Logical Abstractions in Haskell

Nancy A. Day

Abstract

We describe a generalization of the Haskell Boolean type,
which allows us to use existing decision procedures for rea-
soning about logical expressions. In particular, we have con-
nected Haskell with a Binary Decision Diagram (BDD) pack-
age for propositional logic, and the Stanford Validity Check-
er for reasoning in quantifier-free, first-order logic. We have
defined referentially transparent interfaces to these packages
allowing the user to ignore the details of their imperative
implementations. We found that having a tight connection
between the provers and Haskell allows Haskell to serve as a
meta-language enhancing the capabilities of the provers. We
illustrate the use of these packages for reasoning about a sort
algorithm and a simple microprocessor model. In the sort
example, the parametric nature of Haskell’s polymorphism
is used to lift the result of the BDD analysis to arbitrary
datatypes.

1 Introduction

Here’s some old advice: go through life like a swimming
duck — remain calm and unruffled on the surface, but pad-
dle like fury underneath. This advice applies to datatypes
in programming languages. Consider the Integer datatype
in Haskell. As far as the Glasgow Haskell compiler is con-
cerned, the operations of Integer are implemented with call-
s to the GNU multi-precision arithmetic library, with all its
ancillary mess of manipulating storage and pointers. Above
the surface, however, is quite another story. As far as the
user is concerned, Integer is just another numeric datatype
with the usual arithmetic operations defined on it. It is quite
possible to use Integer without thinking about the imple-
mentation mechanism at all. Of course, the plain numer-
ic interface provided by Haskell is far poorer than the rich
variety of methods provided by the full library. However,
experience suggests that, for most users, a simple interface
to a complex implementation provides far more benefit than
a complex interface used simply.

The goal of this paper is set out on the same program
for logical types like booleans. Excellent packages are now
available that implement decision procedures for different
logics, and we wondered whether clean interfaces could be
built to allow the details of the decision procedures to be
hidden under the surface.

John Launchbury

Jeff Lewis

Haskell’s type class system was designed to solve a thorny
problem in language design: how to combine overloading
and polymorphism of numeric operators. The problem was
motivated by the variety of numeric types. The solution
was general enough to also solve several similar problems
involving equality and printing. But, the notion of over-
loading booleans just didn’t arise. However, several recent
examples have made it clear that it’s useful to be able to
overload even simple types like booleans.

The Fran work on reactive animations demonstrates this
point nicely [9]. In Fran, datatypes are lifted over time. An
integer, for example, is replaced by a function from time
to integer, and the numeric operations are defined point-
wise. The same is done for equality. Are two time-varying
integers equal? The answer is a time-varying boolean. By
defining the boolean operations pointwise, it is easy to see
that functions from time to Bool are fully “boolean”.

Another example, and one which is the direct inspira-
tion for this work, is the Voss verification system [20], used
extensively for hardware verification. Voss uses a lazy func-
tional language called FL as its interface language. In FL,
booleans are implemented using Binary Decision Diagrams
(BDDs) [4]. In effect, a decision procedure for propositional
logic is built into the language, allowing the user to combine
simulation and verification in powerful ways.

In this paper, we introduce two new flavors of booleans
for Haskell. The first one follows FL by defining booleans
using Binary Decision Diagrams. The improvement over FL
is that we’re able to do this by a mixture of type classes,
the foreign function interface, and a little unsafePerformI0
magic, rather than by designing and implementing (and
maintaining!) a new language. For the second flavor of
booleans, we extend the logic to quantifier-free predicate
logic by using the Stanford Validity Checker (SVC) [2].

The implementations of each flavor are complex and have
a strong imperative feel to them, but for both we have de-
fined referentially transparent interfaces, allowing the un-
derlying tools to do their work while the user simply sees
the corresponding values. To some extent, this choice was
forced upon us: we found that a fairly tight integration with
SVC was necessary in order to avoid overly large intermedi-
ate data structures and to exploit the data sharing provided
by SVC.

Even though both implement decision procedures for log-
ics, BDDs and SVC are quite different in their approach.
BDDs represent propositional formulae maintained in a
canonical form. The results of operations are simplified in-
crementally, so equivalence between propositions is deter-

mined immediately by structural equivalence. In contrast,
because it handles a richer logic, the basic SVC operations
construct the problem statement. Much of the work is con-
tained in testing logical equivalence, which involves a cal-
| to the prover. What pleased us about the embedding in
Haskell is that both approaches are implemented in the same
framework, so the user has great freedom to decide which is
appropriate for the task.

The tight connection between the various provers and
Haskell allows Haskell to be used very naturally as a meta-
language, in effect enhancing the capabilities of each of the
logics. In the BDD case, we have an example where the
parametric nature of Haskell’s polymorphism can be used to
lift the result of the BDD analysis to arbitrary datatypes. In
the SVC case, we present an example where we introduce an
uninterpreted function, but use the expressiveness of Haskell
to generate a limited axiomatization of it.

In summary, the goal of this paper is to describe a new
easy-to-use power tool for the Haskell programmer’s work-
bench. Applications include verification of Haskell programs
within Haskell. This suggestion immediately brings to mind
visions of higher-order logics, but for now we’ll forgo gener-
ality in favor of the automation of simpler logics.

The rest of the paper is organized as follows. Section 2
presents the Boolean class. In Sections 3 and 4 we describe
BDDs, and provide an example leveraging the structure of
Haskell. In Section 5 we do the same for SVC and in Sec-
tion 6 we present a larger worked example using the power
of SVC. The remaining sections present discussion.

2 Logical Type Classes

We now do for Bool what the Num class does for numeric
types. That is, we define a type class signature for opera-
tions over booleans. It contains all the usual suspects, plus
implication (==>), mutual implication (<=>), and if-then-else
(ifDb).

class Boolean b where
true :: b
false :: b
(&&)
an
(==>)
(<=>)
not :: b -> b
ifb :: b ->b ->Db ->b

Bool is of course an instance of class Boolean.

We also need to refer to logical variables, which are not
an aspect of the Bool datatype. Thus, we introduce a new
class for logical variables.

class Var a where
var :: String -> a

For example, here’s a little proposition about distributing
&& over implication:

(var "a" ==> var "b") && (var "c" ==> var "d")

(var "a" && var "c") ==> (var "b" && var "d")

Of course, Bool is used in many places in the prelude.
One place that it shows up is in the definition of equality.
We define a variant of the Eq class where the boolean result
is abstract.

data BinTree a t =
Terminal t
| Branch a (BinTree a t) (BinTree a t)
deriving Eq

cofactor a (Terminal x) =

(Terminal x, Terminal x)
cofactor a c@(Branch b x y) =

if a == b then (x, y) else (c, c)

top2 x y =
a ‘min‘ b
where
a = index x
b = index y
index (Terminal _) = maxBound
index (Branch a _ _) = a

norm b@(Branch a x y) = if x == y then x else b
norm x = x

bddBranch a x y =
let a’ = top2 x y
(x1, x2) = cofactor a x
(y1, y2) = cofactor a y
in
if a <= a’ then
norm (Branch a x1 y2)
else
norm (Branch a’ (bddBranch a x1 y1)
(bddBranch a x2 y2))

Figure 1: Bdd normalization

class Boolean b => Eql a b where
(===) ::a->a->b

3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a representation of
boolean functions as a binary tree. The nodes are labeled
by boolean variables, and the leaves, usually referred to as
terminals, are boolean values. A BDD represents a boolean
formula in the form of a case analysis.

An Ordered BDD (OBDD) is a normal form for BDDs
defined as follows:

e the variables along every path are in strictly increasing
order, and

e all unnecessary nodes are eliminated. An unnecessary
node represents a variable upon which the subtree does-
n’t depend, and is recognized as a node where both left
and right children are equal.

An Ordered BDD is further a canonical form for boolean for-
mulae, thus equality of two OBDDs is reduced to structural
equality.

Construction of OBDDs can be easily described in
Haskell, as we show in figure 1. Creating a new terminal
is easy—just use the Terminal constructor. Creating a new
branch (bddBranch) is a matter of pushing the branch down
the tree until it’s label is in order. Notice that as a node

is moved down the tree, its branches get duplicated. This
duplication may be countered by the pruning action of the
second restriction (implemented by norm). But in general,
the worst case size complexity of a BDD is exponential in
the number of variables.

An important refinement that makes BDDs a practical
tool for large scale verification is Reduced Ordered BDDs
(ROBDDs)' [4]. An ROBDD is one in which the tree is
reduced to a directed acyclic graph (DAG) by performing
common subexpression elimination to capture all structure
sharing. This has two benefits. The first is that equivalence
of BDDs is reduced to pointer equality. The second is a re-
duction in space use, which can be considerable when there’s
a significant amount of regularity in the data. Despite the
worst-case size complexity of BDDs, the worst case is often
avoided in practice.

However, there’s another aspect of sharing that isn’t cap-
tured by just using a DAG. The regularity that leads to a
lot of structural sharing also leads to performing the same
boolean calculations on a given BDD over and over again—
you may do a lot of work just to realize that you've already
constructed this tree before. Thus, another important trick
in a BDD implementor’s bag is to keep a memo table for
each basic boolean operation so that the operation is only
performed once on any given BDD (or pair of BDDs).

It’s an interesting question whether a Haskell implemen-
tation of BDDs would offer any improvement over a highly-
tuned off-the-shelf BDD library written in C. We’ve pursued
this question by doing prototypes that use the latest features
of Hugs and GHC to implement structure sharing and mem-
oizing. The results are promising, but it’s clear that Haskell
isn’t really ready to beat C at its best game. So maybe we’re
trying the wrong strategy. All of these structure-sharing and
memoizing mechanisms make BDDs strict, whereas the sim-
ple implementation of OBDDs sketched above is lazy. An
even more interesting question may be whether there’s some
way to play off of Haskell’s strengths and take advantage of
laziness. This question is pursued further in Section 7.1.

3.1 The CMU BDD Library

The BDD library used in this paper is David Long’s BDD
library (which we’ll refer to as the CMU library) [16], which
is an ROBDD package written in C, and is one of several
high-quality ROBDD packages that are available. We use
the CMU BDD package as distributed with the VIS suite,
version 1.3, from Berkeley [1]. As with other BDD packages,
it comes with its own garbage collector that has been tuned
to work well with BDDs.

We import the CMU BDD package into Haskell with the
help of H/Direct [10]. Using the foreign function interface of
either GHC or Hugs, you can interface to libraries written in
various imperative languages, such as C, FORTRAN, Java,
etc. H/Direct helps simplify that process by automatical-
ly generating the glue code that marshals and unmarshals
datatypes from C/FORTRAN/Java to Haskell. The input
to H/Direct is a specification of the external library’s in-
terface, written in IDL, an Interface Description Language
used in industry. IDL interface descriptions are essentially
annotated C declarations. In the case of the BDD library,
it was a fairly easy matter to translate the header file from
the library into an IDL description. For example, here’s the

1Subsequently, we will use the term BDD to mean ROBDD.

snippet of IDL describing the BDD implementations for the
boolean constant true, and boolean conjunction:

cmuBdd cmu_bdd_one ([in]cmuBddManager bddm) ;
cmuBdd cmu_bdd_and ([in]cmuBddManager bddm,
[inlcmuBdd x, [in]lcmuBdd y);

The [in] annotations indicate that the argument is an input
argument only (i.e. it doesn’t return a result by side-effect).

The first parameter to both functions is common to all
BDD calls and is the structure that holds all the contex-
t necessary for managing BDDs, such as hash tables, and
garbage collection data.

The signatures that H/Direct generates for these two
functions are as follows:

cmu_bdd_one :: CmuBddManager -> I0 (CmuBdd)
cmu_bdd_and :: CmuBddManager ->
CmuBdd -> CmuBdd -> I0 (CmuBdd)

3.2 Managing BDDs

Of course, the raw imported interface to the BDD pack-
age is not exactly the svelte duck that we were after in
the beginning. There are two things in the way. First,
the CmuBddManager is an implementation artifact that we
would rather hide from users. Second, the result lies in the
I0 monad. Our plan is to hide the fact that we are using
an imperative implementation underneath by liberal use of
unsafePerformI0. We will then to justify why it’s really safe
after all.

In the C world, the types CmuBddManager and CmuBdd are
pointers to rich structures. In Haskell, all of that is hidden,
and they appear as type synonyms for the type Addr, a type
which only supports pointer addition and pointer equality.
However, even this is more than we want to expose about
BDDs, so we define a new abstract type for BDDs.

newtype BDD = Bdd CmuBdd

The BDD manager must ordinarily be explicitly allocat-
ed at the beginning of a program. We would rather it was
allocated on demand without any muss or fuss from the pro-
grammer. We use unsafePerformI0 to get this effect:

bdd_manager :: CmuBddManager
bdd_manager = unsafePerformI0 (cmu_bdd_init)

In the instance declarations for Boolean, we distribute the
bdd_manager to all the calls, and the extract the result from
the I0 monad with unsafePerformIO.

instance Boolean (Bdd Bool) where
true = Bdd $ unsafePerformI0 $
bdd_one bdd_manager
(Bdd x) &% (Bdd y) =
Bdd $ unsafePerformI0 $
cmu_bdd_and bdd_manager x y

The $ operator is right-associated function application
(f$gsx=1f (gx)

Dealing with variables brings up another detail of the
machinery that we wish to hide. The BDD package uses
integers as variable identifiers, but we’d rather provide the
nicer interface of using strings as variable identifiers. Thus,
we keep a table that assigns to each variable name encoun-
tered so far a unique integer.

bdd_vars :: IORef [(String, Int32)]
bdd_vars = unsafePerformI0 (newIORef [])

The instance of BDDs for the Var class is then defined in
terms of a function that keeps track of the necessary book-
keeping. The function newvar takes a reference to the lookup
table, and a variable identifier, and constructs a BDD rep-
resenting that variable.
newvar :: CmuBddManager ->
I0Ref [(String,Int32)] -> String ->
I0 CmuBdd
newvar m v a =
do vars <- readIORef v
case lookup a vars of
Just 1 -> bdd_var_with_id m i
Nothing ->
do b <- bdd_new_var_last m
i <- bdd_if_id m b
writeIORef v ((a, i)
return b

: vars)

instance Var (Bdd Bool) where
var a = Bdd $ unsafePerformI0 $
newvar bdd_manager bdd_vars a

3.3 Safe use of unsafePerformI0

All this use of unsafePerformI0 may seem a bit blithe, so
it’s worth a few moments to informally justify why it doesn’t
harm referential transparency.

For starters, since the types CmuBddManager and CmuBdd
are essentially abstract, we're in control of what can be ob-
served about the imperative side. We simply do not import
operations from the CMU package that reveal the imper-
ative structure, such as a procedure that gives the size of
internal hash tables. Those functions that we do import,
despite all the operational goings-on with hash tables and
heap allocation, are essentially functional. The imperative
features affect the way the data is constructed, but not the
data itself, and we give ourselves no way to observe the im-
perative details of how the data is constructed.

We do allow ourselves to do pointer equality on CmuBdds,
which is how structural equality is tested. But since the
pointers will be equal if-and-only-if the structures are equal,
this is safe.

One point to question is the use of unsafePerformIO in
the definition of bdd_vars to extract an I0Ref out of the I0
monad. By doing this and then using the IORef elsewhere
inside the I0 monad, we’re making the assumption that the
store inside the I0 monad is indeed persistent, and that
I0Refs are coherent between invocations of the I0 monad.
Fortunately, although this behavior is not, to the authors’
knowledge, documented, it is at least the most reasonable
assumption to make. After all, the I0 monad is supposed to
represent the “real world”, which has the behavior of being
persistent.

4 An Example: Sorting

BDDs give us the ability to show equivalence of boolean
functions. This is useful of itself, but in this section we
show how the structure of Haskell can be used to imply
much richer results. The example we take is from sorting.

4.1 Comparison-Swap Sorting

Knuth has a famous theorem about sort algorithms that are
based only on comparison-swaps (an operation that takes
two elements and returns them in sorted order). The theo-
rem states that if such an algorithm is able to sort booleans
correctly, it will also sort integers correctly. Knuth’s proof is
based in decision-theory, and is specific to sorting. We have
discovered that Knuth’s result is a special case of the more
general theorems coming from polymorphic parametricity.

This suggests the following proof technique. Take a poly-
morphic function, perform some verification using BDDs at
the boolean instance, and then use the parametricity the-
orem to deduce a corresponding result for more complex
types. In effect, the boolean instance acts as an abstract in-
terpretation of the more general algorithm, and parametrici-
ty supplies the abstraction and concretization relationships.

To see how this works in practice, we first need to con-
sider the type of a comparison-swap sort. We want to avoid
the manual examination of the program text that an ap-
plication of Knuth’s theorem would require. What can we
learn from the type alone? The type cannot tell us that the
algorithm is a sorting algorithm, but it can ensure that it
makes no assumptions about the contents of the list, except
via the first parameter. Consider the type:

sort :: ((a,a)->(a,a)) -> [a] -> [al

If the sort argument is indeed a comparison-swap function
then, intuitively, the type of sort ensures that the only data-
sensitive operation sort can use is comparison-swap.

Let’s make this precise. Consider the parametricity the-
orem for functions of this type [19, 23] (f, g, and h are uni-
versally quantified, and we define j x k = Az, y.(j =,k y)):

f

sort f

(a,0) ——(a,a) [a] ———— [d]
hxh hxh = map h map h
(b)) — L (1) AN)

In Haskell, the theorem applies only when h is strict and,
since the introduction of seq in Haskell 98, bottom-reflecting
as well.

Now, instantiate a to be Int, and b to be Bool, and chose
f and g to be the standard comparison/swap over integers
and booleans (where False < True) respectively. If we can
show that sort g sorts sequences of booleans correctly (using
BDDs for example), then the parametricity theorem will
allow us to conclude that sort f sorts sequences of integers
correctly as well.

To see this, suppose the converse, and we will derive a
contradiction. Suppose zs contains x and y, such that x < y.
For sort f to be incorrect, there has to exist at least one z
and y pair which appears out of order (y before) in the list
sort f zs. Let h be the function that is false for all inputs
less than y, and true otherwise (h(n) = y <= n). This
function commutes with f and g, and is strict and bottom-
reflecting as well, thus it satisfies the precondition for the
theorem. Therefore, the right-hand side of the theorem must
hold.

Now, by assumption, sort g (map h zs) is sorted correct-
ly. That is, the result is a list of booleans with all the occur-
rences of False preceding the occurrences of True. However,
if y precedes x in the result of sort f zs then the result of
map h(sort f zs) will contain an occurrence of True before
the final occurrence of False. Thus, we have a contradic-
tion, so the assumption that y preceded z in the result of
sort f zs was incorrect.

In effect, parametricity has ensured that sort behaves
coherently over all types, so that results at the boolean in-
stance can be used to imply consequences at other type-
s. Another perspective is that parametricity expresses the
multi-faceted symmetry inherent in this problem Symme-
try is vital in verification by model checking for reducing
large problem spaces to manageable proportions, and that
is what is achieved here [8]. Rather than model check on
lists of 32-bit integers, we perform the check on single-bit
integers.

4.2 Checking Comparison-Swap Sort on Booleans

The missing part of the story is using BDDs to show that
sort g sorts lists of booleans correctly. We can only show
that sorting is correct for an arbitrary, but fixed-length list.
The logic of BDDs is simply not powerful enough to prove
the result in general (which would require some kind of in-
ductive argument well beyond the scope of propositional
logic). However, since the method is automated, it’s no
trouble to check it for a variety of lengths of list, leaving
only very subtle bugs out of its reach.

The sorting algorithm we use is bitonic sort, an efficient
algorithm that is particularly amenable to hardware real-
ization. Also, for a sorting algorithm, it’s fairly tricky, so
it’s a good candidate for verification. The code is given in
Figure 2. Bitonic sort is designed to work on lists that have
a length that is a power of two. It recursively divides the
list into two parts and sorts each partition. To combine the
two parts it swaps corresponding elements in each list. Be-
cause one list is sorted in ascending order and the other in
descending order, the swapping results in all the elements in
the first list being lower (or higher) than the elements in the
second list. The two lists are in the correct form to repeat
this swapping on the two sublists to arrive at a sorted list.

To verify the algorithm, we first need a simple predicate
to indicate whether a list is sorted or not.

sorted test [1 = true

sorted test [x] = true

sorted test (x : ys@(y : _)) =
x ‘test® y && sorted test ys

Now, we will state the property that we want to show for a
list with variable elements, but a fixed length of sixteen.

result = sorted lessEq (sort xs)
where
xs = [var ("x" ++ show i) | i <- [0 .. 15]]
sort xs = bitonic_sort cmpSwap xs True

It remains to define the two BDD-specific functions
cmpSwap and lessEq. These turn out to be particularly nice.

cmpSwap a b = (a & b, a || b)
lessEq a b = a ==>b

Now, when we query Haskell about result, it returns true.

bitonic_to_sorted cmpSwap [] up = []
bitonic_to_sorted cmpSwap [x] up = [x]
bitonic_to_sorted cmpSwap xs up =
let k = length xs ‘div‘ 2
(ys, zs) = pairwise cmpSwap (splitAt k xs)
(ys’, zs’) =
if up then (ys, zs) else (zs, ys)
in
bitonic_to_sorted cmpSwap ys’ up ++
bitonic_to_sorted cmpSwap zs’ up

pairwise £ ([1, [1) = (1, [1)
pairwise f (x : xs, y : ys) =
let (x’, y’) =fxy
(xs’, ys’) = pairwise f (xs, ys)
in
(x? : xs?, y> & ys’)

bitonic_sort cmpSwap [1 up = []
bitonic_sort cmpSwap [x] up = [x]
bitonic_sort cmpSwap xs up =
let k = length xs ‘div‘ 2
(ys, zs) = splitAt k xs
ys’ = bitonic_sort cmpSwap ys True
zs’ = bitonic_sort cmpSwap zs False
in
bitonic_to_sorted cmpSwap (ys’ ++ zs’) up

cmpSwap x y = if x < y then (x, y) else (y, x)

Figure 2: Bitonic Sort

4.3 Limitations to using Parametricity

We expect the verification technique outlined above to be
useful in many cases, but it’s not a panacea. Sometimes
parametricity is not powerful enough to capture appropriate
abstractions. In effect, some types are simply not expressive
and/or constraining enough to enable the boolean instance
to say much about the general case. Consider the following
variation on the example above.

It might seem that the parametricity argument that we
used to echo Knuth’s sorting theorem would apply just as
easily to a regular sort algorithm based on a comparison
function, with type:

sort :: ((a, a) -> Bool) -> [a] -> [al

However, it is fairly easy to construct a pseudo-sorting al-
gorithm of this type that will correctly sort lists of booleans
but fails to sort lists of integers correctly. Consider the fol-
lowing: take the first element of the list as a partition value.
Next, do a one-pass sort into three buckets: one for ele-
ments less then the partition, one for those equal (neither
less, nor greater), and one for those greater. Finally, stick
the partition element in the equal bucket, and concatenate
the buckets in the order: less, equal and greater. Parti-
tioning based upon a single element will work for booleans,
because there’s only two values; however, it clearly won’t
work in general.

So, the parametricity-based approach must fail for
comparison-based sorts. Where does it break down? First,
examine the “free theorem” for a comparison-based sort.

t
(a,0) — I+ Bool] =
h xh = map h map h
t
(b,) — 7+ Bool] 2229,)

The conclusion is identical in each instance of the para-
metricity theorem, but the precondition of this instance is
much more stringent than before. The key to proving the
comparison-swap case was the ample supply of appropriate
functions h to “detect” any incorrectly sorted list. How-
ever, the precondition on h in this case requires that the
comparisons on the two sorts, integer and boolean say, are
equivalent to one another. Thus for the case of comparison
sort there are essentially no interesting choices for h relating
the integer and boolean cases.

5 The Stanford Validity Checker

The Stanford Validity Checker (SVC) is an implementation
of a decision procedure for a quantifier-free, first-order log-
ic with equality [2, 7, 11]. It has been used extensively
for microprocessor validation and verification [7, 11, 12, 22]
and recently for requirements validation [18]. The logic al-
lows models to include uninterpreted functions, which can
be used to represent datapath operations in a pipelined ar-
chitecture. SVC returns a counterexample if the formula is
not valid.

ite (formula, formula, formula)
(term = term)

predicate symbol (term, ..., term)
true

false

formula

term ite (formula, term, term)
function symbol (term, ..., term)
read (term, term)

write (term, term, term)

distinct constant

formula

Figure 3: The SVC logic

5.1 Connecting SVC with Haskell

Our initial interface with this tool was file-based. We had
a representation of expressions in the logic as a datatype in
Haskell and wrote expressions of this form to a file that was
later read by SVC. As we worked on larger examples, this
approach became unmanageable. The size of the structure
was extremely large and did not take advantage of possible
sharing of subexpressions. While SVC’s internal data struc-
ture is not canonical as is the case for BDDs, it is optimized
and shares common subexpressions. Thus it quickly became
apparent that a much better approach is to have a tight link
between the process of generating the term and building the
term in SVC. Using H/Direct we were able to create an ab-
stract interface to the SVC C++ functions that build the
expressions. We used version 1.1 of SVC.

As it is a richer logic, SVC expressions include more
than just boolean-valued terms. Figure 3 contains a de-
scription of the SVC logic. The predicate and func-
tion symbols introduce uninterpreted predicates and func-
tions. The functions ite and = are interpreted func-
tions representing “if-then-else” and equality. The func-
tions read and write are interpreted as acting on s-
tores; an axiom of the logic relating these functions
is, read (write (store, index, data), index) = data.
Other logical, numeric, bit vector and record operations also
have an interpreted meaning.

Using H/Direct we created an interface to SVC that has
functions for building each of the kinds of terms and for-
mulae. These functions return elements of the type PExpr,
which are pointers to SVC expressions. The interface func-
tions to SVC that build expressions in the logic do not dis-
tinguish between terms and formulae.

As with the BDD package, the calls to the SVC functions
are wrapped in unsafePerformI0 to extract the value from
the IO monad. Because the only way to observe the SVC
expressions is to check their validity, the meaning of an ex-
pression is the same regardless of its order of construction.
Therefore we can use the term building functions as if they
are referentially transparent.

Only a subset of the SVC expressions, the formulae, can
be used to instantiate the Boolean class. Even though the
underlying package doesn’t distinguish between terms and
formulae, we want Haskell to make this distinction so that
the Boolean class is only instantiated for formulae. We cre-
ate the datatypes SvcFormula and SvcTerm to wrap around
the pointers to expressions that SVC returns to make them
distinct types.

newtype SvcFormula = SvcF PExpr

newtype SvcTerm = SvcT PExpr

We wrap the output of the SVC functions with SvcF or SveT
as appropriate. The arguments to the function must be
unwrapped.

Using Haskell’s type system to distinguish between terms
and formulae in SVC’s logic, we instantiated the Boolean
class using only the formulae of SVC.

instance Boolean SvcFormula where
true = SvcF $ unsafePerformI0 $ Svc.makeTrue
(SvcF a) && (SvcF b) =
SvcF $ unsafePerformI0 $ Svc.makeAnd a b

The functions Svc.makeTrue and Svc.makeAnd are calls to
the SVC package.

In SVC the equality operator is also used to create formu-
lae. This operator is an instance of the generalized equality
class:

instance Eql SvcTerm SvcFormula where
(SveT a) === (SvcT b) =
SvcF $ unsafePerformI0 $ Svc.makeEquals a b

Because SVC has both terms and formulae, there are
functions that create terms. We provide wrappers for these
functions as well. For example, fcn creates an uninterpreted
function application, where the first string argument is the
name of the function, and the arguments to the function are
provided in a list:

fcn a bs =
SvcT $ unsafePerformI0 $
(if (bs==[]) then Svc.makeSymbol a
else Svc.makeUninterpretedFcn a
(args bs))

The function args turns the Haskell list of terms into the
SVC form.

The SVC package has two instantiations of the Var class
— one for formulae, and one for terms.

instance Var SvcFormula where
var a = SvcF $ unsafePerformI0 $ Svc.makeSymbol a

instance Var SvcTerm where
var a = SvcT $ unsafePerformI0 $ Svc.makeSymbol a

Type annotations are sometimes necessary to distinguish
which instance of var is being used in a Haskell program.

The interface includes the SVC function checkValid to
call the prover on the constructed expression. Calls to
checkValid are referentially transparent because our inter-
face tells SVC to treat each check independently from any
other calls to the prover. We pop its stack of knowledge
about a particular proof session (context), but retain its da-
ta about the expressions that have been built.

5.2 Sort Example

SVC is able to check the sort algorithm presented in Sec-
tion 4 for a fixed length list of elements without the para-
metricity meta reasoning because SVC can reason over ar-
bitrary types. To do this, we provided different defini-
tions for lessEq and cmpSwap. We made the “less than”
operator an uninterpreted predicate replacing its use with
pred "1t" [a,b]. We also used the SVC “if-then-else”,
namely itet.

INVALID
Falsifying Assumptions

Assert:

$92: (1t $7:a1 $11:a3)
Deny:

$85: (1t $8:a2 $7:al)
Deny:

$55: (1t $8:a2 $11:a3)
Deny:

$57: (1t $7:a1 $12:a4)
Deny:

$13: (1t $11:a3 $12:a4)
Deny:

$9: (1t $7:a1 $8:a2)

INVALID
Case_Splits: 7
Exprs_Generated: 57
Figure 4: SVC counterexample
cmpSwap X y =

let test = pred "1t" [x,y] in
(itet test x y, itet test y x)

lessEq x y = not (pred "1t" [y,x])

The prover was invoked to determine if a fixed length list
of symbolic elements is sorted, as in:

result = checkValid
(sorted lessEq (sort xs)) where
sort xs = bitonic_sort cmpSwap xs True
xs = [var "al", var "a2", var "a3", var "a4"]

SVC returned with a counterexample found in Figure 4.
The counterexample is in the form of a series of assertion-
s and denials of subformulae. The “$” variables refer to
internal subexpression names. The case provided in Fig-
ure 4 has both =(a2 < al) and —(al < a2), which means
a2 must equal al. The case also says that al < a3 and
—(a2 < a3), which is impossible when al and a2 are equal,
and < has its intended meaning. From this counterexam-
ple, we learned that we cannot achieve our verification result
without providing more information about the behavior of
the “less than” operator.

SVC has an interpreted “less than” function for ratio-
nal expressions that we could use. But we wished to check
the sort algorithm for all types of ordered elements with-
out any meta reasoning. SVC needed the information that
the “less than” operator is irreflexive, transitive, and that
z#y=(r<y=-(y <z)). We provided these in the
form of antecedents to the consequent that we wanted to
check. This is a limited axiomatization of the “less than”
operator.

The SVC logic has no quantifiers so it was necessary to
generate all the possible instantiations of these properties

pipe input

pipeState pipeState’
pipe flush pipe flush
pipe flush pipe flush
pipe flush pipe flush

proj proj

ref State refllachine input refState’

Figure 5: Burch and Dill Commuting Diagram (found in [7])

for the symbolic elements in the input list. Haskell’s list
comprehension syntax was very convenient for stating, in a
compact form, all the antecedents that were needed. For
example, transitivity of a relation r for a list of elements is
expressed as:

trans rxyz=(rxy&& ryz) ==>rxz

genTrans list r =
foldrl (&&) [trans r x y z |

x <- list,
y <- list,
z <- list]

With these antecedents, SVC returns instantly for the biton-
ic sort of 4 elements saying that the sort algorithm is correct.

6 Example 2: Microprocessor Verification

As a second example of the use of SVC in Haskell, we present
the verification of a simple pipelined ALU used in Burch and
Dill [7] (originally found in Burch et al. [6]). In their pre-
sentation, they use a simple hardware description language
based on Lisp as input to their verification process. This sec-
tion describes how this example can be verified in Haskell
using SVC and uninterpreted functions for the datapath op-
erations.

The Burch and Dill approach to verification automat-
ically calculates an abstraction function relating a micro-
processor pipeline to a reference machine. The calculation
is done using symbolic simulation. The pipeline is equiv-
alent to the reference machine if the diagram in Figure 5
commutes. The abstraction function consists of flushing the
intermediate results of the pipeline and projecting from the
pipeline only the parts of the state visible in the reference
machine (proj).

Figure 6 is a pipeline and reference machine modeled in
Haskell, translated from the descriptions in Lisp found in
the appendix of Burch and Dill’'s paper. The state of the
reference machine is simply the register file. The reference
machine and the pipeline are compared on the value of the

register file only. The register file element of the pipeline is
projected from its state as part of the correctness statement.

Because we leave the ALU operation as an uninterpreted
function, our verification using SVC does not depend on the
datapath width and operations. For the operations on the
register file, the interpreted write and read SVC functions
are used. The SVC instantiations of the Boolean operators
and equality (===) are chosen automatically.

To verify the pipeline, we stall it to flush its state by
setting the stall signal of the input high for a certain number
of steps. The flush input contains symbolic values for every
input other than the stall signal.

flush = (true,
var "flushDestReg",
var "flushOpcode",
var "flushSrclReg",
var "flushSrc2Reg")

flushPipe initialState n =
if (n == 0) then initialState
else flushPipe (pipe flush initialState) (n-1)

The initialState also assigns symbolic values to all the
internal latches of the pipe:

initialState = (var "registers",
var "argl",
var "arg2",
var "bubble_wb",
var "dest_wb",
var "result",
var "bubble_ex",
var "dest_ex",
var "op_ex")

To calculate the left and bottom route of the commuting
diagram, we flush the pipeline, project out a state for the
reference machine, and run the reference machine on this
initial state with symbolic input:

pI‘Oj (regiSterss —:—’—s—:—:—s-:_) = registers

input = (var "stall",
var "dest",
var "opcode",
var "srcl",
var "src2")

pathl n = refMachine input
(proj (flushPipe initialState n))

We compare pathl with the other side of the commuting
diagram. In path2, we run the pipeline on the symbolic
input, starting from the symbolic initial state, and then flush
the pipeline:

path2 n = proj
(flushPipe (pipe input initialState) n)

These two paths are computed by executing the Haskell
models. On any path in the pipe there are at most two
latches, therefore the pipe should agree with the reference
machine after two flushes. The verification condition that
we pass to the prover to be checked is:

pipeTest = (pathl 2) === (path2 2)

type Input =
(SvcFormula, -- stall
SvcTerm, -- dest
SvcTerm, -- opcode
SvcTerm, -- sourcel
SvcTerm) -- source2

type PipeState =

(SvcTerm, -- register file
SvcTerm, -- argl

SvcTerm, -- arg?2

SvcFormula, -- bubble-writeback
SvcTerm, —-- dest-writeback
SvcTerm, -- result
SvcFormula, -- bubble-ex,
SvcTerm, -— dest-ex,
SvcTerm) -- opcode

pipe :: Input -> PipeState -> PipeState
pipe (stall, dest,opcode,srcl,src2)
(registers,argl,arg2,bubble_wb,dest_wb,
result,bubble_ex,dest_ex,op_ex) =
(registers’,argl’,arg2’,bubble_wb’,dest_wb’,
result’, bubble_ex’,dest_ex’,op_ex’)
where
registers’ = itet bubble_wb
registers
(write registers dest_wb result)
bubble_wb’ = bubble_ex

dest_wb’ = dest_ex

result’ = fcn "alu" [op_ex, argl, arg2]

bubble_ex’ = stall

dest_ex’ = dest

op_ex’ = opcode

argl’ = itet ((not bubble_ex) &&

(dest_ex === srcl))

result’

(read registers’ srcl)
arg2’ = itet ((not bubble_ex) &&
(dest_ex === src2))
result’
(read registers’ src2)

type RefState = SvcTerm -- register file

refMachine :: Input -> RefState -> RefState
refMachine (stall, dest, opcode, srcl, src2)
registers =

itet stall

registers

(write registers dest

(fcn "alu" [opcode,
read registers srcil,

read registers src2]))

Figure 6: Microprocessor models

SVC verifies pipeTest instantly.

Integrating SVC with Haskell creates a very convenient
debugging loop when there are errors in the model. Using
the information in a counterexample, concrete values can be
input to the model to illustrate the error.

7 Discussion

The section discusses some interesting points that have been
raised in creating these logical abstractions.

7.1 Shallow versus Deep Embedding

In order to look most like a duck, we’ve taken the approach
of doing a shallow embedding of both BDDs and SVC. This
means we directly interpret the logical operators as oper-
ations on the internal data structures of the BDD package
and SVC. An alternate approach is a deep embedding, where
we construct an intermediate data structure that is exactly
(or close to) the term structure.

One benefit of the deep embedding is that it gives us
the opportunity to tackle the normalization process in dif-
ferent ways that may be more efficient. By analogy, when
constructing BDDs incrementally, we must use essentially
a bubble sort to put the nodes in sorted order. The incre-
mental approach is necessarily based on local decisions, but
we know that sorting is suboptimal when it is restricted to
making local decisions. Thus, we can imagine being able
to do something analogous to mergesort to put a BDD in
normal form much more efficiently.

This approach is not considered feasible in the strict set-
ting of a C implementation, because the intermediate data
structure would be huge, and space is more of a limiting fac-
tor with BDDs than speed. The intermediate data structure
would not be able to take advantage of any sharing. Thus,
the only feasible approach is to calculate the sharing as you
go.

However, in the setting of a lazy functional programming
language, we have more options. Because the intermediate
data structure doesn’t necessarily get built, we may be able
to take advantage of laziness to process BDDs more efficient-
ly, while not taking a hit in space usage.

Another argument in favor of a deep embedding is that
we could let Haskell control decomposition or simplification
before calling the decision procedure. Haskell could become
a platform for building “minimal proof assistants” [17] com-
bining evaluation for term generation, decision procedures,
and theorem proving techniques.

7.2 Types

So far, we are not making too much use of Haskell’s rich
type system. The only type distinction that we make in
SVC expressions is between booleans and any other kind of
term. We are working on building a typed layer on top of
SVC logical terms where we regain the typechecking benefits
of Haskell. This layer will make extensive use of type classes
letting Haskell do the work of choosing the correct instances
of functions rather than the user.

7.3 Ambiguity

One unfortunate consequence of generalizing booleans to a
type class is that ambiguity problems can arise left and right.
Booleans are used all over the place as intermediate values,

especially in if-then-else expressions. Intermediate types
in expressions don’t show up in the type of the overall ex-
pression, and thus the type class system has no basis upon
which to chose which instance to use. The same scenari-
o holds for the Num class, but Haskell resolves this by the
default mechanism. It would be helpful if the default mech-
anism could be made more general, such that we could talk
about defaults for Boolean as well.

7.4 BDD Variable Order

As was pointed out in the introduction, in our zeal to put
a pretty face on complex implementation packages, we give
up a good deal of control.

For the sake of simplicity the interface that we provide
to the BDD package leaves the user unaware of the detail-
s of variable order when building a BDD. The variables
are ordered by the time of their creation. Since Haskell
is free to change the order of evaluation, the variable or-
der is not even predictable. This can have serious draw-
backs, since the size of a BDD can vary greatly depend-
ing on the variable order. Figure 7 gives two BDDs for
(al && b1) || (a2 && b2) [| (a3 && b3) with different
variable orderings. The dashed lines are false branches and
the solid lines true branches.

However, in practice, trying to control variable ordering
is a bit of a black art, and the problem in undecidable in
general. But this situation is analogous to space allocation
in Haskell, which is similarly out of the programmers hand,
and has similar bad worst-case scenarios. One option, when
variable order really needs to be controlled, is to use explicit
sequencing via seq.

7.5 Applications in Verification

Why would this connection between Haskell and decision
procedures be of interest to the verification community ?
First, properties can be proven about Haskell programs.
Free theorems from the parametricity of Haskell programs
that model microprocessors may provide symmetry-like ar-
guments for reducing the size of the state space.

Second, using Haskell allows models to be written in a
strongly-typed language. Typechecking has its own benefits
for a specification language, and now we are providing a link
directly to verification tools for this language.

Third, Haskell works well as a meta-language for generat-
ing terms for input to the verification process. Can laziness
in Haskell be exploited to avoid full generation of a term
while a proof is in progress 7 Laziness could be particularly
important for defect-finding verification efforts.

8 Related Work

This work extends the brief description of linking BDDs with
Haskell found in Launchbury, Lewis, and Cook [14].

Lava [3] is a Haskell-based hardware description lan-
guage. They provide multiple interpretations of circuit de-
scriptions for simulation, verification, and code generation.
For verification, Lava interfaces to the propositional logic
checker Prover [21], and two first-order logic theorem prover-
s. The interface is file-based, breaking an expression into
component subexpressions. Lava used reinterpretations of
monads to create output for the different provers.

10

Individually decision procedures have been connected to
other functional languages. For example SVC has been con-
nected to Lisp. Voss uses BDDs for all boolean manipula-
tions. And BDD packages such as Buddy [15] have been
connected to ML and as a decision procedure in the HOL
theorem prover [13]. Compared to these approaches, we use
a generalized version of the Bool datatype through the class
system to allow the packages to be used somewhat inter-
changeably. Furthermore, using Haskell we are able to pro-
vide this link in a pure functional language while preserving
referential transparency.

9 Conclusion

It seems that our logical ducks swim quite well as abstract
datatypes in Haskell. By generalizing the boolean and equal-
ity classes, it is possible to use the different decision proce-
dures somewhat interchangeably. We have defined referen-
tially transparent interfaces, allowing the underlying tools
to do their work while the user simply sees the correspond-
ing values. Having a tight connection between Haskell and
the decision procedure allowed us to avoid space limitations
in building the unreduced expression. The integration with
Haskell also allowed us to leverage parametricity arguments
in proofs.

10 Acknowledgements

The use of parametricity to redo Knuth’s result was dis-
covered in conjunction with John Matthews and Mircea
Draghicescu. We thank Clark Barrett of Stanford for help
with the Stanford Validity Checker. The authors are sup-
ported by Intel, U.S. Air Force Materiel Command (F19628-
96-C-0161), NSF (EIA-98005542) and the Natural Science
and Engineering Research Council of Canada (NSERC).

References

[1] VIS home page.
http://www-cad.eecs.berkeley.edu/"vis/.

C. Barrett, D. Dill, and J. Levitt. Validity checking for
combinations of theories with equality. In FMCAD 96,
volume 1166 of LNCS, pages 187-201. Springer-Verlag,
1996.

2]

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In ACM Int. Conf. on
Functional Programming, 1998.

R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, August 1986.

R. E. Bryant. Symbolic boolean manipulation with or-
dered binary decision diagrams. ACM Computing Sur-
veys, 24(3):293-318, September 1992.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. Dil-
1. Sequential circuit verification using symbolic model
checking. In DAC, 1990.

J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In CAV, volume 818
of LNCS, pages 68-79. Springer-Verlag, 1994.

(8]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

17]

Figure 7: The formula (al && bl) || (a2 && b2) || (a3 && b3) with different variable orders (found in [5])

E. M. Clarke, T. Filkorn, and S. Jha. Exploiting sym-
metry in temporal logic model checking. In CAV, pages
450-462, 1993.

C. Elliot and P. Hudak. Functional reactive animation.
In ACM Int. Conf. on Functional Programming, 1997.

S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones.
H/Direct: A binary foreign language interface for
Haskell. In ACM Int. Conf. on Functional Program-
ming, 1998.

R. B. Jones, D. L. Dill, and J. R. Burch. Efficient
validity checking for processor verification. In ICCAD,
1995.

R. B. Jones, J. U. Skakkebazk, and D. L. Dill. Reduc-
ing manual abstraction in formal verification of out-of-
order execution. In Formal Methods in Computer-Aided
Design (FMCAD’98), volume 1522 of LNCS, pages 2—
17. Springer-Verlag, 1998.

K. Larsen and J. Lichtenberg.
http://www.itu.dk/research/muddy/.

MuDDy.

J. Launchbury, J. Lewis, and B. Cook. On embedding
a microarchitectural design language within Haskell. In
ACM Int. Conf. on Functional Programming, 1999. To
appear.

J. Lind-Nielsen. BuDDy: Binary decision diagram
package, release 1.6, 1998. Department of Information
Technology, Technical University of Denmark.

D. E. Long. bdd - a binary decision diagram (BDD)
package. Man page.

K. L. McMillan. Minimalist proof assistants. In FM-
CAD, volume 1522 of LNCS, page 1. Springer, 1998.

11

(18]

(19]

[20]

(21]

22]

(23]

D. Y. Park, J. U. Skakkebaek, M. P. Heimdahl, B. J.
Czerny, , and D. L. Dill. Checking properties of safe-
ty critical specifications using efficient decision proce-
dures. In FMSP’98, 1998.

J. C. Reynolds. Types, Abstraction, and Parametric
Polymorphism. In R. Mason, editor, Information Pro-
cessing 83, Proceedings of the IFIP 9th World Com-
puter Conference, 1983.

C.-J. H. Seger. Voss - a formal hardware verification
system: User’s guide. Technical Report 93-45, De-
partment of Computer Science, University of British
Columbia, December 1993.

M. Sheeran and G. Stalmarck. A tutorial on
Stalmarck’s proof procedure for propositional logic. In
FMCAD, number 1522 in LNCS, pages 82-99, 1998.

J. U. Skakkebazk, R. B. Jones, and D. L. Dill. Formal
verification of out-of-order execution using incremental
flushing. In CAV, volume 1427 of LNCS, pages 98-109.
Springer-Verlag, 1998.

P. Wadler. Theorems for free. In Functional Program-

ming Languages and Computer Architecture, pages
347-359. ACM, 1989.

