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Abstract. We present a technique for doing symbolic simulation of mi-
croprocessor models in the functional programming language Haskell. We
use polymorphism and the type class system, a unique feature of Haskell,
to write models that work over both concrete and symbolic data. We offer
this approach as an alternative to using uninterpreted constants. When
the full generality of rewriting is not needed, the performance of sym-
bolic simulation by evaluation is much faster than previously reported
symbolic simulation efforts in theorem provers.

Symbolic simulation of microprocessor models written in the Haskell pro-
gramming language [13] is possible without extending the language or its com-
pilers and interpreters. Compared to rewriting in a theorem prover, symbolically
simulating via evaluation of a program is generally much faster. Haskell’s type
class system allows a symbolic domain to be substituted for a concrete one with-
out changing the model or explicitly passing the operations on the domain as
parameters. Algebraic manipulations of values in the symbolic domain carry out
simplifications similar to what is accomplished by rewriting in theorem provers
to reduce the size of terms in the output.

Symbolic simulation in Haskell involves constructing a symbolic domain to
represent the operations of the model. The values of this domain are syntactic
representations of the machine’s behavior. For example, using a recursive data
type, an appropriate symbolic domain for numeric computations is:

data Symbo =
Const Int
| Var String
| Plus Symbo Symbo
| Minus Symbo Symbo
| Times Symbo Symbo

Haskell’s type class system allows us to make the operations that manipulate
data be overloaded on both concrete and symbolic data. A type class groups a
set of operations by the common type they operate over. For example, part of
the Num class definition is:



class Num a where

(#) :: a->a->a
(=) ::a->a->a
(¥) :: a->a->a
fromInt :: Int -> a

Parentheses indicate that the operation is infix. The parameter a after the
name of the class is a placeholder for types belonging in this class. The func-
tion fromInt turns integers into values of type a. This capability is very useful
when moving to the symbolic domain because it means existing uses of constant
integers do not have to be converted by hand into their representation in the
symbolic domain — fromInt is automatically applied to them by the parser.

In Haskell, the type Int is declared to be an instance of the Num class. We
also declare our symbolic data as an instance of Num using:

instance Num Symbo where
X +y = x ‘Plus‘ y

X -y = x ‘Minus‘ y
X %y = x ‘Times‘ y
fromInt x = Const x

Now without changing the microprocessor model, we can execute it for either
concrete data or symbolic data.

The symbolic domain must behave consistently with the concrete domain.
For the case of numbers, there are algebraic laws that hold for the concrete
domain that can be used to simplify the output of symbolic simulation. These
rules can be implemented for the symbolic domain by augmenting the instance
declaration for Symbo with cases that describe the algebraic rules. For example,
instead of just having the rule x + y = x ‘Plus‘ y, we have:

Var x + Var y = if (x == y) then Const 2 * Var x
else Var x ‘Plus‘ Var y
Const x + Const y = Const (x + y)

Const 0 + y =y
x + Const O =X
X +y = x ‘Plus‘ y

When control values in a program are symbolic, the output of symbolic sim-
ulation captures the multiple execution paths that the program could have fol-
lowed. To deal with symbolic control values, we extend the idea of a state to
include branches representing multiple execution paths. This leads us to have a
symbolic representation of Boolean terms that are used to decide the branch-
es. We introduce an abstraction of the “if-then-else” operation because the first
argument to the if operator may be symbolic. A multi-parameter type class
captures the behavior of our new ifc. A multi-parameter type class constrains
multiple types in a single class instantiation. In the case of ifc, we parameterize
the type of the first argument (the deciding value) separately from the type of



the other arguments. The result of the function has the same type as the second
and third arguments.

class Conditional a b where
ifc :: a->b ->Db ->b

The normal “if-then-else” operator is an instance of this class with the type
parameter a being Bool (concrete Booleans).

Further details and examples can be found in Day, Lewis, and Cook [7]. One
of these examples walks through symbolic simulation in Haskell of the simple,
non-pipelined, state-based processor model found in Moore [12].

We have also worked on symbolic simulation of a superscalar, out-of-order
with exceptions, pipelined microprocessor model in the Haskell-based hardware
description language Hawk [3,11]. We are now able to simulate symbolic data
flow for programs running on the model. We are currently extending the Hawk
library to handle symbolic control paths as well. Because it is stream-based, the
model does not have explicit access to its state. Hawk models usually process
transactions, which capture the state of an instruction as it progresses through
the pipeline. The key to having symbolic control flow is to have trees of trans-
actions flowing along the wires rather than just simple transactions. Instead of
simply having a top-level branching of state, the branching must be thread-
ed through the entire model, just as transactions are. This means that most
components will need to understand how to handle trees of transactions. We are
exploring how to best use a transaction type class to define easily a new instance
of transactions that are trees.

Symbolic simulation can be carried out with uninterpreted constants us-
ing rewriting in a theorem prover (e.g., [8,9]) or using more specialized tech-
niques such as symbolic functional evaluation [5]. Rewriting requires searching
a database of rewrite rules and potentially following unused simplifications [12].
Constructors in our symbolic domains play the same role as uninterpreted con-
stants in a logical model. Because our approach simply involves executing a
functional program, we do not suffer a performance penalty for symbolic simu-
lation compared with concrete simulation. Running on a platform roughly two
and half times faster than Moore [12], we achieved performance of 58 300 in-
structions per second compared to ACL2’s performance of 235 instructions per
second (with hints) for the same non-pipelined, state-based processor model.

Type classes avoid the need to pass the operations to all the components
of the model as in Joyce [10]. The type classes keep track of the higher-order
function parameters that Joyce grouped in “representation variables”.

The approach described in this paper is closely related to work on Lava [1],
another Haskell-based hardware description language. Lava has explored using
Haskell features such as monads to provide alternative interpretations of circuit
descriptions for simulation, verification, and generation of code from the same
model. Our emphasis has been more on building symbolic simulation on top of
the simulation provided by the execution of a model as a functional program.

Graph structures such as Binary decision diagrams (BDDs) [2] and Multiway
decision diagrams (MDGs) [4] are canonical representations of symbolic formu-



lae. In more recent work, we have investigated linking symbolic simulation in
Haskell directly with decision procedures for verification to take advantage of
the reduced size of representations in these packages [6].

The infrastructure required for using symbolic values and maintaining a sym-
bolic state set is reusable for simulation of different models. We believe the
approach presented in this paper may be applied in other languages with user-
defined data types, polymorphism, and overloading. However, a key requirement
is that overloading work over polymorphic types. Few programming languages
support this, although a different approach using parameterized modules, as in
SML, might also work well. Haskell’s elegant integration of overloading with type
inference makes symbolic simulation easy.

For their contributions to this research, we thank Mark Aagaard of Intel; Dick
Kieburtz, John Launchbury, and John Matthews of OGI; and Tim Leonard, and
Abdel Mokkedem of Compaq. The authors are supported by Intel, U.S. Air Force
Material Command (F19628-93-C-0069), NSF (EIA-98005542) and the Natural
Science and Engineering Research Council of Canada (NSERC).

References

1. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell.
In ACM Int. Conf. on Functional Programming, 1998.

2. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

3. B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microprocessors
in Hawk. In Workshop on Formal Techniques for Hardware, 1998.

4. F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision graphs
for automated hardware verification. Technical Report RC19676, IBM, 1994. Also
Formal Methods in Systems Design, 10(1), pages 7-46, 1997.

5. N. A. Day and J. J. Joyce. Symbolic functional evaluation. To appear in TPHOL-
s’99.

6. N. A. Day, J. Launchbury, and J. Lewis. Logical abstractions in Haskell. Submitted
for publication.

7. N. A. Day, J. R. Lewis, and B. Cook. Symbolic simulation of microprocessor models
using type classes in Haskell. Technical Report CSE-99-005, Oregon Graduate
Institute, 1999.

8. D. A. Greve. Symbolic simulation of the JEM1 microprocessor. In FMCAD, volume
1522 of LNCS, pages 321-333. Springer, 1998.

9. J. Joyce. Multi-Level Verification of Microprocessor Based Systems. PhD thesis,
Cambridge Comp. Lab, 1989. Technical Report 195.

10. J. J. Joyce. Generic specification of digital hardware. In Designing Correct Circuits,
pages 68-91. Springer-Verlag, 1990.

11. J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in Hawk.
In International Conference on Computer Languages, 1998.

12. J. Moore. Symbolic simulation: An ACL2 approach. In FMCAD, volume 1522 of
LNCS, pages 334-350. Springer, 1998.

13. J. Peterson and K. Hammond, editors. Report on the Programming Language
Haskell. Yale University, Department of Computer Science, RR-1106, 1997.



