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Abstract Algebraic verification techniques manipulate the structure of
a circuit while preserving its behavior. Algorithmic verification tech-
niques verify properties about the behavior of a circuit. These two tech-
niques have complementary strengths: algebraic techniques are largely
independent of the size of the state space, and algorithmic techniques
are highly automated. It is desirable to exploit both in the same verifica-
tion. However, algebraic techniques often use stream-based models of cir-
cuits, while algorithmic techniques use state-based models. We prove the
consistency of stream- and state-based interpretations of circuit models,
and show how stream-based verification results can be used hand-in-hand
with state-based verification results. Our approach allows us to combine
stream-based algebraic rewriting and state-based reasoning, using SMV
and SVC, to verify a pipelined microarchitecture with speculative exe-
cution.

1 Introduction

Hardware verification techniques can be broadly grouped into those that reason
about both the behavior and structure of circuits, and those that reason just
about the behavior. Algebraic techniques, such as retiming (e.g., [29,18]), ma-
nipulate the structure of the circuit while preserving its behavior. They have the
advantage of being largely independent of the size of the state space. Algebraic
techniques often manipulate stream-based models of circuits, i.e., they treat cir-
cuits as functions (streams of values). Algorithmic verification techniques, such
as model checking [10,30], verify properties about the behavior of a state-based
model, i.e., a state transition system, and have the advantage of being highly
automated.

In this work, we bridge the gap between these two forms of models by proving
that verification results in the stream-based world correspond to correctness cri-
teria of state-based models. We use O’Donnell’s method to provide both stream-
and state-based interpretations of circuit descriptions [24]. We use the notation
{-} for the stream-based interpretation, and [-] for the state-based interpretation.



The first contribution of this paper is proving that the behavioral equivalence
of the stream-based interpretation of two models, ¢ and y, implies that the
state-based interpretation of z simulates (<;) the state-based interpretation of
y:

{z} = {v} = [=] < [yl

We refer to this result as the Verification Correspondence Theorem. We use
Milner’s definition of simulation [20]. In order to prove the Verification Corre-
spondence Theorem we prove a general result about the consistency between
the stream- and state-based interpretations. This general result, which we call
the Interpretation Consistency Theorem, can be used to prove the relationships
between other kinds of correctness criteria, such as bisimulation [25,21].
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Figure 1. Verification Strategy for the Example

The second contribution of the paper is a demonstration of how the Verifica-
tion Correspondence Theorem can be used to enable algebraic and algorithmic
techniques to work hand-in-hand in microarchitecture verification. An outline of
the approach we used for verifying a pipeline against an instruction set architec-
ture (ISA) is illustrated in Figure 1. We decompose the proof that a pipelined
microarchitecture with speculative execution (pipe) simulates an ISA into three
parts. First, we rely on the algebraic manipulation techniques of Matthews and
Launchbury to simplify the stream-based interpretation of the pipeline to an
equivalent sequential (non-pipelined) model (seq) by retiming and removing
forwarding logic ({pipe} = {seq}) [18]. The sequential model is less complex,
making it more amenable to automated verification. The Verification Corre-
spondence Theorem allows us to infer that the state-based interpretation of
pipe simulates the state-based interpretation of seq ([pipe] <s [seq]). Next, we
apply the algorithmic techniques of Burch and Dill [7], but first we must over-
come the problem that the model we are verifying does not have a flush signal.
We construct a version of the model with a flush input (fseq), and the second
step in the proof uses algorithmic techniques to verify the state-based model
without flush ([seq]) matches the model with flush when flush is false ([fseq]r)



ie., ([fseqlr <s [seq]). In the third step, we also use algorithmic techniques
to check that the state-based interpretation of the sequential model with flush
simulates the ISA ([fseq]r <s ISA). This proof requires invariants. In the third
step, we use symbolic model checking [6] implemented in SMV [19] to check the
invariants, and simulation-based validity checking implemented in the Stanford
Validity Checker (SVC) [7,3]. From these three steps, we can conclude that the
pipeline simulates the ISA ([pipe] < ISA).

Currently, we use separate tools to accomplish each of the tasks in our verifi-
cation strategy and chain these steps together in a paper proof. Our Verification
Correspondence Theorem is designed to facilitate the integration of algebraic
and algorithmic reasoning tasks within a theorem proving environment. Towards
that end, we have chosen an approach applicable to shallowly embedded models
thereby allowing us to use existing algebraic techniques and theorem proving
infrastructure. A shallow embedding in a host language or logic means that the
primitives of the model are functions of the host language - there is no sepa-
rate representation of the abstract syntax of the modeling language in the host
language [5]. A deep embedding involves an extra level of indirection in proof.
Stream- and state-based interpretations of a model are created by providing two
different definitions of the base functions for constructing signals. The approach
does not require syntactic analysis of the model — it is not a translation — but
instead uses the evaluation mechanism of the host language to calculate the two
interpretations. It has the advantage that the two interpretations have the same
meaning for all constructs except the base functions. We witnessed the benefit
of having a shallow embedding in our proof of the Interpretation Consistency
Theorem because we could take direct advantage of an existing framework for
proving relationships between multiple interpretations [23]. A further benefit of
a shallow embedding is that we avoid building the infrastructure of a translator
or special-purpose support for the modeling language. Also, the language can
use many convenient features of the host language in constructing a model, such
as higher-order functions to generate circuits. Our result relating stream- and
state- based interpretations could potentially be applied to models written in
languages such as Hawk [11,17], DDD [15], Ruby [16], Lava [4,9], Lustre [14] and
stream-based methods for describing hardware in higher-order logic.

2 Model Descriptions

The base functions for constructing signals are: a family of lift operators (1ift1,
1ift2,...) and delay. Functions over combinational logic are lifted to functions
over signals using 1ift, and latches are introduced using delay. The initial value
of the latch is supplied as a parameter to the delay operator. Each delay has
a string label naming the latch. Circuits are described using a set of possibly
mutually recursive equations. Figure 2 shows a simple Boolean circuit. A delay is
graphically represented using a narrow shaded box. An advantage of this method
of description of hardware is that it facilitates modularity because of the ability
to hide internal state.



cktl inpl = outl where
dl = delay "d1" False inpl
ckt2 d2 = delay "d2" False
dl d3 (delay "d4" True x2)

inp1 xl__I__I>O_ outl x1 = 1ift2 (or) d1 d2
x2 = 1lift (not) (1lift2 (and) di1 d2)

outl = ckt2 x1

d2 d4_‘ ckt2 inp = out where
out = 1lift (not)
(delay "d3" False inp)

Figure 2. Example circuit

These base functions form the core of Hawk, a microarchitecture descrip-
tion language shallowly embedded in the pure functional programming language
Haskell [27]. Pipelines are constructed using these base functions and Haskell lan-
guage features such as complex datatypes and higher-order functions. Figure 3
shows a graphical representation of a Hawk pipeline. Hawk uses the transaction
abstraction to describe a structured collection of data [2,1,28]. A transaction
contains the opcode, source and destination registers, source and destination
values, program counter, and speculative program counter for an instruction.
Some units of the pipeline operate on transactions. For example, a register file
takes a transaction as input, reads the source values from the register file, and
outputs a transaction with these values in the source value fields. A bypass unit
(o) checks if the source registers for the incoming transaction match the desti-
nation register of the instruction forwarded, and if so, sets the source register
values to the value of the destination register. The streams and transactions of
Hawk have been used to model superscalar out-of-order microprocessors [11].

branch_misp

regFile

Figure 3. Hawk pipeline [18]

3 Stream-based Interpretation and Verification

There are two common, and isomorphic, stream-based interpretations of signals:
infinite lists of values and functions from time to values. Our results apply to



both representations. Definitions 1-6 are the definitions of the base functions for
the two stream-based interpretations. The stream-based interpretations ignore
the label (label), which will be used in the state-based interpretation (Section 4).

Streams as infinite lists:

Definition 1 {delay} label i inp = i : inp
Definition 2 {1iftl} f inp £ map f inp
Definition 3 {1ift2} f inp, inp, = zipWith f inp, inp,
where zipWith z (a:as) (b:bs) = (zab): zipWith z as bs
zipWith — — - 27
Streams as functions of time:
Definition 4 {delay} label i inp = At. if t =0 then i else inp (t — 1)
Definition 5 {liftl} f inp £ Xt f (inp t)
A

Definition 6 {1ift2} f inp, inp, At. f (inpy t) (inpy t)

Matthews and Launchbury derived and ver-

ified a set of algebraic rules for simpli-

: : fying Hawk microarchitecture models us-
“ ing an interpretation of signals as infinite
lists [18]. These laws allow the components

of a model to be rearranged in behavior-

Figure 4. Register Bypass Law [18] preserving ways to result in an equiva-

lent but simpler model. For example, their
register-bypass law (Figure 4) states that a

write-before-read register file followed by a bypass, with a delay on its writeback
line, has equivalent behavior to a write-before-read register file by itself. Appli-
cation of this rule allows for the removal of forwarding logic once a sufficient
amount of retiming has been done in a pipeline. They used Isabelle [26] both
to verify the laws and to transform the pipeline of Figure 3 into the simpler
one of Figure 5. While the validity of these rules was proved using coinductive
techniques, for the most part the use of the rules only requires rewriting.

branch_misp

Figure 5. Sequential model resulting from algebraic transformation [18]



4 State-based Interpretation and Verification

We use O’Donnell’s method of creating a state-based interpretation of a cir-
cuit by providing alternative definitions of delay and the family of 1ift opera-
tors [24]. O’Donnell had multiple interpretations for simulation and generating
netlists from a shallowly embedded gate-level hardware description language.
The user provides explicit string labels for the delay elements. The addition of
the labels provides a means of identifying state-holding elements and detect-
ing feedback loops within a shallow embedding. We extend his method slightly
to handle more complex datatypes, such as transactions, in order to apply the
technique to microarchitecture verification.

In the state-based interpretation, evaluating a circuit results in a state-
transition system: an initial state, a set of next-state equations (one for each
latch), and an observation function. A next-state equation matches a string
name with combinational circuitry. The observation function is a function that,
given a state, computes the values for the output signals. We use Ny, Iy, and
Op to be the next-state equations, initial state and observation function for
state model M. The next-state equations and observation functions are rep-
resented using a simple datatype for quantifier-free first-order logic. As in the
stream interpretation, evaluating a circuit with a combinational loop will not
terminate.

Definitions 7 and 8 show the state-based interpretations of delay and 1ift2.
The initial value (7) for a delay element is provided as one of the arguments. The
user supplies a name for the element in the label argument (label).

Definition 7 (State-based interpretation of delay).
[delay] label i inp =
Aseen. if label € seen
then (0, 0,label)
else let (N, [, 0) = inp (seenU {label}) in
({(label, O)} U N, {(label,i)} U I, label)

Definition 8 (State-based interpretation of lift2).
[1ift2] f inp, inp, =
Aseen. let (Ny, I, O) = inp, seen
(N2, I, O2) = inp, seen in
(NVUN,, LUL, f 0,0,)

The initial state, next-state equations and observation function for the simple
circuit of Figure 2 produced by the state-based interpretation is:

State variables = d1, d2, 43, d4
Ikt = d3 < False, d1 < False, d2 < False, d4 < True
Nepe = d3 < d1Vd2, dl < inpl, d2 « d4, d4 < —(d1 A d2)
Ockt = —d3

The state-based interpretation is calculated by passing as arguments a symbolic
representation of the inputs along with an empty list as the list of seen labels to



the circuit. The calculation follows the data flow backwards through the fanin of
each circuit element. When traversing the example circuit, we encounter d3, di,
and d4 each once, and d2 twice. We see d2 in the fanin of d3, and again after
having passed through d2 and d4. At each latch, if the label has not been seen, the
method retrieves the set of next-state equations, initial state, and combinational
circuitry for the inputs. The next-state equation for a latch is the combinational
circuitry of the input signal. The combinational output of a delay is just a term
representing the name of the delay. If the label has been seen at a latch, as in the
case of seeing d2 a second time when calculating the input for d4, the method
does not traverse through d2 again, because it has already been traversed.

The next-state equations resulting from a state-based interpretation of a
circuit are used to create input for existing state-based verification tools. We
provide links to two such tools: the SMV model checker [19], and SVC, a tau-
tology checker for a subset of first-order logic [3]. Depending on the logic of the
tool, we can generate either interpreted or uninterpreted functions for some op-
erators. To link with SMV, we generate an SMV input file. To link with SVC we
symbolically simulate the next-state equations in Haskell, and use a previously
implemented tight link between Haskell and SVC to create the internal SVC
representations of the terms [12].

4.1 Circuit Structure

Because the labels make the structure of the k2

circuit explicit, two circuits with the same be-  inpl 7> xl D | outl
d5= 4

havior in the stream-based interpretation may
result in different state-based interpretations.
For example, the circuit of Figure 6 has the d4

same observational behavior as that of Fig-

ure 2 but the state-based interpretation has

the additional state-holding element d5. The Figure 6. Equivalent to Figure 2

equivalence of the stream-based interpretation of Figures 2 and 6, along with
the Interpretation Consistency Theorem ensure both state-based interpretations
have equivalent observational behavior.

4.2 Valid Labeling of Delays

A danger in our method is that the user can accidently use the same label on
multiple delays in the circuit. This can lead to an inconsistent interpretation
of the model in the state-based world. This invalid labeling can occur in two
different ways: one that we can detect in the state-based interpretation of delay
(Definition 7) and one that requires an external design-rule-check for unique
labels on all delays.

In Figure 7, the label ¢ is used for two different delays. We can detect this
kind of invalid labeling because there will be two conflicting next-state equations



for the same label. As a side note, we have an optimized version of delay that
uses the assumption that the circuit has a valid labeling to avoid redundant
traversal.

In Figure 8, both occurrences of ¢ appear on the same “branch” of the cir-
cuit. When the ¢ closest to a is encountered, the first ¢ is already on the seen
list, and so the traversal algorithm does not ever encounter a. The state-based
interpretation of this circuit matches that one shown in Figure 9.

o] o] (o]
a’ a
:]j d::I:
b < b

Figure 7. Incorrect labeling 1 Figure 8. Incorrect labeling 2

Figure 9. State-based interpretation of Figure 8

4.3 Related Work

Although the aims are the same, our work differs from the signal to state ma-
chine translations performed for Lustre by LUSTRE-V2 [14], or for Ruby by T-
Ruby [31] and others. Whereas they analyze the program structure and compile
a state machine, we want the advantages of working with a shallow embedding
and therefore determine the different representations using multiple definitions
of base functions.

Singh also uses the technique of alternative definitions for base functions,
which he calls non-standard interpretations, to provide simulation and test pat-
tern generator interpretations (among others) for Ruby [32]. His work applies
only to combinational logic and feedback loops are not allowed.

The original version of the Haskell-based hardware description language Lava
was a monadic embedding in Haskell [4]. It used monads to thread the process of
generating unique names for state-holding elements through the circuit descrip-
tion in a hidden manner. A difficulty with this approach is that normal function
application cannot be used, but rather a new function application operator must
be defined.

The recent version of Lava [9] uses Claessen and Sands notion of “observ-
able sharing” [8], which does not require labels for delays, to provide multiple



interpretations of a shallowly embedded language. Their approach is to use a lan-
guage extension to Haskell that allows them to discover sharing within the heap.
The advantage to their approach is that the model does not have to name each
state-holding element. The disadvantage is that observable sharing is an impure
language feature that precludes the applicability of their approach to pure pro-
gramming languages and formalisms such as higher-order logic. For generality,
we have followed O’Donnell’s approach of explicit labeling. In addition to the
advantage of generality, we find that explicit labeling has a pragmatic advantage:
labels allow the user to provide the names used in the state-based verification.
This technique has advantages for debugging and allows the verifier to manage
the complexity of many automated verification techniques more easily through
means such as controlling variable order. The disadvantage of explicit labeling
is that the user has to write these labels and inconsistent labeling is possible.
O’Donnell describes methods for generating names semi-automatically, such as
using the circuit hierarchy to create structured labels.

5 Formal Connection Between State and Stream
Interpretations

In this section, we formalize and verify the connection between state- and stream-
based verification. Our main result of the section is the Verification Correspon-
dence Theorem (Theorem 1), which says that if two models, x and y, are equiv-
alent in the stream-based interpretation, then the state-based interpretation of
x simulates (<) the state-based interpretation of y.

Theorem 1 (Verification Correspondence).
Ve, y. {z} = {y} = [2] <s [y]

For simulation (<), we use Milner’s definition [20], restated as Definition 9,
where z <, y means that there exists a relation R, such that if R holds for two
states g, and gy, then R must hold after taking one step of z and y.

Definition 9 (Simulation).
r<sy £ 3R. qu:Qy- R(‘]w:‘]y) = R (Nm ‘Zac:Ny qy)

Our proof of the Verification Correspondence Theorem assumes that the two
models, z and y, have a valid labeling, as described in Section 4.2. The proof
is described in Section 5.2 and relies upon our Interpretation Consistency The-
orem. Our Interpretation Consistency Theorem shows that O’Donnell’s method
produces consistent interpretations in the state- and stream-based worlds; its
proof is sketched in Section 5.1.

5.1 Consistency of State and Stream Interpretations

The hardware modeling language we use, Hawk, is implemented as a shallow
embedding in Haskell. The fundamental type for describing hardware in Hawk



is a signal: wires are signals and gates are functions from signals to signal.
Our stream-based interpretation of a signal is a function of time. Our state-
based interpretation is a state transition system that consists of an initial state,
next-state function, and observation function.

We define consistency between state- and stream-based interpretations of a
model z to mean that: for all k, iterating the state-based interpretation k times
produces the same output as sampling the stream-based interpretation at time
k (Theorem 2). The function StsToStream iterates a state transition system to
produce a stream (Definition 10).

Theorem 2 (Interpretation consistency).
Vz : signal. StsToStream [x] = {x}

Definition 10.
StsToStream (N, I, 0) t £ O (StsToStream' (N, I) t)
where StsToStream' (N,I) 02 T
StsToStream' (N,I) t = N (StsToStrean’ (N,I) (t — 1))

In Hawk, signal is a parameterized type (e.g., signal «). To simplify the
proof of the Interpretation Consistency Theorem, we treat signals as an un-
parameterized type (signal) over an uninterpreted type T'. We also restrict
ourselves to 1iftl, which lifts functions of one argument (e.g., an inverter).
Extending the proof to a parameterized signal type and multi-argument 1ifts
would not pose any technical challenges.

Haskell is based on the second-order polymorphic lambda calculus [33]. Our
hardware descriptions are programs in an extension of the lambda calculus that
includes two new constants: delay and lift. The proof of our Interpretation
Consistency Theorem uses Mitchell and Meyer’s work on logical relations [23].
The logical relations framework facilitates proving theorems that relate the
meaning of a lambda-calculus program in interpretations that assign different
meanings to constants, as we do with delay and lift.

Mitchell and Meyer’s “Fundamental Theorem of Second-Order Logical Re-
lations” (Theorem 3) states that if a relation, ¢, is a constant preserving logical
relation between two interpretations, then the meanings of any program in the
two interpretations are related by ¢. The use of recursion in our hardware de-
scriptions gives us the additional obligation to show that the relation is strict
and continuous [22].

Theorem 3 (Fundamental Thm of Second-Order Logical Relations).
For all interpretations [] and {-} and for all ¢ such that ¢ is a logical relation
over [-] and {-}: if ¢ preserves the constants of the language then, for all terms

e of type T in the language: ¢, ([e], {e})

A logical relation is actually a family of relations: one for each possible type
in the language. Mitchell and Meyer introduce and verify a logical relation for
the standard types and constants in lambda calculus. Mitchell [22] extends this
relation to include recursion.



Our Interpretation Consistency Theorem describes a relationship between the
state- and stream-based interpretations of expressions of type signal, which is
captured in Definition 11. We prove the Interpretation Consistency Theorem
by 1) extending Mitchell’s logical relation with Definition 11 for type signal
and including delay and 1ift as new constants in the lambda calculus; then 2)
proving that this new family of relations is a strict and continuous, constant-
preserving logical relation.

Definition 11. ¢gignai(er,e2) £ (StsToStream el = e2)

The three proof obligations of strictness, continuity, and logicality are solved
quite easily because we expressed ¢gigna1 in the lambda calculus. Because ¢signa1
fully evaluates both of its arguments, ¢signa1 is strict. Only continuous expres-
sions can be expressed in our formalism, and therefore ¢ is continuous. Logicality
simply means that ¢’s treatment of function application and lambda-abstraction
is compatible with the lambda calculus, which it clearly is. To prove that ¢ is
constant preserving, we prove that, for all types 7 and all constants ¢ of type T,
6 ([l {c})-

Theorems 4 and 5 state that ¢ preserves the meaning of 1ift and delay.
Of the two, delay has the more interesting proof, so we do not describe the
verification of 1ift.

Theorem 4 (Consistency of 1ift).
¢(T~>T)~>signal~>signal([[lift]]a {1ift})

Theorem 5 (Consistency of delay).
¢string—>T—>signal—>signal([[de]-a-y]], {delay})

The correctness of delay relies on four properties:

1. The value of a label (i.e., a delay element) in a clock cycle is equivalent to
evaluating the combinational logic feeding the delay element in the previous
clock cycle.

2. If a latch is not used in the circuit (e.g. it has no fanout), then adding the
equation for the latch to the next-state equations of the model does not
affect the behavior of the model.

3. When evaluating a model, if a delay is encountered whose label is already in
the set of next-state equations for the model, then the combinational logic
feeding that delay is equivalent to the next-state equation already computed
for the label.

4. Every latch in the circuit has an equation in the set of next-state equations
of the model.

The first property is proved by induction over the values produced from
a delay. The second property relies on the correctness of adding a next-state
equation for a label to the set of next-state equations of a circuit. The third
and fourth properties are related to the two forms of invalid labelling described
in Section 4.2. Duplicate labels on different branches of a fanin cone (Figure 7)
conflicts with the third property and duplicate labels on the same branch of a
fanin cone (Figure 8) conflicts with the fourth property.



5.2 Verification Correspondence

To prove that two models,  and y with equivalent stream-based behavior sim-
ulate each other (Verification Correspondence Theorem), we assume {z} = {y}
and prove [z] <s [y]-

Applying the Interpretation Consistency Theorem to both sides of the as-
sumption produces:

StsToStreanm [z] = StsToStrean [y]

Using the definition of StsToStream, stream equality, and induction, we know
that the observations, O, and Oy, of iterating  and y a total of ¢ times are
equal.

Vt. 04(N. I,) = Oy (N} I,)

Next we unfold the definition of <; (Definition 9) and provide a witness for
the simulation relation. We define two states to be related iff both are reachable
in the same number of steps and the observations at those states are equal:

R(QzaQy) =3t (¢z = Ni L) A ((Iy = N; Iy) A(Oz gz = Oy qy)

The proof is completed using skolemization, substitution and reasoning about
function composition.

6 Example Verification

To demonstrate the use of the Verification Correspondence Theorem, we prove
that the state-based interpretation of the pipeline in Figure 3 (pipe) simulates
the ISA, which is a state-based model, i.e.:

[pipe] < ISA

The state-based ISA is shown in Figure 10. It takes a single input, stutter, that
we use to make the ISA run at the same rate as the pipeline. Figure 11 shows
the decomposition of our proof. To achieve this result, we chain together proof
steps involving two intermediate models, seq, and fseq. The Verification Corre-
spondence Theorem allows us to use both stream-based algebraic techniques and
state-based algorithmic methods in our proof.

The first step in the proof was previously completed by Matthews and Launch-
bury using algebraic transformations in the theorem prover Isabelle. They showed
that the pipeline of Figure 3 (pipe) is observationally equivalent to the sequential
model of Figure 5 (seq), that is they proved that the stream interpretations of
the pipeline and sequential models are equivalent:

{pipe} = {seq}



Nisa =
let (opc,sl ,s2,dest, imm) = read instrMem pc
srcl =read regs sl
src2 =read regs s2 in
mem < if ((—stutter) A isStore opc)
then (write mem srcl src2 )
else mem
pc < if stutter
then pc
else (if (isIBrz opc) /* indirect branch if zero */
then (if (srcl = 0) then src2 else (incpc pc))
else (if (isBrz opc) /* offset branch if zero */
then (if (srcl = 0) then (incpcby pc imm) else (incpc pc))
else (incpc pc)))
regs < if (—stutter A (isAlu opc V isLoad opc))
then (write regs dest (if (isLoad opc)
then (read mem srcl )
else (alu opc srcl src2)))
else regs
instrMem < instrlMem

Figure 10. ISA

[pipe] <s ISA

T

[pive] <. [seq] [seql <. [fsedlr [fseqle <. ISA
Ver. Corr. Thm Lemma 1 Lemma 2
{pipe} = {seq} Vq.BD(gr,[seq], [fseq], id,0) Vq.Reachable(qr, Ng,Iq) =
(Isabelle) (SvQ) BD(qr, [[fseq]l, ISA, proj, 1)
Vq.Reachable(qr, Ng, I5) Vq.inv(gr) =
A BD(gr, [fseq], ISA, proj, 1)
= 1nv(qr) (SVC)
AG inv
(SMV)

Note: [fseq] = (Nﬂ, Iﬂ, Oﬂ)
qr means the state ¢ with the flush input False
[fseq] 7 means the model fseq with the flush input False
BD is the Burch-Dill correctness criteria

Figure 11. Proof tree for the example



From this and our Verification Correspondence Theorem, we can conclude the
pipeline simulates the sequential model, i.e., [pipe] <; [seq].

We use automated verification techniques applicable to state-based methods
to complete the remainder of the proof. For this example, we choose to use SMV
and SVC, but other methods could be applied.

Burch and Dill showed that for simple pipelines (such as our sequential one)
a simulation relation R can be automatically determined by flushing the pipeline
(fl) for some number of steps (n), and projecting relevant state-holding elements
(p), i-e., R(qz,qy) = (In.g, = (po f")(g)). Substituting this definition of R
into the definition of simulation, reduces the task of showing model z simulates
model y to showing that for some n:

Vg.Ny((pofi")q) = (po fi")(N: q)

This is often calling the Burch-Dill commuting diagram. We abbreviate this
expression using BD(q, N, Ny,p,n) = (Ny((pofl™) q) = (pofA")(N, q)). The
Burch-Dill result is that:

Lemma 1 (Burch-Dill implies simulation).
Vz, y'(vq'BD(Q: N, Ny:p) TL)) =<5y

The flush (fl) operation flushes the pipeline using the next state function N

and is defined as:
flq= Nqr

where g7 is the state ¢ with the flush input having value True. To apply the
Burch-Dill method, we needed to introduce another intermediate model, called
fseq, which is a version of the sequential model that takes a flush input. De-
termining the appropriate behavior for completing a flush and resuming normal
operation in the midst of potential hazards and branch mispredictions was one of
the more difficult parts of this verification effort. To ensure that fseq has exactly
the same behavior as seq when the flush signal is low, we verified that:

Vq.BD(qr, [seq], [fseq], id, 0)

where id is the identity function, and qp is the state ¢ with the flush input
having value False. We used SVC to carry out this proof. Based on Lemma 1,
from this we can conclude that [seq] <s [fseq]r, where [fseq]r is the state-based
interpretation of the fseq model with the flush input having value False.

The third branch in the proof shows that [fseq]r <; ISA. Again, we use Burch
and Dill’s result with a projection function (proj) that mimics the calculation
of the current pc in fseq based on the flush, hazard, and mispredict inputs to
map the fseq’s pc to the ISA. We found that to prove the commuting diagram,
we needed a number of invariants (inv) capturing aspects of the reachable state
space. Reachability is defined as Reachable(q, N,I) 2 3t.q = N*I. We proved,

Vq.Reachable(qr, N1, I11) => BD(qr, [fseq], [ISA], proj, 1)

in two steps. First, we used SMV to prove the invariants for limited word size and
register file size. Second, we use SVC with the ALU and branch prediction units



uninterpreted, to prove that the commuting diagram holds, under the invariants.
These two steps are related to simulation using the following lemma, which is
easily proven by incorporating reachability into the simulation relation:

Lemma 2 (Burch-Dill with reachability implies simulation).
Vz,y.(Vg.Reachable(q, Ny, Ny) = BD(q, N, Ny,p,n)) = & <; y

7 Conclusions and Future Work

The first contribution of this paper is the Verification Correspondence Theorem,
which relates stream-based algebraic verification results to Milner’s state-based
simulation correctness criteria. This theorem allows reasoning over both interpre-
tations of models to contribute to a verification result. The value of the Verifica-
tion Correspondence Theorem derives from the complementary strengths of the
two approaches: algebraic techniques can handle large state spaces, and algorith-
mic techniques are largely automated. It has wide application to stream-based
modeling languages such as Hawk, DDD, Ruby, Lava, Lustre, and descriptions
of hardware in higher-order logic.

The proof of the Verification Correspondence Theorem required a general re-
sult about the correspondence between O’Donnell’s stream- and state-based in-
terpretations of models. We plan to investigate how this general result, which we
called the Interpretation Consistency Theorem, can be used for non-deterministic
models, and stronger correctness criteria such as bisimulation. We also plan to
explore how to import state-based results into the stream-based algebraic world,
i.e., reversing the implication in the Verification Correspondence Theorem.

Our second contribution is showing the practical application of the Verifica-
tion Correspondence Theorem in the verification of a pipelined microarchitec-
ture with speculative execution. This example verification pulled together proof
steps carried out in the Isabelle theorem prover, the SMV model checker, and
SVC. Previously, Matthews and Launchbury’s microarchitectural algebra had
no connection to standard state-based techniques for processor verification. We
are working on additional connections to techniques such as symbolic trajectory
evaluation [30].

Our result is a key ingredient towards creating an integrated theorem-proving
verification environment where both stream- and state-based verification tech-
niques work hand-in-hand. We have chosen an approach applicable to shallowly
embedded models to simplify the application of existing algebraic techniques
and theorem proving infrastructure. Currently, the proof steps in our example
are chained together on paper using rules such as transitivity of simulation.
Mechanization of these steps within a theorem proving environment would help
for proof management and security. The first step in creating an integrated
environment is to mechanize the proofs of the Interpretation Consistency and
Verification Correspondence Theorems. By working within a theorem proving
environment, we could also use our result about the consistency between in-
terpretations to link stream-based algebraic results with state-based algebraic
results. For example, recent work by Gordon [13] uses algebraic manipulation of



state-based models to reduce the size of the state space before applying algo-
rithmic techniques such as model checking.
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