An Example of Linking Formal Methods with CASE Tools
(A Model Checker for Statecharts)

Nancy Day*

September 2, 1993

Abstract

Computer-Aided Software Engineering (CASE)
tools encourage users to codify the requirements
for the design of a system early in the devel-
opment process. They often use graphical for-
malisms, simulation, and prototyping to help ex-
press ideas concisely and unambiguously. Some
tools provide little more than syntax checking
but others can test the model for reachability
of conditions, nondeterminism, or deadlock. In
this paper, we present an example of how com-
mercial CASE tools can be linked with formal
methods to build more thorough forms of anal-
ysis into these tools.

The CASE tool STATEMATE [12] makes use
of an extended state transition notation called
statecharts. We have formalized the semantics
of statecharts by embedding them in the logi-
cal framework of an interactive proof-assistant
system called HOL. A software interface is pro-
vided to extract a statechart directly from the
STATEMATE database and translate it into a
textual representation that can be directly input
into the HOL system.

Using HOL in combination with Voss, a bi-
nary decision diagram-based verification tool,
we have developed a model checker for state-
charts, which tests whether an operational spec-
ification, given by a statechart, satisfies a de-
scriptive specification of the system require-
ments. The model checking procedure is a sim-
ple higher-order logic function which executes
the semantics of statecharts in Voss.

This paper illustrates this method through
two examples to show how our model checker

*Supported by a Natural Science and Engineering Re-
search Council Post Graduate Scholarship

may be used to aid in the analysis of the re-
quirements of a system.

1 Introduction

Previous work has stated that errors introduced
in the specification stage of the system develop-
ment process are often the most costly to cor-
rect [13]. Computer-Aided Software Engineer-
ing (CASE) tools are mechanical aids to the
system specifier. The ability to analyze these
specifications can help eliminate errors at this
early stage and ensure that the specification has
its intended meaning. Formal methods, such as
model checking, have been developed to analyze
specifications. This work describes how a model
checker can be integrated with the CASE tool
STATEMATE. The main conclusion is that for-
mal techniques are an effective method for pro-
viding more thorough analysis of specifications
than achieved by conventional approaches em-

ployed by CASE tools.

2 CASE Tools

CASE tools are intended to help the system de-
veloper by providing ways of codifying require-
ments early in the process. The specification is
developed in a graphical notation which 1s in-
tended to be an improvement over natural lan-
guage but may still be open to interpretation. In
this work, we focus on CASE tools used commer-
cially by software engineers who are not familiar
with formal methods.

The specification that the user creates with
the CASE tool is usually an operational model.
It can be considered a very abstract view of

the system implementation. This model can
often be simulated or executed although it
may include non-determinism. Examples of op-
erational specification notations supported by
CASE tools include data flow diagrams, petri
nets and finite state machines [3].

3 Specification Analysis

Once a specification has been created, it is use-
ful to analyze it before proceeding with system
development. Some CASE tools provide little
more than syntax and type checking of the no-
tation, but others exploit the possibilities for do-
ing further analysis of the requirements. Simu-
lation and prototyping help ensure that the re-
quirements are complete and that they capture
the intended behaviour of the system. Tests for
deadlock, non-determinism, and race conditions
are all useful for checking general properties of
the system.

Given an operational model of the system, we
can also ask whether it has particular properties.
Safety or liveness conditions can be checked at
this initial stage of specification. For example, a
model of a traffic light at a two way intersection
should have the property that at least one of
the lights i1s red at all times. These properties
are called descriptive specifications. They are
often global conditions which should be satisfied
throughout the system’s execution.

4 STATEMATE

The CASE tool STATEMATE uses a graphical
extended state transition notation called state-
charts as the operational specification notation
for real-time systems. STATEMATE integrates
tools to analyze and execute the model [11].

The STATEMATE Simulator provides inter-
active or batch mode executions of the model.
It relies on the user to play the role of the en-
vironment by changing the values of external
data items. In cases where the model is non-
deterministic, the user can choose or the system
will randomly select one execution path to fol-
low.

STATEMATE’s Dynamic Analysis tests pro-
vide more comprehensive examination of the

model for particular properties. The “reachabil-
ity of conditions” test checks whether the sys-
tem ever reaches a point in execution where cer-
tain conditions, given in the syntax of statechart
Boolean expressions, hold true. This test is not
completely comprehensive because initial or de-
fault values for internal data-items and events
must be given. A range of values can be as-
signed to external data-items. A test is per-
formed for each different value within this range,
but 1t is unclear from the manual whether the
value is constant throughout the test, or whether
all different possible values are considered at
each decision point. The second interpretation
is the more conservative and the more appropri-
ate since the system has no control over when
the value of an external data-item is changed.
The user must also give a limit on the number
of execution steps that the model will take while
performing these checks. In cases where the con-
dition is reached, the execution path followed to
arrive at that point is documented.

5 Formal Methods

While type-checking or testing a model for gen-
eral properties like non-determinism could be
considered formal methods, we will use the term
in a more specialized way. In this work, the term
“formal methods” encompasses a range of tech-
niques where principles of reasoning and math-
ematics are used to examine models more thor-
oughly than can be achieved by traditional test-
ing and simulation. These techniques include
both interactive and automatic theorem prov-
ing, and model checking. The test for reachabil-
ity of conditions in STATEMATE is a restricted
form of model checking.

6 Linking CASE tools with
Formal Methods

The intent of this work is to determine if, by
using formal techniques, it is possible to do
more thorough analysis of specifications beyond
the ability of conventional methods employed
by commercial CASE tools. To carry out any
type of formal analysis, precise semantics are

required for both the descriptive and the op-
erational specifications. Statecharts were cho-
sen as the language for the operational specifi-
cations because they are supported by a CASE
tool and because they already have a reasonably
well-developed semantics.

In general, the automatic formal techniques
are more appealing to non-experts than the in-
teractive tools. Harel [9] and others have sug-
gested that automatic verification techniques
could be integrated effectively into system anal-
ysis tools. Model checking is an automatic way
of verifying properties of an operational model.
The link to CASE tools is provided by a precise
semantics for the operational specification nota-
tion. However, much of the work to formalize
these semantics and create the infrastructure to
connect a CASE tool with a model checker can
be carried out by an expert. The result is a tool
that can be used by non-experts to verify prop-
erties of their model automatically.

In this paper we discuss the model checking
algorithm and present some examples of its use.
We potentially improve upon the existing test
for reachability of conditions within STATEM-
ATE in the following ways:

1. allowing symbolic values in the expression
of the properties,

2. making the semantics adaptable to suit
variations of the statechart notation, and

3. providing a framework for using more ex-
pressive descriptive specification languages.

It 1s not entirely clear from the STATEM-
ATE manual to what extent symbolic function-
ality properties can be proven. For example, we
would like to set an initial state where a vari-
able has the value a and, given an increment
operation, the model checker could prove that
the resulting value is @ + 1. We also want to be
certain that the model checker recognizes that
external data-items can change their values at
any time and therefore examines branching ex-
ecution paths. Both of these are accomplished
using symbolic values for variables which means
many values for a variable can be checked with
one run of the model checker.

There are several situations where it is not ob-
vious how a statechart should be interpreted. By

making the semantics used in the model checker
explicit, it should not be difficult to adapt them
to suit variations of the formalism. Leveson’s
Requirements State Machine Language (RSMT)
[13] falls into this category.

Properties that we wish to verify can often
only be expressed in more complex descriptive
specification languages. Computational Tree
Logic (CTL) is an example of such a language
which includes temporal operators in its expres-
sions. Given a decision procedure our model
checker can be adapted to a language that in-
cludes these features, using the same semantic
definitions that we supply.

7 The Overall Method

Given an operational specification of system cre-
ated in STATEMATE, can we create the links
necessary to use a model checker to answer the
question of whether a given operational specifi-
cation satisfies certain descriptive requirements?

Formal methods rely on having a precise se-
mantics for the language used to describe the
model. Statecharts were developed with an ac-
companying semantics that has since been re-
fined and given in different forms by various
authors [6][10][13][15]. These descriptions often
differ from each other or do not always discuss
some of the more subtle aspects of the seman-
tics. Therefore, we also had to use our intu-
ition to determine the meaning of statecharts.
We have embedded an operational semantics for
statecharts as a next configuration relation in a
target language. The target language is a sub-
set of higher-order logic that can be informally
regarded as a functional programming language.

The descriptive specification gives an initial
set of configurations and a condition that must
hold along all (or some) execution paths starting
at those configurations, within a certain number
of steps. A software interface extracts the state-
chart directly from the STATEMATE database
and the model checker tests whether the stat-
echart model satisfies the descriptive require-
ments.

Many improvements in the speed of model
checkers have been made in recent years, most
notably giving symbolic values for variables and
using binary decision diagrams for efficient rep-

Operational Specification

STATEMATE

———

C Translation

True / False Descriptive

Specification

LT

STATECHARTS
(Next Config Relation = NC)

8<

HOL

Voss (BDDs)

Figure 1: The overall method

resentation of configurations. HOL-Voss [17] is
a hybrid verification tool that combines an inter-
active proof-assistant, HOL [5], based on higher-
order logic, with an efficient, automatic symbolic
simulator, Voss [16], that uses ordered binary
decision diagrams (BDDs) [1]. By implement-
ing our model checker in this tool we can take
advantage of the expressiveness of higher-order
logic to give the semantics of statecharts and
then execute the model checking algorithm us-
ing BDDs. The model checker is written as a
function in higher-order logic that takes a next
configuration relation describing the semantics
of the model as a parameter. It returns either
true or false depending on whether or not the
descriptive specification is satisfied. The com-
plete method used to do this is summarized in
Figure 1.

Given that only the target language is used
to express the semantic definitions, the ques-
tion of why we chose to use HOL should be an-
swered. The first reason for this is that there
have already been interesting results from hy-
brid tools used for hardware verification. Com-
bining a model checker with a theorem prover
allows the use of mathematical reasoning tech-
niques like induction and abstraction to prove
results beyond the capacity of a model checker
[17]. Our model checker is created in HOL-
Voss so the theorem-prover is available for this

type of use. The traffic light example presented
later gives an example of how results from the
model checker can be combined using induction
to prove a stronger property.

The second reason is that HOL 1s a theorem-
prover in which properties of the semantics of
statecharts themselves could be verified. The
correctness of our definitions can only be evalu-
ated relative to our interpretation of the mean-
ing of statecharts. Demonstrating overall prop-
erties of the semantics would provide a formal
basis to our claim that these definitions match
our interpretation.

8 Statecharts

There is a great deal of interest from both
academia and industry in the statecharts for-
malism. It is an extended state transition nota-
tion for expressing the concurrent operation of
real-time systems. It is often described as:

state-diagrams + depth + orthogonality +
broadcast-communication [6]

In statecharts, the diagrammatic layout of the
notation has meaning beyond just the labels on
states and transitions. A hierarchy of states is
portrayed in a style similar to set inclusion in
Venn diagrams to reduce the complexity of the
model and therefore make it more readable. The
reader is referred to Harel [8] for an explanation
of the origins of statecharts as a type of higraph
that combines the elements of graphs and Venn
diagrams.

The STATEMATE manual describes a traffic
light system controlling a two-way intersection
which is a simple but effective example of the ex-
pressiveness of statecharts [11]. The statechart
for the traffic light controller is given in Figure
2 (from Figure 3-22 in [11]) and will be used to
illustrate the elements of statecharts.

A statechart models the system as being in a
number of states which describe its operation.
These states are depicted by rounded boxes. A
state can be considered a point in the compu-
tation. For example, the state labeled NOR-
MAL, at the top of the figure represents the
normal operation of the lights in both directions.
The dashed line through its middle splits it

NORMAL

(¢}
GREEN

t2: en(E_W.RED) tl: tm(en(N_S.YELLOW),2)

15: en(N_S.RED)
4: tm(en(E_W.YELLOW),2)

7: RES&
FLASHING 16: MALFUNCTION

Figure 2: Traffic light statechart

into two substates, north-south(IN_S) and east-
west(E_W), which operate concurrently, repre-
senting the two directions of the traffic light.
NORMAL is called an AND-state because it
has these orthogonal components. N_S and
E_W are decomposed into substates labeled red,
yellow, and green to indicate that when the
model is in one of those states, the light is show-
ing that colour, which can be considered the out-
put from this controller. The model can be in
only one of them (i.e., red, green, or yellow) at
any time making N_S an OR-state (exclusive-
OR).

The representation of these substates within
the larger rounded box creates a hierarchy of
states (depth). TIn this hierarchy, the state
NORMAL is an ancestor of N_S and E_W.
Similarly, N_S and E_W are both descendants
of NORMAL. When a state is not decomposed
into AND or OR-states, 1t is called a basic state.
There are seven basic states in Figure 2 .

States are connected by transitions with labels
of the form:

event [condition] / action

For reference purposes, we have given each tran-
sition a unique name like t0 or t1. If the sys-
tem is currently in the source state of a certain

transition labeled efc]/a, and the event e occurs
when the condition ¢ is satisfied, then the tran-
sition 1s enabled. Broadcast communication is
used; this means that all events and the values
of any data-items can be referenced anywhere
in the system. The event and condition are to-
gether referred to as the trigger of the transition.

A condition is a Boolean expression that can
include statements like IN(z) to check whether
the system is currently in state z. These are
often used to synchronize components.

An event is generated when there is a change
in a condition. This is a discrete version
of “the instantaneous occurrence of a stimu-
lus” [12]. Entering a state z is a change
that causes the event en(z) to occur. A
timeout, tm(ev,z), is an event that occurs
z time units after the event ev. We will
call ev the timeout event and x the timeout
step number. Transition t1 is triggered by
the timeout tm(en(N_S.YELLOW),2) where
en(N_S.YELLOW) is the timeout event and
2 1s the timeout step number.

Enabled transitions move the system between
states. Following, or taking a transition means
exiting its source state, carrying out the actions
on its label, and entering its destination state.
Informally, following a set of these transitions
generally corresponds to a step or one time unit.
Events occurring in one step can trigger transi-
tions in the next step.

Transitions can be taken in the substates of
an AND-state simultaneously. A transition can
be enabled if it originates in any ancestor of the
current set of basic states. Transitions can also
terminate at the outer boundary of a state with
substates. Default arrows, given diagrammati-
cally as open circles pointing at a state, lead the
system into a set of basic states. For example,
when transition t7 is followed, it terminates at
the state NORMAL, which is made up of two
orthogonal components. The default arrows for
each of its substates point at E_ZW.RED and
N_S.GREEN.

If a transition is followed, the action part of
the label is carried out and the system moves
into the destination state. Actions include gen-
erating events or modifying values of variables in
the data store through assignment statements.
This example does not have any actions on its

transitions.

We use the term configuration to include the
set of states the system is currently in, the val-
ues for all data-items, and the events that just
occurred.! The current set of states alone is
called the state configuration. A set of basic
states is a legal state configuration if it satis-
fies the constraints of the hierarchy. A discrete
notion of time is used where the system moves
between configurations as a result of stimuli gen-
erated both from within the system and exter-
nally.

Statecharts often include elements like history
states, conditional connectives for transitions,
static reactions, and transitions with multiple
source and destination states. For simplicity,
these are not considered here.

9 The Semantics of State-
charts

The statechart notation may seem very straight-
forward, however statecharts can be created
where their intended meaning is not so obvious.
These are the situations which make it difficult
to give a semantics for statecharts.

The first effort towards a formal semantics
for statecharts was by Harel et al. [6]. Pnueli
and Shalev [15] pointed out difficulties with the
first approach and described revisions. They
also show that declarative and operational ver-
sions of their semantics are equivalent given a
restricted form of the syntax of events. The ver-
sion of statecharts used in STATEMATE has
a semantics given by the simulation and anal-
ysis tools which is not entirely consistent with
Harel et al. [10][11]. We also considered the
semantics presented by TLeveson et al. [13] for
the notation called Requirements State Machine
Language (RSML) which is a variation of state-
charts.

All of this previous work, including less for-
mal discussions of the operation of statecharts
[71[8][9][10], has been used to help determine the
less obvious features of statecharts and formal-
ize our interpretation of the semantics of state-
charts.

' The STATEMATE manual calls this concept a status
[11].

For our purposes, meaning is given to a state-
chart through a set of semantic functions. These
functions translate the syntax sc into a Boolean
relation over the variables of the current con-
figuration and of the next configuration. This
relation is given by NC sc. The configuration
of the system is completely represented by a set
of Boolean variables which includes elements for
the basic states (where true means the system is
currently in that basic state), manipulated vari-
ables used in expressions (given by bit vectors),
and events (often given by counters). The val-
ues of the basic states determine the meaning of
all higher-level rounded boxes in the hierarchy.

Actions can assign Boolean or arithmetic ex-
pressions to variables. The meaning of these
expressions is evaluated compositionally by ex-
amining the parts of the expression relative to
the current configuration and then assigning the
value to the variable in the next configuration.
For example, the meaning of equality operator
is given by:

SemEQUAL (a1, as) = Aef : Config.
EQVAL(ay cf ,ascf)

where a1 and as are expressions that take a con-
figuration as an argument and return a value, as
SemEQUAL does, and EQVAL is the equality test
for bit vectors.

The value of conditions is determined in a
similar manner, making reference only to the
current configuration. To evaluate events, 1t is
necessary to look at past configurations as well,
since an event describes a change in a condition
between the current and previous time step. Our
interpretation matches the one used in STATE-
MATE, where events generated in this time step
are not considered until the next step.

The difficulty in giving the semantics for this
language comes in expressing both which tran-
sitions can be taken and what the combined re-
sult is of following a set of transitions. The set
of transitions that can be taken is limited by
which ones are enabled, the hierarchy of the stat-
echart, and the priority within that hierarchy.
Unlike previous semantics, we base the priority
of transitions on their source state. Combining
the actions of the transitions taken depends on
whether there are race conditions where more
than one transition which is followed modifies

the same variable. It is also necessary to express
the condition that if a variable is not modified in
a given step, then it retains its previous value.

Given a current configuration, it may be in-
determinite as to which set of transitions will be
chosen for this step. If there are conflicts among
the actions of the transitions chosen for the step,
it 1s also indeterminate as to what value a vari-
able will take on. The result is that several next
configurations may satisfy the relation for the
same current configuration.

Because we have used total functions to give
the semantic definitions, every statechart has an
interpretation. The semantics consists of three
parts:

e conditions on the set of transitions that can
be taken, including hierarchy, priority and
triggers,

e conditions on the variables in the next con-
figuration, and

e conditions on the next complete system
configuration which must remain legal.

These semantics have been used in a model
checker for statecharts which is presented in the
next section. They could also form the basis
for other types of analysis and simulation or to
examine properties of the semantics themselves.

The validity of these semantics depends on
our interpretation of the operation of state-
charts and in the correctness of expressing this
interpretation in the target language. They
have been informally checked using a mechan-
ical proof-assistant to reduce the semantic func-
tions to Boolean expressions over the variables
for particular problems. They have also been
executed in the model checker described in the
next section. Through this process, errors were
discovered and fixed, and we have increased con-
fidence in the result.

10 The Model Checker

Many forms of model checking have been devel-
oped and used for different purposes. In general,
a model checker tests whether a given property
holds true in a finite state machine model of a
system. A statechart can be considered as a fi-
nite “state” machine where the “states” of the

machine are all the possible configurations and
the “state” transition relation is given by the
next configuration relation NC. The descriptive
specification is the property to test.

Treating the values of elements of the config-
uration symbolically, it is possible to show that
the property is true over a class of configura-
tions in one run of the model checker. We can
also examine the consequences of external events
occurring at any time.

In the past, these tools have suffered from
the configuration explosion problem? when all
configurations were explicitly represented. The
symbolic model checking algorithm used here is
a limited form of the one presented by McMillan
[14] where binary decision diagrams (BDDs) are
used for efficient representation of the possible
configurations. Boolean functions give charac-
teristic functions for possible configurations un-
der evaluation.

The following elements are required to carry
out the model checking;:

e a way of representing the system configura-
tion in Boolean variables so that it can be
executed

e a notation for expressing the descriptive
specification

e an algorithm for doing the model checking

The model checker is independent of the next
configuration relation which characterizes the
semantics.

The configuration can be represented in
Boolean variables (bits) so that the next config-
uration relation can be executed. By execution,
we mean giving two configurations as arguments
to the relation and automatically simplifying the
relation to true or false.

11 Descriptive
Specifications
The descriptive specification language for this

model checker includes bounded eventually tem-
poral logic statements in one of two forms:

2This is usually called the state explosion problem.

e Starting from an initial set of configurations
1, the property f eventually holds within n
steps on all execution paths.

e Starting from an initial set of configurations
1, the property f eventually holds within n
steps on some execution path.

where i and f are predicates on configurations
which can be considered characteristic functions
for a set of configurations.

The operational specification is given by the
relation NextConfig which relates two configu-
rations. To model check a particular statechart
se we would supply NC sc¢ for NextConfig but
the model checking algorithm would work for
any other model whose operation can be de-
scribed by a next configuration relation.

To show the first type of statement is true we
show that the following predicate is true:

MC_A n 1 NextConfig f
Similarly, the second statement is verified using:
MC_E n 1 NextConfig f

The functions MC_A and MC_E implement the
model checking algorithm and will be described
in the next section. Section 14 shows how MC_A
can be used as part of an inductive proof to show
f i1s true for all times, not just within a time
constraint.

Higher-order functions can be used to write
more complex descriptive specifications for our
model checker but these must be given relative
to the current configuration only and within a
bounded time. Properties that depend on fu-
ture configurations as well as the current one can
be expressed in formalisms used by other model
checkers. Computational Tree Logic (CTL) is
a branching temporal logic that has operators
to express properties for all times, and paths
[14]. For those familiar with CTL, the MC_A
function is closest to the AF f operator of CTL
which means for all paths eventually f, and cor-
respondingly, MC_E is like EF f. The major
difference is that CTL checks for all lengths of
paths using a fixed point operator where as our
model checking tests only within a restricted
time. For expressing properties of hard real-time
systems, bounded temporal operators should be
sufficient.

CTL requires a more complex model checking
algorithm than the one presented here. We have
also looked at the possibility of using another
notation called State Transition Assertions [4]
to give more expressive descriptive specifications
with only small changes in the model checking
algorithm used here.

12 The Model Checking Al-
gorithm

The task for a model checker is to show that
the descriptive specification is true. The model
checking algorithm depends on the descriptive
specification language. It uses the representa-
tion of the configuration of the system and tests
if a given property holds in that configuration. If
the property does not hold in all configurations
that the system is currently in, then it deter-
mines the representation for the next configura-
tion of the system and iterates this process un-
til either the formula does hold along all paths
leading to the current set of configurations or
it has tried the number of iterations given by
the timing constraint. We will begin by explain-
ing the algorithm which determines if property
holds along every execution path (MC_A) and
then describe the simple changes to calculate
MC_E.

Over a limited number of steps, the model
checker determines the set of next configurations
that do not satisfy the property f and there-
fore need to be checked further. A characteristic
function for the set of next configurations (cf’)
is given by asking if there are any elements of
the initial configuration(cf) that are related by
NextConfig to cf’.

Aef'.Jef.icf ANextConfigefcf' (1)
To check if the property f holds in all possible
next configurations, we formulate the question
of whether any cf’’s exist that do not satisfy f:

let check = dcf’. 3cf.

icf AN NextConfigcefef AN —fef (2)
Tf this expression is false (-check) then the prop-
erty is true in all current configurations and the
model checking process can stop. If, however,

this expression is true, then f does not hold in all
next configurations of the set of current config-
urations and the model checking process should
continue to check if f will eventually be satisfied
along all execution paths.

A representation for the set of next configura-
tions that do not satisfy fis needed, since these
are the only paths we need to continue to ex-
amine. The characteristic function for this set is
given in the above expression (Equation 2) with-
out the quantification over the next state:

let nextX = Acf’.3cf.

icf A NextConfigefef AN —fef (3)
This becomes the initial state i used in the next
iteration. The complete model checking process
is given by the following recursively defined func-
tion, called MC_A,| where step is a constant nat-
ural number giving the time constraint:

MC_A step i NextConfig f =4.¢
let check = dcf’.dcf.

icf A NextConfigefef' A —fef in (2)
let nextX = Acf’.3cf.

icf A NextConfigefef' A —fef in(3)
(step = 0) = False |
—(check) v

MC_A (step — 1) nextX NextConfig f

The algorithm to determine if the property f
is ever true within a certain number of steps
(MC_E) is similar except that it stops as soon
as 1t finds a configuration where f 1s true and
otherwise continues with all possible configura-
tions.

13 A Simple Example

The first example demonstrates the use of sym-
bolic values to prove the functionality of an op-
eration. The swap operation just interchanges
the values of two variables using one temporary
value. The statechart describing its operation
is given in Figure 3. The three actions are all
placed on separate transitions so that they will
happen sequentially. These transitions are en-
abled as soon as their source state is entered
since there are no events to trigger them.

To verify that the model accomplishes the

t2:/VAR2 := TEMP

Figure 3: Swap operation

#let START = new_definition{ START®,
"START = “cof ,
INITIAL swap cof

BOOL ¢ SemEQUAL{SemYAR “VARL™,SemWAR ¥} of} /A
BOOL¢SemEQUALSemVAR “WARZ ™, SembAR V™) of) ")r:
####CTART =
|- START =
ef,
INITIAL swap cof
BOOL{SemEQUAL SemvAR “WARL™, SemVAR M *cf) A
BOOL{SemEQUAL SemAR “WARZ ™, SemVAR Y "2cfi}
#let END = new_definitiond “END®,
"END = Mief,
BOOL{SemWAR D" of) /
BOOL ¢ SemEQUAL{SemYAR “VARL™,SemWAR Y™} of} /A
BOOL¢SemEQUALSemVAR “WARZ ™, SembAR “X™) of) ")r:
H#HHHEND =
|- ENI =
ef,

BOOL{SemVAR “0° cofy A\
BOOLSemEQUAL SemYAR “WARL ™, SemWAR ¥ "dof) A
BOOL{SemEOUALtSemAR “WARZ ™, SemVAR i dcfd)

YOS5 "MC MC_A_NS 1 START (NC =wap) END swapINFOL1'::
F o1 ostring

YOS5 "MC MC_A_NS 2 START (NC =wap) END swapINFOL1'::
F o1 ostring

YOS5 "HC MC_A_NS 3 START (NC zwap) END swapIWFOL1"::
T % string

Figure 4: Swap test

swap operation, we should prove that beginning
from the starting system configuration, within
three steps the model always results in a state
where the values have been swapped. VAR1
and VAR2 are given the values of X and Y
which can be constants or symbolic values de-
pending on how they are set in the starting con-
figuration. In our first test, we allocate one bit
to all data 1tems and symbolic values. The con-
stant swapI N FO1 holds the information about
the representation of the configuration. The re-
sults of the test in Figure 4 show that after three
steps the model successfully completes the oper-
ation.

#let INV = mew_definitiond
CIMYC,

"INV = S{cfiConfigl,
((BOOLESemAR "M_S_R™ of) A
BOOL¢SemGREATER <SenVAR “EM_E_W_R ™, SemCOMST 0 cfd) W/
(BOOL(SenVAR “E_M_R™ cfy /A
BOOL¢SemGREATER <SenVAR “EM_M_5_R*,SemCONST 0 cfd) W/
BOOL{SemYAR FL™> cf) A
STHTE_COND rewtls of"i::
HHEREEINY =
1- INY =
{hef,
{BOOL{SemVAR “N_5_R* ofy /A
BOOL{SenCGREATERSSenvAR “EM_E_W_R™,SemCONST 0)cfd
BOOL{Sem¥AR “E_W_R™ of} A\
BOOL{SenCGREATER SentAR “EM_M_5_R",SemCOMST 0)cfd %
BOOL{SemVAR “FL™ of2) A
STATE_COMD rewtls of?

WOSS "MC MC_A_MS L IMY ¢NC newtls) IMV newtlsINFO"::
ST ¢ string

Figure 5: Checking the invariant for the traffic
light

14 Traffic Light Example

For the statechart of Figure 2, we would like to
show it has the safety property that a red light
is on in one direction at all times. Even though
the model checking algorithm only checks for
a bounded number of steps, we can use it to
prove the induction step in an inductive proof
to show that this invariant is true for all times.
Starting from the set of configurations which
satisfy this safety property, we can show that
within one step, all the configurations that can
be reached also satisfy the safety property. Then
we show that the property also holds in the
initial configuration of the statechart and us-
ing induction, this means the property holds for
all times. The difficulty with this approach 1s
finding an invariant which limits the set of con-
figurations sufficiently to exclude configurations
which may be safe, but lead to unsafe configu-
rations in the next step. These should not be
reachable configurations. In this case, we had to
strengthen the invariant to include conditions on
the event counters which are used to determine
Figure b
shows the results of running the model checker
for the invariant.® Again, by relying on induc-
tion, we have proven that the safety property
holds true for all times during the model’s exe-
cution.

when events like en and tm occur.

3 Abbreviated names were used for the states, i.e.,

N_S.RED is ‘N_.SR*

15 Conclusions

By linking CASE tools and formal methods both
will benefit. CASE tools provide a graphical in-
terface to create models to be analyzed using
formal methods. Formal methods provide ex-
haustive techniques to verify that a specification
created in a CASE tool has certain properties.
We gain confidence that the operational spec-
ification does indeed describe the intended be-
haviour of the system by showing that it satisfies
a set of global properties.

Our model checker automatically checks sim-
ple properties of any model whose semantics can
be given as a next configuration relation. Tt
provides the foundation for implementing algo-
rithms that can check more expressive temporal
properties or for using induction to achieve re-
sults previously unattainable by automatic tech-
niques alone. A useful addition would be the
ability to document a situation where the de-
scriptive specification fails if the model checker
is not able to prove the property.

The two examples presented here demon-
strated the use of symbolic values to test a range
of values in one run of the model checker and
proving an invariant using the model checker to
test the induction step. The semantic and model
checking functions as well as more examples can
be found in the more thorough explanation of
this work [2].

The main conclusion of this work is that for-
mal techniques can be integrated into the system
development process to provide more thorough
analysis of specifications than achieved by con-
ventional methods employed by most commer-

cial CASE tools.

16 Acknowledgments

I would like to thank my supervisor Jeff Joyce
and the members of the Integrated Systems De-
sign Laboratory for many useful discussions on
statecharts and several of the graduate students
at UBC for helpful comments on drafts of this

paper.

About the author

Nancy Day has just finished her master’s de-
gree with the Integrated Systems Design Group
of the Department of Computer Science at the
University of British Columbia. She can be
reached at day@cs.ubc.ca.

References

[1] Randel E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677—
691, August 1986.

[2] Nancy Day. A model checker for stat-
echarts. Master’s thesis, University of
British Columbia, 1993. In preparation.

[3] Carlo Ghezzi, Mehdi Jazayeri, and Dino
Mandrioli. Fundamentals of Software En-
gineering. Prentice Hall, Englewood Cliffs,
NJ, 1991.

[4] Mike Gordon. A formal method for hard
real-time programming. Computer Labora-
tory, Cambridge, UK.

[6] M.J.C. Gordon and T.F. Melham. Intro-
duction to HOL: a theorem proving enuvi-
ronment for higher order logic. Cambridge
University Press, 1993.

[6] D. Harel, A. Pnueli, J.P. Schmidt, and
R. Sherman. On the formal semantics of
statecharts. In Proceedings of the 2nd IEEFE
Symposium on Logic in Computer Science,
pages b4-64, Ithaca, New York, June 1987.

[7] David Harel. Statecharts: A visual formal-
ism for complex systems. Secience of Com-

puting, 8:231-274, 1987.

[8] David Harel. On visual formalisms. Com-
munications of the ACM, 31(5):514-530,
May 1988.

[9] David Harel. Biting the silver bullet. IEEE
Computer, 25(1):8-20, January 1992.

i-Logix Inc., Burlington, MA. The Seman-
tics of Statecharts, January 1991.

[11] i-Logix Inc., Burlington, MA. Statemate
4.0 Analyzer User and Reference Manual,
April 1991.

12] i-Logix Inc., Burlington, MA. Statemate
g g
4.0 User and Reference Manual, April 1991.

[13] Nancy G. Leveson, Mats P.E. Heimdahl,
Holly Hildreth, and Jon D. Reese. Require-
ments specification for process-control sys-
tems. Technical Report 92-106, University
of California, Irvine, Information and Com-
puter Science, 1992.

Kenneth L. McMillan. Symbolic Model
Checking. PhD thesis, Carnegie Mellon
University, May 1992.

A. Pnueli and M. Shalev. What is in a
step: On the semantics of statecharts. In
Proceedings of the Symposium on Theoreti-
cal Aspects of Computer Software, Lecture
Notes in Computer Science, vol.5h26, pages

244-264. Springer-Verlag, 1991.

C. Seger. Voss — a practical formal verifi-
cation system based on symbolic trajectory
evaluation. In preparation.

Carl-Johan H. Seger and Jeffrey J. Joyce.
A mathematically precise two-level formal
hardware verification methodology. Tech-
nical Report 92-34, University of British
Columbia, Department of Computer Sci-
ence, December 1992.

