the instruction-set architecture. The different
efforts use a variety of correctness statements, implemen-
tations, and verification approaches. We present a frame-
work for classifying correctness statements about safety
properties of superscalar microprocessors. Our frame-
work is independent of the implementation representa-
tion and verification approach, and is parameterized by
the width of the processor. We characterize the relation-
ships between the correctness statements of many differ-
ent efforts and also illustrate how classical approaches to
microprocessor verification fit within our framework.

Keywords: Microprocessor correctness – Commuting
diagrams – Formal verification – Pipelines

1 Introduction

The increased parallelism provided by out-of-order execu-
tion in microprocessors has made correctness statements
for verification complicated, varied, and even controver-
sial. We studied published verifications of out-of-order
microprocessors and discovered a wide variety of correct-
ness statements, verification techniques, and processor
implementations. Some correctness statements initially
appear to be similar, such as the ones based on Burch-
Dill style flushing [13], but differences emerge after close
examination. Other statements are difficult to compare at
first, but later reveal similarities. The goal of this paper
is to provide a foundation for clarifying the meaning of
individual correctness statements; for precisely compar-
ing different statements; and for analyzing the interaction
between processor features, verification strategy, and cor-
rectness statements.

Most recent verification efforts verify state-machine-
based representations of microarchitectural implementa-
tions and instruction-set architectures. The verification
efforts focus on safety – any behavior of the implemen-
tation is also a behavior of the specification. Liveness is
usually dealt with as a secondary concern. In keeping with
these trends, we focus on safety-based correctness state-
ments that relate microarchitectural implementations to
instruction-set architectures. We include deterministic
and non-deterministic state machines with finite and in-
finite state spaces. We do not include specifications that
are collections of properties, such as the work by Beatty
and Bryant [8], McMillan [25], and Patankar et al. [30].
The result of our investigation and analysis is a frame-

work that precisely describes and classifies correctness
statements about safety between state machines. It allows
correctness statements to be analyzed independent of ver-
ification techniques and microarchitectural features. In
this paper, we introduce the framework, present its math-
ematical basis, and describe how published microproces-
sor correctness statements fit within the framework. This
presentation is a revised and extended treatment of our
original work [1]. In particular, we include superscalar
microprocessors by parameterizing the correctness state-
ments by the width of the processor. Additionally, we
have precisely defined the relationships between the dif-
ferent correctness statements.

2 Modeling with state machines

We assume that both the specification and implementa-
tion have programmemories as part of their state. There-
fore, our state machines do not take instructions as in-
puts. Approaches that take instructions as inputs in their
correctness statements (e.g. [9, 13, 22]) can be augmented
with programmemories that produce the input trace. In-

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 299

terrupts can also be treated as part of the state space by
adding appropriate control circuitry to read the interrupt
input trace from an internal store. We assume that state
machines generate infinite traces, where “termination” of
a program is denoted by repeating the final state of the
program. Definition 1 shows the formalism we use to de-
scribe state machines.

Definition 1 (State machines)
A state machineM is a triple (Q,Q◦, N) where:

– Q is the set of possible state values and is a Cartesian
product of internal (hidden) state components and
externally-visible state components.
– Q◦ ⊆Q is the set of initial states.
– N ⊆Q×Q is the next-state relation.

In addition, we use the following notation:
Qe is the set of possible externally-visible state
values.

Πe :Q→Qe is the corresponding projection function.

q1
Π
= q2 means that q1 and q2 have equivalent external
state: Πe(q1) = Πe(q2).

Nk(q, q′) means q′ is reachable from q in exactly k
steps of N . When N is a function, we write it as n.

The components of a state machine M will be sub-
scripted with “s” for specification and “i” for implemen-
tation.We allow self-loops inN , e.g. states may transition
back to themselves.We assume a machine can always take
a step, i.e.,

∀ q ∈Q. ∃ q′ ∈Q. N(q, q′).

Different correctness statements may require differ-
ent partitions between internal and external state for the
same microprocessor. For example, the externally-visible
program counter is sometimes the address of the next in-
struction to be fetched and sometimes the address of the
next instruction to retire.
In verification, the state space of the implementation

often needs to be limited to reachable states, or an over-
approximation of reachable states. This challenging task
is done by finding and proving invariants. Invariants are
treated with varying degrees of emphasis in the litera-
ture. In our framework we consider the invariants to be
encoded in Q, the set of states for the machine.

3 Correctness statements

A well-established definition of correctness is that of trace
containment : every trace of external observations gen-
erated by the implementation can also be generated by
the specification. A disadvantage of trace containment is
that verifying it can require information about an entire
trace. A correctness statement that mitigates this prob-
lem is simulation: if an implementation state is externally
equal to a specification state, then executing one instruc-
tion in both the implementation and specification results

in states that are externally equal. Simulation can play
the role of the induction step in a proof of trace contain-
ment; systems that satisfy simulation also satisfy trace
containment. Formal verification of sequential micropro-
cessors has generally been done using simulation-style
correctness statements. Similar correctness statements
are also used in other domains such as cache-coherence
protocols [3, 28, 29, 36].
Pipelining and other optimizations increase the gap

between the behavior of the implementation and the spe-
cification, thus making it more difficult to consider only
one step within the implementation and specification
traces. Pipelined machines begin executing new instruc-
tions before previous ones retire. A superscalar machine
may externally appear to do nothing for a number of steps
and then, in a single step, update the register file with the
results of several instructions. Machines with out-of-order
retirement can retire instructions in a different order than
the specification.
To describe how superscalar verifications use simu-

lation-style correctness statements, we separate the no-
tions of 1) how to align the implementation trace against
the specification trace to determine which states should
match, and 2) what it means for an implementation state
to successfullymatch a specification state.
When verifying non-pipelined machines, the traces

can be aligned at every step, and two states match if the
externally-visible state components are equal. To verify
pipelined machines, the alignment often needs to be at
looser intervals than every step, or alternatively, exter-
nal equivalence needs to be replaced by a looser relation-
ship. With superscalar microprocessors, the notions of
alignment and matching are necessarily even more com-
plicated. A common alignment technique is to check the
implementation only when it is in a flushed state (i.e., no
in-flight instructions). A common matching relationship
is Burch–Dill style flushing [13], which uses an abstrac-
tion function to retire all in-flight instructions in the im-
plementation and then checks for external equality with
the specification state.
Our framework uses four parameters to characterize

a correctness statement: alignment, match, implementa-
tion execution, and specification execution. Alignment is
the method used to align the trace of the implementation
with the trace of the specification (Sect. 3.1). Match is
the relation established between the aligned implementa-
tion and specification states (Sect. 3.2). Implementation
execution and specification execution describe the type of
state machines used (Sect. 3.3).

3.1 Alignment

Alignment describes which states in the execution traces
are tested for matching. Figure 1 illustrates the kinds of
alignment that we have found used in microprocessor ver-
ification. Pointwise alignment (P) is the classic commut-
ing diagram, which compares every step.

300 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

In each diagram, the horizontal lines between states are the specification and implementation traces. The vertical lines between states show

the where the implementation state must match the specification state.

Fig. 1. Options and partial order for the alignment parameter

Informed-pointwise (I) is a variation of pointwise
alignment to handle pipelines that are sometimes un-
able to fetch an instruction. A microprocessor may be

prevented from fetching an instruction in two scenar-
ios. First, the microprocessor might be stalled internally
and unable to accept an incoming instruction. Second,

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 301

the instruction memory might be unable to provide the
microprocessor with an instruction to fetch (e.g. cache
miss). Information from the implementation trace about
how many instructions have been executed is used to
choose how many steps the specification takes before
comparing the implementation and specification states.
To achieve the effect of informed-pointwise, some authors
use a pointwise correctness statement and modify the
specification to accept an extra input that is the num-
ber of steps to execute. We classify these approaches as
informed pointwise.
Stuttering alignment (S) allows the specification to

stutter, i.e., two or more consecutive implementation
states may match the same specification state.
Flush-point alignment (F) says that if there is a trace

between flushed implementation states, then there must
exist a trace in the specification between a pair of states
that match the flushed implementation states. A predi-
cate isFlushed indicates when an implementation state is
flushed. Instruction set architectures complete the execu-
tion of an instruction in a single step; therefore all of their
states are flushed.
In must-issue alignment (M), the specification takes

at least one step, and the implementation takes steps
as long as it cannot fetch an instruction, then it takes
one more step where it fetches one or more instruc-
tions. In this correctness statement only the last step of
the trace fetches instructions. The predicate doesFetch
is true of an implementation step when the implemen-
tation fetches one or more instructions. The number of
steps taken by the specification is determined by the
number of instructions that the implementation fetches.
For single-scalar microprocessors, the specification al-
ways takes one step.
Will-retire alignment (W) is almost the dual of must-

issue alignment. In will-retire alignment, the implementa-
tion retires instructions in the first step of the trace. The
implementation continues to take steps until it is ready to
retire instructions again. The implementation state just
before the instructions retire is matched against a specifi-
cation state. For single-scalar microprocessors, the speci-
fication always takes one step. For superscalar micropro-
cessors, the specification may take multiple steps.
Finally, we have included a general case (G) showing

that flush-point (F), will retire (W), and must-issue (M)
are all instances of a general relation G on the implemen-
tation trace.
In the mathematical formulation of these correctness

statements (Sect. 3.5), we provide versions for implemen-
tations that can fetch up tow instructions in a single cycle
(i.e., w-wide superscalar machines).
The different kinds of alignment form a partial order

as illustrated by the arrows in Fig. 1. This order is based
on generality where alignments higher in the order are
weaker, i.e., implementations that satisfy flush-point
alignment may not satisfy pointwise alignment. More
precisely, the relationship is implication, with instanti-

ation in the case of the arrows connecting flush-point,
will-retire, and must-issue to the general case (G). For ex-
ample, stuttering correctness implies flush-point for any
instance of the predicate isFlushed.
The dashed lines between must-issue and informed

pointwise alignment, and between will-retire and in-
formed pointwise indicate that the two are related for
some match options. For example, with flushing match,
must-issue is equivalent to informed pointwise [16]. In
addition, assuming the implementation eventually retires
an instruction, will-retire with equality match is equiva-
lent to informed-pointwise [15]. These match options are
explained in detail in Sect. 3.2.

3.2 Match

Instantiations for the match parameter are relations, R,
between an implementation state qi and specification
state qs that mean “qi is a correct representation of
qs”. Figure 2 shows the matches that we found used in
pipelined microprocessor verification. The arrows show
the partial order, where definitions lower in the order are
instances of higher definitions.
An other match (O) is any relation between implemen-

tation and specification states. The abstraction match (A)
uses a function (abs) to map an implementation state
to a state that is externally equivalent to the specifica-
tion state. The flushing match (U) is a particular type
of abstraction match that uses a flushing function to
compute the implementation state that should be exter-
nally equivalent a specification state. The equality match
(E) requires that the implementation and specification
states be externally equivalent. The refinement match
(R) requires that the abstraction function preserve the
externally-visible part of the implementation state. Re-
finement differs from equality because the refinement
map is a function, so each implementation state matches
exactly one specification state. Words such as “refine-
ment” and “abstraction” have multiple meanings in the
literature. The mathematics in Fig. 2 are the precise defi-
nitions that we use.
Flushing is often based on iterating a determinis-

tic implementation’s next-state function without fetching
new instructions. However, other approaches are possible,
such as Hosabettu et al.’s completion functions [20].
If the specification does not have any internal state

(i.e., all of the state components are externally visible),
then equality and refinement both reduce to Πe(qi) = qs.
We call such cases refinement. This relationship is de-
noted by the dashed line between R and E in Fig. 2.
Figure 2 shows the partial order relationships be-

tween these matches. Identifiers such as R and abs are
intended to be substituted with specific relations or ab-
straction functions in a correctness statement. Other
identifiers, such as flush and =, have particular mean-
ings. The partial order relationships are implication
with some substitution. For example, equality match

302 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

Fig. 2. Options and partial order for the match parameter

and an identity abstraction function implies abstraction
(E ∧ (abs= id) =⇒ A).
The dashed line between U and E indicates that flush-

ing is equivalent to the equality match when flush-point
alignment is used. That is (FE) is equivalent to (FU), be-
cause flushing a flushed state has no effect.
In addition to the options listed here, other options are

possible. Pnueli et al. [4, 5, 14, 31] use a matching relation
that uses both concretization and abstraction functions.
Two states match if concretizing the specification state
produces the same result as abstracting the implementa-
tion state. In their examples, the concretization functions
are identity or projection, so their match specializes to
abstraction in our framework.

3.3 Execution

The third and fourth parameters of the framework are the
methods for describing the traces of the implementation
and specification. In the literature we find both determin-
istic (D) and non-deterministic (N) implementations and
specifications. In a deterministic machine, the transition
relation is instantiated as:

N(q, q′) ≡ q′ = n(q)

Implementations are often modeled with non-determin-
ism because of scheduling circuitry. On the other hand,

most instruction-set architectures are deterministic, so
most specification machines are deterministic. Excep-
tions include specifications with imprecise exceptions or
external interrupts. For our purposes, we consider deter-
ministic machines as instances of non-deterministic ma-
chines in the total order for the execution parameters.

3.4 Correctness space

By choosing different options for the parameters, we ar-
rive at a variety of correctness statements. We use four-
letter acronyms to describe the combinations of parame-
ter instantiations:

〈alignment〉〈match〉〈impl. execution〉〈spec. execution〉

For example, “IUDD” denotes informed-pointwise align-
ment (I), flushing match (U), and deterministic imple-
mentation (D) and specification (D). Figure 3 lists the
complete set of acronyms we use for the options of the
correctness statements.
The options for each parameter have a total or partial

ordering.Together, these orders induce apartial order over
correctness statements, which serves to map out the space
of correctness statements for microprocessor implementa-
tions. Figure 4 shows how we draw the correctness space
for implementationand specification execution.Figure 5 is
for alignment andmatch together. All four parameters are

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 303

<alignment> <match> <impl. execution> <spec. execution>
(M)Must-issue (O)Other (N)Non-deterministic (N)Non-deterministic
(W)Will-retire (A)Abstraction (D)Deterministic (D)Deterministic
(F) Flush-point (U)Flushing
(S) Stuttering (E)Equality
(I) Informed-pointwise (R)RefinementMap
(P)Pointwise

Fig. 3.Acronyms for options

NN

DN

DD

ND

Implementation Execution Options

Sp
ec

if
ic

at
io

n
E

xe
cu

tio
n

O
pt

io
ns

N

D

D

N

Fig. 4.Partial order for execution options

combined together inFig. 6,which includes citations topa-
pers that use the listed correctness statements.
InFig. 5, the shading fromMU to IU indicates thatwith

flushingmatch,must-issue is equivalent to informedpoint-
wise [16]. Similarly, the shading fromWR to IR and from
WE to IE indicate that for refinement and equality match,
will-retire is equivalent to informed pointwise assuming
the implementation eventually retires an instruction [15].
The partial order in Fig. 6 is implication with instan-

tiation. For example, IEDN is below SANN in the par-
tial order, because informed-pointwise alignment implies
stuttering alignment; equality match implies abstraction
match; and deterministic machines are instances of non-
deterministic ones. We do not advocate any points in the
correctness space over others. The classification serves to
highlight the differences and similarities of the different
correctness statements.

3.5 Mathematical formulation

In this section we describe the mathematical formula-
tions of correctness statements in the framework. We use
Mi �RMs to mean “Mi is correct with respect toMs via
the relation R”. All of the correctness statements have
the general form of Definition 2.

Definition 2 (General form of correctness state-
ment)

(Qi, Q
◦
i , Ni)�R (Qs, Q◦s, Ns) ≡[

∧
∀ q◦i ∈Q

◦
i . ∃ q

◦
s ∈Q

◦
s.R(q

◦
i , q

◦
s)

〈inductive clause〉

]

The alignment parameter determines the overall form
of the induction clause, while the other parameters have
localized effects. For example, from the PONN correctness
statement, it is easy to derive variations, such as PANN,
PEDN, PRND, etc. In the remainder of this section, we
show the induction clauses for the various options of the
alignment parameter together with the most-general op-
tions for the remaining parameters. That is, we show
the “other” relation match with non-deterministic speci-
fications and implementations (∗ONN). We do not show
the mathematical definitions of the base clauses, because
most are similar to the one shown in Definition 2. We dis-
cuss the base cases that vary from this pattern.
The most general combination in the correctness

space is where the relevant implementation traces are de-
scribed by a general relation (GONN, Definition 3). It
says that starting from any implementation state that
matches a specification state, for all implementation
traces that satisfy a general relation G, the specification
must step through some number of steps j to reach a state
q′s that matches q

′
i.

Definition 3 (General induction clause: GONN)
∀ qi, q′i ∈Qi. ∀ qs ∈Qs. ∃ q

′
s ∈Qs.

∧
∧

(∃k. Nki (qi, q
′
i))

G(qi, q′i)
R(qi, qs)


 =⇒ [∧∃ j. N js (qs, q′s)

R(q′i, q
′
s)

]

Definition 4 is for flush-point alignment with a general
match and non-deterministic machines (FONN). It says
that if the implementation is in a flushed state qi and can
step through some number of steps k to another flushed
state q′i, then all specification states qs that match qi (via
R) must step through some number of steps j to some
state q′s that matches q

′
i.

Definition 4 (Flush-point induction clause: FONN)
∀ qi, q′i ∈Qi. ∀ qs ∈Qs. ∃ q

′
s ∈Qs.


∧
∧
∧

isFlushed(qi)
∃k. Nki (qi, q

′
i)

isFlushed(q′i)
R(qi, qs)


 =⇒

[
∧
∃ j. N js (qs, q

′
s)

R(q′i, q
′
s)

]

The base case for flush-point alignment conforms to
the pattern in Definition 2, because we assume the initial
state of the implementation is a state resulting from reset-
ting the implementation. Such a state would be flushed.

304 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

FOFAFU

FE

FR

SOSASU

SE

SR

IOIAIU

IE

IR

MOMAMU

ME

MR

WOWAWU

WE

WR

POPAPU

PE

PR

R E U A O

P

W

M

I

S

F

Match Options

A
lig

nm
en

t O
pt

io
ns

Fig. 5. Partial order for alignment and match options

Stuttering alignment (Definition 5) results in a sim-
pler correctness statement than flushpoint alignment, be-
cause it considers only one step of the implementation
and requires no special predicates. The specification is al-
lowed to stutter, e.g., consecutive implementation states
may align with the same specification state. The specifi-
cation may take up to w steps where w is the width of the
machine.

Definition 5 (Stuttering induction clause: SONN)
∀ qi, q′i ∈Qi. ∀ qs ∈Qs. ∃ q

′
s ∈Qs.[

∧
Ni(qi, q

′
i)

R(qi, qs)

]
=⇒

[
∧
∃ j ≤ w. N js (qs, q

′
s)

R(q′i, q
′
s)

]

In pointwise alignment (Definition 6) the specification
always takes one step. Pointwise alignment requires that
the implementation is always able to execute an instruc-

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 305

FRND
SJD98[37]

F

S

I

M

W

P

R E U A O

WRDD
*FH00[17]

MUDD
*BBCZ98[9]

MADD
*SM95[39]

PODD
*Mil71[26]

PADD
*BF89[10]
*SB90[38]
*WC94[41]

PUDD
*BD94[13]

PENN
DP97[14]

*HQR98[18]

SUND
*VB00[40]
*AS99[6]

SUDD
*BGV99[11]

SRNN
AL91[2]
AP00[5]

FEND
*SH97[33]

SENN
*AL91[2]

SANN
*AP00[5]FRDD

*HSG98[20]
*SJD98[37]

FA**

IENN
SH98[34]

IEDN
SJD98[37]

FU**

PAND
*MAW+01[27]

PRNN
*PA98[31]
AP99[4]

HQR98[18]

PANN
*DP97[14]
AP00[5]

PA

FR

FE

FU FA FO

IR

IU IA IO

SR

SE

SU SA SO

IE

WR

MR

ME

MU MA MO

PR

PE

PU PO

WOWAWU

WE

IUDD
*BD94[13]
*Bur96[12]
*LPA01[23]
HSG98[20]

Match Options

A
lig

nm
en

t O
pt

io
ns

IEND
SH97[33]

FUDD
HSG98[20]

FENN
*SH98[34]

FRNN
*AP99 [4]

Each point is annotated with citations for the works that use the particular correctness state-

ments. Citations prefixed with ∗ denote top-level correctness statements; others are used as

intermediate correctness statements during the proofs. Sect. 4 provides further explanation.

Fig. 6. Space of correctness statements

306 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

tion. For a superscalar microprocessor of width w, this
would require that it always be able execute w instruc-
tions. As this is clearly unrealistic, we have not general-
ized pointwise alignment for superscalar machines.

Definition 6 (Pointwise induction clause: PONN)
∀ qi, q′i ∈Qi. ∀ qs ∈Qs. ∃ q

′
s ∈Qs.[

∧
Ni(qi, q

′
i)

R(qi, qs)

]
=⇒

[
∧
Ns(qs, q

′
s)

R(q′i, q
′
s)

]

Informed-pointwise alignment (Definition 7) is very
similar to pointwise alignment. The difference is that the
number of steps taken by the specification is determined
by the implementation trace using the function numInstr.
This is done to accommodate situations when the imple-
mentation does not execute an instruction, and, in the
case of superscalar machines, does not execute the max-
imum number of instructions possible. The number of
steps taken by the specification can never exceed the ex-
ecution width w of the implementation.

Definition 7
(Informed-pointwise ind. clause: IONN)

∀ qi, q′i ∈Qi. ∀ qs ∈Qs. ∃ q
′
s ∈Qs.

let j = numInstr(qi, q
′
i) in[

∧
Ni(qi, q

′
i)

R(qi, qs)

]
=⇒

[
∧
N js (qs, q

′
s)

R(q′i, q
′
s)

]

The function numInstr is, in practice, instantiated
with either numInstrFetched or numInstrRetired .
In general, numInstrFetched is used with flushing
abstraction.
In must-issue alignment (Definition 8), the implemen-

tation takes as many steps (k) as are necessary to reach
a state where it can fetch an instruction; it then takes one
more step from qki to q

k+1
i where it fetches one or more

instructions. The number of steps the specification takes
depends on how many instructions are fetched in the last
implementation step.

Definition 8 (Must-issue induction clause:MONN)
∀ q0i , q

1
i , . . . , q

k+1
i ∈Qi. ∀ qs ∈Qs. ∃ q′s ∈Qs.

let f = numInstrFetched(qki , q
k+1
i) in


∧
∧
∧


∀ j < k.
∧
Ni(q

j
i , q
j+1
i)

¬doesFetch(qji , q
j+1
i)




Ni(q
k
i , q

k+1
i)

doesFetch(qki , q
k+1
i)

R(q0i , qs)



=⇒

[
∧
Nfs (qs, q

′
s)

R(qk+1i , q′s)

]

Similar in form to must-issue alignment is will-retire
alignment (Definition 9). In will-retire alignment, the first
step of the implementation trace retires one or more in-
structions. The number of steps the specification takes
depends on how many instructions are retired in the
first implementation step. This number is returned by
the function numInstrRetired. The implementation runs

from the step where it retires one or more instructions to
a state where will next retire instruction(s).

Definition 9 (Will-retire induction clause:WONN)
∀ q0i , q

1
i , . . . , q

k
i ∈Qi. ∀ qs ∈Qs. ∃ q

′
s ∈Qs.

let r = numInstrRetired(q0i , q
1
i) in



∧
∧

∧

∧

Ni(q
0
i , q

1
i)

willRetire(q0i , q
1
i)

∀j ∈ 1 . . . k−1.
∧
Ni(q

j
i , q
j+1
i)

¬willRetire(qji , q
j+1
i)





∃ qi.
∧
Ni(q

k
i , qi)

willRetire(qki , qi)




R(q0i , qs)



=⇒

[
∧
Nrs (qs, q

′
s)

R(qki , q
′
s)

]

The base case for will-retire alignment is more com-
plicated than any of the other base cases. The inductive
step of will-retire alignment requires that the implemen-
tation retires an instruction. The base case of a correct-
ness statement must connect the initial state (e.g., just
after reset is deasserted) to the inductive step. For will-
retire alignment, this requires that the base case steps the
implementation from the initial state until just before it
retires an instruction.
Section 4 describes other correctness statements as

points in the correctness space by instantiatingR and the
next-state relations in each of the above four definitions.
Instantiating next-state relations with functions removes
the need for some quantified variables.

3.6 Limitations

As with most formal verification approaches, there are
certain degenerate configurations that can lead to vac-
uous verification results. The correctness framework
in and of itself cannot prevent all of these possibil-
ities. However, all of the vacuous examples we have
found rely on degenerate matching relations. For ex-
ample, a matching relation that includes all imple-
mentation and specification state pairings will result
in a vacuously-true correctness statement, as any pair
of consecutive implementation states can be related
to any pair of consecutive specification states. An-
other vacuous statement results from using stuttering
alignment with a degenerate abstraction function that
maps all implementation states to the same specification
state.

4 Literature survey

In this section, we show how a variety of correctness
statements for out-of-order and superscalar microproces-
sors are points in the correctness space defined by the
framework. To set this work in an historical context, we
give an overview of verification work with commuting

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 307

diagrams and abstraction functions. This overview be-
gins with Milner’s definition of simulation in 1971 and
ends with manually constructed abstraction functions for
single-scalar pipelined microprocessors.
In the discussion of microprocessor verification, we de-

scribe thirty-seven correctness statements from twenty-
nine papers. While the phrase “we use the correctness
statement of Burch and Dill [13]” appears in many pa-
pers, detailed examination reveals that this is often an
approximation. For conciseness, we focus on the inductive
clauses of the correctness statements.

4.1 Historical perspective

Milner’s [26] work in software verification led to a defin-
ition of simulation that is pointwise alignment of a gen-
eral relation between a deterministic implementation and
a deterministic specification (PODD). Milner does not in-
clude a base clause. PODD is derived from Definition 6
(pointwise alignment) by substituting next-state func-
tions (ns and ni) for the next-state relations (Ns andNi).

Definition 10 (Milner’s simulation: PODD)
∀ qi ∈Qi. ∀ qs ∈Qs. R(qi, qs) =⇒ R(ni(qi), ns(qs))

Abadi and Lamport [2] define refinement maps; in
our parlance this is stuttering refinement between non-
deterministic machines (SRNN). They use refinement
as a verification strategy to prove stuttering equiva-
lence (SENN), which they call implements. Both SRNN
and SENN are derived from Definition 5 (SONN) for
a one-wide machine (w = 1). For SRNN, refinement,

(abs(qi) = qs) ∧ (qi
Π
= qs), is substituted for the matchR,

which results in Definition 11:

Definition 11
(Abadi and Lamport’s refines: SRNN)
∀ qi, q′i ∈Qi.[
∧
Ni(qi, q

′
i)

qi
Π
= abs(qi)

]
=⇒



∧

[
∨
Ns(abs(qi), abs(q

′
i))

abs(qi) = abs(q
′
i)

]
q′i
Π
= abs(q′i)




Their main result is that if SENN holds, then it is
possible to construct an intermediate model from an im-
plementation using history and prophecy variables such
that the intermediate model will satisfy SRNN with the
specification.
Several verifications of single-scalar pipelines use

correctness statements that are relevant to our paper.
Bose and Fischer [10] used PADD in the verification
of a pipelined stack. In the first published verification
of a pipelined microprocessor, Srivas and Bickford [38]
proved PADD between their implementations and speci-
fication. Later, Windley and Coe [41] also verified PADD.
Srivas and Miller [39] provedMADD between a pipelined
microprocessor at the instruction and micro-instruction

levels of abstraction. All of the abstraction functions in
these efforts were manually constructed.

4.2 Burch and Dill (flushing)

Manual construction of an implementation abstraction
function, as in the works cited in the previous section, is
a difficult and tedious process. Flushing, a technique for
deriving the implementation abstraction function auto-
matically, was introduced in a seminal paper by Burch
and Dill [13]. To abstract the implementation state,
they force the implementation to send bubbles down the
pipeline. This flushes all in-flight instructions out of the
pipeline and into architectural state. This behaviour is
common in microprocessors that have to handle delays in
fetching instructions from memory, such an instruction
cache miss, but might not be a part of all implementa-
tions. In [13], they verify PUDD (pointwise flushing) for
a simple 3-stage pipelined ALU.
In general, pipelines do not execute instructions every

clock cycle. This complicates alignment with a flushing
abstraction function. If the implementation cannot fetch
an instruction to take a productive step, flushing the
states before and after the implementation step will re-
sult in the same state. Various authors have different ways
to handle this situation. These correspond to different
points in the framework.
Burch and Dill [13] used informed-pointwise align-

ment, denoted “I”. The correctness statements with
informed-pointwise alignment use stall information from
the implementation to determine how many steps the
specification should take. In this alignment option, we
also include approaches that pass the stall information
to the specification. Burch and Dill also use flushing
to verify IUDD between an instruction set architecture
specification and a single-scalar 5-stage pipeline imple-
mentation. In this case, numInstrFetched is equal to zero
when the pipeline is stalled and one when it fetches an
instruction. Burch later generalized this idea to super-
scalar microprocessors [12], by making numInstrFetched
a function that indicates to the specification how many
instructions the implementation fetched. In our frame-
work this is IUDD with w > 1. Lahiri et al. used Burch’s
approach to verify a pipeline description of the 7-stage,
dual-issue Motorola M∗CORETM processor [23]. Other
approaches that handle this alignment problem with
flushing abstraction can be found in Sects. 4.3, 4.4, 4.6,
and 4.9.

4.3 Bryant et al.

Bryant et al. [11] verified stuttering flush (SUDD) be-
tween a superscalar processor and an instruction set ar-
chitecture. The SUDD correctness criteria is similar to the
previously-cited approaches that use informed-pointwise
alignment with flushing (IU). However, instead of using
the number of instructions fetched by the implementa-

308 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

tion to determine the number of specification steps, they
explicitly state a disjunction of equalities between speci-
fication and implementation states. The disjuncts cover
the different cases for the number of steps the specifica-
tion can take: 0 to w, where w is the fetch width of the
machine In a later paper, Velev and Bryant [40] verify
SUND. The nondeterminism is added to the implementa-
tion description to facilitate modeling of variable-latency
instructions.

4.4 Hosabettu et al. (completion functions)

Hosabettu, Srivas, and Gopalakrishnan [20, 21] prove
that a deterministic out-of-order implementation satisfies
flush-point refinement with a deterministic specification
where the match is projection (Definition 12).

Definition 12 (Flush-point refinement
with projection: an instance of FRDD)

∀ qi ∈Qi. ∀k.[
∧
isFlushed(qi)
isFlushed(nki (qi))

]
=⇒


∃ j.njs(Πe(qi))=

Πe(n
k
i (qi))




Because their verification is completely within a theo-
rem prover, they are able to use underspecified next-
state functions (rather than relations) for their scheduler.
They prove FRDD in three steps. They prove informed-
pointwise flushing (IUDD) and then apply induction to
prove flush-point flushing (FUDD). They go from FUDD
to FRDD by proving that the flushing abstraction of
a flushed state is equivalent to projection.
Their flushing abstraction function is constructed

from completion functions. Completion functions de-
scribe the effect on the observable state of completing the
execution of each in-flight instruction. Completion func-
tions are written manually and composed pipe stage by
pipe stage working backwards through the implementa-
tion to create a flushing function.
Hosabettu et al. use synchronization functions to tell

the specification how many steps it should take to match
the implementation. In our framework, the synchroniza-
tion functions appears as the numInstrFetched parameter
to informed-pointwise correctness statements. Hosabettu
et al. [19] also use the same correctness statement to ver-
ify an implementation with speculative execution and
precise exceptions.

4.5 Skakkebæk et al. (incremental flushing)

Skakkebæk et al. [37] verify that a deterministic imple-
mentation with in-order retirement satisfies flush-point
refinement with a deterministic specification (FRDD).
They build a non-deterministic intermediate model that
computes the result of each instruction when it enters
the machine and queues the result for later retirement.

This intermediate model has hidden state relative to the
implementation. The verification of the implementation
against the intermediate model shows informed-pointwise
equality (IEDN). The verification of the intermediate
model against the specification establishes flush-point re-
finement (FRND) by incrementally decomposing a mono-
lithic flushing abstraction function into a set of simpler
flushing steps. In [22], they use a non-deterministic in-
termediate model with an abstracted scheduler that pro-
vides fine-grained control over instruction progress. This
reduces the amount of manual abstraction required by
strengthening the simpler flushing steps.

4.6 Berezin et al. (must-issue)

Berezin et al. [9] prove must-issue alignment with the
flushing match (MUDD) for a processor with out-of-order
retirement (Definition 13). The model is deterministic
but some of the scheduling is left underspecified. They in-
troduce intermediate models of the implementation and
specification that are optimized for model-checking ef-
ficiency. They prove MUDD between the intermediate
implementation and intermediate specification. When
used with a deterministic implementation, the predicate
doesFetch only depends on the implementation state at
the beginning of the step. Their verification is for a single-
scalar implementation so we omit the function numInstr.

Definition 13 (Must-issue flushingMUDD)
∀qi ∈Qi. ∀k.

∧

[
∀ j < k−1.
¬doesFetch(nji (qi))

]
doesFetch(nk−1i (qi))


 =⇒


ns(Πe(flush(qi)))=
Πe(flush(n

k
i (qi)))




4.7 Sawada and Hunt (trace tables)

Sawada and Hunt [33] verified that a non-deterministic
implementation with out-of-order retirement satisfies
flush-point equality with a deterministic specification
(FEND, Definition 14). FEND results from substituting

the equality match (qi
Π
= qs) for R and a next-state func-

tion ns for the next-state relation in Definition 4 (FONN).

Definition 14 (Flush-point equality: FEND)
∀ qi, q′i ∈Qi. ∀ qs ∈Qs.

∧
∧
∧

isFlushed(qi)[
∃k. Nki (qi, q

′
i)
]

isFlushed(q′i)

qi
Π
= qs


 =⇒ [∃ j. q′i Π= njs(qs)

]

In later work [34, 35], they enhanced their implemen-
tation to support in-order retirement, external interrupts,
and precise exceptions. The inclusion of interrupts led
them to add non-determinism to their specification, to

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 309

account for the problem of predicting how many instruc-
tions the implementation will have completed when an
interrupt occurs. They kept flush-point equality as their
alignment and match criteria, making their correctness
statement FENN.
Throughout their work, the verification strategy is to

build an intermediate model with history variables. The
intermediate model contains an unbounded table, called
a MAETT, with one entry for each issued instruction. In
their first work [33], they prove informed-pointwise equal-
ity (IEND) between the implementation and intermediate
model and flush-point equality (FEND) between the in-
termediate model and specification, which together imply
FEND. Similarly for their second model, they prove IENN
and FENN respectively, to conclude FENN.

4.8 Pnueli et al. (variations on refinement)

Four works by the authors Damm, Pnueli, and Arons use
a wide range of correctness statements and implemen-
tations. Damm and Pnueli [14] prove pointwise abstrac-
tion (PANN) for an implementation with out-of-order
retirement. Their non-deterministic specification gener-
ates all possible traces of a program that obey data-
dependencies, which allows them to use pointwise align-
ment. They introduce an intermediate model with aux-
iliary variables and prove pointwise equality (PENN) be-
tween the implementation and the intermediate model,
and PANN between the intermediate model and the speci-
fication. For PANN, their abstraction projects the current
implementation state if all instructions have retired. Oth-
erwise, it returns the initial implementation state.
Arons and Pnueli [4] prove flush-point refinement

(FRNN) for an implementation with out-of-order retire-
ment. The specification can self-loop at every state, but
is otherwise deterministic. They use an intermediate
model with history variables and prove that whenever the
implementation is flushed, the history variables match
the implementation (FRNN). They verify that the in-
termediate model satisfies pointwise refinement (PRNN)
with the specification. Subsequently, Pnueli and Arons
change their synchronization point from instruction issue
to instruction retirement, which allows them to tighten
their top-level correctness statement to be pointwise re-
finement (PRNN) for an implementation with in-order
retirement [31].
Arons and Pnueli [5] verify stuttering abstraction

(SANN) for a machine with speculative execution, precise
exceptions, and in-order retirement. Their abstraction
computes the abstract program counter based on the con-
tents of the reorder buffer. They perform two different
verifications, one based on induction over the size of the
reorder buffer and one using abstraction functions. In
the inductive proof, they use three intermediate models
to prove SANN: stuttering refinement (SRNN), relying
on the result of [2]; pointwise abstraction (PANN); and
SANN.

4.9 Arvind and Shen

Arvind and Shen [6] use term rewriting systems to model
an out-of-order processor and its instruction set archi-
tecture. Their specification is deterministic. Their imple-
mentation consists of a set of rewrite rules, where multi-
ple rewrite rules are required to complete an implemen-
tation step, or clock cycle. Because the implementation
could have multiple rules satisfied in the term rewrit-
ing system at a given time, their implementation is non-
deterministic.
Their top-level correctness statement is for any se-

quence of rewrite rules, which corresponds to any length
of implementation trace, starting from any implementa-
tion state. A specification trace of zero or more rewriting
rules (zero or more specification steps) must exist for each
implementation trace. If the implementation stalls or
doesn’t progress according to the specification’s view, the
specification could take zero steps. Therefore, we charac-
terize their alignment as stuttering. However, their cor-
rectness statement is at the granularity of rewrite rules,
and one rewrite rule may accomplish less than a com-
plete implementation step. Therefore, their correctness
statement requires the implementation and specification
to match at even smaller intervals than a single step.
Their match criteria is flushing, which they refer to

as draining. Like many other approaches, an implemen-
tation state is flushed and then the programmer-visible
state is projected for an equivalence check with the speci-
fication. Because the implementation could have multiple
rules satisfied in the term rewriting system at a given
time, their implementation is non-deterministic. Thus,
they verify SUND between the out-of-order implementa-
tion and the instruction set architecture.
Using term rewriting systems, it is possible that the

flushing process is non-deterministic, i.e., flushing might
not be a function. In these cases, their match would be O.
Their verification system allows for the possibility of

using a variety of different abstraction mechanisms. For
example, rather than committing partially-executed in-
structions, they could roll back the effects of the instruc-
tions as if they had never been fetched. This rolling back
of execution could be used to synchronize their implemen-
tation with the specification at instruction retirement,
rather than instruction fetch.
Arvind and Shen also show a liveness property: that

the implementation includes all possible behaviors of the
specification.

4.10 Henzinger et al. (assume-guarantee)

Henzinger et al. [18, 32] use a top-level correctness state-
ment of pointwise equality (PENN), which they call trace
containment, to prove the correctness of an out-of-order
retirement processor where both the specification and im-
plementation may have internal state. Their specification
includes a non-deterministic stall signal and the schedul-

310 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

ing in their implementation is non-deterministic. They
construct abstraction and witness modules to bridge the
gap between the specification and implementation. Using
assume-guarantee reasoning, they reduce the problem to
smaller proof obligations where the specification has no
internal state. In these cases, which they call projection
refinement, they prove pointwise refinement (PRNN).

4.11 Fox and Harman

Fox and Harman [17] are unique in using will-retire align-
ment, which aligns the specification with the implemen-
tation whenever an instruction is about to retire. Their
match is refinement, where their refinement function is
projection. They synchronize at instruction retirement,
rather than the more common synchronization point of
instruction fetch. The program counter in the externally-
visible state is for the instruction about to retire, instead
of the one about to be fetched. Both their implementation
and specification are deterministic. This gives them a cor-
rectness criteria of WRDD (Definition 15). For a deter-
ministic implementation, the function numInstrRetired
and the predicate willRetire depend only on the imple-
mentation state at the beginning of the trace. Their verifi-
cation techniques use algebraic rewriting. They have used
both single-scalar and superscalar versions of their cor-
rectness statement.

Definition 15 (Will-retire with refinement:
WRDD)

∀ qi ∈Qi. ∀ qs ∈Qs. ∀k.
let r = numInstrRetired(qi) in

∧

∧

willRetire(qi)[
∀j ∈ 1 . . . k−1.
¬willRetire(nji (qi))

]
willRetire(nki (qi))


 =⇒


nrs(Πe(qi))=
Πe(n

k
i (qi))




The formulation of alignment in their correctness
statement is more general than they have actually used.
Their correctness statement could be used for point-
wise, informed pointwise, must-issue, and flushpoint
alignment. Their verification strategy relies on the use
of functions. This prevents them from using stuttering
alignment, matches other than refinement, and non-
deterministic implementations or specifications.

4.12 Austin, Mneimneh et al.

Austin [7] introduced a novel approach to microprocessor
architecture with a dual-core implementation: an aggres-
sive performance-oriented core is checked in real-time by
a much simpler checker core. If the checker and perform-
ance cores are interfaced appropriately, the checker will
discover any errorsmade by the performance core.As a re-
sult, formal verification of the checker core is sufficient to
show overall correctness of the complete implementation.

Mneimneh et al. [27] verified one mode of the simple
checker core against an instruction set architecture. The
checker core has two modes: check and recovery. In re-
covery mode, which they verified, only one instruction is
allowed in the pipeline at a time. We characterize this as
pointwise alignment (PRDD), where the implementation
takes internal steps while the instruction moves through
the machine. Based on their existing approach, a logical
extension of their work would prove IUDD of the checker
core in check mode, which supports normal pipelined op-
eration of the checker.

4.13 Related correctness paradigm

Manolios [24] defines correctness based on well-founded
bisimulation. He allows both the specification and imple-
mentation to be non-deterministic and to stutter, but also
includes a liveness property that guarantees that they
will stutter for only finitely many steps. This approach
has not yet been applied to out-of-order implementa-
tions. If we excise the liveness criteria from his correct-
ness statement, his work can be characterized as verifying
that the implementation satisfies stuttering equivalence
against the specification and that the specification satis-
fies the same property with the implementation.

5 Discussion

We have presented a framework for describing micropro-
cessor correctness statements that enables us to com-
pare existing correctness statements and to highlight the
differences among them. Our classification is meant as
a stepping stone towards understanding the links between
an implementation’s features, the desired “strength” of
correctness statement, and the verification techniques.
Indeed, the framework has led us to a number of observa-
tions that we now discuss.
Machines with out-of-order retirement are difficult to

align with specifications, because they can reach states
that are not possible when executing instructions sequen-
tially. One possibility is to use equality match, a deter-
ministic specification, and flush-point alignment. Two
other approaches allow the use of informed-pointwise
alignment : an abstraction function that retires all in-
flight instructions (e.g., completion functions [20]) or
a non-deterministic specification that allows different
retirement orderings [14]. In theory, the abstraction func-
tion could be simple flushing [13]. In practice, applying
simple flushing to an out-of-order machine is infeasible
due to capacity limits in verification.
Sawada andHunt [33] have verified an out-of-order im-

plementation two different ways: usingflush-point equality
(Definition 14) and Burch–Dill style informed-pointwise
abstraction (Definition 7). They found flush-point equal-
ity to be significantly easier. Hosabettu [20] first verifies

M.D. Aagaard et al.: Superscalar microprocessor correctness statements 311

pointwise flushing and then concludes flushpoint refine-
ment because flushing a flushed state has no effect. From
this and other anecdotal evidence, we postulate thatflush-
point equality is a verification convenience, i.e., realistic
machines that satisfy flush-point equality will also sat-
isfy informed-pointwise abstraction or stuttering abstrac-
tion. In the case of machines without external interrupts,
a flushing-style abstraction function should suffice, while
a machine with interrupts would require a more sophis-
ticated abstraction function to keep the interrupt trace
aligned between the specification and implementation.
Stalls complicate the alignment of the implementa-

tion and specification. Pnueli and Arons [31] use point-
wise refinement (PRNN) with a specification that self-
loops when no instruction retires. Others use informed-
pointwise with the flushing abstraction where the im-
plementation is flushed and the specification self-loops
when no instruction is issued. A recent trend is to use
flush-point equality [33, 34] or flush-point refinement [4,
20, 37], where the implementation and specification are
compared only when the implementation is in a flushed
state.
Verifying machines with exceptions complicates the

instantiation of the match parameter. Most approaches
in the literature synchronize the implementation and spe-
cification machines at instruction issue. However, Damm
and Pnueli [14] and Arons and Pnueli [5] synchronize at
retirement, an approach that makes it easier to handle
exceptions. The synchronization point is encapsulated in
the definition of the match and alignment parameters and
is not distinguished by our framework.
In Fig. 6, almost all of the intermediate correctness

statements lead to the top-level correctness statements
by tracing along the edges in the graph. The two ex-
ceptions are completion functions [20] and incremental
flushing [37], whose use of mechanized theorem proving
enables these more complicated verification strategies.
It is natural to ask: when starting a verification, which

correctness statement should I try to prove? In practice,
the choice of correctness statement depends on the com-
plexity of the microarchitectural model in question and
the verification technology available. This issue deserves
further study, but we can make a few preliminary obser-
vations. If the implementation does not always execute
an instruction, then informed-pointwise is chosen over
pointwise alignment. If the implementation can execute
instructions out-of-order, then flush-point alignment is
often chosen, because for tighter alignments the match
becomes overly complicated. Finally, if the verification
technology of choice is based on symbolic simulation, the
implementation is usually deterministic.
In related work, we have formalized the framework in

a theorem prover and mechanically verified the partial
order between correctness statements [15, 16]. Through
this mechanization process, we have discovered and ver-
ified relationships among more specific points in the
framework. For example, we have proved that must-

issue alignment with a flushing match implies flush-point
alignment with an equality match. Our goal is to link
this mechanized, reusable theory with particular verifi-
cation strategies such as completion functions [20] or the
MAETT [33].
Our framework is not an end in itself. Rather, it should

be used as a foundation for further investigation and
a deeper understanding of developments in the for-
mal verification of high-level models of microprocessors.
There are options for the framework’s parameters that
we have not enumerated, and we anticipate that some
of these will find useful application. For example, as
other approaches besides Sawada and Hunt [34] begin
to include external interrupts, we anticipate that addi-
tional points in the correctness space will be explored.
It remains to be determined what the framework indi-
cates about the relative quality of correctness criteria. It
would also be fruitful to explore the potential of using the
framework to predict the difficulty of different verification
approaches.

Acknowledgements. We thank Andrew Martin of Motorola, Meng
Lou of the University of Waterloo, Ken McMillan of Cadence, and
Anthony Fox of the University of Cambridge for helpful discus-
sions about this work. We also thank the anonymous reviewers for
their helpful comments. The first and third authors are supported
in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC). The first author is also supported in part by
a grant from Intel Corporation.

Note added in proof
In subsequent work, the framework described in this pa-
per is called Microbox.

References

1. Aagaard, M.D., Cook, B., Day, N.A., Jones, R.B.: A frame-
work for microprocessor correctness statements. In: Margaria,
T., Melham, T., (eds.), IFIP WG10.5 Advanced Research
Working Conference on Correct Hardware Design and Verifi-
cation Methods (CHARME), Lecture Notes in Computer Sci-
ence, vol. 2144. Springer, Berlin Heidelberg New York, 2001,
pp. 433–448

2. Abadi, M., Lamport, L.: The existence of refinement map-
pings. J Theoret Comput Sci 2(82):253–284, 1991

3. Arons, T.: Using timestamping and history variables to ver-
ify sequential consistency. In: Berry, G., Comon, H., Finkel,
A., (eds.), Workshop on Computer-Aided Verification (CAV),
Lecture Notes in Computer Science, vol. 2102. Springer, Berlin
Heidelberg New York, 2001, pp. 423–435

4. Arons, T., Pnueli, A.: Verifying Tomasulo’s algorithm by re-
finement. In: International Conference on VLSI Design, pp.
92–99, 1999

5. Arons, T., Pnueli, A.: A comparison of two verification
methods for speculative instruction execution with exceptions.
In: Graf, S., Schwartzbach, M., (eds.), Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Lec-
ture Notes in Computer Science, vol. 1785. Springer, Berlin
Heidelberg New York, 2000, pp. 487–502

6. Arvind, and Shen, X.: Using term rewriting systems to design
and verify processors. IEEE Micro 19(3):36–46, 1999

7. Austin, T.: DIVA: A dynamic approach to microprocessor ver-
ification. J Instruction-Level Parallelism 2, 2000

8. Beatty, D., Bryant, R.: Formally verifying a microprocessor
using a simulation methodology. In: ACM/IEEE Design Au-
tomation Conference, pp. 596–602, 1994

312 M.D. Aagaard et al.: Superscalar microprocessor correctness statements

9. Berezin, S., Biere, A., Clarke, E., Zhu, Y.: Combining sym-
bolic model checking with uninterpreted functions for out-of-
order processor verification. In: Gopalakrishnan, G., Wind-
ley, P., (eds.), Formal Methods in Computer-Aided Design
(FMCAD), Lecture Notes in Computer Science, vol. 1522.
Springer, Berlin Heidelberg New York, 1998, pp. 369–386

10. Bose, S., Fisher, A.: Verifying pipelined hardware using sym-
bolic logic simulation. In: International Conference on Com-
puter Design, pp. 217–221, 1989

11. Bryant, R., German, S., Velev, M.: Processor verification using
efficient decision procedures for a logic of uninterpreted func-
tions. In: Murray, N.V., (ed.), Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX ’99),
Lecture Notes in Computer Science, vol. 1617. Springer, Berlin
Heidelberg New York, 1999, pp. 1–13

12. Burch, J.: Techniques for verifying superscalar microproces-
sors. In: ACM/IEEE Design Automation Conference, pp. 552–
557, 1996

13. Burch, J., Dill, D.: Automatic verification of pipelined mi-
croprocessor control. In: Dill, D.L., (ed.), Workshop on
Computer-Aided Verification (CAV), Lecture Notes in Com-
puter Science, vol. 818. Springer, Berlin Heidelberg New York,
1994, pp. 68–80

14. Damm, W., Pnueli, A.: Verifying out-of-order executions. In:
Li, H.F., Probst, D.K., (eds.), IFIP WG10.5 Advanced Re-
search Working Conference on Correct Hardware Design and
Verification Methods (CHARME), pp. 23–47. Chapman and
Hall, London, 1997

15. Day, N.A., Aagaard, M.D., Lou, M.: A formal analysis of the
will-retire correctness statement. Technical Report 2002-14,
University ofWaterloo, Department of Computer Science, 2002

16. Day, N.A., Aagaard, M.D., Lou, M.: A mechanized theory
for microprocessor correctness statements. Technical Report
2002-11, University of Waterloo, Department of Computer
Science, 2002

17. Fox, A., Harman, N.: Algebraic models of correctness for mi-
croprocessors. Formal Aspects of Computing 12(4):298–312,
2000

18. Henzinger, T., Qadeer, S., Rajamani, S.: You assume, we
guarantee: methodology and case studies. In: Hu, A.J.,
Vardi, M.Y., (eds.), Workshop on Computer-Aided Verifica-
tion (CAV), Lecture Notes in Computer Science, vol. 1427.
Springer, Berlin Heidelberg New York, 1998, pp. 440–451

19. Hosabettu, R., Gopalakrishnan, G., Srivas, M.: Verifying ad-
vanced microarchitectures that support speculation and ex-
ceptions. In: Emerson, E.A., Sistla, A.P., (eds.), Workshop on
Computer-Aided Verification (CAV), Lecture Notes in Com-
puter Science, vol. 1855. Springer, Berlin Heidelberg New
York, 2000, pp. 521–537

20. Hosabettu, R., Srivas, M., Gopalakrishnan, G.: Decomposing
the proof of correctness of pipelined microprocessors. In: Hu,
A.J., Vardi, M.Y., (eds.), Workshop on Computer-Aided Veri-
fication (CAV), Lecture Notes in Computer Science, vol. 1427.
Springer, Berlin Heidelberg New York, 1998, pp. 122–134

21. Hosabettu, R., Srivas, M., Gopalakrishnan, G.: Proof of cor-
rectness of a processor with reorder buffer using the comple-
tion functions approach. In: Halbwachs, N., Peled, D., (eds.),
Workshop on Computer-Aided Verification (CAV), Lecture
Notes in Computer Science, vol. 1633. Springer, Berlin Heidel-
berg New York, 1999, pp. 47–59

22. Jones, R., Skakkebæk, J., Dill, D.: Reducing manual ab-
straction in formal verification of out-of-order execution. In:
Gopalakrishnan, G., Windley, P., (eds.), Formal Methods in
Computer-Aided Design (FMCAD), Lecture Notes in Com-
puter Science, vol. 1522. Springer, Berlin Heidelberg New
York, 1998, pp. 2–17

23. Lahiri, S., Pixley, C., Albin, K.: Experience with term-level
modeling and verification of theM*COREmicroprocessor core.
In: 6thAnnual IEEE International Workshop onHighLevel De-
sign, Validation and Test (HLDVT’01), pp. 109–114, 2001

24. Manolios, P.: Correctness of pipelined machines. In: Hunt,
W.A., Johnson, S.D., (eds.), Formal Methods in Computer-
Aided Design (FMCAD), Lecture Notes in Computer Science,

vol. 1954. Springer, Berlin Heidelberg New York, 2000, pp.
161–178

25. McMillan, K.: Verification of an implementation of Tomasu-
lo’s algorithm by compositional model checking. In: Hu, A.J.,
Vardi, M.Y., (eds.), Workshop on Computer-Aided Verifica-
tion (CAV), Lecture Notes in Computer Science, vol. 1427.
Springer, Berlin Heidelberg New York, 1998, pp. 110–121

26. Milner, R.: An algebraic definition of simulation between pro-
grams. In: Joint Conference on Artificial Intelligence, pp. 481–
489. British Computer Society, London, 1971

27. Mneimneh, M., Aloul, F., Weaver, C., Chatterjee, S., Sakallah,
K., Austin, T.: Scalable hybrid verification of complex micro-
processors. In: ACM/IEEE Design Automation Conference,
pp. 41–46, 2001

28. Nalumasu, R., Gopalakrishnan, G.: Deriving efficient cache
coherence protocols through refinement. In: Formal Methods
for Parallel Programming: Theory and Applications (FMPP-
TA’98), Lecture Notes in Computer Science, vol. 1388.
Springer, Berlin Heidelberg New York, 1998, pp. 857–870

29. Park, S., Dill, D.: Protocol verification by aggregation of dis-
tributed transactions. In: Alur, R., Henzinger, T.A., (eds.),
Workshop on Computer-Aided Verification (CAV), Lecture
Notes in Computer Science, vol. 1102. Springer, Berlin Heidel-
berg New York, 1996, pp. 300–310

30. Patankar, V., Jain, A., Bryant, R.E.: Formal verification of an
ARM processor. In: International Conference on VLSI Design,
pp. 282–287. IEEE, New York, 1999

31. Pnueli, A., Arons, T.: Verification of data-insensitive cir-
cuits: An in-order-retirement case study. In: Gopalakrish-
nan, G., Windley, P., (eds.), Formal Methods in Computer-
Aided Design (FMCAD), Lecture Notes in Computer Science,
vol. 1522. Springer, Berlin Heidelberg New York, 1998, pp.
351–368

32. Qadeer, S.: Algorithms and methodology for scalable model
checking. PhD thesis, Elec. Eng., Comp. Sci., University of
California at Berkeley, 1999

33. Sawada, J., Hunt, W.: Trace-table-based approach for pipe-
lined microprocessor verification. In: Grumberg, O., (ed.),
Workshop on Computer-Aided Verification (CAV), Lecture
Notes in Computer Science, vol. 1254. Springer, Berlin Heidel-
berg New York, 1997, pp. 364–375

34. Sawada, J., Hunt, W.: Processor verification with precise ex-
ceptions and speculative execution. In: Hu, A.J., Vardi, M.Y.,
(eds.), Workshop on Computer-Aided Verification (CAV),
Lecture Notes in Computer Science, vol. 1427. Springer, Berlin
Heidelberg New York, 1998, pp. 135–146

35. Sawada, J., Hunt, W.: Results of the verification of a complex
pipelined machine model. In: Pierre, L., Kropf, T., (eds.), IFIP
WG10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME), Lec-
ture Notes in Computer Science ,vol. 1703. Springer, Berlin
Heidelberg New York, 1999, pp. 313–316

36. Shen, X., Arvind: A methodology for designing correct cache
coherence protocols for DSM systems. Technical Report CSG
Memo 398 (A), MIT, Mass., 1997

37. Skakkebæk, J., Jones, R., Dill, D.: Formal verification of
out-of-order execution using incremental flushing. In:
Hu, A.J., Vardi, M.Y., (eds.), Workshop on Computer-Aided
Verification (CAV), Lecture Notes in Computer Science,
vol. 1427. Springer, Berlin Heidelberg New York, 1998, pp.
98–109

38. Srivas, M., Bickford, M.: Formal verification of a pipelined mi-
croprocessor. IEEE Trans Software Eng pp. 52–64, 1990

39. Srivas, M.K., Miller, S.P.: Applying formal verification to
a commercial microprocessor. In: Computer Hardware De-
scription Languages, pp. 493–502, 1995

40. Velev, M., Bryant, R.: Formal verification of superscalar mi-
croprocessors with multicycle functional units, exceptions,
and branch prediction. In: ACM/IEEE Design Automation
Conference, pp. 41–46, 2000

41. Windley, P., Coe, M.: A correctness model for pipelined micro-
processors. In: Theorem Provers in Circuit Design, pp. 32–51.
Springer, Berlin Heidelberg New York, 1994

