The Semantics of Statecharts in HOL

Nancy Day and Jeffrey J. Joyce

Integrated Systems Design Laboratory, Department of Computer Science,
University of British Columbia, Vancouver, B.C., V6T 172, Canada

Abstract. Statecharts are used to produce operational specifications in
the CASE tool STATEMATE. This tool provides some analysis capa-
bilities such as reachability of states, but formal methods offer the po-
tential of linking more powerful requirements analysis with CASE tools.
To provide this link, it is necessary to have a rigorous semantics for the
specification notation. In this paper we present an operational seman-
tics for statecharts in quantifier free higher order logic, embedded in the
theorem prover HOL.

1 Introduction

Statecharts are an extended finite state machine, graphical formalism for real-
time systems which alleviates many of the problems such as state explosion,
encountered with other state machine notations [4]. They are the notation used
to give operational specifications in the commercial CASE tool STATEMATE.
This tool provides some analysis capabilities such as reachability of states, but
formal methods offer the potential of linking more powerful requirements analysis

with CASE tools.

To use these methods, it is necessary to have a rigorous semantics for the no-
tation. Previous work has given semantic interpretations for statecharts[2][7][8],
but these did not completely agree with our intuitive idea of their behaviour. In
this paper we present an operational semantics for statecharts in quantifier free
higher order logic, embedded in the theorem prover HOL. The type-checking
facilities of HOL and the expressiveness of higher order logic were very useful in
writing the semantics.

The first section informally describes the operation of statecharts and the
remaining parts of the paper formalize these ideas, pointing out situations where
it 18 not obvious what the behaviour of the statechart will be. Particular attention
is given to issues such as what it means to take a step, race conditions, and
multiple actions associated with one transition. The semantics are given by a next
configuration predicate which holds true if one complete system configuration is
a successor to another.

These semantics have been used to create a model checker for statecharts in

the hybrid verification tool HOL-VOSS[9].

2 An Introduction to Statecharts

There 1s a great deal of interest from both academia and industry in the state-
charts formalism. It is an extended state transition notation for expressing the
concurrent operation of real-time systems. It is often described as:

state-diagrams + depth + orthogonality + broadcast-communication|[2]

In statecharts, the diagrammatic layout of the notation has meaning beyond just
the labels on states and transitions. A hierarchy of states is portrayed in a style
similar to set inclusion in Venn diagrams to reduce the complexity of the model
and therefore make it more readable. In light of this, we rely on the graphical
notation to introduce statecharts through an example. The reader is referred to
Harel[3] for an explanation of the origins of statecharts as a type of higraph that
combines the elements of graphs and Venn diagrams.

The STATEMATE manual describes a traffic light system controlling a two-
way intersection which is a simple but effective example of the expressiveness
of statecharts[5]. The statechart for this controller is given in Fig.1 and will be
referred to throughout this section.

NORMAL
N_S
t0: tm(en(N_S.GREEN), NS_GREEN_TIME
GREEN YELLOW
t2: IN(E_W.RED) t1:tm(en(N_S.YELLOW),2)
E_W

t3: tm(en(E_W.GREEN), EW_GREEN_TIME)

GREEN | YELLOW
t5: IN(N_S.RED) < t4: tm(en(E_W.YELLOW),2)

t7: RESET FLASHING

t6: MALFUNCTION

Fig. 1. Traffic light statechart

A statechart models the system as being in a number of states, depicted
by rounded boxes, which describe its operation. For example, the state labelled
NORMAL, at the top of the page, represents the normal operation of the lights
in both directions. The dashed line through its middle splits it into two substates,

north-south(N_S) and east-west(E_W), which operate concurrently (orthogonal-
ity), making NORMAL an AND-state. N_S is an OR-state since it has substates,
labelled red, yellow, and green, and the model can only be in one of them at
any time (exclusive OR). The representation of these substates within the larger
rounded box creates a hierarchy of states (depth). Within this hierarchy, the
state NORMAL is an ancestor of N.S and E_W. Similarly, N.S.GREEN is a
descendant of N_S. When a state is not decomposed into AND- or OR-states, it
is called a basic state.

At a given moment, the configuration of the model includes the states the
system is currently in and the values for all data-items. The current set of states
alone is called the state configuration. A set of basic states is a legal state config-
uration if it satisfies the constraints of the hierarchy. A discrete notion of time
is used where the system moves between configurations as a result of stimulus
generated both from within the system and externally.

States are connected by transitions with labels of the form
event [condition] / action. The tags t0, t1, etc. are used for reference only. If
the system is currently in the source state of a certain transition, labelled e/c]/a,
and the event e occurs when the condition ¢ is satisfied then the transition is
enabled. Broadcast communication is used which means that all events and the
values of any data-items can be referenced anywhere in the system. The event
and condition are together referred to as the trigger of the transition.

A condition is a boolean expression which can include statements like IN(#)
to check whether the system is currently in state z. These are often used to
synchronize components as in transition t5 in the E_W state.

An eventis a change in a condition which occurs in the previous step. Entering
a state # causes the event en(x) to occur. A timeout event, tm(ev,), occurs
z steps after the event ev. The event ev is called the timeout event and =z is
the timeout step number. The configuration of the system includes the relevant
events which occur in the previous step.

Enabled transitions move the system from one configuration to another. Fol-
lowing, or taking a transition means exiting its source state, carrying out the
actions on its label, and entering its destination state. Informally, following a set
of these transitions constitutes a step or one time unit.

Transitions can be taken in the substates of an AND-state simultaneously.
A transition can be enabled if it originates in any ancestor of the current set
of basic states in the configuration. Transitions can also terminate at the outer
boundary of a state with substates. Default arrows, given diagrammatically as
open circles pointing at a state, lead the system into a configuration of basic
states. For example, when transition t7 is followed, it terminates at the state
NORMAL which is made up of parallel components. The default arrows for each
of its substates point at EEW.GREEN and N_S.RED.

If a transition is followed, the action part of the label is carried out and the
system moves into the destination state. Actions include generating events or
modifying values of variables through assignment statements.

Statecharts often include elements like history states, connectors for com-
pound transitions, static reactions, and transitions with multiple source and
destination states. For simplicity, these are not considered here but they are
discussed in [1].

3 Ambiguities in Statecharts

The notation described above may seem very straightforward, however, state-
charts can be created where their intended meaning is not so obvious.

3.1 What is a Step?

There is no inherent model of timing associated with statecharts other than the
movement between states by following transitions. Following a set of transitions
and carrying out their actions is considered one time unit or step. There are
different interpretations of what constitutes this set of transitions.

Briefly, the factors to consider are:

— How are conflicts among enabled transitions resolved 7 (i.e. when they can
not all be taken)

— Can events generated by the actions of transitions followed in this step trigger
transitions which are also followed in this step? In Fig.2a, if the system starts
in the states A and C, and transition t0 is followed generating the event f,
is t1 then enabled and followed in the same step?

— are transitions only from the current set of source states considered or can
we move through multiple states in a path in one step? From Fig.2b, we can
see that this could lead to infinite loops within a step[5].

t0:e/f

fff ks
: t1:f/e
o

(@ (b)

Fig. 2. What is a step?

3.2 Multiple Actions on a Transition

A transition may have multiple actions. If more than one of these actions modify
the same variable, what will the value of the variable be at the end of the
transition? For example, the action /& := ;2 := # + 2, with 0 as the value of
in the current configuration, has the following possible interpretations:

1. The actions are taken sequentially so that after following the transition z
has the value 3.

2. The actions are taken relative to the beginning of the step but their effects
are evaluated sequentially, therefore the second action takes precedence and
the result is that becomes 2.

3. The actions are evaluated relative to the beginning of the step, and they
are not assumed to happen in any particular order, however, the actions are
atomic and do not conflict. With this interpretation, the result is that =z
could be 1 or 2 after the transition is taken.

3.3 Race Conditions

A race condition occurs if transitions followed simultaneously in parallel com-
ponents modify the same variable in a step. This is similar to the situation
described in the previous section, but has the added possible interpretation that
the actions could conflict with each other (i.e. they are not atomic), and the
value for # would then be indeterminate.

3.4 Non-determinism

Statecharts have a hierarchy of states and transitions can originate from states
at any level in the hierarchy. If multiple transitions are enabled from states which
are descendants or ancestors of each other in the hierarchy, as in Fig.3 where A
is the parent of B, which transition 1s taken or should both be followed?

Transitions may also originate at exactly the same state and if both are
enabled either could be followed.

Fig. 3. Structural non-determinism

3.5 Timeouts

The statechart for the traffic light in Fig.1 uses several timeouts to trigger dif-
ferent transitions, such as t0 or t1 . When should the system begin to consider
the event upon which the timeout is based? Is it the last time the timeout event
occurs? Or must the timeout event occur after we have entered the source state
and then the system waits the appropriate number of steps before following the
transition?

When the timeout step number is symbolic, there is the further question of
when to evaluate it. Is it evaluated when the system arrives in the transition’s
source state (i.e. the first time the transition could be enabled)? Or can the value
change between steps? An example of a situation where this might occur in the
traffic light is if the NS_GREEN_TIME 1is affected by a pedestrian button
which indicates someone wants to cross the street.

3.6 Transitions Among AND Component States

The orthogonal components of AND-states operate concurrently, so it is difficult
to see the need for transitions which go between them. However, 1t i1s possible,
depending on the definition of a legal statechart. In Fig.4a, we can see that
following transition t0 leads into the state C, but the system must remain in
some state of X at all times. At this point, should it follow the default transition
of X into A to reach a legal state configuration?

The situation could occur where two transitions cross AND-state boundaries
at the same time. In Fig.4b, if t0 and t3 are followed at the same time, the
system will arrive in states B and C, which is a legal state configuration.

Fig. 4. Transitions among AND component states

4 Textual Representation of Statecharts

The graphical notation described in the previous section can be directly trans-
lated to a textual representation. A translation program extracts information
about the statechart from STATEMATE and outputs ML code to create a HOL
definition for the statechart. This definition can be given directly as an argu-
ment (referred to as the variable se) to the semantic functions. The semantics
use functions which extract information from the HOL definition.

5 A Semantics for Statecharts

Meaning 1s given to the syntax describing the statechart by translating it into a
relation over the current configuration and next configuration. Other semantics
for statecharts, given previously by Harel[2], Pnueli[8], and Leveson[7], differ
from the semantics used here both in content and form. This paper presents
only how we resolved the major difficulties in writing the semantics. The full
semantics and a comparison to other approaches can be found in [1].

Our semantic functions were written with the intention of using them with a
model checker, where they are executed in a Binary Decision Diagram(BDD)
package which understands higher order logic with quantification only over
Boolean variables. Limited quantification is not a major restriction since we
are dealing with a finite domain. However, 1t 1s natural to express conditions
over all transitions or all variables. In order to create the abstraction of existen-
tial and universal quantification over these sets, the semantics use definitions like
EVERY, which takes the conjunction of applying a predicate p, to all elements
of a list a:

EVERYpz =(x=[])= T |p(HDz) AEVERY p(TL 2)
Analogous definitions over lists can be given for:

EXISTS p «: return the disjunction of applying p to the elements of the list x

X_EXISTS p «: exactly one element of the list « returns true when p is applied
to all elements in the list

PAIR_EVERY p z y: given two lists, and y, return the conjunction of applying
p to the pair made up of the first elements of each list

Modelling the configuration. The configuration of the system is completely
represented by the values of a set of variables which include elements for the
basic states, data-items, and events.

We can describe a configuration as a function mapping variables to values:

Config = Variable—Value

The variable ¢f will be used in functions to represent a configuration.

The meaning of expressions can be given compositionally using functions
which take a configuration as an argument and return the result of evaluating
the expression in that configuration. For example, the meaning of a variable v is
given by the function: SemVARwv = Acf.cf v . This style of function has been
used previously to give the semantics of a small imperative language where all
of its elements are compositional[6]. Expressions are evaluated relative to the
current configuration and actions assign the values of these expressions to the
variables in the next configuration.

Hierarchy of states. Each basic state is represented by one Boolean variable
which indicates whether or not the system is currently in that state. Higher level
states (stn) are given meaning through the values of the basic states:!

INSTATE sc ¢f stn = ((TYP sc stn = B) A SemVAR stn ¢f) v
((TYP se stn = A) A EVERY (INSTATE sc ¢f) (SUBSTATES sc stn)) vV
((TYP se stn = O) A EXISTS (INSTATE sc ¢f) (SUBSTATES sc stn))

The difficulty in giving the semantics is in expressing both which transitions
can be taken and what the result is of following these transitions. The remaining
semantic functions can be grouped into three areas:

— determining if events occur in a step (EVENT_COND)
— conditions on the set of transitions which can be taken, including hierarchy,
priority and triggers (TRANS_COND)

— conditions on the variables in the next configuration modified in this step

(VAR_COND)

The validity of these semantics, both in our interpretation of the opera-
tion of statecharts, and in the correctness of expressing this interpretation in
higher order logic, has been checked using the theorem prover HOL by reducing
the semantic functions to Boolean expressions over the variables for particular
problems. Through this process, errors were discovered and fixed, and we have
increased confidence in the result.

5.1 Events

Events are interpreted as Boolean expressions which depend on whether changes
in values occur between steps. For events other than timeouts, this is relative
to the previous step, but for timeouts, it can involve checking several time units
earlier. In order to minimize the number of values used in the overall expression,
we must determine the truth value of an event relative to the current configura-
tion only. A counter for each relevant event is created which gets reset to zero
when the event occurs and otherwise is incremented in each step. For a timeout,
we test if the counter is equal to the timeout step number. This allows us to
determine the truth value of events relative to the current configuration only.

Since each counter has a maximum value, we have to ensure that it does
not falsely indicate that the event occurs when it overflows. This 1s done by
incrementing it only up to its maximum value. This maximum value can never
be used to indicate an event occurring, therefore a counter must be larger than
its associated timeout step number.

To determine if a timeout event occurs, the function SemTM checks if the
counter(e) for the event equals the expressions (e) for the timeout step number:

SemTM (¢, e) = Aef. "MAXVALUE (SemVAR ¢ ¢f) ASemEQUAL (¢, e) cf
! States can have type A (AND), O(OR), or B(basic).

The timeout step number is evaluated in the current configuration resolving the
questions raised in Sect.3.5.

The counter is reset to zero in the next configuration if the event occurs in
this step. For example, to determine if the system enters a state (stn) in this
step, we use the function:

SemEN sc stn = A(cf, ef’). mINSTATE sc cf stn A INSTATE sc cf’ stn

The next configuration relation must include a condition which updates the
events for each transition:

EVENT_COND sc transset cf cf = (1)
EVERY (Atlabel. UpdateEvent (EVENT (TRANS sc tlabel)) (cf, ef')) transset

where transset 1s the set of numeric transition labels.

5.2 Transition Condition

A step means following a set of transitions which satisfy a number of conditions.
Each transition is represented by a Boolean flag indicating if the transition is
taken in this step. Because statecharts can describe non-deterministic operation,
there will be several different sets which are eligible. If a vector of transition flags
satisfies the transition condition then it represents a legal set. We resolve the
issues raised in Sects.3.1 and 3.4 by giving the conditions which this set must
satisfy:

1. A transition is enabled if the system is in its source state and its trigger is
true. Any transitions which are followed must be enabled.

2. If two or more transitions are enabled and have the same source state, only
one will be taken but it is indeterminate as to which will be chosen.

3. Within an OR-state, only one transition can be followed.

Transitions may be followed within each of the substates of an AND-state.

5. If a transition from a parent state is enabled, it has precedence over one from
a descendant.

6. If one or more transitions are enabled then some set of transitions will be

followed.

e~

The conditions on transitions relative to the hierarchy of states is determined
by their source state.

We make the assumption that transitions do not go between components
of an AND-state (Sect.3.6) and at the present time, we will also assume that
destination states for transitions which are chosen do not conflict.? This second
assumption should be relaxed in the final version of the semantics. With these
assumptions, the above conditions ensure that more than one chosen transition
does not modify the same basic state. Provided that the system is currently

? Destination states for chosen transitions will never conflict if transitions only go
between substates of the same parent state.

in a legal state configuration, the next configuration will be legal if the set of
transitions taken satisfy these conditions. For our purposes, a step does not
include transitions triggered by events occurring in this step and therefore only
transitions out of the set of states at the beginning of the step are considered
(Sect.3.1).

To satisfy the first three conditions, we can consider the transitions among
the substates of a given OR state within the hierarchy. At this one level, we can
take exactly one of the transitions providing it is enabled:

ONE_LEVEL ¢f sc index butrs = X_EXISTS (Ay. y) bvtrs A
PAIR_EVERY (A(flag,i). flag = TRIGGER sc i ¢f) bvtrs index

where index 1s the list of transition labels for this level and bvirs i1s the list
of associated flags. The fourth condition is given by saying that the function
ONE_LEVEL must be true in all components of an AND-state.

We now have to consider multiple levels in the hierarchy and the priority
among these levels. The priority of transitions is given by checking if there is any
way to satisfy the function ONE_LEVEL for a given level by existentially quan-
tifying over its transition flags. Only if there is no way to satisfy this function,
do we consider transitions originating at lower levels. The function EXISTSN
creates a number of existentially quantified Boolean variables in a bit vector
(bvtrans) which is given as a parameter to the second argument of EXISTSN[9].
In pseudo-code, the transition condition can be given as:

TRANS_COND ¢f sc bvirans stn = (2)
(TYPsc stn=B)=T |
(TYP sc stn = A) =

EVERY (TRANS_COND ¢f sc bvtrans) (SUBSTATES sc stn) |
let here = set of transitions at this level in
let prioritytest = EXISTSN (LENGTH here) (ONE_LEVEL ¢f sc here) in
prioritytest = (ONE_LEVEL ¢f sc here (transition flags for this level) A

(all flags for lower levels set to false)) |
((all flags for this level set to false) A
EVERY (TRANS_COND ¢f sc bvtrans) (SUBSTATES sc stn))

5.3 Variable Condition

Given the set of transitions which can be taken, we now have to determine the
effects of these transitions on the whole system. The function RESULT returns
the set of modifications for exiting the source state, carrying out the actions,
and entering the destination state.

Results of a transition. The transitions are labelled with actions which mod-
ify the data items in the system. These actions can all be defined in terms of an
assignment statement. The semantic function for an assignment statement re-
turns a pair, (v, €), which indicates that the expression e, evaluated in the current
configuration, should be assigned to the variable v in the next configuration.
Executing a transition modifies the configuration not only by the actions but
also by leaving the source state and entering the destination state. The variables
for the basic states of the source state must be set to false and the ones for
the destination should be be set to true by following default entrances. If the
destination modifications overlap with the ones for the source (for example if a
transition loops), then the changes for the destination have precedence.

Combining results of executing transitions. The values of the variables in
the next configuration must satisfy the following three properties:

1. If a given transition is taken, at the end of the step the system will be in a
configuration which includes the destination state of the transition and all
its actions will be carried out except where conflicts occur among the actions
of all transitions.

2. If more than one modification is made to the same variable (i.e. a conflict
occurs) then exactly one of these modifications will be true in the next
configuration.

3. If a variable is not modified by any transition in a step, then it retains its
previous value.

Modifications from all transitions are considered together, whether they came
from the same or different transitions. The variable condition resolves conflicts
among assignments (CH) as discussed in Sects.3.2 and 3.3 and ensures the last
property for variables which are not changed (UNCH):

VAR_COND sc cf cf’ transset bvtrans varlist = (3)
EVERY(Av. UNCH sc v ¢f cf’ transset bvtrans Vv

CH sc v ef ef’ transset butrans)varlist

where sc is the textual representation for the statechart, warlist is the set of
variables, ¢f is the current configuration, ¢f’ is the next configuration, transset
is the set of labels for the transitions, and bvirans is a bit vector containing the
flags for the transitions.

Classification of variables. Only variables under this system’s control should
necessarily keep their previous value if they are not modified, i.e. internal vari-
ables. External data-items and events may not retain their previous values be-
tween steps. The variables for the basic states are all internal, but the classifica-
tion of events and data items as external or internal must be given. We assume
that varlist includes only the internal variables.

Unchanged variables. The function UNCH uses the set of modifications re-
turned by RESULT and the transition flags to determine if a variable, v, has not
been changed in a step, and therefore should keep its previous value?:

UNCH sc v cf cf’ transset butrans =
EVERY (Atlabel. —EL tlabel bvtrans v
“MEMBER v (CHANGEDVAR (RESULT sc tlabel)))transset A
EQUAL (SemVAR v ¢f)(SemVAR v cf’)

Resolving conflicts. When more than one assignment is made to the same
variable, the actions are treated atomically and exactly one of the possible mod-
ifications occurs. The function ACT looks at the list of modifications (modlist)
and forms the digjunction of all possible modifications to a variable (v), evalu-
ating the expressions relative to the current configuration:

ACT v modlist cf cf =
EXISTS (Aasn. (FST asn = v) AEQUAL (¢f’ v) ((SND asn)cf)) modlist

Applying the ACT function to the results of each transition and then taking
the disjunction of these clauses for all chosen transitions produces the effect of
taking the disjunction of all possible modifications to a variable (v) in a step:

CHsc v cf cf transset bvtrans =

EXISTS (Atlabel. EL tlabel bvtrans A ACT v (RESULT sc tlabel) cf cf')transset

5.4 Next Configuration Relation

The next configuration predicate combines all of the restrictions given above
to produce a relation between the previous configuration (¢f) and the next
configuration (¢f’) for a particular statechart (sc¢). The set of internal variables
is given as a parameter (varlist). The variable root is the ancestor of all states.

NC sc varlist cf cf' =
let root = ROOT s¢ and transset = GET_TRANS_LABELS sc¢ in
let transnum = SUC(MAX_TRANS transset) in
EXISTSN transnum (Abvtrans.

EVENT_COND sc transset cf cf’ A (1)
TRANS_COND ¢f sc butrans root A (2)
VAR_COND se cf cf" transset butrans varlist) (3)

5 ELn I returns the nth element of 1.

6 Embedding the Semantics in HOL

Most of the preceding definitions can be input directly into HOL, but in a few
cases recursive definitions over the hierarchy of the statechart are used. Since
HOL does not provide general recursion, these need to be phrased in terms of
primitive recursion. We do this by giving the length of the list of states in the
statechart as an extra argument to recurse over. This is an upper bound on the
recursion since the statechart hierarchy would have to be a degenerate tree to
reach this bound. Definitions like INSTATE become:

(INSTATE 0 sc ¢f stn =F) A
(INSTATE (SUCn) sc cf stn =
((TYP sc stn = B) A (SemVAR stn ¢f)) Vv
((TYP sc stn = A) AEVERY (INSTATE n sc ¢f) (SUBSTATES sc stn)) Vv
((TYP sc stn = O) AEXISTS (INSTATE n sc ¢f) (SUBSTATES sc stn)))

7 Model Checking

The next configuration relation forms the basis for a model checking function
written in HOL, and executed in VOSS using the efficient representation of its
BDD package. This model checker tests boolean expressions relative to the cur-
rent configuration. These may be invariants to prove safety properties, functional
or timing requirements.

The model checking function quantifies over the bits used to represent the
configuration and iteratively checks that the expression holds through a limited
number of steps. By starting in any possible system configuration, we can show
that the property holds for all time. A full description of the model checker and
examples of its use can be found in [1].

The end result is that an operational specification can be created in the
CASE tool STATEMATE and then analyzed using a BDD-based model checker.
We expect it is possible to make the semantic functions more efficient to speed
up this analysis.

8 Conclusion

This paper presents a high-level view of an operational semantics for a working
subset of statecharts in quantifier free higher order logic as a next configuration
relation. It is important to note that since HOL only deals with total functions,
every statechart has an interpretation.

The difficulty in giving these semantics is that the components of statecharts
are not completely compositional. The meaning of expressions and actions are
expressed simply by examining their parts. Timeout events use counters so they
can be evaluated relative the current configuration only. But the overall con-
ditions on transitions and values of variables in the next configuration have to

consider all parts of the statechart. Our definition of a step is simpler than that
used by other versions of the semantics but is easier and clearer to express. It
implements non-determinism among transitions on the same level and priority
for transitions from states related in the hierarchy. Race conditions and multiple
conflicting actions on a transition are resolved by considering all actions together
when assigning values to the variables in the next configuration. Interpretations
for enabled transitions with conflicting destination states and those which go
between orthogonal components have not yet been included.

These semantics form the basis of a model checker for statecharts, but they
could also be used to examine their properties. Since they are presented within
the framework of HOL, it is open for others to use this theorem-prover to examine
these semantics.

9 Acknowledgements

This work was completed while the first author was funded by a Canadian Nat-
ural Science and Engineering Research Council Post Graduate Scholarship. We
are indebted to the Integrated Systems Design Laboratory for interesting discus-
sions where many of these ideas originated and the graduate students at UBC
for comments on drafts of this paper.

References

1. Nancy Day. A model checker for statecharts. Master’s thesis, University of British
Columbia, 1993. In preparation.

2. D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of
statecharts. In Proceedings of the 2nd IFEE Symposium on Logic in Computer
Science, pages 54—64, Ithaca, New York, June 1987.

3. David Harel. On visual formalisms. Communications of the ACM, 31(5):514-530,
May 1988.

4. Dawvid Harel, H. Lachover, et al. Statemate: A working environment for the devel-
opment of complex reactive systems. IFEE Transactions on Software Fngineering,
16(4):403-414, April 1990.

5. i-Logix Inc., Burlington, MA. Statemate 4.0 Analyzer User and Reference Manual,
April 1991.

6. Jeffrey J. Joyce. Totally verified systems: Linking verified software to verified hard-
ware. Technical Report No. 178, University of Cambridge Computer Laboratory,
September 1989.

7. Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon D. Reese. Require-
ments specification for process-control systems. Technical Report 92-106, University
of California, Irvine, Information and Computer Science, 1992.

8. A. Pnueli and M. Shalev. What’s in a step: On the semantics of statecharts.

9. Carl-Johan H. Seger and Jeffrey J. Joyce. A mathematically precise two-level formal
hardware verification methodology. Technical Report 92-34, University of British
Columbia, Department of Computer Science, December 1992.

This article was processed using the IATpX macro package with LLNCS style

